F x как решить – Что означает в математике запись y=f(x). Видеоурок. Алгебра 7 Класс

Что означает в математике запись y=f(x). Видеоурок. Алгебра 7 Класс

Итак, в данном уроке мы должны разобраться, что означает в математике запись . Во-первых, она говорит о том, что задана независимая переменная х, иначе говоря, аргумент. Например, утром ученик вышел из дома в школу, пока он идет, время идет независимо от него, время – пример независимой переменной.

Кроме того, данная запись задает зависимую переменную – функцию. Возьмем тот же пример, когда ученик идет из дома в школу, расстояние в этом случае будет зависимой переменной, так как через пять минут он пройдет, например, 200 метров, а через час километр, расстояние зависит от времени.

  – это закон соответствия, по которому каждому значению х – независимой переменной, ставится в соответствие единственное значение у – зависимой переменной. Условие единственности значения функции для каждого значения аргумента объясним все на том же примере. В некоторый момент времени ученик находится на расстоянии 500 метров от дома, и в этот же момент он не может быть еще и на расстоянии километра, то есть в один момент времени он может быть только в одном месте. Итак, реальные процессы таковы, что накладывают на функции упомянутое ограничение

Вспомним известные нам функции:

1) , функция равна константе. Для нашего примера это можно описать тем, что ученик находится в школе, то есть время идет, а расстояние от дома не меняется.

2) – прямая пропорциональность. Мы помним, что в зависимости от значения k функция может возрастать или убывать. Вспомним графики первых двух функций, для примера построим графики функций , , :

Рис. 1.

Напомним, что любой график прямой пропорциональности проходит через начало координат, при этом если k положительное, то функция возрастает, а если k отрицательное – функция будет убывать

3)   – линейная функция, она задается двумя параметрами – k и m. Возьмем пример: , построим график, напомним, что для этого достаточно взять две точки – составим таблицу:

   х   

   0   

-0,5 

   у   

   1   

0

,

Рис. 2.

Напомним, что параметр m – это ордината точки пересечения графика с осью у, а параметр k как и в случае прямой пропорциональности отвечает за то, будет ли функция возрастать или убывать.

4)  – график данной функции парабола, напомним ее вид:

Рис. 3.

Отметим, что переменные можно называть как угодно, например вместо  можно написать , от этого вид функциональной зависимости не изменится.

Рис. 4.

Вернемся к нашему примеру, где ученик идет в школу, находится в школе и возвращается домой. Расстояние будем откладывать по оси у, а время по оси х.

На участке 1 показано, как ученик идет в школу, расстояние его от дома увеличивается до конкретной точки – в этот момент он пришел в школу. Далее на участке 2 ученик находится в школе, расстояние его от дома остается неизменным. После этого на участке 3 он возвращается домой, причем скорость его меньше, чем когда он шел в школу, так как значение функции изменяется медленнее. В какой-то момент расстояние становится равным нулю – это означает, что ученик пришел домой.

Данный пример говорит нам о том, что функция может на разных участках быть описана по-разному.

Рассмотрим примеры:

Пример 1:

;

1) вычислить значение функции при , , , ,

2) построить график функции;

3) прочесть график и определить свойства данной функции.

Начнем с построения графика:

Для первого интервала, где  составим таблицу для нахождения двух точек:

Для второго интервала, где, также составим таблицу:

Итак, построим график:

Рис. 5.

Теперь вычислим необходимые значения функции: , подставляем значение в функцию , так как  принадлежит интервалу . В эту же функцию подставляем и значение , . Значения  и   подставляем в функцию , так как эти значения х принадлежат интервалу , , ; значение  подставляем в функцию , так как оно входит в интервал , получаем

Нам осталось прочесть график. Итак, если аргумент возрастает , функция возрастает . Когда аргумент возрастает , функция убывает , наконец когда аргумент возрастает  функция остается неизменной и равна четырем. Область определения функции: , то есть данная функция существует только на этом интервале, и если нам нужно было бы вычислить значение в точке , мы не смогли бы этого сделать, так как в этой точке она не существует – не определена. Минимальное значение функции есть, и оно равно -2: ; y=0 при двух значениях аргумента:  и . Функция больше нуля при следующих значениях аргумента: 

 и .

Функция принимает отрицательные значения на следующем отрезке: .

Вывод: в данном уроке мы объяснили смысл записи  и провели обзор известных нам графиков функций. Мы узнали, что функция может быть задана на разных интервалах по-разному и рассмотрели пример подобного задания, в котором выполнили различные типовые задачи.

 

Список рекомендованной литературы

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ 

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

 

Рекомендованные ссылки на ресурсы интернет

1. Портал Естественных Наук (Источник).

2. Интернет-портал Alexlarin.net  (Источник).

 

Рекомендованное домашнее задание

Задание 1: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 799, ст.167;

Задание 2: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 806, ст.168;

Задание 3: Мерзляк А.Г.

interneturok.ru

Калькулятор онлайн – Найти (с решением) производную функции

Этот математический калькулятор онлайн поможет вам если нужно найти производную функции. Программа решения производной не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения производной функции.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Вы можете посмотреть теорию о производной функции и правила дифференцирования и таблицу производных, т.е. список формул для нахождения производных от некоторых элементарных функций.

Если вам нужно найти уравнение касательной к графику функции, то для этого у нас есть задача Уравнение касательной к графику функции.

Примеры подробного решения >>

Введите выражение функции

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

Определение производной

Определение. Пусть функция \( y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \( x_0 \). Дадим аргументу приращение \( \Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \( \Delta y \) (при переходе от точки \( x_0 \) к точке \( x_0 + \Delta x \) ) и составим отношение \( \frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \( \Delta x \rightarrow 0 \), то указанный предел называют

производной функции \( y=f(x) \) в точке \( x_0 \) и обозначают \( f'(x_0) \).

$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) $$

Для обозначения производной часто используют символ y’. Отметим, что y’ = f(x) – это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x)

.

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\( k = f'(a) \)

Поскольку \( k = tg(a) \), то верно равенство \( f'(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \( y = f(x) \) имеет производную в конкретной точке \( x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x) $$
Это означает, что около точки х выполняется приближенное равенство \( \frac{\Delta y}{\Delta x} \approx f'(x) \), т.е. \( \Delta y \approx f'(x) \cdot \Delta x \). Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х. Например, для функции \( y = x^2 \) справедливо приближенное равенство \( \Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение \( x \), найти \( f(x) \)
2. Дать аргументу \( x \) приращение \( \Delta x \), перейти в новую точку \( x+ \Delta x \), найти \( f(x+ \Delta x) \)
3. Найти приращение функции: \( \Delta y = f(x + \Delta x) – f(x) \)
4. Составить отношение \( \frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f'(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \( \Delta y \approx f'(x) \cdot \Delta x \). Если в этом равенстве \( \Delta x \) устремить к нулю, то и \( \Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \( y=\sqrt[3]{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \( f'(0) \)

Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C — постоянное число и f=f(x), g=g(x) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

$$ C’=0 $$ $$ x’=1 $$ $$ ( f+g)’=f’+g’ $$ $$ (fg)’=f’g + fg’ $$ $$ (Cf)’=Cf’ $$ $$ \left(\frac{f}{g} \right) ‘ = \frac{f’g-fg’}{g^2} $$ $$ \left(\frac{C}{g} \right) ‘ = -\frac{Cg’}{g^2} $$ Производная сложной функции:
$$ f’_x(g(x)) = f’_g \cdot g’_x $$

Таблица производных некоторых функций

$$ \left( \frac{1}{x} \right) ‘ = -\frac{1}{x^2} $$ $$ ( \sqrt{x} ) ‘ = \frac{1}{2\sqrt{x}} $$ $$ \left( x^a \right) ‘ = a x^{a-1} $$ $$ \left( a^x \right) ‘ = a^x \cdot \ln a $$ $$ \left( e^x \right) ‘ = e^x $$ $$ ( \ln x )’ = \frac{1}{x} $$ $$ ( \log_a x )’ = \frac{1}{x\ln a} $$ $$ ( \sin x )’ = \cos x $$ $$ ( \cos x )’ = -\sin x $$ $$ ( \text{tg} x )’ = \frac{1}{\cos^2 x} $$ $$ ( \text{ctg} x )’ = -\frac{1}{\sin^2 x} $$ $$ ( \arcsin x )’ = \frac{1}{\sqrt{1-x^2}} $$ $$ ( \arccos x )’ = \frac{-1}{\sqrt{1-x^2}} $$ $$ ( \text{arctg} x )’ = \frac{1}{1+x^2} $$ $$ ( \text{arcctg} x )’ = \frac{-1}{1+x^2} $$

www.math-solution.ru

Сложная функция

Сложная функция

Пример 1. Дана функция f(x) = 3x2 – 4. Найти:

Решение: f(4) = 3•42 – 4 = 48 – 4 = 44;

f(a3 + 1) = 3(a3 + 1)2 – 4 = 3(a6 + 2a3 + 1) – 4 =

= 3a6 + 6a3 – 1;

f(t) = 3t2 – 4;

Пример 2. Найти функцию f(x), если  f(x + 1) = x2 + 2x + 2.

Решение. Пусть x + 1 = a, тогда x = a – 1;  f(a) = (a – 1)2 + 2(a – 1) + 2 = a2 – 2a + 1 + 2a – 2 + 2 = a2 + 1.

Ответ: f(x) = x2 + 1.

Пример 3. F(2x – 1) = 4x – 7; F(g(x)) = x3. Найти g(x).

Решение. Пусть 2x – 1 = a, тогда

т. е.  F(x) = 2x – 5. Значит,

F(g(x)) = 2g(x) – 5. 2g(x) – 5 = x3.

Ответ:

Пример № 229г (из учебника «алгебра, 10–11» А.Н. Колмогорова). Найти такую функцию f, что

f(g(x)) = x, g(x) = x2 + 1, x Ј 0.

Решение. По условию f(x2 + 1) = x, x Ј 0.

Пусть x2 + 1 = t, тогда

Ответ:

Пример 4. Найти F(x), если F(sin x) + F(cos x) = 3.

Решение. Перепишем данное уравнение в виде

F(sin x) + F(cos x) = 3(sin2 x + cos2 x).

В выражении sin x заменим букву x на m, получим sin m. Допустим, что cos x = sin m, выразим x через m:

x = arccos (sin m).

Уравнение примет вид

F(sin m) + F(cos (arccos (sin m))) = 3(sin2 m + sin2 m),

2F(sin m) = 3•2sin2 m,

т. е.  F(sin m) = 3sin2 m; F(x) = 3x2.

Ответ: F(x) = 3x2.

Пример 5. Найти функцию f(x), если

Решение. В дроби

  заменив x на m, получим

Пусть 

Выразим x через m, получим

Найдем значение дроби через m:

и значение дроби в правой части данного уравнения тоже при

Получим новое уравнение (при аргументе m)

или, заменив букву m на x,

Вместе с данным уравнением составим систему

Эта система, линейная относительно неизвестных

и

решается любым из возможных способов. Ее решение (после упрощения):

или

Найдем f(t), если допустим, что

Выразим x через t:

Тогда

Аналогичный результат получим из первого уравнения последней системы.

Ответ:

Пример 6. Найти функцию f(x), если

Решение. Пусть

тогда

Получим новое уравнение с переменной t

Заменив t на x, запишем

Составим систему с данным уравнением, переставив слагаемые

Исключим из системы неизвестное

Ответ:

Пример 7. Найти функции F(x) и g(x) из системы уравнений

Решение. Пусть

Тогда

и первое уравнение примет вид

Заменим t на x. Получим систему

Вычитая уравнения почленно, находим

а затем и

Пусть 2x + 1 = a, тогда

Следовательно,

Ответ:

Пример 8. Найти функции F(x) и g(x) из системы уравнений

Решение. Пусть

откуда

и второе уравнение перепишется в виде

Система примет вид

Исключим функцию F(•):

Значит,

Пусть

тогда

F(a) = 2a + 3.

Ответ: F(x) = 2x + 3, g(x) = 0.

Упражнения для самостоятельной работы

1. Найдите функцию F(x) из уравнений:

2. Найдите g(x), если

1) F(x – 1) = 2x – 3, F(g(x)) = 3x – 4.
2) F(x) = x3, F(g(x)) = 2x + 1.

3. Найдите F(x) и g(x) из систем уравнений:

Ответы

М Селиванова,
г. Реутов

mat.1sept.ru

Как решить функцию f x

Термин решения функции как таковой в математике не используется. Под данной формулировкой следует понимать выполнение некоторых действий над заданной функцией с целью нахождения какой-то определенной характеристики, а также выяснение необходимых данных для построения графика функции.

Инструкция

  • Можно рассмотреть примерную схему, по которой целесообразно исследовать поведение функции и строить ее график.
    Найдите область определения функции. Определите, является ли функция четной и нечетной. В случае нахождения нужного ответа, продолжите исследование только на требуемой полуоси. Определите, является ли функция периодической. В случае положительного ответа продолжите исследование только на одном периоде. Найдите точки разрыва функции и определите ее поведение в окрестности этих точек.
  • Найдите точки пересечения графика функции с осями координат. Найдите асимптоты, если они есть. Исследуйте с помощью первой производной функцию на экстремумы и интервалы монотонности. Также проведите исследование с помощью второй производной на выпуклость, вогнутость и точки перегиба. Выберите точки для уточнения поведения функции и вычислите в них значения функции. Постройте график функции, учитывая полученные результаты по всем проведенным исследованиям.
  • На оси 0Х следует выделить характерные точки: точки разрыва, х=0 , нули функции, точки экстремума, точки перегиба. В этих точках вычислите значения функции (если они существуют) и на плоскости 0xy отметьте соответствующие точки графика, а также точки, выбранные для уточнения. Линия, проведенная через все построенные точки с учетом интервалов монотонности, направлений выпуклости и асимптот, и даст эскиз графика функции.
  • Так, на конкретном примере функции y=((x^2)+1)/(x-1) проведите исследование с помощью первой производной. Перепишите функцию в виде y=x+1+2/(x-1). Первая производная будет равна y’=1-2/((x-1)^2).
    Найдите критические точки первого рода: y’=0, (x-1)^2=2, в результате получатся две точки: x1=1-sqrt2, x2=1+sqrt2. Отметьте полученные значения на области определения функции (рис. 1).
    Определите знак производной на каждом из интервалов. На основе правила чередования знаков от «+» к «-» и от «-» к «+», получите, что точка максимума функции x1=1-sqrt2, а точка минимума x2=1+sqrt2. Этот же вывод можно сделать и по знаку второй производной.

completerepair.ru

Оставить комментарий