Онлайн калькулятор для метода крамера: Онлайн калькулятор. Решение систем линейных уравнений. Метод Крамера

Содержание

Решить методом крамера онлайн с подробным решением. Линейные уравнения. Решение систем линейных уравнений. Метод Крамера. Системы линейных алгебраических уравнений

Для того чтобы освоить данный параграф Вы должны уметь раскрывать определители «два на два» и «три на три». Если с определителями плохо, пожалуйста, изучите урок Как вычислить определитель?

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычислим определитель , его называют главным определителем системы

.

метод Гаусса .

Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
и

На практике вышеуказанные определители также могут обозначаться латинской буквой .

Корни уравнения находим по формулам:
,

Пример 7

Решить систему линейных уравнений

Решение : Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

;

;

Ответ : ,

Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение» . В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8

Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
, ,

И, наконец, ответ рассчитывается по формулам:

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

Пример 9

Решить систему по формулам Крамера.

Решение : Решим систему по формулам Крамера.

, значит, система имеет единственное решение.

Ответ : .

Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .
Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа – занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде . Как управляться с дробями, подробно расписано в ответе для Примера 8.

Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
– на месте отсутствующих переменных ставятся нули.
Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

Пример 10

Решить систему по формулам Крамера.

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.


Решение системы с помощью обратной матрицы

Метод обратной матрицы – это, по существу, частный случай матричного уравнения (см. Пример №3 указанного урока).

Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.

Пример 11

Решить систему с матричным методом

Решение : Запишем систему в матричной форме:
, где

Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Сначала разбираемся с определителем:

Здесь определитель раскрыт по первой строке.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключения неизвестных (методом Гаусса) .

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:

То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце

В ходе решения расчет миноров лучше расписать подробно, хотя, при определенном опыте их можно приноровиться считать с ошибками устно.

В первой части мы рассмотрели немного теоретического материала, метод подстановки, а также метод почленного сложения уравнений системы. Всем, кто зашел на сайт через эту страницу рекомендую ознакомиться с первой частью. Возможно, некоторым посетителям покажется материал слишком простым, но по ходу решения систем линейных уравнений я сделал ряд очень важных замечаний и выводов, касающихся решения математических задач в целом.

А сейчас мы разберём правило Крамера, а также решение системы линейных уравнений с помощью обратной матрицы (матричный метод). Все материалы изложены просто, подробно и понятно, практически все читатели смогут научиться решать системы вышеуказанными способами.

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычислим определитель , его называют главным определителем системы .

метод Гаусса .

Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
и

На практике вышеуказанные определители также могут обозначаться латинской буквой .

Корни уравнения находим по формулам:
,

Пример 7

Решить систему линейных уравнений

Решение : Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

;

;

Ответ : ,

Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение» . В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8

Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
, ,

И, наконец, ответ рассчитывается по формулам:

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

Пример 9

Решить систему по формулам Крамера.

Решение : Решим систему по формулам Крамера.

, значит, система имеет единственное решение.

Ответ : .

Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .
Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа – занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде . Как управляться с дробями, подробно расписано в ответе для Примера 8.

Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
– на месте отсутствующих переменных ставятся нули.
Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

Пример 10

Решить систему по формулам Крамера.

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.

Решение системы с помощью обратной матрицы

Метод обратной матрицы – это, по существу, частный случай матричного уравнения (см. Пример №3 указанного урока).

Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.

Пример 11

Решить систему с матричным методом

Решение : Запишем систему в матричной форме:
, где

Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Сначала разбираемся с определителем:

Здесь определитель раскрыт по первой строке.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключения неизвестных (методом Гаусса) .

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:

То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце

Габриэль Крамер – швейцарский математик, ученик и друг Иоганна Бернулли, один из создателей линейной алгебры. Крамер рассмотрел систему произвольного количества линейных уравнений с квадратной матрицей. Решение системы он представил в виде столбца дробей с общим знаменателем – определителем матрицы. Метод Крамера основан на использовании определителей в решении систем линейных уравнений, что позволяет существенно ускорить процесс решения. Данный метод может быть применен в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Главное, чтобы определитель системы не был равен “0”, тогда метод Крамера может быть использован в решении, если “0” – данный метод использовать нельзя. Также данный метод может быть применен для решения систем линейных уравнений с единственным решением.

Теорема Крамера. Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Допустим, дано СЛАУ такого вида:

\[\left\{\begin{matrix} 3x_1 + 2x_2 =1\\ x_1 + 4x_2 = -3 \end{matrix}\right.\]

Согласно теореме Крамера получаем:

Ответ: \

Где можно решить уравнение методом Крамера онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать – это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Пусть система линейных уравнений содержит столько уравнений, каково количество независимых переменных, т.е. имеет вид

Такие системы линейных уравнений называются квадратными. Определитель, составленный из коэффициентов при независимых переменных системы (1.5), называется главным определителем системы. Мы будем обозначать его греческой буквой D. Таким образом,

. (1.6)

Если в главном определителе произвольный (j -ый) столбец, заменить столбцом свободных членов системы (1.5), то можно получить еще n вспомогательных определителей:

(j = 1, 2, …, n ). (1.7)

Правило Крамера решения квадратных систем линейных уравнений заключается в следующем. Если главный определитель D системы (1.5) отличен от нуля, то система имеет и притом единственное решение, которое можно найти по формулам:

(1.8)

Пример 1.5. Методом Крамера решить систему уравнений

.

Вычислим главный определитель системы:

Так как D¹0, то система имеет единственное решение, которое можно найти по формулам (1.8):

Таким образом,

Действия над матрицами

1. Умножение матрицы на число. Операция умножения матрицы на число определяется следующим образом.

2. Для того чтобы умножить матрицу на число, нужно все ее элементы умножить на это число. То есть

. (1.9)

Пример 1.6. .

Сложение матриц.

Данная операция вводится только для матриц одного и того же порядка.

Для того чтобы сложить две матрицы, необходимо к элементам одной матрицы прибавить соответствующие элементы другой матрицы:

(1.10)
Операция сложения матриц обладает свойствами ассоциативности и коммутативности.

Пример 1.7. .

Умножение матриц.

Если число столбцов матрицы А совпадает с числом строк матрицы В , то для таких матриц вводится операция умножения:

2

Таким образом, при умножении матрицы А размерности m ´n на матрицу В размерности n ´k мы получаем матрицу С размерности m ´k . При этом элементы матрицы С вычисляются по следующим формулам:

Задача 1. 8. Найти, если это возможно, произведение матриц AB и BA :

Решение. 1) Для того чтобы найти произведение AB , необходимо строки матрицы A умножить на столбцы матрицы B :

2) Произведение BA не существует, т. к. количество столбцов матрицы B не совпадает с количеством строк матрицы A .

Обратная матрица. Решение систем линейных уравнений матричным способом

Матрица A – 1 называется обратной к квадратной матрице А , если выполнено равенство:

где через I обозначается единичная матрица того же порядка, что и матрица А :

.

Для того чтобы квадратная матрица имела обратную необходимо и достаточно, чтобы ее определитель был отличен от нуля. Обратную матрицу находят по формуле:

, (1.13)

где A ij – алгебраические дополнения к элементам a ij матрицы А (заметим, что алгебраические дополнения к строкам матрицы А располагаются в обратной матрице в виде соответствующих столбцов).

Пример 1.9. Найти обратную матрицу A – 1 к матрице

.

Обратную матрицу найдем по формуле (1.13), которая для случая n = 3 имеет вид:

.

Найдем det A = | A | = 1 × 3 × 8 + 2 × 5 × 3 + 2 × 4 × 3 – 3 × 3 × 3 – 1 × 5 × 4 – 2 × 2 × 8 = 24 + 30 + 24 – 27 – 20 – 32 = – 1. Так как определитель исходной матрицы отличен от нуля, то обратная матрица существует.

1) Найдем алгебраические дополнения A ij :

Для удобства нахождения обратной матрицы, алгебраические дополнения к строкам исходной матрицы мы расположили в соответствующие столбцы.

Из полученных алгебраических дополнений составим новую матрицу и разделим ее на определитель det A . Таким образом, мы получим обратную матрицу:

Квадратные системы линейных уравнений с отличным от нуля главным определителем можно решать с помощью обратной матрицы. Для этого систему (1.5) записывают в матричном виде:

где

Умножая обе части равенства (1. 14) слева на A – 1 , мы получим решение системы:

, откуда

Таким образом, для того чтобы найти решение квадратной системы, нужно найти обратную матрицу к основной матрице системы и умножить ее справа на матрицу-столбец свободных членов.

Задача 1.10. Решить систему линейных уравнений

с помощью обратной матрицы.

Решение. Запишем систему в матричном виде: ,

где – основная матрица системы, – столбец неизвестных и – столбец свободных членов. Так как главный определитель системы , то основная матрица системы А имеет обратную матрицу А -1 . Для нахождения обратной матрицы А -1 , вычислим алгебраические дополнения ко всем элементам матрицы А :

Из полученных чисел составим матрицу (причем алгебраические дополнения к строкам матрицы А запишем в соответствующие столбцы) и разделим ее на определитель D. Таким образом, мы нашли обратную матрицу:

Решение системы находим по формуле (1. 15):

Таким образом,

Решение систем линейных уравнений методом обыкновенных жордановых исключений

Пусть дана произвольная (не обязательно квадратная) система линейных уравнений:

(1.16)

Требуется найти решение системы, т.е. такой набор переменных , который удовлетворяет всем равенствам системы (1.16). В общем случае система (1.16) может иметь не только одно решение, но и бесчисленное множество решений. Она может так же вообще не иметь решений.

При решении подобных задач используется хорошо известный из школьного курса метод исключения неизвестных, который еще называется методом обыкновенных жордановых исключений. Суть данного метода заключается в том, что в одном из уравнений системы (1.16) одна из переменных выражается через другие переменные. Затем эта переменная подставляется в другие уравнения системы. В результате получается система, содержащая на одно уравнение и на одну переменную меньше, чем исходная система. Уравнение, из которого выражалась переменная, запоминается.

Этот процесс повторяется до тех пор, пока в системе не останется одно последнее уравнение. В процессе исключения неизвестных некоторые уравнения могут превратиться в верные тождества, например . Такие уравнения из системы исключаются, так как они выполняются при любых значениях переменных и, следовательно, не оказывают влияния на решение системы. Если в процессе исключения неизвестных хотя бы одно уравнение становится равенством, которое не может выполняться ни при каких значениях переменных (например ), то мы делаем вывод, что система не имеет решения.

Если в ходе решения противоречивых уравнений не возникло, то из последнего уравнения находится одна из оставшихся в нем переменных. Если в последнем уравнении осталась только одна переменная, то она выражается числом. Если в последнем уравнении остаются еще и другие переменные, то они считаются параметрами, и выраженная через них переменная будет функцией этих параметров. Затем совершается так называемый «обратный ход». Найденную переменную подставляют в последнее запомненное уравнение и находят вторую переменную. Затем две найденные переменные подставляют в предпоследнее запомненное уравнение и находят третью переменную, и так далее, вплоть до первого запомненного уравнения.

В результате мы получаем решение системы. Данное решение будет являться единственным, если найденные переменные будут числами. Если же первая найденная переменная, а затем и все остальные будут зависеть от параметров, то система будет иметь бесчисленное множество решений (каждому набору параметров соответствует новое решение). Формулы, позволяющие найти решение системы в зависимости от того или иного набора параметров, называются общим решением системы.

Пример 1.11.

x

После запоминания первого уравнения и приведения подобных членов во втором и третьем уравнении мы приходим к системе:

Выразим y из второго уравнения и подставим его в первое уравнение:

Запомним второе уравнение, а из первого найдем z :

Совершая обратный ход, последовательно найдем y и z . Для этого сначала подставим в последнее запомненное уравнение , откуда найдем y :

.

Затем подставим и в первое запомненное уравнение , откуда найдем x :

Задача 1.12. Решить систему линейных уравнений методом исключения неизвестных:

. (1.17)

Решение. Выразим из первого уравнения переменную x и подставим ее во второе и третье уравнения:

.

Запомним первое уравнение

В данной системе первое и второе уравнения противоречат друг другу. Действительно, выражая y , получим, что 14 = 17. Данное равенство не выполняется, ни при каких значениях переменных x , y , и z . Следовательно, система (1.17) несовместна, т.е. не имеет решения.

Читателям предлагаем самостоятельно проверить, что главный определитель исходной системы (1.17) равен нулю.

Рассмотрим систему, отличающуюся от системы (1.17) всего лишь одним свободным членом.

Задача 1.13. Решить систему линейных уравнений методом исключения неизвестных:

. (1.18)

Решение. Как и прежде, выразим из первого уравнения переменную x и подставим ее во второе и третье уравнения:

.

Запомним первое уравнение и приведем подобные члены во втором и третьем уравнении. Мы приходим к системе:

Выражая y из первого уравнения и подставляя его во второе уравнение , мы получим тождество 14 = 14, которое не влияет на решение системы, и, следовательно, его можно из системы исключить.

В последнем запомненном равенстве переменную z будем считать параметром. Полагаем . Тогда

Подставим y и z в первое запомненное равенство и найдем x :

.

Таким образом, система (1.18) имеет бесчисленное множество решений, причем любое решение можно найти по формулам (1.19), выбирая произвольное значение параметра t :

(1.19)
Так решениями системы, например, являются следующие наборы переменных (1; 2; 0), (2; 26; 14) и т. д. Формулы (1.19) выражают общее (любое) решение системы (1. 18).

В том случае, когда исходная система (1.16) имеет достаточно большое количество уравнений и неизвестных, указанный метод обыкновенных жордановых исключений представляется громоздким. Однако это не так. Достаточно вывести алгоритм пересчета коэффициентов системы при одном шаге в общем виде и оформить решение задачи в виде специальных жордановых таблиц.

Пусть дана система линейных форм (уравнений):

, (1.20)
где x j – независимые (искомые) переменные, a ij – постоянные коэффициенты
(i = 1, 2,…, m ; j = 1, 2,…, n ). Правые части системы y i (i = 1, 2,…, m ) могут быть как переменными (зависимыми), так и константами. Требуется найти решений данной системы методом исключения неизвестных.

Рассмотрим следующую операцию, называемую в дальнейшем «одним шагом обыкновенных жордановых исключений». Из произвольного (r -го) равенства выразим произвольную переменную (x s ) и подставим во все остальные равенства. Разумеется, это возможно только в том случае, когда a rs ¹ 0. Коэффициент a rs называется разрешающим (иногда направляющим или главным) элементом.

Мы получим следующую систему:

. (1.21)

Из s -го равенства системы (1.21) мы впоследствии найдем переменную x s (после того, как будут найдены остальные переменные). S -я строка запоминается и в дальнейшем из системы исключается. Оставшаяся система будет содержать на одно уравнение и на одну независимую переменную меньше, чем исходная система.

Вычислим коэффициенты полученной системы (1.21) через коэффициенты исходной системы (1.20). Начнем с r -го уравнения, которое после выражения переменной x s через остальные переменные будет выглядеть следующим образом:

Таким образом, новые коэффициенты r -го уравнения вычисляются по следующим формулам:

(1.23)
Вычислим теперь новые коэффициенты b ij (i ¹ r ) произвольного уравнения. Для этого подставим выраженную в (1.22) переменную x s в i -е уравнение системы (1.20):

После приведения подобных членов, получим:

(1.24)
Из равенства (1.24) получим формулы, по которым вычисляются остальные коэффициенты системы (1.21) (за исключением r -го уравнения):

(1.25)
Преобразование систем линейных уравнений методом обыкновенных жордановых исключений оформляется в виде таблиц (матриц). Эти таблицы получили название «жордановых».

Так, задаче (1.20) ставится в соответствие следующая жорданова таблица:

Таблица 1.1

x 1 x 2 x j x s x n
y 1 = a 11 a 12 a 1j a 1s a 1n
…………………………………………………………………. .
y i = a i 1 a i 2 a ij a is a in
…………………………………………………………………..
y r = a r 1 a r 2 a rj a rs a rn
………………………………………………………………….
y n = a m 1 a m 2 a mj a ms a mn

Жорданова таблица 1.1 содержит левый заглавный столбец, в который записывают правые части системы (1.20) и верхнюю заглавную строку, в которую записывают независимые переменные.

Остальные элементы таблицы образуют основную матрицу коэффициентов системы (1.20). Если умножить матрицу А на матрицу , состоящую из элементов верхней заглавной строки, то получится матрица , состоящая из элементов левого заглавного столбца. То есть, по существу, жорданова таблица это матричная форма записи системы линейных уравнений: . Системе (1.21) при этом соответствует следующая жорданова таблица:

Таблица 1.2

x 1 x 2 x j y r x n
y 1 = b 11 b 12 b 1 j b 1 s b 1 n
…………………………………………………………………..
y i = b i 1 b i 2 b ij b is b in
…………………………………………………………………..
x s = b r 1 b r 2 b rj b rs b rn
………………………………………………………………….
y n = b m 1 b m 2 b mj b ms b mn

Разрешающий элемент a rs мы будем выделять жирным шрифтом. Напомним, что для осуществления одного шага жордановых исключений разрешающий элемент должен быть отличен от нуля. Строку таблицы, содержащую разрешающий элемент, называют разрешающей строкой. Столбец, содержащий разрешающий элемент, называют разрешающим столбцом. При переходе от данной таблицы к следующей таблице одна переменная (x s ) из верней заглавной строки таблицы перемещается в левый заглавный столбец и, наоборот, один из свободных членов системы (y r ) из левого заглавного столбца таблицы перемещается в верхнюю заглавную строку.

Опишем алгоритм пересчета коэффициентов при переходе от жордановой таблицы (1.1) к таблице (1.2), вытекающий из формул (1.23) и (1.25).

1. Разрешающий элемент заменяется обратным числом:

2. Остальные элементы разрешающей строки делятся на разрешающий элемент и изменяют знак на противоположный:

3. Остальные элементы разрешающего столбца делятся на разрешающий элемент:

4. Элементы, не попавшие в разрешающую строку и разрешающий столбец, пересчитываются по формулам:

Последняя формула легко запоминается, если заметить, что элементы, составляющие дробь , находятся на пересечении i -ой и r -ой строк и j -го и s -го столбцов (разрешающей строки, разрешающего столбца и той строки и столбца, на пересечении которых находится пересчитываемый элемент). Точнее, при запоминании формулы можно использовать следующую диаграмму:

-21 -26 -13 -37

Совершая первый шаг жордановых исключений, в качестве разрешающего элемента можно выбрать любой элемент таблицы 1.3, расположенный в столбцах x 1 ,…, x 5 (все указанные элементы не равны нулю). Не следует только выбирать разрешающий элемент в последнем столбце, т. к. требуется находить независимые переменные x 1 ,…, x 5 . Выбираем, например, коэффициент 1 при переменной x 3 в третьей строке таблицы 1.3 (разрешающий элемент показан жирным шрифтом). При переходе к таблице 1.4 переменная x 3 из верхней заглавной строки меняется местами с константой 0 левого заглавного столбца (третья строка). При этом переменная x 3 выражается через остальные переменные.

Строку x 3 (табл.1.4) можно, предварительно запомнив, исключить из таблицы 1.4. Из таблицы 1.4 исключается так же третий столбец с нулем в верхней заглавной строке. Дело в том, что независимо от коэффициентов данного столбца b i 3 все соответствующие ему слагаемые каждого уравнения 0·b i 3 системы будут равны нулю. Поэтому указанные коэффициенты можно не вычислять. Исключив одну переменную x 3 и запомнив одно из уравнений, мы приходим к системе, соответствующей таблице 1.4 (с вычеркнутой строкой x 3). Выбирая в таблице 1. 4 в качестве разрешающего элемента b 14 = -5, переходим к таблице 1.5. В таблице 1.5 запоминаем первую строку и исключаем ее из таблицы вместе с четвертым столбцом (с нулем наверху).

Таблица 1.5 Таблица 1.6

Из последней таблицы 1.7 находим: x 1 = – 3 + 2x 5 .

Последовательно подставляя уже найденные переменные в запомненные строки, находим остальные переменные:

Таким образом, система имеет бесчисленное множество решений. Переменной x 5 , можно придавать произвольные значения. Данная переменная выступает в роли параметра x 5 = t. Мы доказали совместность системы и нашли ее общее решение:

x 1 = – 3 + 2t

x 2 = – 1 – 3t

x 3 = – 2 + 4t . (1.27)
x 4 = 4 + 5t

x 5 = t

Придавая параметру t различные значения, мы получим бесчисленное множество решений исходной системы. Так, например, решением системы является следующий набор переменных (- 3; – 1; – 2; 4; 0).

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы – (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. За примерами далеко ходить не надо.

Следующий пример – на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

Онлайн калькуляторы для расчета статистических показателей

Выбор статистического метода

В данном сервисе реализован алгоритм выбора оптимальной методики статистического анализа, который позволит исследователю на основании информации о количестве сравниваемых совокупностей, типе распределения, шкале измерения переменных, отпределить наиболее подходящий статистический метод, статистический критерий.

перейти к сервису


Расчет относительных величин

Калькулятор позволит найти значение любой относительной величины по заданным параметрам: числителю, знаменателю, десятичному коэффициенту. Учитывается вид относительной величины для правильного обозначения вводимых данных и формирования грамотного ответа. Для каждого результата также выводится средняя ошибка m.

перейти к вычислениям


Оценка значимости различий средних величин по t-критерию Стьюдента

Данный статистический метод служит для сравнения двух средних величин (M), рассчитанных для несвязанных между собой вариационных рядов. Для вычислений также понадобятся значения средних ошибок средних арифметических (m). Примеры сравниваемых величин: среднее артериальное давление в основной и контрольной группе, средняя длительность лечения пациентов, принимавших препарат или плацебо.

перейти к вычислениям


Оценка значимости изменений средних величин при помощи парного t-критерия Стьюдента

Парный t-критерий Стьюдента используется для сравнения связанных совокупностей – результатов, полученных для одних и тех же исследуемых (например, артериальное давление до и после приема препарата, средний вес пациентов до и после применения диеты).

перейти к вычислениям


Анализ динамического ряда

Этот калькулятор позволит вам быстро рассчитать все основные показатели динамического ряда, состоящего из любого количества данных. Вводимые данные: количество лет, значение первого года, уровни ряда. Результат: показатели динамического ряда, значения, полученные при его выравнивании, а также графическое изображение динамического ряда.

перейти к вычислениям


Расчет демографических показателей

7)€: a

перейти к вычислениям


Прямой метод стандартизации

Здесь вы сможете быстро решить любую задачу по стандартизации, с использованием прямого метода. Вводите данные о сравниваемых совокупностях, выбирайте один из четырех способов расчета стандарта, задавайте значение коэффициента, используемого для расчета относительных величин. Результаты применения метода стандартизации выводятся в виде таблицы.

перейти к вычислениям


Расчет относительного риска

Относительный риск – позволяет проводить количественную оценку вероятности исхода, связанной с наличием фактора риска. Находит широкое применение в современных научных исследованиях, выборки в которых сформированы когортным методом. Наш онлайн-калькулятор позволит выполнить расчет относительного риска (RR) с 95% доверительным интервалом (CI), а также дополнительных показателей, таких как разность рисков, число пациентов, трующих лечения, специфичность, чувствительность.

перейти к вычислениям


Расчет отношения шансов

Метод отношения шансов (OR), как и относительный риск, используется для количественной оценки взаимосвязи фактора риска и исхода, но применяется в исследованиях, организованных по принципу “случай-контроль”.

перейти к вычислениям


Анализ четырехпольной таблицы

В данном калькуляторе представлены все основные статистические методы, используемые для анализа четырехпольной таблицы (фактор риска есть-нет, исход есть-нет). Выполняется проверка важнейших статистических гипотез, рассчитываются хи-квадрат, точный критерий Фишера и другие показатели.

перейти к вычислениям


Расчет показателей вариационного ряда

Онлайн-калькулятор в автоматизированном режиме поможет рассчитать все основные показатели вариационного ряда: средние величины (средняя арифметическая, мода, медиана), стандартное отклонение, среднюю ошибку средней арифметической. Поддерживается ввод как простых, так и взвешенных рядов.

перейти к вычислениям


Расчет критерия Манна-Уитни

При помощи данного сервиса вы сможете рассчитать значение U-критерия Манна-Уитни – непараметрического критерия, используемого для сравнения двух выборок, независимо от характера их распределения.

перейти к вычислениям


Корреляционно-регрессионный анализ

Онлайн-калькулятор для проведения корреляционного анализа используется для выявления и изучения связи между количественными признаками при помощи расчета коэффициента корреляции Пирсона. Также выводится уравнение парной линейной регрессии, используемое при описании статистической модели.

перейти к вычислениям


Расчет коэффициента корреляции Спирмена

Данный калькулятор используется для расчета рангового критерия корреляции Спирмена, являющегося методом непараметрического анализа зависимости одного количественного признака от другого. Оценка значимости корреляционной связи между переменными выполняется как по коэффициенту Спирмена, так и по t-критерию Стьюдента.

перейти к вычислениям


Анализ произвольных сопряженных таблиц при помощи критерия χ2 (хи-квадрат)

Критерий хи-квадрат является непараметрическим аналогом дисперсионного анализа для сравнения нескольких групп по качественному признаку. Онлайн калькулятор по расчету критерия хи-квадрат позволяет оценить связь между двумя качественными признаками по частоте их значений. Число сравниваемых групп может быть от 2 до 9.

перейти к вычислениям

Онлайн калькулятор правильное решение по действием. Сложность вычисления школьных примеров

Удобный и простой онлайн калькулятор дробей с подробным решением может:

  • Складывать, вычитать, умножать и делить дроби онлайн,
  • Получать готовое решение дробей картинкой и удобно его переносить.


Результат решения дробей будет тут…

0 1 2 3 4 5 6 7 8 9
Знак дроби “/” + – * :
_cтереть Очистить
У нашего онлайн калькулятора дробей быстрый ввод . Чтобы получить решение дробей, к примеру , просто напишите 1/2+2/7 в калькулятор и нажмите кнопку “Решать дроби “. Калькулятор напишет вам подробное решение дробей и выдаст удобную для копирования картинку .

Знаки используемые для записи в калькуляторе

Набирать пример для решения вы можете как, с клавиатуры, так и используя кнопки.

Возможности онлайн калькулятора дробей

Калькулятор дробей может выполнить операции только с 2-мя простыми дробями. Они могут быть как правильными(числитель меньше знаменателя), так и неправильными(числитель больше знаменателя). Числа в числителе и знаменатели не могут быть отрицательными и больше 999.
Наш онлайн калькулятор решает дроби и приводит ответ к правильному виду – сокращает дробь и выделяет целую часть, если потребуется.

Если вам нужно решить отрицательные дроби, просто воспользуйтесь свойствами минуса. При перемножении и делении отрицательных дробей минус на минус дает плюс. То есть произведение и делении отрицательных дробей, равно произведению и делению таких же положительных. Если одна дробь при перемножении или делении отрицательная, то просто уберите минус, а потом добавьте его к ответу. При сложении отрицательных дробей, результат будет таким же как если бы вы складывали такие же положительные дроби. Если вы прибавляете одну отрицательную дробь, то это тоже самое, что вычесть такую же положительную.
При вычитании отрицательных дробей, результат будет таким же, как если бы поменяли их местами и сделали положительными. То есть минус на минус в данном случае дает плюс, а от перестановки слагаемых сумма не меняется. Этими же правилами мы пользуемся при вычитании дробей одна из которых отрицательная.

Для решения смешанных дробей (дробей, в которых выделена целая часть) просто загоните целую часть в дробь. Для этого умножьте целую часть на знаменатель и прибавьте к числителю.

Если вам нужно решить онлайн 3 и более дроби, то решать их следует по очереди. Сначала посчитайте первые 2 дроби, потом с полученным ответом прорешайте следующую дробь и так далее. Выполняйте операции по очереди по 2 дроби, и в итоге вы получите верный ответ.

Привет друзья! Очень редко я рассказываю о действительно полезных программах, которые с легкостью могут сделать нашу жизнь легче и сэкономить наше время.

Через две недели уже первое сентября, а что это значит? Верное, это начало учебного года. Кому-то в школу, кому-то в университет и в другие учебные заведения. Грустно конечно же, а ведь еще и учиться нужно:). Поэтому, сегодня я расскажу Вам о программе, которая во многом поможет в этом не легком процессе. Ну с математикой так точно легче будет.

Расскажу я сегодня о программе ЛовиОтвет, о которой я узнал не так давно (а жаль, узнал бы когда еще учился в школе, возможно меньше двоек по математике бы было:)) . Честно говоря, математику я никогда не любил, толком не знал и все эти уравнения для меня были муками. Как в школе, так и в университете. А может я просто не хотел ее понимать, но это не важно, сегодня не об этом:).

Давайте вернемся к программе. ЛовиОтвет – это мощный решебник (в заголовке я написал калькулятор, но это больше чем просто калькулятор) , с помощью которого можно решать самые разные математические примеры (как самые простые, так и сложные) . И еще, программа показывает все этапы решения, то есть, Вы не просто получите ответ, а увидите, все этапы решения. Решаете к примеру уравнение и в столбик наблюдаете решение – это очень круто. Ведь очень часто конечный ответ нам не очень то и поможет, ведь нужно расписать сам процесс решения.

Что можно решать с помощью этой программы?

  • Примеры разной сложности
  • Уравнения (линейные и квадратные)
  • Производить действия с натуральными числами
  • Упрощение выражений
  • Работать с дробями

И многое другое.

Особенности программы ЛовиОтвет

  • Отображение этапов решения
  • Результат программа показывает на тетрадном листе
  • Красивый, простой и продуманный интерфейс (можно быстро изменять цвет программы)
  • Есть версии программы для мобильных телефонов (java) , Android, Apple.
  • Программа развивается.

Где скачать и как установить решебник ЛовиОтвет?

Кстати, пока писал статью, то обнаружил онлайн версию решебника находится по адресу http://calc.loviotvet.ru/ . Но там походу доступны не все функции. Поэтому, лучше скачать программу и установить на компьютер.

Программа бесплатная, поэтому просто качаем с официального сайта и устанавливаем. Переходим на страницу http://www.loviotvet.ru/download/ . И нажимаем на ссылку, рядом со значком Windows.

Сохраните установочный файл, или сразу запустите его. Сам процесс установки очень простой. Думаю разберетесь:). После установки на рабочем столе должен появится ярлык программы.

Вы наверное заметили, что на странице загрузки есть еще версии для мобильных телефонов и для платформ Android и iOS. Это значит, что Вы можете установить себе ЛовиОтвет на мобильный телефон, смартфон, планшет и т. д. Это очень хорошо, ведь такая программа должна быть всегда с Вами.

Обзор и работа с программой

Главное окно программы выглядит вот так:

Как видите, все очень просто. Слева все кнопки, переключатели и т. д. Кстати дополнительную панель можно скрыть. Вверху строчка, в которой пишем само задание. А ниже листок, на котором мы уведем решение после нажатия на кнопку Ответ.

Вот демонстрация функции с выводом этапов решения (даже 2+2 можно расписать:)) :

Слева, можно выбрать, как выводить решение.

Сервис для решения уравнений онлайн поможет вам решить любое уравнение. Используя наш сайт, вы получите не просто ответ уравнения, но и увидите подробное решение, то есть пошаговое отображение процесса получения результата. Наш сервис будет полезен старшеклассникам общеобразовательных школ и их родителям. Ученики смогут подготовиться к контрольным, экзаменам, проверить свои знания, а родители – проконтролировать решение математических уравнений своими детьми. Умение решать уравнения – обязательное требование к школьникам. Сервис поможет вам самообучаться и повышать уровень знаний в области математических уравнений. С его помощью вы сможете решить любое уравнение: квадратное, кубическое, иррациональное, тригонометрическое и др. Польза онлайн сервиса бесценна, ведь кроме верного ответа вы получаете подробное решение каждого уравнения. Преимущества решения уравнений онлайн. Решить любое уравнение онлайн на нашем сайте вы можете абсолютно бесплатно. Сервис полностью автоматический, вам ничего не придется устанавливать на свой компьютер, достаточно будет только ввести данные и программа выдаст решение. Любые ошибки в расчетах или опечатки исключены. С нами решить любое уравнение онлайн очень просто, поэтому обязательно используйте наш сайт для решения любых видов уравнений. Вам необходимо только ввести данные и расчет будет выполнен за считанные секунды. Программа работает самостоятельно, без человеческого участия, а вы получаете точный и подробный ответ. Решение уравнения в общем виде. В таком уравнении переменные коэффициенты и искомые корни связаны между собой. Старшая степень переменной определяет порядок такого уравнения. Исходя из этого, для уравнений используют различные методы и теоремы для нахождения решений. Решение уравнений данного типа означает нахождение искомых корней в общем виде. Наш сервис позволяет решить даже самое сложное алгебраическое уравнение онлайн. Вы можете получить как общее решение уравнения, так и частное для указанных вами числовых значений коэффициентов. Для решения алгебраического уравнения на сайте достаточно корректно заполнить всего два поля: левую и правую части заданного уравнения. У алгебраических уравнений с переменными коэффициентами бесконечное количество решений, и задав определенные условия, из множества решений выбираются частные. 2-4ac. Если дискриминант меньше нуля, то уравнение не имеет действительных корней (корни находятся из поля комплексных чисел), если равен нулю, то у уравнения один действительный корень, и если дискриминант больше нуля, то уравнение имеет два действительных корня, которые находятся по формуле: D= -b+-sqrt/2а. Для решения квадратного уравнения онлайн вам достаточно ввести коэффициенты такого уравнения (целые числа, дроби или десятичные значения). При наличии знаков вычитания в уравнении необходимо поставить минус перед соответствующими членами уравнения. Решить квадратное уравнение онлайн можно и в зависимости от параметра, то есть переменных в коэффициентах уравнения. С этой задачей отлично справляется наш онлайн сервис по нахождению общих решений. Линейные уравнения. Для решения линейных уравнений (или системы уравнений) на практике используются четыре основных метода. Опишем каждый метод подробно. Метод подстановки. Решение уравнений методом подстановки требует выразить одну переменную через остальные. После этого выражение подставляется в другие уравнения системы. Отсюда и название метода решения, то есть вместо переменной подставляется ее выражение через остальные переменные. На практике метод требует сложных вычислений, хотя и простой в понимании, поэтому решение такого уравнения онлайн поможет сэкономить время и облегчить вычисления. Вам достаточно указать количество неизвестных в уравнении и заполнить данные от линейных уравнений, далее сервис сделает расчет. Метод Гаусса. В основе метода простейшие преобразования системы с целью прийти к равносильной системе треугольного вида. Из нее поочередно определяются неизвестные. На практике требуется решить такое уравнение онлайн с подробным описанием, благодаря чему вы хорошо усвоите метод Гаусса для решения систем линейных уравнений. Запишите в правильном формате систему линейных уравнений и учтите количество неизвестных, чтобы безошибочно выполнить решение системы. Метод Крамера. Этим методом решаются системы уравнений в случаях, когда у системы единственное решение. Главное математическое действие здесь – это вычисление матричных определителей. Решение уравнений методом Крамера проводится в режиме онлайн, результат вы получаете мгновенно с полным и подробным описанием. Достаточно лишь заполнить систему коэффициентами и выбрать количество неизвестных переменных. Матричный метод. Этот метод заключается в собрании коэффициентов при неизвестных в матрицу А, неизвестных – в столбец Х, а свободных членов в столбец В. Таким образом система линейных уравнений сводится к матричному уравнению вида АхХ=В. У этого уравнения единственное решение только если определитель матрицы А отличен от нуля, иначе у системы нет решений, либо бесконечное количество решений. Решение уравнений матричным методом заключается в нахождении обратной матрицы А.

Инструкция

Математических действий существует четыре вида: сложение, вычитание, умножение и деление. Поэтому примеров с будет четыре типа. Отрицательные числа внутри примера выделяются для того, чтобы не перепутать математическое действие. Например, 6-(-7), 5+(-9), -4*(-3) или 34:(-17).

Сложение. Данное действие может иметь вид:1) 3+(-6)=3-6=-3. Замена действия: сначала раскрываются скобки, знак “+” меняется на противоположный, далее из большего (по модулю) числа “6” отнимается меньшее – “3”, после чего ответу присваивается знак большего, то есть “-“.
2) -3+6=3. Этот можно записать по- (“6-3”) или по принципу “из большего отнимать меньшее и присваивать ответу знак большего”.
3) -3+(-6)=-3-6=-9. При раскрытии замена действия сложения на вычитание, затем суммируются модули и результату ставиться знак “минус”.

Вычитание.1) 8-(-5)=8+5=13. Раскрываются скобки, знак действия меняется на противоположный, получается пример на сложение.
2) -9-3=-12. Элементы примера складываются и получает общий знак “-“.
3) -10-(-5)=-10+5=-5. При раскрытии скобок снова меняется знак на “+”, далее из большего числа отнимается меньшее и у ответа – знак большего числа.

Умножение и деление.При выполнении умножения или деления знак не влияет на само действие. При произведении или делении чисел с ответу присваивается знак “минус”, если числа с одинаковыми знаками – у результата всегда знак “плюс”.1)-4*9=-36; -6:2=-3.
2)6*(-5)=-30; 45:(-5)=-9.
3)-7*(-8)=56; -44:(-11)=4.

Источники:

  • таблица с минусами

Как решать примеры ? С таким вопросом часто обращаются дети к родителям, если уроки требуется сделать дома. Как правильно объяснить ребенку решение примеров на сложение и вычитание многозначных чисел? Попробуем в этом разобраться.

Вам понадобится

  • 1. Учебник по математике.
  • 2. Бумага.
  • 3. Ручка.

Инструкция

Прочитайте пример. Для этого каждое многозначное разбить на классы. Начиная с конца числа, отсчитываем по три цифры и ставим точку (23.867.567). Напомним, что первые три цифры с конца числа к единиц, следующие три – к классу , далее идут миллионы. Читаем число: двадцать три восемьсот шестьдесят семь тысяч шестьдесят семь.

Запишите пример . Обратите внимание, что единицы каждого разряда записываются строго друг под другом: единицы под единицами, десятки под десятками, сотни под сотнями и т. д.

Выполните сложение или вычитание. Начинайте выполнять действие с единиц. Результат записывайте под тем разрядом, действие с которым выполняли. Если получилось число(), то единицы записываем на месте ответа, а число десятков прибавляем к единицам разряда. Если количество единиц какого-либо разряда в уменьшаемом меньше, чем в вычитаемом, занимаем 10 единиц следующего разряда, выполняем действие.

Прочитайте ответ.

Видео по теме

Обратите внимание

Запретите ребенку использование калькулятора даже для проверки решения примера. Сложение проверяется вычитанием, а вычитание – сложением.

Полезный совет

Если ребенок хорошо усвоит приемы письменных вычислений в пределах 1000, то действия с многозначными числами, выполненные по-аналогии, не вызовут затруднений.
Устройте ребенку соревнование: сколько примеров он может решить за 10 минут. Такие тренировки помогут автоматизировать вычислительные приемы.

Умножение – одна из четырех основных математических операций, которая лежит в основе многих более сложных функций. При этом фактически умножение основывается на операции сложения: знание об этом позволяет правильно решить любой пример.

Для понимания сущности операции умножения необходимо принять во внимание, что в ней участвуют три основных компонента. Один из них носит название первого множителя и представляет собой число, которое подвергается операции умножения. По этой причине у него имеется второе, несколько менее распространенное название – «множимое». Второй компонент операции умножения принято называть вторым множителем: он представляет собой число, на которое умножается множимое. Таким образом, оба эти компонента носят название множителей, что подчеркивает их равноправный статус, а также то, что их можно поменять местами: результат умножения от этого не изменится. Наконец, третий компонент операции умножения, получающийся в ее результате, носит название произведения.

Порядок операции умножения

Сущность операции умножения основывается на более простом арифметическом действии – . Фактически умножение представляет собой суммирование первого множителя, или множимого, такое количество раз, которое соответствует второму множителю. Например, для того, чтобы умножить 8 на 4 необходимо 4 раза сложить число 8, получив в результате 32. Этот способ, помимо обеспечения понимания сущности операции умножения, можно использовать для проверки результата, получившегося при вычислении искомого произведения. При этом следует иметь в виду, осуществление проверки обязательно предполагает, что слагаемые, участвующие в суммировании, одинаковы и соответствуют первому множителю.

Решение примеров на умножение

Таким образом, для того, чтобы решить , связанный с необходимостью осуществления умножения, может быть достаточно заданное количество раз сложить необходимое число первых множителей. Такой способ может быть удобен для осуществления практически любых расчетов, связанных с этой операцией. Вместе с тем, в математике достаточно часто встречаются типовые , в которых участвуют стандартные целые однозначные числа. Для того, чтобы облегчить их расчет, была создана так называемая умножения, которая включает в себя полный перечень произведений целых положительных однозначных чисел, то есть чисел от 1 до 9. Таким образом, однажды выучив , можно существенно облегчить себе процесс решения примеров на умножение, основанных на использовании таких чисел. Однако для более сложных вариантов необходимо будет осуществлять эту математическую операцию самостоятельно.

Видео по теме

Источники:

  • Умножение в 2019

Умножение – одна из четырех основных арифметических операций, которая часто встречается как в учебе, так и в повседневной жизни. Как можно быстро перемножить два числа?

Основу самых сложных математических вычислений составляют четыре основных арифметических операции: вычитание, сложение, умножение и деление. При этом, несмотря на свою самостоятельность, эти операции при ближайшем рассмотрении оказываются связанными между собой. Такая связь существует, например, между сложением и умножением.

Операция умножения чисел

В операции умножения участвуют три основных элемента. Первый из них, который обычно называют первым множителем или множимым, представляет собой число, которое будет подвергнуто операции умножения. Второй, который именуют вторым множителем, является числом, на которое будет умножен первый множитель. Наконец, результат осуществленной операции умножения чаще всего носит название произведения.

При этом следует помнить, что сущность операции умножения фактически основывается на сложении: для ее осуществления необходимо сложить между собой определенное количество первых множителей, причем количество слагаемых этой суммы должно быть равно второму множителю. Помимо вычисления самого произведения двух рассматриваемых множителей, этот алгоритм можно использовать также для проверки получившегося результата.

Пример решения задания на умножение

Рассмотрим решения задачи на умножение. Предположим, по условиям задания необходимо вычислить произведение двух чисел, среди которых первый множитель равен 8, а второй 4. В соответствии с определением операции умножения, это фактически означает, что нужно 4 раза сложить цифру 8. В результате получается 32 – это и есть произведение рассматриваемых чисел, то есть результат их умножения.

Кроме того, необходимо помнить, что в отношении операции умножения действует так называемый переместительный закон, который устанавливает, что от изменения мест множителей в первоначальном примере его результат не изменится. Таким образом, можно 8 раз сложить цифру 4, получив в результате то же произведение – 32.

Таблица умножения

Понятно, что решать таким способом большое количество однотипных примеров – довольно утомительное занятие. Для того чтобы облегчить эту задачу, была придумана так называемая умножения. Фактически она представляет собой перечень произведений целых положительных однозначных чисел. Проще говоря, таблица умножения – это совокупность результатов перемножения между собой от 1 до 9. Один раз выучив эту таблицу, можно уже не прибегать к осуществлению умножения всякий раз, когда потребуется решить пример на такие простые числа, а просто вспомнить его результат.

Видео по теме

Решить систему матрицы методом крамера. Правило Крамера

Для того чтобы освоить данный параграф Вы должны уметь раскрывать определители «два на два» и «три на три». Если с определителями плохо, пожалуйста, изучите урок Как вычислить определитель?

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычислим определитель , его называют главным определителем системы .

метод Гаусса .

Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
и

На практике вышеуказанные определители также могут обозначаться латинской буквой .

Корни уравнения находим по формулам:
,

Пример 7

Решить систему линейных уравнений

Решение : Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

;

;

Ответ : ,

Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение» . В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8

Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
, ,

И, наконец, ответ рассчитывается по формулам:

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

Пример 9

Решить систему по формулам Крамера.

Решение : Решим систему по формулам Крамера.

, значит, система имеет единственное решение.

Ответ : .

Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .
Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа – занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде . Как управляться с дробями, подробно расписано в ответе для Примера 8.

Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
– на месте отсутствующих переменных ставятся нули.
Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

Пример 10

Решить систему по формулам Крамера.

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.


Решение системы с помощью обратной матрицы

Метод обратной матрицы – это, по существу, частный случай матричного уравнения (см. Пример №3 указанного урока).

Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.

Пример 11

Решить систему с матричным методом

Решение : Запишем систему в матричной форме:
, где

Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Сначала разбираемся с определителем:

Здесь определитель раскрыт по первой строке.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключения неизвестных (методом Гаусса) .

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:

То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце

В ходе решения расчет миноров лучше расписать подробно, хотя, при определенном опыте их можно приноровиться считать с ошибками устно.

Методы Крамера и Гаусса – одни из самых популярных методов решения СЛАУ . К тому же, в ряде случаев целесообразно использовать именно конкретные методы. Сессия близка, и сейчас самое время повторить или освоить их с нуля. Сегодня разбираемся с решением методом Крамера. Ведь решение системы линейных уравнений методом Крамера – весьма полезный навык.

Системы линейных алгебраических уравнений

Система линейных алгебраических уравнений – система уравнений вида:

Набор значений x , при котором уравнения системы обращаются в тождества, называется решением системы, a и b – вещественные коэффициенты. Простенькую систему, состоящую из двух уравнений с двумя неизвестными, можно решить в уме либо выразив одну переменную через другую. Но переменных (иксов) в СЛАУ может быть гораздо больше двух, и здесь простыми школьными манипуляциями не обойтись. Что же делать? Например, решать СЛАУ методом Крамера!

Итак, пусть система состоит из n уравнений с n неизвестными.

Такую систему можно переписать в матричном виде

Здесь A – основная матрица системы, X и B , соответственно, матрицы-столбцы неизвестных переменных и свободных членов.

Решение СЛАУ методом Крамера

Если определитель главной матрицы не равен нулю (матрица невырожденная), систему можно решать по методу Крамера.

Согласно методу Крамера, решение находится по формулам:

Здесь дельта – определитель главной матрицы, а дельта x n-ное – определитель, полученный из определителя главной матрицы путем заменой n-ного столбца на столбец свободных членов.

В этом и заключается вся суть метода Крамера. Подставляя найденные по вышеприведенным формулам значения x в искомую систему, убеждаемся в правильности (или наоборот) нашего решения. Чтобы Вы быстрее уловили суть, приведем ниже пример подробного решения СЛАУ методом Крамера:

Даже если у Вас не получится с первого раза, не расстраивайтесь! Немного практики, и Вы начнете щелкать СЛАУ как орешки. Более того, сейчас совершенно необязательно корпеть над тетрадью, решая громоздкие выкладки и исписывая стержень. Можно легко решить СЛАУ методом Крамера в режиме онлайн, лишь подставив в готовую форму коэффициенты. Испробовать онлайн калькулятор решения методом Крамера можно, к примеру, на этом сайте .

А если система оказалась упорной и не сдается, Вы всегда можете обратиться за помощью к нашим авторам, например, чтобы . Будь в системе хоть 100 неизвестных, мы обязательно решим ее верно и точно в срок!

С количеством уравнений одинаковым с количеством неизвестных с главным определителем матрицы, который не равен нулю, коэффициентов системы (для подобных уравнений решение есть и оно только одно).

Теорема Крамера.

Когда определитель матрицы квадратной системы ненулевой, значит, система совместна и у нее есть одно решение и его можно найти по формулам Крамера :

где Δ – определитель матрицы системы ,

Δ i – определитель матрицы системы, в котором вместо i -го столбца находится столбец правых частей.

Когда определитель системы нулевой, значит, система может стать совместной или несовместной.

Этот способ обычно применяют для небольших систем с объемными вычислениями и если когда необходимо определить 1-ну из неизвестных. Сложность метода в том, что нужно вычислять много определителей.

Описание метода Крамера.

Есть система уравнений:

Систему 3-х уравнений можно решить методом Крамера, который рассмотрен выше для системы 2-х уравнений.

Составляем определитель из коэффициентов у неизвестных:

Это будет определитель системы . Когда D≠0 , значит, система совместна. Теперь составим 3 дополнительных определителя:

,,

Решаем систему по формулам Крамера :

Примеры решения систем уравнений методом Крамера.

Пример 1 .

Дана система:

Решим ее методом Крамера.

Сначала нужно вычислить определитель матрицы системы:

Т.к. Δ≠0, значит, из теоремы Крамера система совместна и у нее есть одно решение. Вычисляем дополнительные определители. Определитель Δ 1 получаем из определителя Δ, заменяя его первый столбец столбцом свободных коэффициентов. Получаем:

Таким же путем получаем определитель Δ 2 из определителя матрицы системы заменяя второй столбец столбцом свободных коэффициентов:

Пусть система линейных уравнений содержит столько уравнений, каково количество независимых переменных, т. е. имеет вид

Такие системы линейных уравнений называются квадратными. Определитель, составленный из коэффициентов при независимых переменных системы (1.5), называется главным определителем системы. Мы будем обозначать его греческой буквой D. Таким образом,

. (1.6)

Если в главном определителе произвольный (j -ый) столбец, заменить столбцом свободных членов системы (1.5), то можно получить еще n вспомогательных определителей:

(j = 1, 2, …, n ). (1.7)

Правило Крамера решения квадратных систем линейных уравнений заключается в следующем. Если главный определитель D системы (1.5) отличен от нуля, то система имеет и притом единственное решение, которое можно найти по формулам:

(1.8)

Пример 1.5. Методом Крамера решить систему уравнений

.

Вычислим главный определитель системы:

Так как D¹0, то система имеет единственное решение, которое можно найти по формулам (1.8):

Таким образом,

Действия над матрицами

1. Умножение матрицы на число. Операция умножения матрицы на число определяется следующим образом.

2. Для того чтобы умножить матрицу на число, нужно все ее элементы умножить на это число. То есть

. (1.9)

Пример 1.6. .

Сложение матриц.

Данная операция вводится только для матриц одного и того же порядка.

Для того чтобы сложить две матрицы, необходимо к элементам одной матрицы прибавить соответствующие элементы другой матрицы:

(1.10)
Операция сложения матриц обладает свойствами ассоциативности и коммутативности.

Пример 1.7. .

Умножение матриц.

Если число столбцов матрицы А совпадает с числом строк матрицы В , то для таких матриц вводится операция умножения:

2

Таким образом, при умножении матрицы А размерности m ´n на матрицу В размерности n ´k мы получаем матрицу С размерности m ´k . При этом элементы матрицы С вычисляются по следующим формулам:

Задача 1.8. Найти, если это возможно, произведение матриц AB и BA :

Решение. 1) Для того чтобы найти произведение AB , необходимо строки матрицы A умножить на столбцы матрицы B :

2) Произведение BA не существует, т. к. количество столбцов матрицы B не совпадает с количеством строк матрицы A .

Обратная матрица. Решение систем линейных уравнений матричным способом

Матрица A – 1 называется обратной к квадратной матрице А , если выполнено равенство:

где через I обозначается единичная матрица того же порядка, что и матрица А :

.

Для того чтобы квадратная матрица имела обратную необходимо и достаточно, чтобы ее определитель был отличен от нуля. Обратную матрицу находят по формуле:

, (1.13)

где A ij – алгебраические дополнения к элементам a ij матрицы А (заметим, что алгебраические дополнения к строкам матрицы А располагаются в обратной матрице в виде соответствующих столбцов).

Пример 1.9. Найти обратную матрицу A – 1 к матрице

.

Обратную матрицу найдем по формуле (1.13), которая для случая n = 3 имеет вид:

.

Найдем det A = | A | = 1 × 3 × 8 + 2 × 5 × 3 + 2 × 4 × 3 – 3 × 3 × 3 – 1 × 5 × 4 – 2 × 2 × 8 = 24 + 30 + 24 – 27 – 20 – 32 = – 1. Так как определитель исходной матрицы отличен от нуля, то обратная матрица существует.

1) Найдем алгебраические дополнения A ij :

Для удобства нахождения обратной матрицы, алгебраические дополнения к строкам исходной матрицы мы расположили в соответствующие столбцы.

Из полученных алгебраических дополнений составим новую матрицу и разделим ее на определитель det A . Таким образом, мы получим обратную матрицу:

Квадратные системы линейных уравнений с отличным от нуля главным определителем можно решать с помощью обратной матрицы. Для этого систему (1.5) записывают в матричном виде:

где

Умножая обе части равенства (1. 14) слева на A – 1 , мы получим решение системы:

, откуда

Таким образом, для того чтобы найти решение квадратной системы, нужно найти обратную матрицу к основной матрице системы и умножить ее справа на матрицу-столбец свободных членов.

Задача 1.10. Решить систему линейных уравнений

с помощью обратной матрицы.

Решение. Запишем систему в матричном виде: ,

где – основная матрица системы, – столбец неизвестных и – столбец свободных членов. Так как главный определитель системы , то основная матрица системы А имеет обратную матрицу А -1 . Для нахождения обратной матрицы А -1 , вычислим алгебраические дополнения ко всем элементам матрицы А :

Из полученных чисел составим матрицу (причем алгебраические дополнения к строкам матрицы А запишем в соответствующие столбцы) и разделим ее на определитель D. Таким образом, мы нашли обратную матрицу:

Решение системы находим по формуле (1. 15):

Таким образом,

Решение систем линейных уравнений методом обыкновенных жордановых исключений

Пусть дана произвольная (не обязательно квадратная) система линейных уравнений:

(1.16)

Требуется найти решение системы, т.е. такой набор переменных , который удовлетворяет всем равенствам системы (1.16). В общем случае система (1.16) может иметь не только одно решение, но и бесчисленное множество решений. Она может так же вообще не иметь решений.

При решении подобных задач используется хорошо известный из школьного курса метод исключения неизвестных, который еще называется методом обыкновенных жордановых исключений. Суть данного метода заключается в том, что в одном из уравнений системы (1.16) одна из переменных выражается через другие переменные. Затем эта переменная подставляется в другие уравнения системы. В результате получается система, содержащая на одно уравнение и на одну переменную меньше, чем исходная система. Уравнение, из которого выражалась переменная, запоминается.

Этот процесс повторяется до тех пор, пока в системе не останется одно последнее уравнение. В процессе исключения неизвестных некоторые уравнения могут превратиться в верные тождества, например . Такие уравнения из системы исключаются, так как они выполняются при любых значениях переменных и, следовательно, не оказывают влияния на решение системы. Если в процессе исключения неизвестных хотя бы одно уравнение становится равенством, которое не может выполняться ни при каких значениях переменных (например ), то мы делаем вывод, что система не имеет решения.

Если в ходе решения противоречивых уравнений не возникло, то из последнего уравнения находится одна из оставшихся в нем переменных. Если в последнем уравнении осталась только одна переменная, то она выражается числом. Если в последнем уравнении остаются еще и другие переменные, то они считаются параметрами, и выраженная через них переменная будет функцией этих параметров. Затем совершается так называемый «обратный ход». Найденную переменную подставляют в последнее запомненное уравнение и находят вторую переменную. Затем две найденные переменные подставляют в предпоследнее запомненное уравнение и находят третью переменную, и так далее, вплоть до первого запомненного уравнения.

В результате мы получаем решение системы. Данное решение будет являться единственным, если найденные переменные будут числами. Если же первая найденная переменная, а затем и все остальные будут зависеть от параметров, то система будет иметь бесчисленное множество решений (каждому набору параметров соответствует новое решение). Формулы, позволяющие найти решение системы в зависимости от того или иного набора параметров, называются общим решением системы.

Пример 1.11.

x

После запоминания первого уравнения и приведения подобных членов во втором и третьем уравнении мы приходим к системе:

Выразим y из второго уравнения и подставим его в первое уравнение:

Запомним второе уравнение, а из первого найдем z :

Совершая обратный ход, последовательно найдем y и z . Для этого сначала подставим в последнее запомненное уравнение , откуда найдем y :

.

Затем подставим и в первое запомненное уравнение , откуда найдем x :

Задача 1.12. Решить систему линейных уравнений методом исключения неизвестных:

. (1.17)

Решение. Выразим из первого уравнения переменную x и подставим ее во второе и третье уравнения:

.

Запомним первое уравнение

В данной системе первое и второе уравнения противоречат друг другу. Действительно, выражая y , получим, что 14 = 17. Данное равенство не выполняется, ни при каких значениях переменных x , y , и z . Следовательно, система (1.17) несовместна, т.е. не имеет решения.

Читателям предлагаем самостоятельно проверить, что главный определитель исходной системы (1.17) равен нулю.

Рассмотрим систему, отличающуюся от системы (1.17) всего лишь одним свободным членом.

Задача 1.13. Решить систему линейных уравнений методом исключения неизвестных:

. (1.18)

Решение. Как и прежде, выразим из первого уравнения переменную x и подставим ее во второе и третье уравнения:

.

Запомним первое уравнение и приведем подобные члены во втором и третьем уравнении. Мы приходим к системе:

Выражая y из первого уравнения и подставляя его во второе уравнение , мы получим тождество 14 = 14, которое не влияет на решение системы, и, следовательно, его можно из системы исключить.

В последнем запомненном равенстве переменную z будем считать параметром. Полагаем . Тогда

Подставим y и z в первое запомненное равенство и найдем x :

.

Таким образом, система (1.18) имеет бесчисленное множество решений, причем любое решение можно найти по формулам (1.19), выбирая произвольное значение параметра t :

(1.19)
Так решениями системы, например, являются следующие наборы переменных (1; 2; 0), (2; 26; 14) и т. д. Формулы (1.19) выражают общее (любое) решение системы (1. 18).

В том случае, когда исходная система (1.16) имеет достаточно большое количество уравнений и неизвестных, указанный метод обыкновенных жордановых исключений представляется громоздким. Однако это не так. Достаточно вывести алгоритм пересчета коэффициентов системы при одном шаге в общем виде и оформить решение задачи в виде специальных жордановых таблиц.

Пусть дана система линейных форм (уравнений):

, (1.20)
где x j – независимые (искомые) переменные, a ij – постоянные коэффициенты
(i = 1, 2,…, m ; j = 1, 2,…, n ). Правые части системы y i (i = 1, 2,…, m ) могут быть как переменными (зависимыми), так и константами. Требуется найти решений данной системы методом исключения неизвестных.

Рассмотрим следующую операцию, называемую в дальнейшем «одним шагом обыкновенных жордановых исключений». Из произвольного (r -го) равенства выразим произвольную переменную (x s ) и подставим во все остальные равенства. Разумеется, это возможно только в том случае, когда a rs ¹ 0. Коэффициент a rs называется разрешающим (иногда направляющим или главным) элементом.

Мы получим следующую систему:

. (1.21)

Из s -го равенства системы (1.21) мы впоследствии найдем переменную x s (после того, как будут найдены остальные переменные). S -я строка запоминается и в дальнейшем из системы исключается. Оставшаяся система будет содержать на одно уравнение и на одну независимую переменную меньше, чем исходная система.

Вычислим коэффициенты полученной системы (1.21) через коэффициенты исходной системы (1.20). Начнем с r -го уравнения, которое после выражения переменной x s через остальные переменные будет выглядеть следующим образом:

Таким образом, новые коэффициенты r -го уравнения вычисляются по следующим формулам:

(1.23)
Вычислим теперь новые коэффициенты b ij (i ¹ r ) произвольного уравнения. Для этого подставим выраженную в (1.22) переменную x s в i -е уравнение системы (1.20):

После приведения подобных членов, получим:

(1.24)
Из равенства (1.24) получим формулы, по которым вычисляются остальные коэффициенты системы (1.21) (за исключением r -го уравнения):

(1.25)
Преобразование систем линейных уравнений методом обыкновенных жордановых исключений оформляется в виде таблиц (матриц). Эти таблицы получили название «жордановых».

Так, задаче (1.20) ставится в соответствие следующая жорданова таблица:

Таблица 1.1

x 1 x 2 x j x s x n
y 1 = a 11 a 12 a 1j a 1s a 1n
…………………………………………………………………. .
y i = a i 1 a i 2 a ij a is a in
…………………………………………………………………..
y r = a r 1 a r 2 a rj a rs a rn
………………………………………………………………….
y n = a m 1 a m 2 a mj a ms a mn

Жорданова таблица 1.1 содержит левый заглавный столбец, в который записывают правые части системы (1.20) и верхнюю заглавную строку, в которую записывают независимые переменные.

Остальные элементы таблицы образуют основную матрицу коэффициентов системы (1.20). Если умножить матрицу А на матрицу , состоящую из элементов верхней заглавной строки, то получится матрица , состоящая из элементов левого заглавного столбца. То есть, по существу, жорданова таблица это матричная форма записи системы линейных уравнений: . Системе (1.21) при этом соответствует следующая жорданова таблица:

Таблица 1.2

x 1 x 2 x j y r x n
y 1 = b 11 b 12 b 1 j b 1 s b 1 n
…………………………………………………………………..
y i = b i 1 b i 2 b ij b is b in
…………………………………………………………………..
x s = b r 1 b r 2 b rj b rs b rn
………………………………………………………………….
y n = b m 1 b m 2 b mj b ms b mn

Разрешающий элемент a rs мы будем выделять жирным шрифтом. Напомним, что для осуществления одного шага жордановых исключений разрешающий элемент должен быть отличен от нуля. Строку таблицы, содержащую разрешающий элемент, называют разрешающей строкой. Столбец, содержащий разрешающий элемент, называют разрешающим столбцом. При переходе от данной таблицы к следующей таблице одна переменная (x s ) из верней заглавной строки таблицы перемещается в левый заглавный столбец и, наоборот, один из свободных членов системы (y r ) из левого заглавного столбца таблицы перемещается в верхнюю заглавную строку.

Опишем алгоритм пересчета коэффициентов при переходе от жордановой таблицы (1.1) к таблице (1.2), вытекающий из формул (1.23) и (1.25).

1. Разрешающий элемент заменяется обратным числом:

2. Остальные элементы разрешающей строки делятся на разрешающий элемент и изменяют знак на противоположный:

3. Остальные элементы разрешающего столбца делятся на разрешающий элемент:

4. Элементы, не попавшие в разрешающую строку и разрешающий столбец, пересчитываются по формулам:

Последняя формула легко запоминается, если заметить, что элементы, составляющие дробь , находятся на пересечении i -ой и r -ой строк и j -го и s -го столбцов (разрешающей строки, разрешающего столбца и той строки и столбца, на пересечении которых находится пересчитываемый элемент). Точнее, при запоминании формулы можно использовать следующую диаграмму:

-21 -26 -13 -37

Совершая первый шаг жордановых исключений, в качестве разрешающего элемента можно выбрать любой элемент таблицы 1.3, расположенный в столбцах x 1 ,…, x 5 (все указанные элементы не равны нулю). Не следует только выбирать разрешающий элемент в последнем столбце, т. к. требуется находить независимые переменные x 1 ,…, x 5 . Выбираем, например, коэффициент 1 при переменной x 3 в третьей строке таблицы 1.3 (разрешающий элемент показан жирным шрифтом). При переходе к таблице 1.4 переменная x 3 из верхней заглавной строки меняется местами с константой 0 левого заглавного столбца (третья строка). При этом переменная x 3 выражается через остальные переменные.

Строку x 3 (табл.1.4) можно, предварительно запомнив, исключить из таблицы 1.4. Из таблицы 1.4 исключается так же третий столбец с нулем в верхней заглавной строке. Дело в том, что независимо от коэффициентов данного столбца b i 3 все соответствующие ему слагаемые каждого уравнения 0·b i 3 системы будут равны нулю. Поэтому указанные коэффициенты можно не вычислять. Исключив одну переменную x 3 и запомнив одно из уравнений, мы приходим к системе, соответствующей таблице 1.4 (с вычеркнутой строкой x 3). Выбирая в таблице 1. 4 в качестве разрешающего элемента b 14 = -5, переходим к таблице 1.5. В таблице 1.5 запоминаем первую строку и исключаем ее из таблицы вместе с четвертым столбцом (с нулем наверху).

Таблица 1.5 Таблица 1.6

Из последней таблицы 1.7 находим: x 1 = – 3 + 2x 5 .

Последовательно подставляя уже найденные переменные в запомненные строки, находим остальные переменные:

Таким образом, система имеет бесчисленное множество решений. Переменной x 5 , можно придавать произвольные значения. Данная переменная выступает в роли параметра x 5 = t. Мы доказали совместность системы и нашли ее общее решение:

x 1 = – 3 + 2t

x 2 = – 1 – 3t

x 3 = – 2 + 4t . (1.27)
x 4 = 4 + 5t

x 5 = t

Придавая параметру t различные значения, мы получим бесчисленное множество решений исходной системы. Так, например, решением системы является следующий набор переменных (- 3; – 1; – 2; 4; 0).

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы – (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. За примерами далеко ходить не надо.

Следующий пример – на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

Таблица непредвиденных обстоятельств

Таблица непредвиденных обстоятельств

Хи-квадрат, V Крамера и лямбда

Для таблицы непредвиденных обстоятельств строк по столбцам
Для таблицы непредвиденных обстоятельств, содержащей до 5 строк и 5 столбцов, этот модуль будет:
~
выполнить анализ хи-квадрат [логика и вычислительные детали тестов хи-квадрат описаны в Главе 8 Концепций и приложений];
~
рассчитать V Крамера, который является мерой силы связи между уровнями переменных строк и столбцов [для таблицы 2×2 V Крамера равен абсолютному значению коэффициента phi];
~
и рассчитать две асимметричные версии лямбда, индекс прогностической ассоциации Гудмана-Крускала, а также некоторые другие меры, относящиеся к категориальному прогнозированию. [Нажмите здесь, чтобы получить краткое описание лямбда.]
Для начала выберите количество строк и количество столбцов, нажав соответствующие кнопки ниже; затем введите свои данные в соответствующие ячейки матрицы ввода данных. После того, как все данные введены, нажмите кнопку «Рассчитать».
Выберите количество строк:
 Выберите количество столбцов: 

Ввод данных Q

Отклонения в процентах Q
Б 1 Б 2 Б 3 Б 4 Б 5
 А 1  
 А 2  
 А 3  
 А 4  
 А 5  
Стандартизированные остатки Q
Б 1 Б 2 Б 3 Б 4 Б 5
 А 1  
 А 2  
 А 3  
 А 4  
 А 5  
Лямбда для предсказания Стандарт
Ошибка
. 95 Пределы ДИ
Нижний Верхний
A от B:
[Нажмите здесь для краткого объяснения лямбда.]

Расчетная вероятность правильного прогноза

Дом Нажмите на эту ссылку только , если вы пришли сюда не через главную страницу VassarStats.


© Ричард Лоури, 2001-
Все права защищены.

Детальное решение по методу Крамера. Метод Крамера для решения систем линейных уравнений

В первой части мы рассмотрели теоретический материал, метод подстановки, а также метод почленного сложения уравнений системы. Всем, кто зашел на сайт через эту страницу, рекомендую прочитать первую часть. Возможно, некоторым посетителям материал покажется слишком простым, но в ходе решения систем линейных уравнений я сделал ряд очень важных замечаний и выводов, касающихся решения математических задач в целом.

А теперь разберем правило Крамера, а также решение системы линейных уравнений с помощью обратной матрицы (матричный метод). Все материалы представлены просто, подробно и понятно, практически все читатели смогут научиться решать системы вышеуказанными методами.

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, посеместровым сложением!

Дело в том, что пусть иногда, но есть такая задача – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера.Во-вторых, более простой пример поможет вам понять, как использовать правило Крамера для более сложного случая — системы из трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые желательно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычисляем определитель , он называется главным определителем системы .

Метод Гаусса.

Если , то система имеет единственное решение и для нахождения корней надо вычислить еще два определителя:
и

На практике вышеуказанные определители также могут обозначаться латинской буквой.

Корни уравнения находятся по формулам:
,

Пример 7

Решение системы линейных уравнений

Решение : Видим, что коэффициенты уравнения достаточно большие, в правой части стоят десятичные дроби через запятую.Запятая — довольно редкий гость в практических задачах по математике; Я взял эту систему из эконометрической задачи.

Как решить такую ​​систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся ужасные навороченные дроби, с которыми крайне неудобно работать, а оформление решения будет выглядеть просто ужасно. Вы можете умножить второе уравнение на 6 и вычесть член за членом, но здесь появятся те же самые дроби.

Что делать? В таких случаях на помощь приходят формулы Крамера.

;

;

Ответить : ,

Оба корня имеют бесконечные хвосты и находятся приближенно, что вполне приемлемо (и даже банально) для задач эконометрики.

Комментарии здесь не нужны, так как задача решается по готовым формулам, однако есть один нюанс. При использовании этого метода обязательно Фрагментом задания является следующий фрагмент: “значит, система имеет единственное решение” .В противном случае рецензент может наказать вас за неуважение к теореме Крамера.

Не лишней будет проверка, которую удобно проводить на калькуляторе: подставляем приблизительные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, находящиеся в правой части.

Пример 8

Выразите ответ в обыкновенных неправильных дробях. Сделайте чек.

Это пример для самостоятельного решения (пример изящного оформления и ответ в конце урока).

Перейдем к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса.

Если , то система имеет единственное решение и для нахождения корней надо вычислить еще три определителя:
, ,

И, наконец, ответ вычисляется по формулам:

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «гуляет» слева направо по столбцам главного определителя.

Пример 9

Решите систему, используя формулы Крамера.

Решение : Решим систему по формулам Крамера.

, поэтому система имеет единственное решение.

Ответ : .

Собственно, тут опять комментировать особо нечего, ввиду того, что решение принимается по готовым формулам.Но есть пара замечаний.

Бывает, что в результате вычислений получаются «плохие» несократимые дроби, например: .
Рекомендую следующий алгоритм “лечения”. Если под рукой нет компьютера, делаем так:

1) Возможна ошибка в расчетах. Как только вы столкнулись с «плохим» кадром, нужно сразу проверить, правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители с помощью разложения в другой строке (столбце).

2) Если в результате проверки ошибок не обнаружено, то, скорее всего, в условии задания допущена опечатка. В этом случае спокойно и ВНИМАТЕЛЬНО решите задачу до конца, а затем обязательно проверьте и оформите ее на чистом экземпляре после решения. Конечно, проверка дробного ответа — занятие неприятное, но это будет обезоруживающим аргументом для преподавателя, который ну очень любит ставить минус за всякую гадость вроде. Как обращаться с дробями, подробно описано в ответе на Пример 8.

Если у вас под рукой есть компьютер, то используйте для его проверки автоматизированную программу, которую можно скачать бесплатно в самом начале урока. Кстати, пользоваться программой выгоднее всего сразу (еще до запуска решения), вы сразу увидите промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически вычисляет решение системного матричного метода.

Второе замечание. Время от времени встречаются системы, в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении нет переменной, во втором нет переменной.В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать основной определитель:
– вместо пропущенных переменных ставятся нули.
Кстати, определители с нулями рационально открывать в той строке (столбце), в которой стоит ноль, так как вычислений заметно меньше.

Пример 10

Решите систему, используя формулы Крамера.

Это пример для самостоятельного решения (завершающий образец и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Вы можете увидеть живой пример в уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне разрешимы. Хотя задание уже очень напоминает профессорский ботинок на груди счастливчика-студента.

Решение системы с использованием обратной матрицы

Метод обратной матрицы по существу является частным случаем матричного уравнения (см.3 указанного урока).

Для изучения этого раздела необходимо уметь разлагать определители, находить обратную матрицу и выполнять умножение матриц. Соответствующие ссылки будут даны по мере продвижения объяснения.

Пример 11

Решить систему матричным методом

Решение : Запишем систему в матричной форме:
, где

Пожалуйста, посмотрите на систему уравнений и матрицы. По какому принципу мы записываем элементы в матрицы, думаю всем понятно.Единственное замечание: если бы в уравнениях отсутствовали какие-то переменные, то в матрице на соответствующие места пришлось бы ставить нули.

Находим обратную матрицу по формуле:
, где – транспонированная матрица алгебраическими сложениями соответствующих элементов матрицы .

Сначала разберемся с определителем:

Здесь определитель расширен первой строкой.

Внимание! Если , то обратной матрицы не существует и решить систему матричным методом невозможно.В этом случае система решается методом исключения неизвестных (метод Гаусса).

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

Ссылка: Полезно знать значение двойных индексов в линейной алгебре. Первая цифра — это номер строки, в которой находится элемент. Вторая цифра – это номер столбца, в котором находится элемент:

То есть двойной нижний индекс указывает на то, что элемент находится в первой строке, третьем столбце, в то время как, например, элемент находится в 3-й строке, 2-й столбец

Методы Kramer и Gaussian одно из самых популярных решений SLAU . Более того, в ряде случаев целесообразно использовать специфические методы. Сессия подошла к концу, и сейчас самое время повторить или освоить их с нуля. Сегодня мы займемся решением методом Крамера. Ведь решение системы линейных уравнений по методу Крамера — очень полезный навык.

Системы линейных алгебраических уравнений

Линейная система алгебраических уравнений – система уравнений вида:

Набор значений x , при котором уравнения системы обращаются в тождества, называется решением системы, а и б — реальные коэффициенты.Простую систему, состоящую из двух уравнений с двумя неизвестными, можно решить в уме или выразить одну переменную через другую. Но переменных (x) в СЛАУ может быть гораздо больше, чем две, и здесь не обойтись без простых школьных манипуляций. Что делать? Например, решить СЛАУ методом Крамера!

Итак, пусть система будет n уравнения с n неизвестно.

Такую систему можно переписать в матричной форме

Здесь А – основная матрица системы, Х и В соответственно, матрицы столбцов неизвестных переменных и свободных элементов.

Раствор СЛАЭ по Крамеру

Если определитель основной матрицы не равен нулю (матрица невырожденная), система может быть решена методом Крамера.

По методу Крамера решение находится по формулам:

Здесь дельта — определитель основной матрицы, а дельта х n-й – определитель, полученный из определителя основной матрицы заменой n-го столбца на столбец свободных членов.

В этом весь смысл метода Крамера. Подставляя найденные значения по приведенным выше формулам х в нужную систему, убеждаемся в правильности (или наоборот) нашего решения. Чтобы помочь вам быстро вникнуть в суть, приведем ниже пример подробного решения СЛАУ методом Крамера:

Даже если у вас не получится с первого раза, не расстраивайтесь! Немного потренировавшись, вы начнете щелкать SLOW, как орехи. Более того, теперь совершенно не нужно корпеть над тетрадью, решая громоздкие вычисления и записывая на стержне. СЛАУ методом Крамера легко решить онлайн, просто подставив коэффициенты в готовую форму. опробовать решения онлайн-калькулятора по методу Крамера можно, например, на этом сайте.

А если система оказалась упрямой и не сдается, вы всегда можете обратиться за помощью к нашим авторам, например, к . Если в системе будет хотя бы 100 неизвестных, мы обязательно решим ее правильно и точно в срок!


2.Решение систем уравнений матричным методом (с использованием обратной матрицы).
3. Метод Гаусса для решения систем уравнений.

Метод Крамера.

Метод Крамера применяется для решения систем линейных алгебраических уравнений ( СЛАУ ).

Формулы на примере системы двух уравнений с двумя переменными.
Дано: Решите систему методом Крамера

Относительно переменных X и в .
Решение:
Найдите определитель матрицы, составленной из коэффициентов системы Вычисление определителей. :



Применим формулы Крамера и найдем значения переменных:
и .
Пример 1:
Решите систему уравнений:

относительно переменных X и на .
Решение:


Заменим в этом определителе первый столбец столбцом коэффициентов из правой части системы и найдем его значение:

Проделаем аналогичное действие, заменив в первом определителе второй столбец:

Применимы формулы Крамера и найдем значения переменных:
и .
Ответ:
Комментарий: Этот метод можно использовать для решения систем больших размерностей.

Комментарий: Если оказывается, что , и на ноль делить нельзя, то говорят, что система не имеет единственного решения. В этом случае система либо имеет бесконечно много решений, либо вообще не имеет решений.

Пример 2 (бесконечное количество решений):

Решите систему уравнений:

относительно переменных X и на .
Решение:
Найдите определитель матрицы, составленной из коэффициентов системы:

Решение систем методом подстановки.

Первым из уравнений системы является равенство, верное при любых значениях переменных (потому что 4 всегда равно 4). Так что осталось только одно уравнение. Это уравнение связи между переменными.
Получили, что решением системы является любая пара значений переменных, связанных равенством.
Общее решение будет записано так:
Частные решения можно определить, выбрав произвольное значение y и вычислив x из этого уравнения связи.

и т.д.
Таких решений бесконечно много.
Ответ: общее решение
Частные решения:

Пример 3 (нет решений, система несовместима):

Решите систему уравнений:

Решение:
Найдите определитель матрицы, составленной из коэффициентов системы:

Формулами Крамера пользоваться нельзя.Решим эту систему методом подстановки

Второе уравнение системы представляет собой равенство, которое не выполняется ни при каких значениях переменных (разумеется, так как -15 не равно 2). Если одно из уравнений системы не верно ни при каких значениях переменных, то вся система не имеет решений.
Ответ: нет решений

Метод Крамера или так называемое правило Крамера — это способ поиска неизвестных величин из систем уравнений.Его можно использовать только в том случае, если количество искомых значений эквивалентно количеству алгебраических уравнений в системе, то есть основная матрица, образованная из системы, должна быть квадратной и не содержать нулевых строк, а также если ее определитель должен не быть нулем.

Теорема 1

Теорема Крамера Если главный определитель $D$ основной матрицы, составленной на основе коэффициентов уравнений, не равен нулю, то система уравнений совместна и имеет единственное решение.Решение такой системы вычисляется с помощью так называемых формул Крамера для решения систем линейных уравнений: $x_i = \frac(D_i)(D)$

Что такое метод Крамера

Суть метода Крамера заключается в следующим образом:

  1. Чтобы найти решение системы методом Крамера, прежде всего вычислим главный определитель матрицы $D$. Когда вычисленный определитель основной матрицы при расчете по методу Крамера оказался равным нулю, то система не имеет единственного решения или имеет бесконечное число решений.В этом случае для нахождения общего или какого-то базового ответа для системы рекомендуется применять метод Гаусса.
  2. Затем необходимо заменить последний столбец основной матрицы на столбец свободных членов и вычислить определитель $D_1$.
  3. Повторите то же самое для всех столбцов, получив определители от $D_1$ до $D_n$, где $n$ — номер самого правого столбца.
  4. После того, как все определители $D_1$…$D_n$ найдены, можно вычислить неизвестные переменные по формуле $x_i = \frac(D_i)(D)$.

Методика вычисления определителя матрицы

Для вычисления определителя матрицы размерностью более 2 на 2 можно использовать несколько методов:

  • Правило треугольников, или правило Сарруса, напоминающее то же правило. Суть метода треугольника заключается в том, что при вычислении определителя произведения всех чисел, соединенных на рисунке красной чертой справа, они записываются со знаком плюс, а все числа, соединенные аналогичным образом на рисунке на слева со знаком минус. Оба правила подходят для матриц 3×3. В случае правила Сарруса сначала переписывается сама матрица, а рядом с ней снова переписываются ее первый и второй столбцы. Через матрицу проводят диагонали и эти дополнительные столбцы, элементы матрицы, лежащие на главной диагонали или параллельно ей, записывают со знаком плюс, а элементы, лежащие на побочной диагонали или параллельно ей, записывают со знаком минус.

Рисунок 1. Правило треугольников для вычисления определителя по методу Крамера

  • С методом, известным как метод Гаусса, этот метод также иногда называют редукцией детерминанта.В этом случае матрица преобразуется и приводится к треугольному виду, а затем перемножаются все числа на главной диагонали. Следует помнить, что при таком поиске определителя нельзя умножать или делить строки или столбцы на числа, не вынося их в качестве множителя или делителя. В случае поиска определителя возможно только вычитание и сложение строк и столбцов друг к другу, предварительно умножив вычитаемую строку на ненулевой коэффициент. Также при каждой перестановке строк или столбцов матрицы следует помнить о необходимости смены конечного знака матрицы.
  • При решении СЛАУ Крамера с 4 неизвестными лучше всего использовать метод Гаусса для поиска и нахождения определителей или определить определитель через поиск миноров.

Решение систем уравнений методом Крамера

Применим метод Крамера к системе из 2 уравнений и двух искомых величин:

$\begin(cases) a_1x_1 + a_2x_2 = b_1 \\ a_3x_1 + a_4x_2 = b_2 \\ \ end(cases)$

Для удобства выведем в развернутом виде:

$A = \begin(array)(cc|c) a_1 & a_2 & b_1 \\ a_3 & a_4 & b_1 \\ \end(array )$

Найдите определитель главной матрицы, также называемый главным определителем системы:

$D = \begin(array)(|cc|) a_1 & a_2 \\ a_3 & a_4 \\ \end(array ) = a_1 \cdot a_4 – a_3 \cdot a_2$

Если главный определитель не равен нулю, то для решения оползня методом Крамера необходимо вычислить еще пару определителей из двух матриц со столбцами основная матрица заменена рядом свободных членов:

$D_1 = \begin(array)(|cc|) b_1 & a_2 \\ b_2 & a_4 \\ \end(array) = b_1 \cdot a_4 – b_2 \cdot a_4$

$D_2 = \b egin(array)(|cc|) a_1 & b_1 \\ a_3 & b_2 \\ \end(array) = a_1 \cdot b_2 – a_3 \cdot b_1$

Теперь найдем неизвестные $x_1$ и $x_2$:

$x_1 = \frac (D_1)(D)$

$x_2 = \frac (D_2)(D)$

Пример 1

Метод Крамера для решения СЛАУ с основной матрицей 3-го порядка (3 х 3) и тремя искомыми.

Решить систему уравнений:

$\begin(cases) 3x_1 – 2x_2 + 4x_3 = 21 \\ 3x_1 +4x_2 + 2x_3 = 9\\ 2x_1 – x_2 – x_3 = 10 \\ \end(cases)$

Вычисляем главный определитель матрицы по приведенному выше правилу под пунктом №1:

$D = \begin(массив)(|ccc|) 3 & -2 & 4 \\3 & 4 & -2 \\ 2 & -1 & 1 \\ \end(массив) = 3 \cdot 4 \cdot (-1) + 2 \cdot (-2) \cdot 2 + 4 \cdot 3 \cdot (-1) – 4 \cdot 4 \cdot 2 – 3 \cdot (-2) \cdot (-1) – ( – 1) \cdot 2 \cdot 3 = – 12 – 8 -12 -32 – 6 + 6 = – $64

А теперь еще три определителя:

$D_1 = \begin(массив)(|ccc|) 21 & 2 & 4 \\ 9 & 4 & 2 \\ 10 & 1 & 1 \\ \end(массив) = 21 \cdot 4 \cdot 1 + ( – 2) \cdot 2 \cdot 10 + 9 \cdot (-1) \cdot 4 – 4 \cdot 4 \cdot 10 – 9 \cdot (-2) \cdot (-1) – (-1) \cdot 2 \ cdot 21 = – 84 – 40 – 36 – 160 – 18 + 42 = – $296

$D_2 = \begin(массив)(|ccc|) 3 & 21 & 4 \\3 & 9 & 2 \\ 2 & 10 & 1 \\ \end(массив) = 3 \cdot 9 \cdot (- 1 ) + 3 \cdot 10 \cdot 4 + 21 \cdot 2 \cdot 2 – 4 \cdot 9 \cdot 2 – 21 \cdot 3 \cdot (-1) – 2 \cdot 10 \cdot 3 = – 27 + 120 + 84 – 72 + 63 – 60 = 108

долларов

$D_3 = \begin(массив)(|ccc|) 3 & -2 & 21 \\ 3 & 4 & 9 \\ 2 & 1 & 10 \\ \end(массив) = 3 \cdot 4 \cdot 10 + 3 \cdot (-1) \cdot 21 + (-2) \cdot 9 \cdot 2 – 21 \cdot 4 \cdot 2 – (-2) \cdot 3 \cdot 10 – (-1) \cdot 9 \cdot 3 = 120 – 63 – 36 – 168 + 60 + 27 = – 60$

Найдем необходимые значения:

$x_1 = \frac(D_1) (D) = \frac(- 296)(-64) = 4 \frac(5)(8)$

$x_2 = \frac(D_1) (D) = \frac(108) (-64) = – 1 \frac (11) (16)$

$x_3 = \frac(D_1) (D) = \frac(-60) (-64) = \frac (15) (16)$

Метод Крамера основан на использовании определителей при решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера можно использовать для решения системы линейных уравнений, число которых равно количеству неизвестных в каждом уравнении. Если определитель системы не равен нулю, то при решении можно использовать метод Крамера; если он равен нулю, то не может. Кроме того, метод Крамера можно использовать для решения систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Детерминанты

получаются заменой коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет единственное решение, а неизвестное равно отношению определителей. В знаменателе стоит определитель системы, а в числителе – определитель, полученный из определителя системы заменой коэффициентов с неизвестными свободными членами. Эта теорема верна для системы линейных уравнений любого порядка.

Пример 1 Решите систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн калькулятор, решающий метод Крамера.

Три случая решения систем линейных уравнений

Как следует из теорем Крамера , при решении системы линейных уравнений могут возникнуть три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система непротиворечивая и определенная)

Второй случай: система линейных уравнений имеет бесконечное число решений

(система непротиворечива и неопределима)

** ,

т.е.коэффициенты при неизвестных и свободных членах пропорциональны.

Третий случай: система линейных уравнений не имеет решений

(система несовместима)

Итак, система m линейных уравнений с n переменными называется несовместимой , если она не имеет решений, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, которая имеет только одно решение, называется определенным , а более одного неопределенным .

Примеры решения систем линейных уравнений методом Крамера

Пусть система

.

На основании теоремы Крамера

………….
,

где

системный идентификатор. Остальные определители получаются заменой в столбце коэффициентов соответствующей переменной (неизвестной) со свободными членами:

Пример 2

.

Следовательно, система определена. Чтобы найти ее решение, вычислим определители

По формулам Крамера находим:

Итак, (1; 0; -1) — единственное решение системы.

Для проверки решений систем уравнений 3 X 3 и 4 X 4 можно воспользоваться онлайн-калькулятором, методом решения Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях нет переменных, то в определителе соответствующие им элементы равны нулю! Это следующий пример.

Пример 3 Решить систему линейных уравнений методом Крамера:

.

Раствор. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система определена. Чтобы найти ее решение, вычислим определители для неизвестных

По формулам Крамера находим:

Итак, решение системы равно (2;-1;1).

Для проверки решений систем уравнений 3 X 3 и 4 X 4 можно воспользоваться онлайн-калькулятором, методом решения Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители неизвестных не равны нулю, то система несовместна, то есть не имеет решений. Проиллюстрируем на следующем примере.

Пример 6 Решить систему линейных уравнений методом Крамера:

Раствор. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определена, либо несовместна, то есть не имеет решений. Для уточнения вычислим определители для неизвестных

Определители неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 X 3 и 4 X 4 можно воспользоваться онлайн-калькулятором, методом решения Крамера.

В задачах на системы линейных уравнений есть и такие, где кроме букв, обозначающих переменные, есть еще и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное число. На практике такие уравнения и системы уравнений приводят к задачам поиска общих свойств каких-либо явлений или объектов. То есть вы изобрели какой-либо новый материал или устройство, и для описания его свойств, общих вне зависимости от размера или количества экземпляров, необходимо решить систему линейных уравнений, где вместо каких-то коэффициентов при переменных стоит являются письма. За примерами далеко ходить не надо.

Следующий пример для аналогичной задачи, только увеличивается количество уравнений, переменных и букв, обозначающих некоторое действительное число.

Пример 8 Решить систему линейных уравнений методом Крамера:

Раствор. Находим определитель системы:

Нахождение определителей неизвестных

Вопросы и ответы по методу Гаусса-Зейделя

Этот набор вопросов и ответов с множественным выбором численных методов (MCQ) посвящен «методу Гаусса-Зейделя».

1. Какая из следующих систем линейных уравнений имеет строго диагонально доминирующую матрицу коэффициентов?
а)

 3x – у = -4
2х + 5у = ​​2 

б)

 2х + у = 1
х - 7у = 4 

в)

 3x + 5y = 2
х + у = -3 

г)

 4x = 2y - z - 1
х + г = -4
3x – 5y + z = 3 
Посмотреть ответ

Ответ: a
Объяснение: Матрица коэффициентов
A = \(\begin{bmatrix}3&-1\\2&5\end{bmatrix}\)
является строго диагонально доминирующей, потому что |3| > |-1| и |5| > |2|.

2. Метод Гаусса-Сейдала также называют методом _______
a) Последовательное смещение
b) Исключения
c) Ложные положения
d) Итерации
Посмотреть ответ

Ответ: a
Пояснение: Метод Гаусса-Сейдала также называется метод последовательного смещения, потому что с помощью итераций мы продолжаем смещать значения, которые мы выбираем для неизвестных, которые используются на последующих шагах.

3. К какому из следующих методов подобен сейдальный метод Гаусса?
a) Метод итераций
b) Метод Ньютона-Рафсона
c) Метод Якоби
d) Метод Регулы-Фалси
Просмотреть ответ

Ответ: c
Объяснение: Процедура, используемая в методах Гаусса и Якоби, почти одинакова.Разница лишь в том, что при выборе значений неизвестных используется разная методология.

4. В чем основное отличие Якоби и Гаусса-Зейдала?
а) Вычисления по методу Якоби можно проводить параллельно, но не по методу Гаусса-сейда правильный ответ больше в гауссовском сейдале
Просмотреть ответ

Ответ: a
Объяснение: Вычисления в методе Якоби можно выполнять параллельно, но не в методе Гаусса-сейдала, потому что в методе Якоби весь набор значений, полученных в ходе предыдущей итерации, используется как это в следующем, тогда как в методе Гаусса-сейдала, поскольку мы продолжаем получать отдельные значения переменной, мы используем их на последующих шагах.

5. При решении методом Гаусса-Зейдаля, какая из следующих систем является первой итеративной системой решения; х – 2у = 1 и х + 4у = 4?
а) (1, 0,75)
б) (0,25,1)
в) (0,0)
г) (1,0,65)
Посмотреть ответ

Ответ: а
Объяснение: Здесь
х – 2у = 1
x + 4y = 4
Для первой итерации положим n = 0 в следующие уравнения:
x n+1 = 1 – 2y n
y n+1 = (1/4) (4 – х n+1 )
Получаем,
х 1 = 1 – 2(0) = 1
у 1 = (1/4) (4 – 1) = 0.75.

6. Метод Гаусса-Зейделя применим к строго диагонально доминирующим или симметричным ________ определенным матрицам.
a) Положительный
b) Отрицательный
c) Нулевой
d) Равный
Посмотреть ответ

Ответ: a
Пояснение: Метод Гаусса-Зейделя применим к строго диагонально доминирующим или симметричным положительно определенным матрицам, поскольку только в этом случае возможна сходимость .

7. Сейдал Гаусса требует меньшего количества итераций, чем метод Якоби.
a) Верно
b) Ложно
Просмотреть ответ

Ответ: a
Объяснение: Метод Гаусса требует меньшего количества итераций, чем метод Якоби, потому что он обеспечивает большую точность быстрее, чем метод Якоби. Это модификация метода Якоби, которая теперь называется методом Гаусса-сейдала.

8. Какой из следующих методов используется для решения системы линейных уравнений?
a) Рунге-Кутта
b) Ньютон-Рафсон
c) Гаусс-Зейдаль
d) Правило Симпсона
Просмотреть ответ

Ответ: d
Пояснение: Метод Рунге-Кутта используется для решения дифференциальных уравнений.Метод Ньютона-Рафсона используется для нахождения корня многочлена. Правило Симпсона используется для решения задач интеграции. Гаусс-сейдаль используется для решения системы линейных уравнений.

9. Каковы ограничения метода Гаусса-сейда?
а) Его нельзя использовать для матриц с ненулевыми диагональными элементами
б) Он сложнее метода Якоби
в) Он не гарантирует сходимости для каждой матрицы
г) Это итерационный метод
Просмотр Ответ

Ответ: c
Объяснение: Это не гарантирует сходимости для каждой матрицы. Сходимость возможна только в том случае, если матрица является диагонально доминирующей, положительно определенной или симметричной.

10. Решите следующие уравнения сейдальным методом Гаусса.

 10а - 2б - в - г = 3
- 2а + 10б - в - г = 15
- а - б + 10в - 2г = 27
- а - б - 2в = 10г = -9 

а) а = 1, b = 5, с = 7, d = -1
б) а = 1, b = 2, с = 3, d = 0
в) а = 2, b = 5, с = 3, d = 5
d) a = 2, b = 2, c = 8, d = -3
Посмотреть ответ

Ответ: b
Объяснение:
a = \(\frac{1}{10}\)(3 + 2b + c + d) …………….(и)
b = \(\frac{1}{10}\)(15 + 2a + c + d) ……………(ii)
c = \(\frac{1}{10}\)(27 + a + b +d) ……………..(iii)
d = \(\frac{1}{10}\)(-9 + a + b + 2c) ……………(iv)

Первая итерация
Полагая b = 0, c = 0, d = 0 в (i), получаем a = 0,3
Полагая a = 0,3, c = 0, d = 0 в (ii), получаем b = 1,56
Полагая a = 0,3, b = 1,56, d = 0 в (iii), получаем c = 2,886
. Полагая a = 0,3, b = 1,56, c = 2,886 в (iv), получаем d = -0,1368

Вторая итерация
Установка b = 1. 56, c = 2,886, d = -0,1368 в (i), получаем a = 0,8869
. Полагая a = 0,8869, c = 2,886, d = -0,1368 в (ii), получаем b = 1,9523
. b = 1,9523, d = -0,1368 в (iii), имеем c = 2,9566
. Полагая a = 0,8869, b = 1,9523, c = 2,9566 в (iv), получаем d = -0,0248

Третья итерация
Полагая b = 1,9523, c = 2,9566, d = -0,0248 в (i), получаем a = 0,986
Полагая a = 0,9836, c = 2,9566, d = -0,0248 в (ii), получаем b = 1,9899
Полагая a = 0,9836, b = 1.9899, ​​d = -0,0248 i (iii), получаем d = 2,9924
. Положив a = 0,9836, b = 1,9899, ​​c = 2,9924 в (iv), получаем d = -0,0042

Четвертая итерация, как описано выше
a = 0,9968 b = 1,9982, c = 2,9987, d = -0,0008
Пятая итерация: a = 0,9994, b = 1,9997, c = 2,9997, d = -0,0001
Шестая итерация9: a9 = 0. b = 1,9999, c = 2,9999, d = -0,0001
Следовательно, решение a = 1, b = 2, c = 3, d = 0,

11. Решите следующее уравнение методом Гаусса-Зейдаля до 2 итераций и найдите значение z.

 27х + 6у - г = 85
6х + 15у + 2з = 72
х + у + 54z = 110 

а) 1.88
б) 1.22
в) 0
г) 1.92
Посмотреть ответ

Ответ: d
Пояснение: Из данного набора уравнений-
х=\(\frac{(85-6y+z)}{27}\)
y=\(\frac{(72-6x-2z)}{15}\)
y=\(\frac{(110-xy)}{54}\)

1 st итерация:
y=0, z=0
x=\(\frac{85}{27}\)=3,14
x=3,14, z=0
y=\(\frac{72- (6×3,14)-2×(0)}{15}\)=3,54
x=3,14, y=3,54
z=\(\frac{110-3.14-3,54}{54}\)=1,91

2 и итерация:
z=1,91, y=3,54
x=\(\frac{85-(6×3,54)+(1,91)}{27}\)=2,43
z=1,91, x=2,43
y=\(\frac{72-(6×2,43)-2×(1,91)}{15}\)=3,57
y=3,57, x=2,43
z=\(\frac{110-2,43-3,57 {54}\)=1,92
Таким образом, после второй итерации
x=2,43, y=3,57, z=1,92.

12. Решите следующее уравнение методом Гаусса-Зейдаля до 3 итераций и найдите значение x.

 4x - 3y - z = 40
х - 6у + 2г = -28
х - 2у + 12г = -86 

а) х=11. 11
b) x=13,28
c) x=11,51
d) x=9,86
Посмотреть ответ

Ответ: c
Объяснение: Из данной системы уравнений-
x=\(\frac{(40+3y+ z)}{4}\)
y=\(\frac{(28+x+2z)}{6}\)
z=\(\frac{(-86-x+2y)}{12}\ )
1 ст итерация:
y=0, z=0
x=\(\frac{40}{4}\)=10
x=10, z=0
y=\(\frac{28 +(10)+2×(0)}{6}\)=6,33
x=10, y=6,33
z=\(\frac{-86-10+(2×6,33)}{12}\) =-6,94
2 nd итерация:
z=-6,94, y=6.33
x=\(\frac{40+(3×6,33)+(-6,94)}{4}\)=13,01
z=-6,94, x=13,01
y=\(\frac{28+(13,01) )+2×(-6,94)}{6}\)=4,52
y=4,52, x=13,01
z=\(\frac{-86-13,01+(2×4,52)}{12}\)=- 7,49
3 rd итерация:
z=-7,49, y=4,52
x=\(\frac{40+(3×4,52)+(-7,49)}{4}\)=11,51
z=-7,49 , x=11,51
y=\(\frac{28+(11,51)+2×(-7,49)}{6}\)=4,08
y=4,08, x=11,51
z=\(\frac{-86 -11,51+(2×4,08)}{12}\)=-7,44
Таким образом, после третьей итерации
x=11,51, y=4,08, z=-7. 44.

Sanfoundry Global Education & Learning Series – Численные методы.

Чтобы попрактиковаться во всех областях численных методов, вот полный набор из более чем 1000 вопросов и ответов с несколькими вариантами ответов .

4 способа потратить свои пенсионные сбережения и убедиться, что их хватит

Вилли Б. Томас | ДиджиталВижн | Getty Images

Думали, что накопить на пенсию было сложно? Тратить эти деньги — и гарантировать, что их хватит на старость — еще сложнее.

На первый взгляд это может показаться несложным.

Но учти все неизвестные: сколько ты проживешь; потребность в дорогостоящем медицинском обслуживании или долгосрочном уходе, возможно, через десятилетия; будущая доходность акций и облигаций.

Они могут ослепить пенсионера. А чрезмерно усердные траты на раннем этапе без корректировки курса могут оказаться ужасными. Пожилые люди могут быть не в состоянии вернуться на работу, чтобы компенсировать дефицит.

Еще от Стратегии с фиксированным доходом:
Вот что нового в планах 401(k) в этом году
Социальное обеспечение может быть «сокровищницей» богатства
Пенсионеры, ищущие доход, могут рассмотреть закрытые фонды

это очень сложно, если вы хотите хорошо выполнять свою работу», — сказал Дэвид Бланшетт, руководитель отдела пенсионных исследований в PGIM, подразделении Prudential Financial по управлению инвестициями, о расходовании пенсионных сбережений.

«Вы делаете ряд выборов, когда уходите на пенсию», — добавил он. «Если вы долго следуете этим выборам и принимаете неверные решения, в какой-то момент вы едете к обрыву и не можете замедлиться — вы обречены».

К счастью, есть стратегии, которые пенсионеры могут использовать, чтобы потратить свои с трудом заработанные сбережения с высокой степенью уверенности в том, что средств хватит.

Важные моменты

Прежде всего, следует помнить о некоторых важных моментах, касающихся этих стратегий.

Пенсионеры должны относиться к ним как к руководству, а не как к предписанию, которому нужно следовать с точностью до запятой. Пенсионеры почти никогда не будут тратить из года в год ровно столько, сколько предполагают их любимые модели.

Направленно они сообщат, тратите ли вы безопасную сумму, слишком много или можете позволить себе тратить немного больше из года в год, по словам экспертов по пенсионному обеспечению.

«Людям часто нужна проверка интуиции, особенно если ситуация нестабильна», — сказала Бланшетт.

Кроме того, эти методы проверяют только расходы инвестиционного портфеля.Пенсионеры, вероятно, также имеют гарантированный доход от социального обеспечения, пенсий или, например, аннуитета.

Пенсионер, который может оплачивать свои фиксированные расходы (такие как еда и жилье) с гарантированным доходом, имеет больше свободы действий в своих портфельных расходах, которые в значительной степени покрывают дискреционные расходы (такие как поездки и развлечения).

Все это говорит о том, что «безопасные» расходы сильно различаются от семьи к семье.

А портфель, примерно разделенный между акциями и облигациями, обычно дает наилучшие результаты, как показывают исследования.

Пенсионеры могут принять множество положительных финансовых решений, даже не прикоснувшись к своим заначкам.

Например, задержка подачи заявления на социальное обеспечение увеличивает ежемесячные выплаты на всю жизнь. Сокращение фиксированных расходов (например, погашение ипотеки, продажа второго дома, сокращение поддержки взрослых детей) при выходе на пенсию также может помочь снизить вашу зависимость от инвестиций — и, следовательно, риск нехватки денег позже.

«Если вы можете найти способ покрыть фиксированные расходы за счет непортфельного дохода, это сделает ситуацию более гибкой», — сказала Кристин Бенц, директор по личным финансам в Morningstar.

Будь динамичным

Маскот | ДиджиталВижн | Getty Images

Одним из наиболее важных факторов является гибкость, насколько это возможно. Это означает адаптацию к рыночным условиям — например, если фондовый рынок падает, будьте готовы соответствующим образом сократить расходы.

Это ограничивает так называемый риск «последовательности возврата» — опасность изъять слишком много денег из падающих в цене инвестиций, оставляя меньше взлетно-посадочной полосы для их восстановления, когда рынок восстановится.

«Любая стратегия, которую вы можете корректировать в зависимости от результатов портфеля, действительно помогает вам управлять риском последовательности», — сказал Уэйд Пфау, профессор пенсионного дохода в Американском колледже финансовых услуг.

Динамизм является ключевой особенностью следующих стратегий, рекомендованных экспертами по выходу на пенсию.

1. Правило 4% с изюминкой

Йошиёси Хирокава | ДиджиталВижн | Getty Images

Правило 4% — это хорошо известное эмпирическое правило пенсионных расходов.

В нем говорится, что в первый год выхода на пенсию люди должны снимать 4% от общей суммы своих сбережений. Чтобы определить более поздние ежегодные изъятия, они корректировали долларовую цифру за предыдущий год в сторону увеличения в соответствии с уровнем инфляции.

Например, инвестор может снять 40 000 долларов из портфеля в 1 миллион долларов в первый год. В следующем году уровень инфляции в 2% добавит еще 800 долларов (или всего 40 800 долларов). В третий год еще 2% инфляции дадут общий вывод средств в размере 41 616 долларов и так далее.

Одним из достоинств этого подхода является то, что он похож на квази-зарплату, поскольку это стабильный поток дохода.

Но это, наверное, слишком жестко, считают эксперты — пенсионеры берут столько же, без оглядки на рыночные колебания.

По словам Бенца из Morningstar, лучший подход — отказаться от поправки на инфляцию в течение года после того, как портфель понес убытки.

Людям часто нужна проверка интуиции, особенно если ситуация нестабильна.

Дэвид Бланшетт

руководитель отдела пенсионных исследований в PGIM

Используя приведенный выше пример, если сбережения в размере 1 млн. с поправкой на инфляцию 40 800 долларов США).

Этот подход может хорошо работать для людей с фиксированным бюджетом без большого пространства для маневра, сказал Бенц. И это относительно просто для самодельщиков.

«Это не пустяк, особенно в нынешних условиях, когда инфляция высока», — сказал Бенц о стрижке. «Но это простая настройка, с которой, я думаю, многие люди могли бы жить», — добавила она.

(Примечание: исследование Morningstar показывает, что будущие пенсионеры, вероятно, будут лучше обслуживаться, используя 3,3% вместо 4% в первый год вывода средств.)

2. Необходимый минимум дистрибутивов

The Good Brigade | ДиджиталВижн | Getty Images

Эта стратегия включает в себя те же расчеты IRS, которые пенсионеры используют для определения минимального ежегодного вывода из планов 401(k) до уплаты налогов, индивидуальных пенсионных счетов и других денежных горшков.

Однако это относится ко всем сбережениям пенсионеров, а не только к счетам, на которые распространяются федеральные правила RMD.

Вот как это работает: Определите соответствующий «период распределения» в этой рабочей таблице IRS в соответствии с вашим возрастом.Разделите свой общий портфель на этот период распределения. Этот расчет покажет вам безопасную сумму расходов на этот год.

Например, предположим, что у 70-летнего человека есть портфель в 1 миллион долларов. Они разделили бы 1 миллион долларов на 27,4 (период распределения), в результате чего в этом году было снято примерно 36 500 долларов.

Ежегодно сверяйтесь с рабочим листом IRS, повторяя расчеты в соответствии с текущим возрастом и стоимостью портфеля.

(Примечание: Налоговое управление США публикует различные рабочие листы в зависимости от индивидуальных обстоятельств.)

Один потенциальный недостаток: таблицы консервативны, что может привести к меньшему, чем хотелось бы, годовому расходу.

В качестве альтернативы пенсионеры могут использовать онлайн-калькулятор ожидаемой продолжительности жизни вместо таблиц распределения IRS.

Пенсионеры делят стоимость своего портфеля на ожидаемую продолжительность жизни. Скажем, 70-летний человек с заначкой в ​​1 миллион долларов рассчитывает прожить еще 20 лет; они разделили бы 1 миллион долларов на 20, в результате чего в этом году было бы снято 50 000 долларов.

Бланшетт из PGIM предпочитает этот метод, так как он проще и лучше отвечает текущему состоянию здоровья пенсионеров. (Таблицы IRS привязаны к средней продолжительности жизни в зависимости от возраста.)

Недостатком этих подходов является то, что они могут создавать сильно изменчивый денежный поток из года в год, поскольку снятие средств увеличивается и уменьшается со стоимостью портфеля.

Кроме того, согласно анализу Morningstar, они могут привести к тому, что баланс станет «крайне низким» в более позднем возрасте, в то время, когда расходы обычно увеличиваются из-за более высоких затрат на здравоохранение.

3. Потолок и пол

Эта стратегия включает в себя установление начальной скорости вывода (например, 4%).

Пенсионеры каждый год извлекали бы тот же процент из того, что осталось от портфеля. Однако они также устанавливают «пол» и «потолок» — уровни твердого доллара, ниже и выше которых они не могут тратить каждый год.

Пфау из Американского колледжа предпочитает этот метод, потому что он реагирует на движения рынка, но сохраняет расходы в определенном диапазоне.

Производство Хинтерхаус | ДиджиталВижн | Getty Images

Пол важнее всего, сказал он. Домохозяйство будет планировать, сколько денег ему нужно, чтобы жить и при этом чувствовать себя комфортно.

Допустим, пенсионер определяет 40 000 долларов как разумную сумму, которую он может тратить каждый год из стартового сбережения в 1 миллион долларов. Это 4% процент вывода.

Они устанавливают минимальный годовой уровень расходов в размере 25 000 долларов и верхний предел в 60 000 долларов. Домохозяйство будет снимать 4% из оставшегося портфеля каждый год, но эти снятия не могут быть меньше или больше, чем их предварительно установленные минимальная и максимальная суммы.

4. Ограждения

Эта система требует более сложной арифметики. Его основная предпосылка: вы получаете прибавку к зарплате, когда дела идут хорошо, и сокращают зарплату, когда дела идут плохо.

Он основан на методологии правила 4%, но с ключевым отличием: в годы, когда рынок работает хорошо, пенсионеры получают 10%-ное повышение в дополнение к поправке на инфляцию и 10%-ное сокращение заработной платы на падающих рынках.

Повышение на 10 % происходит, когда скорость снятия средств падает ниже 20 % от исходного уровня. (В данном случае это будет меньше 3.2% по сравнению с начальной ставкой 4%). И наоборот, сокращение заработной платы на 10% происходит, когда скорость снятия средств превышает 20% от ее первоначального уровня (или более 4,8% в этом примере).

Показатели снятия средств падают, когда рынки идут хорошо, потому что пенсионер будет получать ту же сумму в долларах, но из более крупного портфеля; они растут, когда рынки идут плохо, потому что фиксированная сумма в долларах составляет большую долю меньшего портфеля.

Арман Женикеев | Корбис | Getty Images

Вот пример того, как работает стратегия, согласно недавней статье Morningstar.

Допустим, пенсионер снимает 4% от 1 миллиона долларов (или 40 000 долларов) в первый год.

К началу второго года портфель вырастет до 1,4 миллиона долларов. Пенсионер снимает 40 000 долларов плюс поправка на инфляцию, как того требует методология правила 4% (всего 41 200 долларов, исходя из уровня инфляции 3%).

Чтобы определить, получите ли вы также 10%-ное повышение: Разделите 41 200 долларов США на баланс портфеля (1,4 миллиона долларов США), чтобы определить скорость вывода средств. В этом случае 41 200 долларов США составляют ставку снятия 2,9%, что соответствует критериям повышения (т.д., что не менее чем на 20% меньше первоначальной ставки в 4%).

Пенсионер добавит 10% к сумме в 41 200 долларов с поправкой на инфляцию, что в сумме составит 45 320 долларов в этом году.

В противоположном сценарии (если снятие 41 200 долларов с поправкой на инфляцию составляет не менее 4,8% от текущей стоимости портфеля), пенсионер сократит 41 200 долларов на 10 %, что в сумме составит 37 080 долларов в этом году.

Оставить комментарий

Ваш адрес email не будет опубликован.