Как найти период в физике – Как найти период обращения 🚩 Период обращения планеты формула 🚩 Естественные науки

Как найти период

Период – это физическая величина, обозначающая промежуток времени, за который происходит одно полное колебание в механическом, электромагнитном или ином повторяющемся процессе. В школьном курсе физики период является одной из величин, нахождение которых наиболее часто требуется в задачах. Вычисление периода производится с применением известных формул, соотношений параметров тел и их движений в рассматриваемой колебательной системе.

Спонсор размещения P&G
Статьи по теме «Как найти период»
Как найти период колебаний и длину волны
Как составить формулу вещества
Как высчитывать площадь

Инструкция

1



В наиболее простом случае решения практических задач на периодические колебания тел следует учитывать само определение физической величины. Период измеряется в секундах и равен интервалу времени за одно полное колебание. В рассматриваемой системе в момент выполнения равномерных колебаний подсчитайте их число за строго фиксированное время, например за 10 с. Вычислите период по формуле Т = t/N, где t – время колебаний (с), N – подчитанное значение.

2

При рассмотрении задачи на распространение звуковых волн с известной скоростью и длиной колебаний для вычисления периода (Т) используйте формулу: Т= ?/v, где v — скорость распространения периодических колебаний (м/с), ? — длина волны (м). Если известна лишь частота (F) совершаемых телом движений, определите период исходя из обратного соотношения: T = 1/F (с).

3

Если задана механическая колебательная система, состоящая из подвешенного тела массой m (м) и пружины с известной жесткостью k (Н/м), определить период колебаний груза (Т) можно по формуле T=2?*v(m/k). Высчитайте искомую величину в секундах, подставив известные значения.

4

Движение тела по орбите с заданным радиусом (R) и постоянной скоростью (V) также может быть периодическим. В данном случае колебание происходит по окружности, т.е. тело за один период проходит путь, равный длине L = 2?R, где R – радиус окружности (м). При равномерном движении время, затрачиваемое на него, определяется как соотношение пройденного пути к скорости перемещения (в данной задаче – полного колебания). Таким образом, найдите значение периода движения тела по орбите по следующей формуле Т = 2?R/V.

5

В разделе электродинамики часто рассматриваются задачи для электромагнитного колебательного контура. Процессы в нем могут быть заданы общим уравнением синусоидального тока: I = 20*sin100*?*t. Здесь число 20 обозначает амплитуду колебаний тока (Im) контура, 100*? – циклическую частоту (?). Вычислите период электромагнитных колебаний по формуле Т= 2? /?, подставив соответствующие значения из уравнения. В данном случае Т = 2*?/(100*?) = 0,02 с.
Как просто

masterotvetov.com

Период колебаний маятника | Все формулы




Период колебаний маятника — наименьший промежуток времени, за который осциллятор совершает одно полное колебание

Период пружинного маятника

Период математического маятника

Период физического маятника

Период крутильного маятника

В Формуле мы использовали :

— Период колебаний маятника

— Масса груза, или масса маятника

— Жесткость пружины

— Длина подвеса

— Ускорение свободного падения

— Момент инерции маятника относительно оси вращения

— Расстояние от оси вращения до центра масс

— Момент инерции тела

— Вращательный коэффициент жёсткости маятника


xn--b1agsdjmeuf9e.xn--p1ai

Период обращения – Формулы по физике.рф

Период обращения — Время, за которое тело совершает один оборот, т.е. поворачивается на угол 2 пи, называется периодом обращения

Сидерические периоды обращения планет Солнечной системы:

Найдем период обращения:

Если, например, за время t = 4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой Т и определяется по формуле

Найдем частоту обращения:

Если, например, за время t = 4 с тело совершило n = 20 оборотов,то за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой V (читается: ню) и определяется по формуле:

За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени).

В формуле мы использовали :

— Период обращения

— Частота обращения

— Число оборотов

xn--e1adcbkcgpcji1bjh6h.xn--p1ai

Период обращения | Все формулы

Период обращения — Время, за которое тело совершает один оборот, т.е. поворачивается на угол 2 пи, называется периодом обращения

Сидерические периоды обращения планет Солнечной системы:

Найдем период обращения:

Если, например, за время t = 4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой Т и определяется по формуле

Найдем частоту обращения:

Если, например, за время t = 4 с тело совершило n = 20 оборотов,то за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой V (читается: ню) и определяется по формуле:

За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени).

В формуле мы использовали :

— Период обращения

— Частота обращения

— Число оборотов

xn--b1agsdjmeuf9e.xn--p1ai

Частота колебаний | Все формулы

Частота колебаний — величина, обратная периоду колебаний, т. е. равная числу периодов колебаний (числу колебаний), совершаемых в единицу времени.

Разновидность частот колебаний :

Циклическая частота

Частота колебаний физического маятника

Частота пружинного маятника

Частота математического маятника

Частота электромагнитных колебаний

Частота колебаний крутильного маятника

В Формуле мы использовали :

— Частота колебаний

— Циклическая частота

— Период колебаний маятника

— Масса груза, или масса маятника

— Жесткость пружины

— Длина подвеса

— Ускорение свободного падения

— Момент инерции маятника относительно оси вращения

— Расстояние от оси вращения до центра масс

— Момент инерции тела

— Вращательный коэффициент жёсткости маятника

xn--b1agsdjmeuf9e.xn--p1ai

Как найти период в физике формула?

Равномерное движение по окружности характеризуют периодом и частотой обращения.

Период обращения — это время, за которое совершается один оборот.

Если, например, за время t=4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой T и определяется по формуле

Итак, чтобы найти период обращения, надо время, за которое совершено n оборотов, разделить на число оборотов.

Другой характеристикой равномерного движения по окружности является частота обращения.

Частота обращения — это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой ν (читается: ню) и определяется по формуле

Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли.

За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени). Раньше эту единицу называли «оборот в секунду», но теперь это название считается устаревшим.

Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота — величины взаимно обратные. Поэтому

Формулы (6.1) и (6.3) позволяют найти период обращения T, если известны число n и время оборотов t или частота обращения ν. Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела v и радиус окружности r, по которой оно движется. Для вывода новой формулы вспомним, что период обращения — это время, за которое тело совершает один оборот, т. е. проходит путь, равный длине окружности (lокр = 2πr, где π≈3,14— число «пи», известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом,

Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.

1. Что такое период обращения? 2. Как можно найти период обращения, зная время и число оборотов? 3.

Период и частота колебаний. Циклическая частота

Что такое частота обращения? 4. Как обозначается единица частоты? 5. Как можно найти частоту обращения, зная время и число оборотов? 6. Как связаны между собой период и частота обращения? 7. Как можно найти период обращения, зная радиус окружности и скорость движения тела?

I. Механика

Физика->Кинематика->движение по окружности->

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту.

То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В.

Как найти период?

Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

Равномерное движение по окружности характеризуют периодом и частотой обращения.

Период обращения — это время, за которое совершается один оборот.

Если, например, за время t=4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с.

Это и есть период обращения. Обозначается он буквой T и определяется по формуле

Итак, чтобы найти период обращения, надо время, за которое совершено n оборотов, разделить на число оборотов.

Другой характеристикой равномерного движения по окружности является частота обращения.

Частота обращения — это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов.

Период колебаний, формула

Это число и выражает частоту обращения. Обозначается она греческой буквой ν (читается: ню) и определяется по формуле

Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли.

За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени). Раньше эту единицу называли «оборот в секунду», но теперь это название считается устаревшим.

Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота — величины взаимно обратные. Поэтому

Формулы (6.1) и (6.3) позволяют найти период обращения T, если известны число n и время оборотов t или частота обращения ν. Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела v и радиус окружности r, по которой оно движется. Для вывода новой формулы вспомним, что период обращения — это время, за которое тело совершает один оборот, т. е. проходит путь, равный длине окружности (lокр = 2πr, где π≈3,14— число «пи», известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом,

Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.

1. Что такое период обращения? 2. Как можно найти период обращения, зная время и число оборотов? 3. Что такое частота обращения? 4. Как обозначается единица частоты? 5. Как можно найти частоту обращения, зная время и число оборотов? 6. Как связаны между собой период и частота обращения? 7. Как можно найти период обращения, зная радиус окружности и скорость движения тела?

Равномерное движение по окружности характеризуют периодом и частотой обращения.

Период обращения — это время, за которое совершается один оборот.

Если, например, за время t=4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой T и определяется по формуле

Итак, чтобы найти период обращения, надо время, за которое совершено n оборотов, разделить на число оборотов.

Другой характеристикой равномерного движения по окружности является частота обращения.

Частота обращения — это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой ν (читается: ню) и определяется по формуле

Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли.

За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени). Раньше эту единицу называли «оборот в секунду», но теперь это название считается устаревшим.

Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота — величины взаимно обратные. Поэтому

Формулы (6.1) и (6.3) позволяют найти период обращения T, если известны число n и время оборотов t или частота обращения ν. Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела v и радиус окружности r, по которой оно движется. Для вывода новой формулы вспомним, что период обращения — это время, за которое тело совершает один оборот, т. е.

Период и частота обращения

проходит путь, равный длине окружности (lокр = 2πr, где π≈3,14— число «пи», известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом,

Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.

1. Что такое период обращения? 2. Как можно найти период обращения, зная время и число оборотов? 3. Что такое частота обращения? 4. Как обозначается единица частоты? 5. Как можно найти частоту обращения, зная время и число оборотов? 6. Как связаны между собой период и частота обращения? 7. Как можно найти период обращения, зная радиус окружности и скорость движения тела?

картинка

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения.

Физика формулы

Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Период колебаний

Период колебаний – это время совершения одного полного колебания. Период колебания обозначается буквой Т.  Единицы измерения периода соответствуют единицам времени. То есть в СИ — это секунды.

Частота колебаний – количество колебаний совершенных в единицу времени. Частота колебаний обозначается буквой ν. Частоту колебаний можно выразить через период колебания.

ν = 1/Т.

Единицы измерения частоты в СИ 1/сек. Эта единица измерения получила название Герца.  Число колебаний за время 2*pi секунд будет равняться:

ω0 = 2*pi* ν = 2*pi/T.

Частота колебаний

Данная величина называется циклической частотой колебаний. В некоторой литературе встречается название круговая частота. Собственная частота колебательной системы – частота свободных колебаний. 

Частота собственных колебаний рассчитывается по формуле:

ω0 = √(k/m)

Частота собственных колебаний зависит от свойств материала и массы груза.  Чем больше жесткость пружины, тем больше частота собственных колебаний.  Чем больше масса груза, тем меньше частота собственных колебаний.

Эти два вывода очевидны. Чем более жесткая пружина, тем большее ускорение она сообщит телу, при выведении системы из равновесия. Чем больше масса тела, тем медленнее будет изменяться это скорость этого тела.

Период свободных колебаний:

T = 2*pi/ ω0 = 2*pi*√(m/k)

Примечателен тот факт, что при малых углах отклонения период колебания тела на пружине и период колебания маятника не будут зависеть от амплитуды колебаний.

Запишем формулы периода и частоты свободных колебаний для математического маятника.

ω0 = √(g/l),

тогда период будет равен

T = 2*pi*√(l/g).

Данная формула будет справедлива лишь для малых углов отклонения. Из формулы видим, что период колебаний возрастает с увеличением длины нити маятника. Чем больше будет длина, тем медленнее тело будет колебаться.

От массы груза период колебаний совершенно не зависит. Зато зависит от ускорения свободного падения. При уменьшении g, период колебаний будет увеличиваться. Данное свойство широко используют на практике. Например, для измерения точного значения свободного ускорения.

Нужна помощь в учебе?

Предыдущая тема: Математический маятник: динамика колебательного движения
Следующая тема:&nbsp&nbsp&nbspФаза колебаний, сдвиг фаз

pasmr21.ru

Как найти период — Мои файлы — Каталог файлов

Инструкция
1
В наиболее простом случае решения практических задач на периодические колебания тел следует учитывать само определение физической величины. Период измеряется в секундах и равен интервалу времени за одно полное колебание. В рассматриваемой системе в момент выполнения равномерных колебаний подсчитайте их число за строго фиксированное время, например за 10 с. Вычислите период по формуле Т = t/N, где t – время колебаний (с), N – подчитанное значение.
2
При рассмотрении задачи на распространение звуковых волн с известной скоростью и длиной колебаний для вычисления периода (Т) используйте формулу: Т= λ/v, где v — скорость распространения периодических колебаний (м/с), λ — длина волны (м). Если известна лишь частота (F) совершаемых телом движений, определите период исходя из обратного соотношения: T = 1/F (с).
3
Если задана механическая колебательная система, состоящая из подвешенного тела массой m (м) и пружины с известной жесткостью k (Н/м), определить период колебаний груза (Т) можно по формуле T=2π*√(m/k). Высчитайте искомую величину в секундах, подставив известные значения.
4
Движение тела по орбите с заданным радиусом (R) и постоянной скоростью (V) также может быть периодическим. В данном случае колебание происходит по окружности, т.е. тело за один период проходит путь, равный длине L = 2πR, где R – радиус окружности (м). При равномерном движении время, затрачиваемое на него, определяется как соотношение пройденного пути к скорости перемещения (в данной задаче – полного колебания). Таким образом, найдите значение периода движения тела по орбите по следующей формуле Т = 2πR/V.
5

В разделе электродинамики часто рассматриваются задачи для электромагнитного колебательного контура. Процессы в нем могут быть заданы общим уравнением синусоидального тока: I = 20*sin100*π*t. Здесь число 20 обозначает амплитуду колебаний тока (Im) контура, 100*π – циклическую частоту (ω). Вычислите период электромагнитных колебаний по формуле Т= 2π /ω, подставив соответствующие значения из уравнения. В данном случае Т = 2*π/(100*π) = 0,02 с.

http://www.kakprosto.ru/kak-241574-kak-nayti-period

kabinet-8.ucoz.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о