Как работает трансформатор тока: Трансформатор тока: принцип работы, виды, характеристика, фото

Трансформаторы тока назначение и принцип действия

Для измерения величин с большими значениями применяются трансформаторы тока. С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью. В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.

Содержание

Что такое трансформатор тока?

К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и различных реле. Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение. Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

  • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение амперметров, счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
  • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

Назначение трансформаторов

Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

Принцип работы

Принцип работы трансформаторов тока основан на законе электромагнитной индукции. Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление. Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока. За счет этого потери электрического тока в процессе преобразования будут минимальными.

При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.

Классификация трансформаторов тока

Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

  1. По назначению. Устройства могут быть измерительными, защитными или промежуточными. Последний вариант используется при включении измерительных приборов в токовые цепи релейной защиты и других аналогичных схемах. Кроме того, существуют лабораторные трансформаторы тока, отличающиеся высокой точностью и множеством коэффициентов трансформации.
  2. По типу установки. Существуют трансформаторные устройства для наружной и внутренней установки, накладные и переносные. Некоторые виды приборов могут встраиваться в машины, электрические аппараты и другое оборудование.
  3. В соответствии с конструкцией первичной обмотки. Устройства разделяются на одновитковые или стержневые, многовитковые или катушечные, а также шинные, например, ТШ-0,66.
  4. Внутренняя и наружная установка трансформаторов предполагает проходные и опорные способы монтажа этих устройств.
  5. Изоляция трансформаторов бывает сухая, с применением бакелита, фарфора, и других материалов. Кроме того, применяется обычная и конденсаторная бумажно-масляная изоляция. В некоторых конструкциях используется заливка компаундом.
  6. По количеству ступеней трансформации, устройства могут быть одно- или двухступенчатыми, то есть, каскадными.
  7. Номинальное рабочее напряжение трансформаторов может быть до 1000 В или более 1000 В.

Все характерные классификационные признаки присутствуют в условных обозначениях трансформаторов тока, состоят из определенных буквенных и цифровых символов.

Параметры и характеристики

Каждый трансформатор тока обладает индивидуальными параметрами и техническими характеристиками, определяющими область применения этих устройств.

Номинальный ток

Позволяет устройству работать в течение длительного времени без перегрева. В таких трансформаторах имеется значительный запас по нагреву, а нормальная работа возможна при перегрузках до 20%.

Номинальное напряжение

Его значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.

Коэффициент трансформации

Представляет собой отношение между токами в первичной и вторичной обмотке и определяется по специальной формуле. Его действительное значение будет отличаться от номинального в связи с определенными потерями в процессе трансформации.

Токовая погрешность

Возникает в трансформаторе под влиянием тока намагничивания. Абсолютное значение первичного и вторичного тока различается между собой как раз на эту величину. Ток намагничивания приводит к созданию в сердечнике магнитного потока. При его возрастании, токовая погрешность трансформатора также увеличивается.

Номинальная нагрузка

Определяет нормальную работу устройства в своем классе точности. Она измеряется в Омах и в некоторых случаях может заменяться таким понятием, как номинальная мощность. Значение тока является строго нормированным, поэтому значение мощности трансформатора полностью зависит лишь от нагрузки.

Номинальная предельная кратность

Представляет собой кратность первичного тока к его номинальному значению. Погрешность такой кратности может достигать до 10%. Во время расчетов сама нагрузка и ее коэффициенты мощности должны быть номинальными.

Максимальная кратность вторичного тока

Представлена в виде отношения максимального вторичного тока и его номинального значения, когда действующая вторичная нагрузка является номинальной. Максимальная кратность связана со степенью насыщения магнитопровода, при котором первичный ток продолжает увеличиваться, а значение вторичного тока не меняется.

Возможные неисправности трансформаторов тока

У трансформатора тока, включенного под нагрузку, иногда возникают неисправности и даже аварийные ситуации. Как правило, это связано с нарушениями электрического сопротивления изоляции обмоток, снижением их проводимости под влиянием повышенных температур. Негативное влияние оказывают случайные механические воздействия или некачественно выполненный монтаж.

В процессе работы оборудования наиболее часто происходит повреждение изоляции, вызывающее межвитковые замыкания обмоток, что существенно снижает передаваемую мощность. Токи утечки могут появиться в результате случайно созданных цепей, вплоть до возникновения короткого замыкания.

Как работает трансформатор тока

В процессе эксплуатации энергетических систем довольно часто решаются вопросы, связанные с необходимостью каких-либо установленных электрических величин в аналогичные величины с измененными значениями в определенной пропорции. Для этого необходимо знать, как работает трансформатор тока, действие которого основано на законе электромагнитной индукции, применяемого для электрических и магнитных полей. В процессе работы выполняется преобразование первичной величины вектора тока, протекающего в силовой цепи, во вторичный ток с пониженным значением. Во время такого преобразования соблюдается пропорциональность по модулю и точная передача угла.

В каком режиме работает трансформатор тока

Работа трансформатора может осуществляться в нескольких режимах. Одним из них является режим холостого хода, при котором вторичная обмотка находится в разомкнутом состоянии. Потребление тока первичной цепью самое минимальное, поэтому он называется током холостого хода. Магнитное поле холостого хода образуется вокруг первичной обмотки. Данный режим считается абсолютно безвредным для трансформатора.

Основным является режим нагрузки, в который трансформатор переходит из режима холостого хода. Во вторичной обмотке начинается течение тока, создающего магнитный поток, направленный против магнитного поля в первичной обмотке. В первый момент значение этого магнитного потока уменьшается, что приводит к уменьшению ЭДС самоиндукции в первичной обмотке.

Поскольку внешнее напряжение, приложенное к генератору, не изменяется, это приводит к нарушению электрического равновесия между приложенным напряжением и ЭДС самоиндукции, а ток в первичной обмотке увеличивается. Соответственно увеличивается и магнитный поток, а также электродвижущая сила самоиндукции. Однако значение тока в первичной обмотке будет выше, чем в режиме холостого хода. Таким образом, сумма магнитных потоков первичной и вторичной обмоток в режиме нагрузки, будет равна магнитному потоку первичной обмотки трансформатора в режиме холостого хода.

В режиме нагрузки, когда появляется вторичный ток, происходит возрастание первичного тока. Это приводит к падению напряжения во вторичной обмотке и его уменьшению. В случае снижения нагрузки, при которой вторичный ток уменьшается, наступает уменьшение и размагничивающего действия вторичной обмотки. Наблюдается рост магнитного потока в сердечнике и соответствующий рост самоиндукции ЭДС. Данный процесс, касающийся электрического равновесия, продолжается до тех пор, пока оно полностью не восстановится.

Одним из основных считается и режим короткого замыкания, при котором во вторичной цепи будет практически нулевое сопротивление. Ток во вторичной цепи достигает максимального значения, магнитное поле во вторичной обмотке также будет иметь наивысший показатель. Одновременно, магнитное поле в первичной обмотке уменьшается и становится минимальным. Следовательно, происходит и снижение индуктивного сопротивления в этой обмотке. В то же время возрастает ток, потребляемый первичной цепью. Данная ситуация приводит к возникновению режима короткого замыкания, опасного не только для самого трансформатора, но и для всей цепи. Защита от короткого замыкания обеспечивается путем установки предохранителей в первичной или вторичной цепи.

Особенности работы трансформатора тока в разных условиях:

  • Режим работы приближается к короткому замыканию, поскольку сопротивление нагрузки, подключаемой совместно со вторичной обмоткой, имеет минимальное значение. Фактически, работа трансформатора тока происходит в режиме короткого замыкания.
  • Трансформатор тока своим режимом работы существенно отличается от других трансформаторных устройств. При изменении нагрузки в обычном трансформаторе, значение магнитного потока в сердечнике не изменяется при условии постоянно приложенного напряжения.

В каком режиме работает измерительный трансформатор напряжения

Важнейшими элементами высоковольтных цепей являются измерительные трансформаторы напряжения. Данные устройства предназначены для понижения высокого напряжения, после чего пониженное напряжение может питать измерительные цепи, релейную защиту, автоматику и учет, а также другие элементы. Таким образом, трансформаторы напряжения позволяют измерять напряжение в высоковольтных сетях, от них поступает питание на катушки реле минимального напряжения, счетчики, ваттметры, фазометры, а также на аппаратуру, контролирующую состояние изоляции сети.

С помощью трансформатора осуществляется понижение высокого напряжения до стандартных значений. С их помощью происходит разделение измерительных цепей и релейной защиты с первичными цепями высокого напряжения. Подключение первичной обмотки производится к источнику входного напряжения сети, а вторичная обмотка соединяется параллельно с катушками реле и измерительных приборов. Работа трансформатора напряжения осуществляется в режиме, приближенном к холостому ходу. Это связано с высоким сопротивлением приборов, подключенных параллельно и низким током, потребляемым ими.

Для обеспечения нормальной работы вторичных цепей установка трансформаторов напряжения может выполняться не только на шинах подстанции, но и на каждой точке подключения. Перед началом электромонтажных работ необходимо осмотреть устройство, проверить целостность изоляции, исправность узлов и элементов. С целью дальнейшей безопасной эксплуатации трансформатора, его корпус и вторичная обмотка заземляется. В результате, создается защита от возможного перехода высокого напряжения во вторичные цепи в случае пробоя изоляции.

Electrician’s Journal-Understanding Current Transformers

Введение

Трансформатор тока (CT) представляет собой тип «измерительного трансформатора », который предназначен для выработки переменного тока во вторичной обмотке, пропорционального ток измеряется в его первичной обмотке. Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии передачи переменного тока, с помощью стандартного амперметра. Принцип работы базового трансформатора тока несколько отличается от обычного трансформатора напряжения.

Физическое описание

« CT » представляет собой однообмоточный трансформатор с медным проводом, намотанным через его центральное отверстие по всей окружности тороидального многослойного железного сердечника. Затем первичный проводник проходит через центр. (см. графическую диаграмму и условное обозначение, показанные ниже). Два конца этой обмотки соединяют тороидальную катушку с парой проводов, которые проходят через экранированный кабель и подключаются к входу высокоточного прибора (амперметра), который отображает электрический ток через первичную обмотку в ампер .

В отличие от традиционного трансформатора напряжения, первичная обмотка трансформатора тока состоит только из одного или нескольких витков. Эта первичная обмотка может состоять из одного плоского витка, катушки из прочного провода, намотанной вокруг сердечника, или просто из проводника или шины, проходящей через центральное отверстие, как показано на рисунке. Трансформатор тока часто называют трансформатором серии

, поскольку первичная обмотка включена последовательно с токоведущим проводником, питающим нагрузку.

Трансформаторы тока

доступны во многих размерах, формах и номиналах, . .. они бывают с цельным сердечником, с разъемным сердечником и с зажимными зажимами как для низковольтных, так и для средневольтных приложений. Они выглядят особенно по-разному, когда речь идет о высоковольтных типах с масляным охлаждением (типы Live Tank и Dead Tank показаны ниже).

Эксплуатация

Проводник с измеряемым током вставляется через центральное отверстие тороидального сердечника и подключается к своему обычному назначению. Когда ток протекает через один проводник или несколько проводников (называемых первичная ), он создает поле магнитного потока вокруг себя и в тороидальном сердечнике, которое индуцирует (или генерирует) напряжение в обмотке ТТ (называемой вторичной ).

Прежде чем двигаться дальше, давайте найдем время, чтобы получить общее представление о том, как работает компьютерная томография. Несмотря на то, что на первый взгляд ТТ не похож на обычный трансформатор, он работает так же, как вторичная обмотка обычного трансформатора… просто это не так очевидно.

Проведем аналогию, рассмотрев простой однофазный трансформатор (показан ниже) с первичной и вторичной обмотками, изолированными от общего ферромагнитного сердечника. Физической связи между двумя обмотками НЕТ.

Когда на первичную обмотку подается напряжение, она действует как электромагнит с северным и южным полюсами и заставляет линии магнитного потока течь через сердечник. Когда тот же поток проходит через сердечник во вторичной обмотке, вторичная обмотка действует как генератор

… который «генерирует» переменное напряжение, пропорциональное количеству витков в первичной и вторичной обмотках. Если убрать показанную первичную обмотку и продолжить полностью наматывать вторичную обмотку на весь сердечник, получится ТТ. Первичный проводник (обмотка) просто продет (а иногда и несколько раз) через центр сердечника. Дополнительная петля увеличивает выходной ток на вторичной обмотке за счет уменьшения величины понижающей величины на коэффициент количества витков через сердечник.

Отношение первичных и вторичных токов

Как правило, трансформаторов тока выражаются в их отношении первичных и вторичных токов. ТТ 100:5 будет означать вторичный ток 5 ампер, когда первичный ток 100 ампер. Номинальный вторичный ток обычно составляет 5 ампер или 1 ампер, что совместимо со стандартными измерительными приборами.

ТТ

работают по принципу известного точного коэффициента трансформации, который преобразует чрезвычайно высокие значения измерения тока в сигналы переменного напряжения низкого уровня, которые пропорциональны величине потока, наведенного в первичном проводнике.

Номинал

вторичной обмотки трансформатора тока обычно составляет либо 5 А, либо 1 А. Например, с номиналом , равным 1000 к 5, или соотношением витков 200 к 1, это означает, что 1000 ампер тока на первичной обмотке создадут 5 ампер тока во вторичной обмотке.

Частотная характеристика ТТ

Типичная частотная характеристика ТТ обычно составляет от 3 кГц до 5 кГц. Обычно это нормально, так как большинство гармоник энергосистемы попадают в этот диапазон. Однако, когда требуются более высокие измерения частоты в диапазоне сотен кГц или даже МГц, доступен CT Pearson (см. ниже).

Где используются ТТ

ТТ со сплошным сердечником обычно используются в более стационарных установках и используются для измерения и защиты в распределительных щитах, щитах и ​​распределительных устройствах. ТТ с разъемным сердечником и накладные трансформаторы обычно используются для более временного применения, например, для контроля качества электроэнергии.

Для постоянных применений защиты и измерения трансформаторы тока можно использовать где угодно: от генераторов, трансформаторов, подключенных нагрузок или везде, где мы хотим контролировать ток, протекающий в системе.

Например, коммунальные службы используют трансформаторы тока на входной линии своих клиентов для контроля потребления тока и энергии в целях выставления счетов. Эти CT должны быть чрезвычайно точными и иметь класс дохода , поскольку они используются для выставления счетов.

Постоянные трансформаторы тока также используются для контроля мощности и коэффициента мощности с целью оптимизации активной и реактивной мощности при использовании батареи конденсаторов.

Для защиты трансформаторы тока используются с расцепителями низковольтных автоматических выключателей и реле средневольтных выключателей для отключения выключателей при перегрузках или неисправностях в системе. Многие автоматические выключатели имеют встроенные трансформаторы тока для контроля тока. Для контроля тока требуется один ТТ на каждой фазе и нейтрали.

Для защиты от замыканий на землю используется ТТ специального типа. Все фазные и нейтральные проводники проходят через ТТ защиты от замыканий на землю, и если существует какой-либо остаточный ток… другими словами, ток поступает на одну из фаз, но не возвращается на другие фазы или нейтраль… замыкание на землю.

В жилых помещениях GFCI (прерыватели цепи замыкания на землю) срабатывают при токе 5 мА. В промышленных приложениях устройства защиты от замыканий на землю и реле срабатывают при токе 30 мА или даже при токе пары сотен ампер.

Защита от замыканий на землю обычно предназначена для индивидуальной защиты в домах и защиты оборудования в промышленных условиях.

Характеристики установки ТТ

Распространенным заблуждением является то, что изоляция ТТ должна быть рассчитана на линейное напряжение там, где она используется, например, в системах 13,8 кВ. Однако это НЕ так, поскольку ТТ устанавливается вокруг уже изолированного и обычно экранированного проводника. Большинство трансформаторов тока и изоляция их вторичной обмотки рассчитаны на 600 В переменного тока. В распределительных устройствах среднего напряжения ТТ монтируются вокруг изоляционного материала или используют физическое разделение для изоляции ТТ от шины под напряжением с помощью воздушного зазора.

Для всех приложений защиты ТТ должен быть рассчитан на точное измерение больших токов, которые возможны в условиях неисправности… обычно в 20 раз больше тока при полной нагрузке, чтобы выключатели могли отключаться в правильной последовательности без насыщения, что дает неверный результат.

Трансформаторы тока бывают разных соотношений, таких как 100:5, 300:5, 5000:5, 60:1 и т. д. Некоторые из них имеют несколько отводов, которые можно выбрать на месте или для конкретного применения.

Пример :

Учитывая номинал ТТ 300:5 А, это означает, что если через отверстие в сердечнике протекает ток 300 А, то во вторичной обмотке ТТ будет генерироваться ток силой 5 А. Большинство ТТ имеют выход 5А, но другие имеют выход 1А. Таким образом, при взаимодействии со счетчиком или автоматическим выключателем необходимо использовать правильный множитель для преобразования 5 А или 1 А в фактическое измеренное значение.

Даже при снижении тока с 300 ампер до 5 ампер напряжение на вторичной обмотке возрастет. Разомкнутая цепь вторичной обмотки может иметь опасно высокое напряжение в тысячи вольт. Когда трансформаторы тока не используются, их вторичная обмотка всегда должна быть закорочена в целях безопасности с помощью закорачивающего блока или временной перемычки.

Временные накладные ТТ имеют встроенный согласующий резистор для защиты от скачков высокого напряжения при размыкании зажимов сердечника, а выходы этих приборов часто слишком малы для точного измерения малых токов. Таким образом, чтобы увеличить выходную мощность этих устройств, первичный провод обычно несколько раз обматывается через ТТ, чтобы увеличить ток через сердечник (показано ниже). Например, для номинального тока 500:5 (коэффициент витков 100:1) 5 витков через сердечник дают номинальный ток 100:5 (коэффициент витков 20:1).

Проверив кривую возбуждения для используемого вами ТТ, вы увидите, что вторичный выходной ток ТТ является достаточно линейным между 10% и 90% его номинального выходного тока.

Точка, в которой выходной сигнал достигает насыщения и на него больше нельзя полагаться при измерении, известен как точка перегиба (см. ниже). Пристальное внимание к кривой возбуждения вашего ТТ позволит выявить верхний и нижний пределы выходного напряжения вторичной обмотки, а также количество первичных контуров, обеспечивающих наилучшие характеристики в вашем приложении.

ТТ

имеют точку полярности и стрелку, указывающую правильную ориентацию источника и нагрузки. Стрелка всегда должна указывать на груз. Если вторичный выход дает отрицательный выход, вероятно, ТТ установлен задом наперед. Трансформаторы иногда также могут испытывать фазовый сдвиг от 0,3 до 6 градусов, что приводит к ошибочным измерениям и создает впечатление неправильного протекания тока от нагрузки.

Нагрузка ТТ

ТТ имеют номинальную мощность ВА, а также ограничения на количество устройств и длину провода, которые можно подключить к его вторичной стороне. Это называется бременем . Элементы, которые увеличивают нагрузку, — это реле, счетчики и проводка. Лучший способ уменьшить нагрузку — сделать проводку между ТТ и измерительными приборами как можно короче или увеличить сечение провода, чтобы уменьшить сопротивление.

Благодаря чрезвычайно высокому входному сопротивлению и низкому энергопотреблению современных измерительных приборов нагрузка очень мала. Однако необходимо соблюдать осторожность, чтобы не перегрузить трансформаторы тока, что приведет к неточным измерениям и плохой защите.

Другие способы измерения тока
  1. Токовые шунты — прецизионные заземляющие резисторы… Шунты могут использоваться для измерения низкочастотного переменного тока, но в основном предназначены для измерения постоянного тока. Электрический шум может быть проблемой на более высоких частотах, но обычно работает нормально до 1 кГц. Это очень простое измерение тока с использованием закона Ома. Дифференциальное падение напряжения, деленное на известное сопротивление шунта, прямо пропорционально току. Хотя шунты будут работать на переменном токе, они не рекомендуются. Также может быть сложно подключить счетчик переменного тока с низковольтными входами переменного тока. ТТ обычно предпочтительнее для приложений измерения переменного тока.

    Некоторые люди также пытаются использовать ТТ для измерения постоянного тока в больших выпрямителях постоянного тока путем измерения пропорционального пульсирующего напряжения переменного тока. Однако трансформаторы тока медленно реагируют на скачки постоянного напряжения переходного процесса, что в большинстве случаев делает их плохим выбором. Я рекомендую использовать трансформаторы тока для переменного тока и шунты для постоянного тока… период.

  2. Датчики Холла — требуется дополнительный источник питания постоянного тока для обеспечения постоянного тока и создания магнитного поля… датчик определяет силу другого магнитного поля, которая пропорциональна текущему потоку. Используется в ИБП, солнечных батареях и микросетях для контроля постоянного тока. Требуется батарея или источник питания постоянного тока.

  3. Катушки Роговского – Способны измерять очень быстрые переходные токи. Выходной сигнал низкого уровня требует усиления с помощью датчика Холла. Также используется для измерения высокочастотных токов… например, в точных сварочных аппаратах, дуговых печах и другом электронном оборудовании для высокочастотных измерений. Также требуется дополнительный источник питания постоянного тока.

Как выбрать ТТ для приложения

ТТ должны быть рассчитаны на 20-кратный нормальный ток полной нагрузки, чтобы учесть ток короткого замыкания высокого уровня. Это одна из причин, почему расчеты короткого замыкания так полезны. Если вы можете рассчитать ток короткого замыкания для приложения, трансформатор тока можно подобрать более подходящего размера.

Соображения безопасности

ОПАСНОСТЬ: Все ТТ опасны, если они отключены, когда они находятся под напряжением!!!!!!

ПРИМЕЧАНИЕ : Никогда не предполагайте, что только потому, что вторичный выходной сигнал переменного тока кажется малым, можно безопасно обращаться с трансформатором тока, когда он находится под напряжением. Опасны даже небольшие трансформаторы тока, если вторичные клеммы отключены, когда они находятся под напряжением.

Если в первичной цепи протекает ток, вторичную цепь ни в коем случае нельзя размыкать. это может вызывают очень высокие напряжения из-за ампер-витков первичной обмотки, которые начинают намагничивать сердечник. Пока он действует как трансформатор, он вызывает очень высокие пики напряжения.

Обрыв цепи в трансформаторе тока (ТТ) может привести к опасному перенапряжению на клеммах вторичной обмотки. ТТ с разомкнутой вторичной обмоткой, особенно с высоким коэффициентом полезного действия и проводящим большие токи, может создавать вторичное напряжение холостого хода в диапазоне нескольких киловольт.

ПРИМЕЧАНИЕ : Когда трансформаторы тока не используются, вторичные обмотки всегда следует закорачивать с помощью перемычек или перемычек.

Надеюсь, вам понравился этот пост о трансформаторах тока (ТТ). Пожалуйста, не стесняйтесь посещать его почаще, делиться этим ресурсом с другими и продолжать развивать свои навыки работы с электричеством. 😁

Что такое трансформатор тока? Классификация и типы

Энергетические системы — это нечто большее, чем кажется на первый взгляд. На самом деле мы не можем видеть электричество, но мы можем видеть, как оно работает (или не работает). Так много элементов собираются вместе, как головоломка, чтобы сформировать электрическую энергию, одним из которых является трансформатор тока. Вот что вам нужно знать об этом жизненно важном оборудовании:

Понижающий низкий уровень на трансформаторах тока

Трансформатор тока — это устройство, используемое для получения переменного тока во вторичной обмотке, пропорционального переменному току в его первичной обмотке. Это в основном используется, когда ток или напряжение слишком высоки для прямого измерения. Затем индуцированный вторичный ток подходит для измерительных приборов или обработки в электронном оборудовании, которое обычно требует изоляции между первичной и вторичной цепями.

Это снижение токов высокого напряжения обеспечивает удобный способ безопасного контроля фактического электрического тока, протекающего в линии передачи переменного тока, с помощью стандартного амперметра.

Электрический ТТ отличается от трансформатора напряжения или мощности тем, что он состоит только из одного или нескольких витков в качестве первичной обмотки. Что также отличает его от трансформатора напряжения, так это то, что первичный ток не зависит от вторичного тока нагрузки, а вместо этого управляется внешней нагрузкой. Коэффициент трансформации ТТ равен количеству вторичных витков. Это соотношение основано на том, что первичный проводник проходит один раз через окно трансформатора.

Классификации и типы

Трансформаторы тока можно разделить на две отдельные группы. Первый, измерительный трансформатор тока, используется вместе с измерительными приборами для величины тока, энергии и мощности. Другой, защитный трансформатор тока, используется вместе с защитным оборудованием, включая катушки отключения, реле и т. д.

Существует три основных типа трансформаторов тока:

  1. вторичный) на магнитном стальном сердечнике с различными витками в зависимости от конструкции.
  2. Тип стержня: , состоящий из стержня соответствующего размера и материала, используемого в качестве первичной обмотки, что эквивалентно одному витку.
  3. Окно (тороидальное): не имеет первичной обмотки, но имеет отверстие в сердечнике, через которое проходит проводник, несущий первичный ток нагрузки.

Убедитесь, что на вашем объекте есть все необходимое оборудование, включая электрические трансформаторы, для безопасной и эффективной передачи, распределения и использования электроэнергии переменного тока.

Информация, содержащаяся в этой статье, предназначена только для общих информационных целей и основана на информации, доступной на дату первоначальной публикации. Не делается никаких заявлений о том, что информация или ссылки являются полными или актуальными.

Оставить комментарий