Составной транзистор. Транзисторная сборка Дарлингтона.
Если открыть любую книгу по электронной технике, сразу видно как много элементов названы по именам их создателей: диод Шоттки, диод Зенера (он же стабилитрон), диод Ганна, транзистор Дарлингтона.
Инженер-электрик Сидни Дарлингтон (Sidney Darlington) экспериментировал с коллекторными двигателями постоянного тока и схемами управления для них. В схемах использовались усилители тока.
Инженер Дарлингтон изобрёл и запатентовал транзистор, состоящий из двух биполярных и выполненный на одном кристалле кремния с диффундированными n (негатив) и p (позитив) переходами. Новый полупроводниковый прибор был назван его именем.
В отечественной технической литературе транзистор Дарлингтона называют составным. Итак, давайте познакомимся с ним поближе!
Устройство составного транзистора.
Как уже говорилось, это два или более транзисторов, изготовленных на одном полупроводниковом кристалле и запакованные в один общий корпус. Там же находится нагрузочный резистор в цепи эмиттера первого транзистора.
У транзистора Дарлингтона те же выводы, что и у всем знакомого биполярного: база (Base), эмиттер (Emitter) и коллектор (Collector).
Схема Дарлингтона
Как видим, такой транзистор представляет собой комбинацию нескольких. В зависимости от мощности в его составе может быть и более двух биполярных транзисторов. Стоит отметить, что в высоковольтной электронике также применяется транзистор, состоящий из биполярного и полевого. Это IGBT транзистор. Его также можно причислить к составным, гибридным полупроводниковым приборам.
Основные особенности транзистора Дарлингтона.
Основное достоинство составного транзистора это большой коэффициент усиления по току.
Следует вспомнить один из основных параметров биполярного транзистора. Это коэффициент усиления (h21). Он ещё обозначается буквой β («бета») греческого алфавита. Он всегда больше или равен 1. Если коэффициент усиления первого транзистора равен 120, а второго 60 то коэффициент усиления составного уже равен произведению этих величин, то есть 7200, а это очень даже неплохо. В результате достаточно очень небольшого тока базы, чтобы транзистор открылся.
Инженер Шиклаи (Sziklai) несколько видоизменил соединение Дарлингтона и получил транзистор, который назвали комплементарный транзистор Дарлингтона. Вспомним, что комплементарной парой называют два элемента с абсолютно одинаковыми электрическими параметрами, но разной проводимости. Такой парой в своё время были КТ315 и КТ361. В отличие от транзистора Дарлингтона, составной транзистор по схеме Шиклаи собран из биполярных разной проводимости:
схема Шиклаи
К недостаткам составных транзисторов следует отнести невысокое быстродействие, поэтому они нашли широкое применение только в низкочастотных схемах. Такие транзисторы прекрасно зарекомендовали себя в выходных каскадах мощных усилителей низкой частоты, в схемах управления электродвигателями, в коммутаторах электронных схем зажигания автомобилей.
Хорошо зарекомендовал себя для работы в электронных схемах зажигания мощный n-p-n транзистор Дарлингтона BU931.
Основные электрические параметры:
Напряжение коллектор – эмиттер 500 V;
Напряжение эмиттер – база 5 V;
Ток коллектора – 15 А;
Ток коллектора максимальный – 30 А;
Мощность рассеивания при 25°C – 135 W;
Температура кристалла (перехода) – 175°C.
На принципиальных схемах нет какого-либо специального значка-символа для обозначения составных транзисторов. В подавляющем большинстве случаев он обозначается на схеме как обычный транзистор. Хотя бывают и исключения. Вот одно из его возможных обозначений на принципиальной схеме.
Напомню, что сборка Дарлингтона может иметь как p-n-p структуру, так n-p-n. В связи с этим, производители электронных компонентов выпускают комплементарные пары. К таким можно отнести серии TIP120-127 и MJ11028-33. Так, например, транзисторы TIP120, TIP121, TIP122 имеют структуру n-p-n, а TIP125, TIP126, TIP127 – p-n-p.
Также на принципиальных схемах можно встретить и вот такое обозначение.
Примеры применения составного транзистора.
Рассмотрим схему управления коллекторным двигателем с помощью транзистора Дарлингтона.
При подаче на базу первого транзистора тока порядка 1мА через его коллектор потечёт ток уже в 1000 раз больше, то есть 1000мА. Получается, что несложная схема обладает приличным коэффициентом усиления. Вместо двигателя можно подключить электрическую лампочку или реле, с помощью которого можно коммутировать мощные нагрузки.
Если вместо сборки Дарлингтона использовать сборку Шиклаи то нагрузка подключается в цепь эмиттера второго транзистора и соединяется не с плюсом, а с минусом питания.
Если совместить транзистор Дарлингтона и сборку Шиклаи, то получится двухтактный усилитель тока. Двухтактным он называется потому, что в конкретный момент времени открытым может быть только один из двух транзисторов, верхний или нижний. Данная схема инвертирует входной сигнал, то есть выходное напряжение будет обратно входному.
Это не всегда удобно и поэтому на входе двухтактного усилителя тока добавляют ещё один инвертор. В этом случае выходной сигнал в точности повторяет сигнал на входе.
Применение сборки Дарлингтона в микросхемах.
Широко используются интегральные микросхемы, содержащие несколько составных транзисторов. Одной из самых распространённых является интегральная сборка L293D. Её частенько применяют в своих самоделках любители робототехники. Микросхема L293D – это четыре усилителя тока в общем корпусе. Поскольку в рассмотренном выше двухтактном усилителе всегда открыт только один транзистор, то выход усилителя поочерёдно подключается или к плюсу или к минусу источника питания. Это зависит от величины входного напряжения. По сути дела мы имеем электронный ключ. То есть микросхему L293 можно определить как четыре электронных ключа.
Вот «кусочек» схемы выходного каскада микросхемы L293D, взятого из её даташита (справочного листа).
Как видим, выходной каскад состоит из комбинации схем Дарлингтона и Шиклаи. Верхняя часть схемы – это составной транзистор по схеме Шиклаи, а нижняя часть выполнена по схеме Дарлингтона.
Многие помнят те времена, когда вместо DVD-плееров были видеомагнитофоны. И с помощью микросхемы L293 осуществлялось управление двумя электродвигателями видеомагнитофона, причём в полнофункциональном режиме. У каждого двигателя можно было управлять не только направлением вращения, но подавая сигналы с ШИМ-контроллера можно было в больших пределах управлять скоростью вращения.
Весьма обширное применение получили и специализированные микросхемы на основе схемы Дарлингтона. Примером может служить микросхема ULN2003A (аналог К1109КТ22). Эта интегральная схема является матрицей из семи транзисторов Дарлингтона. Такие универсальные сборки можно легко применять в радиолюбительских схемах, например, радиоуправляемом реле. Об этом я поведал тут.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Параметры транзисторов MOSFET.
Что такое супрессор?
Режимы работы биполярного транзистора | Основы электроакустики
Режимы работы биполярного транзистора
Биполярный транзистор – полупроводниковый элемент с двумя p-n переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают p-n-p и n-p-n типа. На рис.7.1, а и б показаны их условные обозначения.
Рис.7.1. Биполярные транзисторы и их диодные эквивалентные схемы: а) p-n-p, б) n-p-n транзистор
Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p- или n- слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер – база смещен в прямом направлении (открыт), а переход база – коллектор – в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис.7.2.
Рис.7.2. Полярность включения: а) n-p-n, б) p-n-p транзистора
Транзисторы n-p-n типа подчиняются следующим правилам (для транзисторов p-n-p типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):
1. Коллектор имеет более положительный потенциал, чем эмиттер.
2. Цепи база-эмиттер и база-коллектор работают как диоды (рис.7.1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 – 0,8 В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением: UБ ≈ UЭ+0,6В; (UБ = UЭ + UБЭ).
3. Каждый транзистор характеризуется максимальными значениями IК, IБ, UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуры, UБЭ и др.
4. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы. Соотношение токов коллектора и эмиттера приблизительно равно
IК = αIЭ, где α=0,95…0,99 – коэффициент передачи тока эмиттера. Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 7.2, а) представляет собой базовый ток IБ = IЭ – IК. Ток коллектора зависит от тока базы в соответствии с выражением: IК = βIБ, где β=α/(1-α) – коэффициент передачи тока базы, β >>1.
Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.
Режимы работы транзистора. Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.
Усилительный или активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.
Инверсный режим – к коллекторному переходу подведено прямое напряжение, а к эмиттерному – обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.
Режим насыщения – оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.
Режим отсечки – к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.
Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.
Что такое транзистор NPN? Определение, типы и приложения.
star_borderПодписаться на статью
EmmaAshely
6star_border 1вопрос_ответ 4thumb_up
Ваша следующая статья
Дэйв из DesignSpark
Как вы относитесь к этой статье? Помогите нам предоставить лучший контент для вас.
Спасибо! Ваш отзыв получен.
Дэйв из DesignSpark
Не удалось отправить отзыв.

Дэйв из DesignSpark
Что вы думаете об этой статье?
Транзисторы NPN представляют собой тип биполярных транзисторов с тремя слоями, которые используются для усиления сигнала. Это устройство, которое управляется током. Транзистор отрицательный-положительный-отрицательный обозначается аббревиатурой NPN. В этой конфигурации полупроводник p-типа сплавлен между двумя полупроводниковыми материалами n-типа.
Он разделен на три секции: эмиттерную, базовую и коллекторную. В транзисторе NPN поток электронов заставляет его проводить ток.
Символ NPN:
На следующей диаграмме показано символическое представление NPN-транзистора:
Направление тока, протекающего через устройство, четко показано стрелкой, направленной наружу, на клемме эмиттера на символическом изображении. Электроны составляют большинство носителей в транзисторах NPN.
Конструкция транзистора NPN:
Транзистор NPN изготавливается двумя способами.
Транзисторы NPN образуются, когда полупроводниковый материал p-типа (кремний или германий) сплавляется между двумя полупроводниковыми материалами n-типа, как мы уже знаем.
Конструктивная структура NPN-транзистора показана на схеме ниже:
NPN-транзистор состоит из нескольких различных компонентов.
Он разделен на три секции: эмиттерную, базовую и коллекторную.
Соединение эмиттер-база — это область, соединяющая эмиттер и базовую область. Соединение коллектор-база, с другой стороны, является точкой, где встречаются области базы и коллектора. Он функционирует как два диода PN-перехода из-за наличия двух переходов между тремя областями.
Уровни легирования в каждой из трех областей разные. Эмиттерная область имеет много легирования, в то время как базовая область также имеет много легирования. А уровень легирования области коллектора умеренный, находится где-то между эмиттерной и базовой областью. Его обратным является PNP-транзистор, в котором P-область зажата между двумя областями N-типа.
Стоит отметить, что области эмиттера и коллектора нельзя поменять местами. Причина этого в том, что толщина области коллектора немного больше, чем у области эмиттера. Так что больше энергии может быть рассеяно.
Работа NPN-транзистора:
Давайте теперь посмотрим, как работает NPN-транзистор.
Когда на транзистор не подается смещение или между его выводами не подключена батарея. Тогда это называется несмещенным состоянием транзистора. Мы уже говорили о том, как работает диод с PN-переходом в отсутствие смещения. Как мы уже знаем, транзистор состоит из двух PN-переходов.
В результате в условиях отсутствия смещения электроны в эмиттерной области начинают двигаться в сторону базовой области из-за колебаний температуры. Однако по прошествии определенного времени на переходе эмиттер-база транзистора образуется область обеднения. Только около 5% электронов объединяются с дырками в этой области после достижения области базы, а остальные дрейфуют через область коллектора. Точно так же через некоторое время на переходе база-коллектор транзистора образуется область обеднения.
Стоит отметить, что толщина или тонкость обедненной области определяется концентрацией легирования материала. Иными словами, в случае слаболегированной области ширина обедненной области будет больше, чем в случае сильнолегированной области. Поэтому ширина обеднения на переходе коллектор-база больше, чем на переходе эмиттер-база. Эти две области истощения служат потенциальным камнем преткновения для любого дальнейшего потока большинства носителей.
На следующей диаграмме показано состояние смещения NPN-транзистора:
Ширина обедненной области, также называемой PN-переходом, сужается в результате прямого приложенного напряжения на переходе эмиттер-база. Точно так же ширина перехода коллектор-база увеличивается за счет обратного приложенного напряжения. Вот почему по сравнению с переходом коллектор-база на предыдущем рисунке переход эмиттер-база имеет тонкую область обеднения.
Электроны начинают инжектироваться в область эмиттера в результате прямого приложенного напряжения VBE. Электроны в этой области обладают достаточной энергией, чтобы преодолеть барьерный потенциал перехода эмиттер-база и достичь области базы.
Движение носителей заряда в NPN-транзисторе показано на диаграмме ниже:
Поскольку базовая область очень тонкая и слегка легированная. В результате только несколько электронов объединяются с дырками, как только они достигают места назначения. Из-за сильного электростатического поля электроны начинают дрейфовать в области коллектора из-за очень тонкой области базы и обратного напряжения на переходе коллектор-база. В результате эти электроны теперь собираются на выводе коллектора транзистора. Электроны начинают двигаться к коллектору по мере того, как рекомбинирующие дырки и электроны отделяются друг от друга. В результате этого движения через устройство также протекает очень небольшой базовый ток. Поэтому ток эмиттера равен сумме токов базы и коллектора. IE = IB + IC
Применение диода NPN:
Транзисторы с диодами NPN (NPN) используются в различных устройствах,
- Они используются в высокочастотных устройствах.
- В коммутационных устройствах чаще всего используются NPN-транзисторы.
- Этот компонент используется в усилительных цепях.
- Для усиления слабых сигналов используется в парных цепях Дарлингтона. Транзисторы
- NPN используются в приложениях, где требуется сток тока.
- Этот компонент используется в некоторых классических схемах усилителей, таких как схемы двухтактных усилителей.
- Например, в датчиках температуры.
- Приложения с чрезвычайно высокой частотой.
- Эта переменная используется в логарифмических преобразователях.
- Поскольку усиление сигнала осуществляется с помощью NPN-транзисторов. В усилительных схемах он используется таким образом.
- Логарифмические преобразователи – еще одна область, где он используется.
- Характеристика переключения транзистора NPN является одним из его наиболее значительных преимуществ. В результате он обычно используется для переключения приложений.
Термины транзистора NPN, которые важно знать:
Область эмиттера: Это самая большая часть структуры, которая больше базовой области, но меньше области коллектора. В нем много допинга. Он используется для переноса основных носителей в базовую область, то есть электронов. Это область с прямым смещением, что означает, что она всегда снабжена базовой областью со смещением в прямом направлении.
Район основания: Регион основания расположен в середине конструкции. По сравнению с областями эмиттера и коллектора транзистора он имеет небольшую область. Он слегка легирован, чтобы обеспечить минимальную рекомбинацию и высокий ток на коллекторе.
Область коллектора: Это крайняя правая секция структуры, и ее функция выражена в ее названии: она собирает носители, передаваемые базовой областью. По сравнению с базовой областью эта область получает обратное смещение.
Хотите продолжить чтение статей от DesignSpark?
Станьте участником, чтобы бесплатно получить неограниченный доступ ко всему контенту DesignSpark!
Зарегистрируйтесь, чтобы стать участником
Уже являетесь участником DesignSpark? Логин
Поделиться этой записью
thumb_upМне нравится star_borderПодписаться на статью
Привет, я студент электротехнического факультета. Сейчас работаю в магазине электроники. Я работаю там на электрических компонентах. Там я узнаю много полезных практических концепций. С другой стороны, я даю онлайн-обучение некоторым старшеклассникам. Я люблю электрические и электронные устройства и планирую получить степень магистра в области электроники.
Рекомендуемые статьи
Ваша следующая статья
Понимание того, как работает транзистор NPN
Задавать вопрос
спросил
Изменено 1 год, 5 месяцев назад
Просмотрено 124 раза
\$\начало группы\$
Я пытался понять, как работает NPN-транзистор, особенно в случае фототранзистора.
Насколько я могу судить, это должно быть что-то вроде этого:
Я не понимаю, как ток может течь между Базой и Коллектором, так как Коллектор n-типа и подключен к плюсовой клемме, которая обязательно сделать БК с обратным смещением?
База на схеме должна быть подключена к фотодиоду, позволяющему течь току, когда уровень освещенности достигает определенной интенсивности.
- транзисторы
- npn
- фотодиод
- фототранзистор
\$\конечная группа\$
3
\$\начало группы\$
Электроны (основные носители) перемещаются из эмиттерной области n-типа в базовую область p-типа из-за прямого смещения BE-перехода. Оказавшись в области базы р-типа, эти электроны становятся неосновными носителями. Поскольку база тонкая и слегка легированная, только несколько из этих электронов рекомбинируют, создавая ток базы, большинство проходит через смещенный в обратном направлении CB-переход, притягиваемый положительным потенциалом на коллекторе.