Альтернативные источники энергии виды: Ой! Страница не найдена :(

Содержание

Виды альтернативных источников энергии – ФЕКО

На сегодняшний день альтернативные источники энергии имеют довольно широкий спрос. Виды альтернативной электроэнергетики:

  • Ветроэнергетика
  • Биотопливо
  • Гелиоэнергетика
  • Гидроэнергетика
  • Грозовая энергетика
  • Космическая энергетика

Ветровую энергию используют давно. Ветрогенераторы представляет собой систему лопастей, которые соединены с генератором через редуктор или напрямую. Максимальной энергии ветрогенераторы достигают на высоте более 15 метров. Современные разработки формы лопастей приспособили ветрогенераторы под все условия эксплуатации и движения воздуха: тихоходные, быстроходные и роторные.

Альтернативная энергетика представлена также биотопливом. В качестве источника энергии биотоплива служат органические отходы животного или растительного происхождения.

Наибольшей популярностью на сегодняшний день пользуются солнечные коллекторы, то есть гелиоэнергетика. Солнечная энергия один из самых перспективных источников неиссякаемой энергии. За год на поверхность земли попадает солнечного излучения в 30 000 раз больше, чем годовое потребление электроэнергии всем населением планеты. Производители совершенствуют и создают более новые и универсальные модели гелиосистем. Популярно использование комплектный пакет оборудования гелиосистем.

Ученые выяснили, что на квадратный метр приходится около 300 Вт в сутки энергии Солнца. Расчет имеет смысл в тех местах, где солнечные лучи имеют максимальные потоки.

Использование гелиосистем удачная альтернативная энергия, обладает рядом преимуществ. Приобретая солнечные коллектор, следует знать про недостатки такой системы:

  • Достаточно высокая стоимость конструкций
  • Непостоянство из-за зависимости от погодных условий и времени суток, в северных широтах сложно преобразовывать полученную солнечную энергию.
  • Значительное повышение температур над станциями
  • Невозможность использования такой энергии из-за не сезонности
  • Коллекторы занимают большую площадь

Современные системы гелиоустановки производят двух типов: трубчатые и плоские. Плоские солнечные коллекторы – ящик, со спиралевидным зачерненным нагревательным элементом, медной трубкой. Спираль термоизолирована, а со стороны солнца накрыта стеклом. В качестве теплоносителя используется вода или незамерзающий теплоноситель.

Альтернативные источники энергии | Новости компании EF-LIGHT

Альтернативные источники энергии – это возобновляемые ресурсы, которые позволяют получать энергию без использования традиционных способов (нефть, газ, уголь). Основная задача альтернативной энергетики – поиск новых источников, которые бы могли обеспечить необходимый объем энергии, не нанося серьезного вреда экологии. Поиск новых ресурсов ведется постоянно, многие «нетрадиционные» методы получения энергии успешно используются в качестве частичной альтернативы традиционным методам. Альтернативная энергетика внедряется во все сферы жизни и на сегодняшний день можно встретить обычные бытовые приборы, работающие на энергии ветра или солнца.

Виды альтернативных источников энергии

Альтернативная энергетика так же, как и традиционная, использует природные ресурсы, однако делает это безопасно для планеты. Основная идея заключается в применении возобновляемых ресурсов, отсюда и название – возобновляемые источники энергии (ВИЭ). Органическое топливо в виде газа и нефти конечно, в то время как энергия ветра или солнца не закончится никогда. Интересно отметить, что возобновляемые источники энергии активно использовались нашими предками еще до того, как в оборот вошло органическое топливо. К сожалению, последнее дает больше энергии при меньших затратах, поэтому сегодня ВИЭ занимают далеко не первое место.

Солнечная энергия. Самый популярный источник альтернативной энергии в мире. Специальные гелиоустановки или солнечные батареи (фотоэлементы) преобразуют солнечную энергию в другие виды энергии. Солнце можно использовать как для теплоснабжения, так и для выработки электроэнергии. Среди преимуществ – возобновляемость ресурса, бесшумность, абсолютная экологичность (при переработке нет вредных выбросов). Главным недостатком является зависимость от суточного и сезонного ритма излучения, а также необходимость использовать большое количество солнечных батарей (большая площадь солнечной фермы) для выработки достаточного количества энергии. На сегодняшний день солнечная энергия активно используется во многих странах; доля энергии, получаемой от солнца, может составлять до 25% от общей суммы всей используемой в стране энергии.

Энергия ветра. Еще один популярный и активно внедряемый ресурс. Специальные ветровые электростанции (современные ветряные мельницы) преобразуют энергию ветра в электричество. Недостатки и преимущества у таких электростанция такие же, как и в случае с энергией солнца. С одной стороны энергия ветра – экологичный и возобновляемый ресурс, с другой – сильная зависимость от природных условий. Еще один недостаток современных ветряных мельниц – высокий уровень шума, это не позволяет устанавливать их вблизи жилых зон. Впрочем, ветроэнергетика на данный момент является самым перспективным направлением альтернативной энергетики

Тепловая энергия земли. Для переработки данного вида энергии используются геотермальные станции, которые преобразуют энергию грунтовых вод, вулканов, термальных источников. Геотермальные станции могут вырабатывать как тепловую энергию, так и электричество для разных нужд. Основное преимущество – возобновляемость и полная независимость от времени суток или времени года (в отличие от энергии солнца и ветра). Основной недостаток – низкая рентабельность и в некоторых случаях невозможность использовать грунтовые воды из-за токсичности.

Энергия приливов и отливов. Данный вид альтернативной энергии начали разрабатывать относительно недавно, он использует энергию приливов и отливов (кинетическую энергию вращения земли) для выработки электроэнергии. Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, работающие в режиме насоса или генератора. К сожалению, в отличие от классической гидроэлектростанции, подобные установки не пользуются большим спросом так как показывают низкую рентабельность. На данный момент специальные насосы чаще всего устанавливают не отдельно, а лишь в качестве одного из элементов классической гидроэлектростанции.

Биотопливо. Биотопливо – это топливо из растительного или животного сырья. Чаще всего под биотопливом нового поколения понимают твердое (торф, отходы деревообработки и сельского хозяйства), жидкое (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Перечисленные виды альтернативного топлива не единственные. Ученые постоянно ведут поиск новых источников энергии; используются грозовая энергия (атмосферное электричество) и даже энергия вирусов. К сожалению, все новые разработки пока не показывают высокой эффективности и не могут стать полноценной заменой традиционной энергетике.


Альтернативные источники энергии: виды и использование

В течение всего периода развития цивилизации происходила борьба за обретение новых, более эффективных форм энергии. За тысячи лет был пройден путь от овладения огня до применения управляемой ядерной реакции в атомных электростанциях. Поэтому в истории человечества принято выделять несколько энергетических революций, которые заключались в переходе от одного доминирующего первичного источника энергии к другому. Результаты этих изменений затрагивали не только сферу энергетики и экономики, но и меняли социальный и культурный облик цивилизации.


В настоящее время Мировая энергетика находится на перепутье. С увеличением народонаселения Земли экономика требует все больше энергии, а запасы ископаемого топлива, на котором основана традиционная энергетика, не безграничны. Рост стоимости ископаемого топлива усугубляется и тем, что достигшее колоссальных размеров использование углеводородов наносит ощутимый вред окружающей среде, что отражается на качестве жизни населения. А это означает, что в будущем потребности в энергии, а значит и в новых способах её получения, будут только увеличиваться. На смену эре углеводородов (нефти и газа), придет эра использования альтернативной, чистой энергии.

Основные причины, указывающие на важность скорейшего перехода к АИЭ:

Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.

Политический: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы.

Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, а на традиционную — постоянно растут.

Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, – всё это увеличивает социальную напряженность.

Эволюционно-исторический: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.

Именно с нетрадиционными возобновляемыми источниками энергии (ВИЭ) связывают будущее энергетики. Усилиями мировой науки было обнаружено множество таких источников, большинство из них уже используется более или менее широко. В настоящее время общий вклад ВИЭ в мировой энергобаланс пока невелик, около 20 % конечного потребления энергии. При этом на долю биотоплива и гидроэнергии, используемых традиционными способами, приходится основная часть – около 17 %, на долю нетрадиционных ВИЭ всего около 3 %.

Наиболее известны  и частично применяются следующие виды энергии:

— энергия Солнца;
— энергия ветра;
— биоэнергетика;
— энергия приливов и волн;
— тепловая энергия Земли.
— энергия атмосферного электричества и грозовая энергетика.

Из всех существующих видов альтернативной энергетики самыми востребованными являются солнечная, ветро- и гидроэнергетика.

Энергия солнца

Всевозможные гелиоустановки используют солнечное излучение как альтернативный источник энергии. Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества.

Существуют разные способы преобразования солнечного излучения в тепловую и электроэнергию и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи.

Солнечные электростанции активно используются более чем в 80 странах мира. Большинство крупнейших фотоэлектрических установок мира находятся в США.

К преимуществам солнечной энергии можно отнести возобновляемость данного источника энергии, бесшумность, отсутствие вредных выбросов в атмосферу при переработке солнечного излучения в другие виды энергии.

Недостатками в использовании солнечной энергии являются дороговизна оборудования, зависимость интенсивности солнечного излучения от суточного и сезонного ритма, а также, необходимость больших площадей для строительства солнечных электростанций. Также серьёзной экологической проблемой является использование при изготовлении фотоэлектрических элементов для гелиосистем ядовитых и токсичных веществ, что создаёт проблему их утилизации.

Энергия ветра

Одним из перспективнейших источников энергии является ветер. Принцип работы ветрогенератора элементарен. Сила ветра, используется для того, чтобы привести в движение ветряное колесо. Это вращение в свою очередь передаётся ротору электрического генератора.

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Преимуществом ветряного генератора является, прежде всего, то, что в ветряных местах, ветер можно считать неисчерпаемым источником энергии. Кроме того, ветрогенераторы, производя энергию, не загрязняют атмосферу вредными выбросами.

К недостаткам устройств по производству ветряной энергии можно отнести непостоянство силы ветра и малую мощность единичного ветрогенератора. Также ветрогенераторы известны тем, что производят много шума (вследствие чего их стараются строить вдали от мест проживания людей), мешают перелетам птиц  и насекомых, а также создают помехи в прохождении радиоволн  и работе военных.

Биоэнергетика

Биоэнергетика позволяет из биотоплива разного вида получать энергию и тепло. Биоэнергетика сейчас находится в стадии активного развития. Крупные промышленные и сельскохозяйственные предприятия активно переходят на биотопливо, что дает им получать электроэнергию и тепло из органического мусора.

К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии. Альтернативное биотопливо бывает твердым (отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Основными преимуществами является утилизация органического мусора, снижение уровня загрязнения окружающей среды. Биотопливо изготавливается из различного сырья, такого как навоз, отходы сельскохозяйственных культур и растений, выращенных специально для топлива. Это возобновляемые ресурсы, которые, вероятно, не закончатся в ближайшее время. Биотопливо снижает выбросы парниковых газов. Кроме того, при выращивании культур для биотоплива они частично поглощают оксид углерода, что делает систему использования биотоплива ещё более устойчивой.

Биотопливо довольно легко транспортировать, оно обладает стабильностью и довольно большой «энергоплотностью», его можно использовать с незначительными модификациями существующих технологий и инфраструктуры.

К недостаткам применения биотоплива относятся:

— ограничения региональной пригодности (в некоторых местностях просто невозможно выращивать биотопливные культуры, например, в местности с холодным или засушливым климатом).

— водопользование – чем меньше воды используется для выращивания сельскохозяйственной культуры, тем лучше, так как вода является ограниченным ресурсом.

— продовольственная безопасность (слишком активное выращивание биотоплива может привести к голоду). Проблема с выращиванием сельскохозяйственных культур для топлива заключается в том, что они займут землю, которую можно было бы использовать для выращивания продуктов питания.

— разрушение среды обитания животных и риск изменения окружающей среды, вследствие применения удобрений и пестицидов при выращивании биотопливных культур (чаще всего это монокультуры для удобства выращивания).

Энергия приливов и волн

Мировой океан аккумулирует энергию в разных видах: энергию биомассы, энергию приливов и отливов, энергию океанических течений, тепловую энергию и др. Проблема заключается в том, чтобы найти экономически и экологически приемлемые способы ее использования. По прогнозным оценкам доступная часть энергии Мирового океана во много раз превышает уровень потребления всех энергетических ресурсов в мире.

По оценкам Ocean Energy Systems, к 2050 г. с помощью подобных технологий можно будет вырабатывать 300 ГВт – это столько же, сколько бы производили 250 ядерных реакторов. А UK Carbon Trust прогнозирует, что к тому времени уже возникнет всемирный рынок приливной энергии стоимостью 126 млрд фунтов стерлингов.

В Японии протестировали устройство, которое генерирует электроэнергию из океанических течений. Испытание установки было проведено на юго-западе префектуры Кагошима. Течения у Кагошимы постоянны по силе и направлению. Турбина экспериментального генератора была установлена на уровне 20-50 м под поверхностью воды. Генератор развил мощность производства электроэнергии всего 30 кВт. Конечно, это немного, но главное – изобретение работает. Ученые полагают, что такой метод генерации электричества может быть более стабильным, чем солнечная энергетика. Организация по разработке новых энергетических и промышленных технологий NEDO надеется внедрить эту технологию в промышленное использование к 2020 г.

В США извлекают энергию из волн.

Исследователи Технологического института Джорджии разработали устройство, преобразующее в электричество энергию волн океана очень широкого диапазона частот. Энергия волн океана — самая слаборазвитая отрасль чистой энергетики. Хотя океан потенциально способен обеспечить энергией весь мир, пока что не существует экономически выгодного способа ее извлечения. Основная проблема в том, что океанские волны непостоянны и колеблются с низкой частотой, тогда как большинство генерирующих устройств лучше всего работают с постоянной амплитудой и высокой частотой.

В прошлом году в проливе Пентленд-Ферт на северном побережье Шотландии началась первая фаза строительства крупнейшей в мире приливной электростанции MeyGen, итоговая мощность которой может достичь 398 МВт. Станция способна обеспечить электричеством 175 тыс. домохозяйств. Возобновляемая энергия приливов стала одним из важнейших направлений новой энергетики, развиваемой в Шотландии. Шотландские приливы, одни из самых мощных в Европе, помогут развить эту многообещающую технологию и сократить выбросы углекислого газа. Шотландия планирует полностью (на 100%) перейти на возобновляемую электроэнергию уже в 2030 г. Достигнутый в 2016 г. уровень составил около 60%.

Аналогичные технологии применяются уже и в Северной Америке – на побережье Новой Шотландии. Эта провинция на северо-востоке Канады действительно напоминает Шотландию — и не в последнюю очередь благодаря высоким приливам.

В ноябре прошлого года там, в заливе Фанди начал работу первый в Северной Америке приливной электрогенератор. Он занимает пять этажей и весит тысячу тонн, его мощность – 2 МВт, что достаточно для питания 500 домов.

В области разработки новейших решений для использования энергии приливов лидирует Великобритания. Этому способствует идеальная схема приливов и благоприятная регулятивная среда. Канада, Китай и Южная Корея также демонстрируют устойчивый прогресс. США также являются одним из основных центров инноваций в данной сфере.

Основные плюсы – высокая экологичность и низкая себестоимость получения энергии.

К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, из-за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии.

Тепловая энергия Земли

Огромное количество тепловой энергии хранится в глубинах Земли. Это обусловлено тем, что температура ядра Земли чрезвычайно высока. В некоторых местах земного шара происходит прямой выход высокотемпературной магмы на поверхность Земли: вулканические области, горячие источники воды или пара. Энергию этих геотермальных источников и предлагают использовать в качестве альтернативного источника сторонники геотермальной энергетики. Используют геотермальные источники по-разному. Одни источники служат для теплоснабжения, другие – для получения электричества из тепловой энергии.

Для разработки этого источника энергии используются геотермальные электростанции, использующие энергию высокотемпературных грунтовых вод, а также вулканов. На данный момент более распространенной является гидротермальная энергетика, использующая энергию горячих подземных источников. Гидротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии.

К преимуществам геотермальных источников энергии можно отнести неисчерпаемость и независимость от времени суток и времени года.

К негативным сторонам можно отнести тот факт, что термальные воды сильно минерализованы, а зачастую ещё и насыщены токсичными соединениями. Это делает невозможным сброс отработанных термальных вод в поверхностные водоёмы. Поэтому отработанную воду необходимо закачивать обратно в подземный водоносный горизонт. Кроме того, некоторые учёные-сейсмологи выступают против любого вмешательства в глубокие слои Земли, утверждая, что это может спровоцировать землетрясения.

Атмосферное электричество и грозовая энергетика

Атмосферное электричество может стать еще одним существенным источником экологически чистой энергии. В нижних слоях атмосферы Земли идут интенсивные процессы испарения, переноса тепла и влаги, образования облаков, сопровождающиеся явлениями электризации. В результате, у поверхности Земли напряженность электростатического поля достигает 100…150 В/м летом и до 300 В/м зимой, значительно изменяясь от погодных условий. В атмосфере постоянно висит положительный объемный заряд величиной около 0,57 млн. кулонов. Энергетический ресурс заряженной атмосферы оценивается величиной около 107 ГВт, что не менее чем в 250 раз превышает потребности человеческой цивилизации в энергии.

Вопросы формирования электрической энергии в атмосфере и использования электричества, сформированного естественным путем, тревожили умы многих ученых на протяжении столетий. Все началось со знаменитого опыта Бенджамина Франклина в июне 1752 года, когда он поднял воздушного змея перед грозовым облаком, и экспериментально доказал, что грозовые явления имеют электрическую природу. В 1850–1860-х годах получили патенты на изобретения в области атмосферного электричества Лумис и Уард в США, во Франции. Среди тех, кто мечтал завоевать и использовать атмосферное электричество в качестве практически неиссякаемого источника энергии был и знаменитый изобретатель Никола Тесла, предложивший способ преобразования высокого постоянного напряжения атмосферы в низкое переменное. В Финляндии Герман Плаусон провел эксперименты с аэростатами, изготовленными из тонких листов магниево-алюминиевого сплава, покрытого очень острыми, изготовленными электролитическим способом иглами. На свои устройства он в 1920-х годах получил патенты США, Великобритании и Германии.

К сожалению все предложенные грандиозные устройства так и не получили широкого практического применения ввиду их громоздкости, непрактичности, опасности, а самое главное, нестабильности снимаемой мощности, которая целиком зависит от «электрической погоды» в атмосфере. Но ни смотря, ни на что, интерес к исследованиям атмосферного электричества не угас, и в самые недавние годы достигнуты значительные успехи.

Новые исследования, проведенные учеными из университета Кампинаса в Бразилии, позволили по-новому взглянуть на задачу получения энергии из атмосферного электричества. В результате этих исследований ученые точно определили, каким именно образом происходит процесс формирования и момент высвобождения электричества из капелек влаги скопившейся в воздухе, как создаются электрические заряды в атмосфере, как они распространяются и каким образом они могут быть преобразованы в электрический ток, пригодный для использования.

В качестве преимуществ атмосферных электростанций отмечаются следующие факторы:

— атмосферная электростанция способна вырабатывать энергию постоянно и не выбрасывает в окружающую среду никаких загрязнителей;

— в случае открытия способа хранения и создания суперконденсатора атмосферного электричества, он будет постоянно подзаряжается с помощью возобновляемых источников энергии – солнца и радиоактивных элементов земной коры;

— электроразрядное оборудование атмосферных станций не бросается в глаза. Оно находятся в верхних слоях атмосферы, слишком высоко для того, чтобы их увидеть невооруженным глазом.

Недостатки:

— атмосферное электричество, как и энергию солнца или ветра, трудно запасать. Его необходимо либо использовать сразу же, на месте получения, либо преобразовывать в любую другую форму, например в водород;

— значительная разрядка земельно-ионосферного суперконденсатора может нарушить баланс глобального электрического контура. В этом случае последствия для окружающей среды будут непредсказуемы;

— высокое напряжение в системах атмосферных электростанций может быть опасным для обслуживающего персонала;

— электроразрядное оборудование необходимого размера сложно обслуживать и поддерживать на необходимой высоте. Кроме того, они могут представлять опасность для авиации.

Грозовая энергетика – это пока лишь теоретическое направление. Молния – это сложный электрический процесс. Для того, чтобы «поймать» и удержать энергию молнии, нужно использовать мощные и дорогостоящие конденсаторы, а также разнообразные колебательные системы. Пока еще грозовая энергетика неоконченный и не совсем сформированный проект, хотя и достаточно перспективный. Его привлекательность состоит в возможности постоянно восстанавливать ресурсы.

Вспышки молний на поверхности Земли происходят практически одновременно в самых разных местах планеты. Специалисты NASA, работая со спутником «Миссия измерения тропических штормов», проводят исследования грозовой активности в разных уголках нашей планеты. Ими собраны данные о частоте происхождения молний и создана соответствующая карта. Были установлены определенные регионы, в которых на протяжении года возникает до 70 ударов молнии на квадратный километр площади, и где в перспективе экономически целесообразно использовать данный вид энергии.

Сейчас ученые всего мира изучают этот сложный процесс и разрабатывают планы и проекты по устранению сопутствующих проблем. Возможно, со временем человечество сможет укротить «строптивую» энергию молнии и перерабатывать ее в ближайшем будущем.

Список литературы

  1. Боровский, Ю.В. Современные проблемы мировой энергетики / Ю.В. Боровский, М.: Навона, 2011 г. – 232 с.
  2. Дегтярев, К.С. К вопросу об экономике возобновляющихся источников энергии / К.С. Дегтярев, А.М. Залиханов, А.А. Соловьев, Д.А. Соловьев // Энергия. Экономика. Техника. Экология. – 2016. – № 10. – С. 10–21.
  3. Довгалюк, Ю.А. О прогнозе развития конвективных облаков и связанных с ними опасных явлений с помощью модели малой размерности / Ю.А. Довгалюк, Н.Е. Веремей, А.А. Синькевич., А.К. Слепухина // Вопросы физики облаков. Сборник статей памяти С.М. Шметера. М: ГУ «НИЦ» Планета, 2008. – 167 с.
  4. Кузнецов, Д.А. Возможности развития современной грозовой энергетики / Д.А. Кузнецов // Международный студенческий научный вестник. – 2017. – № 4-6.
  5. Огарков, А.И. Большая эффективность малой энергетики / А.И. Огарков // АПК: экономика, управление. – 2007. – № 6. – С. 2–6.
  6. Суслов, Н.И. Возобновляемые источники энергии в стране, где много традиционных ресурсов: еще о России / Н. И. Суслов // ЭКО. – 2014. – № 3. – С. 69–87.

Картинки взяты с сайта по ссылке.


Король Раиса Александровна

© Раиса Король, научный сотрудник лаборатории моделирования и минимизации антропогенных рисков

e-mail: [email protected]

Как возобновляемые источники энергии могут стать конкурентоспособными по цене и стоимости вырабатываемой энергии

Будучи генеральным директором Международного агентства по возобновляемым источникам энергии (МАВИЭ), я с удовольствием согласился написать об удивительном преображении сектора энергетики, которое стало возможно благодаря внедрению технологий, основанных на использовании возобновляемых источников энергии. Эта тема была предложена в любезном приглашении издания «Хроники ООН», и мы еще вернемся к этому факту, поскольку он многое говорит о том, какое место сейчас занимает использование возобновляемых источников энергии и как их воспринимают.

Но сначала необходимо поговорить о том, почему это направление энергетики имеет такое значение. Мир стоит на пороге беспрецедентного поворотного момента. Изменение климата — это реальная и неизбежная угроза благополучию, которого сегодня уже достигли многие и к которому стремятся и ради которого трудятся миллионы людей. Но, разумеется, дело не только в этом. Дело в том, что мы должны обеспечить выживание наиболее уязвимых жителей планеты и защиту экосистем и биологического разнообразия. Климат меняется во многом вследствие выбросов в атмосферу продуктов сгорания ископаемых видов топлива, хотя есть и другие важные причины. Чтобы остановить изменение климата, мы должны сократить потребление этих видов топлива, насыщенных углеродом. Возобновляемые источники энергии могут и должны стать центральным элементом этого плана.

Увеличение объемов использования энергии из возобновляемых источников даст и другие положительные результаты. Применение подобных технологий позволяет создать рабочие места, уменьшить загрязнение атмосферы на местном уровне и сократить потребление воды. Технологии производства энергии из возобновляемых источников почти исключительно основаны на использовании местных ресурсов и, следовательно, помогают оградить экономику наших стран от внешних потрясений, связанных с энергетической безопасностью. Важно отметить, что для многих из 173 государств, которые являются членами и подписантами нашей организации, использование возобновляемых источников — это также один из наиболее быстрых способов расширить доступ к электроэнергии. Ярко выраженный модульный характер многих из этих технологий, особенно фотовольтаики, которая основана на использовании энергии солнца, и наземной ветроэнергетики, также означает, что впервые за всю историю электроэнергетики отдельные лица и сообщества играют активную роль в собственном электроснабжении. В этом качестве технологии производства энергии из возобновляемых источников знаменуют собой переход к более демократичной и равномерной энергосистеме.

Преимущества возобновляемых источников энергии многочисленны и очевидны, однако столь же многочисленны и очевидны препятствия к их внедрению. Сложившиеся рыночные структуры, непонимание принципов действия новых технологий, основанных на возобновляемых источниках энергии, затрудненный доступ к финансированию и его высокая стоимость, неадекватные механизмы регулирования, отсутствие системы вознаграждений за компенсацию загрязнения ископаемыми видами топлива (например, выбросов в атмосферу углерода и местных загрязняющих вещества), небольшая емкость рынков и политическая неопределенность — все эти факторы сыграли свою роль в сдерживании использования возобновляемых источников энергии. К счастью, благодаря усердной работе предприятий данной отрасли, правительств, финансовых учреждений и регулирующих органов многие из этих препятствий преодолеваются.

Каждый год, начиная с 2011 года, более половины всех новых вводимых в эксплуатацию генерирующих мощностей составляли генераторы, основанные на технологиях производства энергии из возобновляемых источников. Сегодня задачи, связанные с использованием возобновляемых источников энергии, ставят перед собой 164 страны, тогда как в 2005 году таких стран было всего 43. В 2014 году мировой энергетический баланс пополнился рекордным количеством энергии из возобновляемых источников — 130 ГВт (гигаватт), а объем инвестиций в этот сектор вырос с 55 миллиардов долларов США в 2004 году более чем до 260 миллиардов долларов США в 2014 году. 2014 год также стал рекордным с точки зрения объема введенных в эксплуатацию генерирующих мощностей, основанных на технологиях фотовольтаики (40 ГВт) и ветроэнергетики (52 ГВт).

 

Путь к конкурентоспособности

Экономическая составляющая использования возобновляемых источников энергии имеет ключевое значение для понимания их потенциальной роли в энергетике, а также темпов и стоимости перевода энергетики на действительно устойчивые рельсы. К сожалению, большинство правительств не проводили систематического сбора данных, необходимого для отслеживания тенденций в области эволюции — или, как многие справедливо ее называют, революции — затрат на внедрение технологий, основанных на использовании возобновляемых источников энергии. В результате эффективность политики слишком часто снижалась вследствие неправильного понимания структуры расходов или по причине использования устаревших данных.

Для восполнения этого пробела и обеспечения проведения здравой политики на основе точных и своевременных данных из надежного источника МАВИЭ разработало базу данных мирового уровня, в которую включено около 15 тыс. проектов по производству энергии из возобновляемых источников для коммунального энергоснабжения и почти три четверти миллиона малых систем, основанных на принципах фотовольтаики.

Тенденции, выявленные на основе этой базы данных, показывают не только успех политики, направленной на снижение расходов, но и основу для трансформации энергетического сектора в будущем.

Ценовая конкурентоспособность возобновляемых источников энергии достигла исторического максимума. При наличии хорошей ресурсной базы и структуры затрат энергия биомассы, воды, геотермальных источников и ветра теперь может быть преобразована в электроэнергию на конкурентоспособных условиях по сравнению использованием ископаемых видов топлива.

В 2015 году цены на солнечные батареи снизились на 75—80 процентов по сравнению с ценами, действовавшими в конце 2009 года. За период с 2010 года по 2014 год ранжированные по уровням затраты на производство электроэнергии для коммунального снабжения на основе технологии фотовольтаики сократились наполовину. Наиболее конкурентоспособные проекты коммунального энергоснабжения с использованием энергии солнца обеспечивают регулярные поставки электроэнергии по цене всего 0,08 доллара США за кВт∙ч (киловатт-час) без финансовой поддержки по сравнению с 0,045—0,14 доллара США за кВт∙ч при использовании ископаемых видов топлива. При этом на 2017 год и далее заложена еще более низкая стоимость. Хорошей иллюстрацией этого сдвига служит проведенный недавно в Дубае тендер на поставку электроэнергии по цене 0,06 доллара США за кВт∙ч, притом что данный регион изобилует ископаемыми видами топлива.

Одним из наиболее конкурентоспособных источников энергии на сегодняшний день является ветроэнергетика. Совершенствование технологии, сопровождающееся дальнейшим сокращением затрат на установку оборудования, позволяет снизить стоимость производства на основе энергии ветра до уровня производства на основе ископаемых видов топлива или даже ниже. Проекты по использованию энергии ветра во всем мире стабильно обеспечивают выработку электричества по цене 0,05—0,09 доллара США за кВт∙ч без финансовой поддержки, тогда как в рамках наиболее эффективных проектов стоимость производства оказывается еще ниже.

Выработка электричества на основе концентрированной энергии солнца и наземной ветроэнергетики на данный момент все еще, как правило, оказывается дороже, чем при использовании ископаемых видов топлива, за исключением наземной ветроэнергетики в приливно-отливных зонах. Однако эти технологии пока находятся на этапе зарождения с точки зрения их применения. Обе они основаны на важных возобновляемых источниках энергии, которые будут играть все более значимую роль в энергетическом балансе будущего, поскольку стоимость их использования продолжит снижаться.

Затраты на производство энергии на основе более зрелых технологий, предполагающих использование возобновляемых источников — энергии биомассы, геотермальных источников и воды, — с 2010 года остаются, в основном, стабильными. Однако при наличии незадействованных экономических ресурсов эти зрелые технологии могут обеспечить наиболее дешевую электроэнергию из любого источника.

С учетом затрат на установку оборудования и эффективности современных технологий, основанных на использовании возобновляемых источников энергии, а также стоимости применения традиционных технологий можно говорить о том, что производство энергии из возобновляемых источников все чаще без какой-либо финансовой поддержки может конкурировать на равных с ископаемыми видами топлива.

 

Использование различных возобновляемых источников энергии имеет экономический смысл

Для формирования по-настоящему устойчивой энергетики роль фотовольтаики и ветроэнергетики в электроснабжении должна стремительно расти. Следовательно, основной задачей остается внедрение этих технологий таким образом, чтобы минимизировать любые дополнительные расходы на их интеграцию. Рано или поздно потребуется изменить политику и перейти от изолированного подхода, направленного на поддержку отдельных технологий, к установлению долгосрочных целей для минимизации общесистемных расходов.

Технические препятствия к расширению интеграции в энергосистему различных возобновляемых источников энергии, таких как энергия солнца и ветра, отсутствуют. При низком уровне распространенности стоимость подключения к сетям будет отрицательной или скромной, однако по мере распространения этих технологий она может увеличиться. Но и при этом с учетом экологических последствий использования ископаемых видов топлива на местном и мировом уровне стоимость подключения к сетям представляется значительно меньшим злом, даже если на различные возобновляемые источники будет приходиться 40 процентов общего объема энергоснабжения. Иными словами, при прочих равных и с учетом всех внешних факторов возобновляемые источники энергии остаются принципиально конкурентоспособными.

Каждый вид возобновляемых источников энергии имеет свои нюансы при подключении к системе электроснабжения, однако принцип во всех случаях один и тот же: для удовлетворения ежедневно меняющегося спроса потребуется набор различных технологий производства в различных местах. Энергия воды, биомассы, геотермальных источников и концентрированная солнечная энергия в аккумуляторах тепловой энергии являются базовыми, или контролируемыми, технологиями и не представляют никаких особых проблем для функционирования сетей.

Дополнительные общесистемные расходы, которые могут рассматриваться помимо и сверх расходов на производство энергии из различных возобновляемых источников, относительно невелики. Увеличение расходов в системах передачи и распределения энергии обычно минимально. В то же время общесистемные расходы могут вырасти за счет необходимости дополнительного резерва под перепады напряжения и с учетом циклических изменений погодных условий, чтобы не прекращать энергоснабжение в периоды слабого ветра или снижения интенсивности солнечного излучения.

Однако необходимо также учесть экологические и медицинские последствия использования ископаемых видов топлива в качестве источника энергии. В отсутствие подобного анализа возобновляемые источники энергии не могут конкурировать на равных с традиционными. Если учесть вред, наносимый человеческому здоровью при сжигании ископаемого топлива для производства энергии, в экономическом выражении, а также внешние факторы, связанные с выбросами CO2 (исходя из значений в диапазоне 20—80 долларов США в расчете на тонну CO2), стоимость производства энергии за счет ископаемого топлива вырастет на 0,01—0,13 доллара США за кВт∙ч (в зависимости от страны и применяемой технологии), что приведет к повышению стоимости электроэнергии на основе ископаемых видов топлива до 0,07—0,19 доллара США за кВт∙ч

 

Перспективы дальнейшего снижения расходов на выработку энергии из возобновляемых источников

Вернемся к заголовку данной статьи. «Как возобновляемые источники энергии могут стать конкурентоспособными с точки зрения цены» — не совсем правильное название, потому что технологии производства энергии из возобновляемых источников уже конкурентоспособны. Вопрос должен состоять в том, как еще больше уменьшить затраты и какие проблемы возникают при стремлении к этой цели.

Это ключевой вопрос, с которым мы сталкиваемся сегодня. Итоги анализа, проведенного МАВИЭ, показывают, что конкурентоспособность возобновляемых источников энергии имеет свои нюансы. Стоимость установки оборудования существенно варьируется не только между странами, но и внутри отдельных государств. Некоторые из этих различий связаны со структурными или относящимися к конкретному проекту проблемами, однако во многих случаях этот вопрос можно решить за счет проведения более совершенной политики.

В то же время остаются еще неиспользованные возможности сокращения расходов на оборудование и реализацию проектов. Однако в эпоху низких цен на оборудование дальнейшее сокращение расходов возможно в первую очередь за счет уменьшения сальдо от реализации проекта, а также снижения затрат на осуществление деятельности, техническое обслуживание и финансирование.

Реализация такого потенциала сокращения расходов и уменьшение различий в уровне затрат между рынками имеет определяющее значение для достижения мировых экономических, экологических и социальных целей. Следующим этапом стремительного развития возобновляемых источников энергии станет повышение их конкурентоспособности. Такие страны, как Индия, Иордания, Объединенные Арабские Эмираты и Чили постепенно осознают, что использование возобновляемых источников энергии часто оказывается наиболее экономичным способом удовлетворения спроса на электроэнергию. Однако темпы таких перемен будут слишком низкими для нашей планеты, даже несмотря на рост конкурентоспособности возобновляемых источников энергии.

Настало время воспользоваться открывающейся возможностью и ускорить распространение возобновляемых источников энергии для достижения наших общих целей, предполагающих наличие безопасной, надежной, недорогой и экологически устойчивой энергии. Сейчас это можно сделать дешевле, чем когда-либо, и этот вариант все чаще будет оказываться наиболее экономичным для потребителей сегодня и в долгосрочной перспективе. 

сила солнца, ветра, воды и вулканов

следующая новость >

Альтернативная энергетика: сила солнца, ветра, воды и вулканов

Альтернативная энергетика, основанная на возобновляемых источниках энергии (ВИЭ), демонстрирует большие темпы роста по всей планете. За последние четыре года ее доля в мировом потреблении электричества удвоилась и составила 20%. В России лишь 1% совокупной установленной мощности всей энергосистемы приходится на долю ВИЭ. Однако, стремление занять достойное место среди развитых стран и осознание того, что наши запасы ископаемых источников энергии хоть и велики, но не безграничны, стимулировали ряд мер по развитию этого сектора генерации. Производство энергии на основе ВИЭ получило мощную государственную поддержку1, что вызвало интерес инвесторов. Давайте подробнее рассмотрим основные секторы альтернативной энергетики.

Солнечная энергетика. По данным исследования Global Power Industry Outlook – 2017 добыча солнечной энергии на основе фотоэлементов – фотовольтаика – станет самым быстрорастущим сегментом альтернативной энергетики, ее доля в объеме глобальных инвестиций к 2020 г. составит 37,5%. Решающий фактор для развития солнечной энергетики – количество солнечных дней в году, а не среднегодовая температура, как ошибочно полагают многие.

Получается, Россия обладает всеми необходимыми ресурсами для освоения этого сектора энергетики. По данным Института Энергетической стратегии, потенциал солнечной энергии, поступающей на территорию РФ в течение трех дней, превышает объем годового производства электроэнергии в нашей стране. Солнечные электростанции (СЭС) уже успешно функционируют в Башкортостане, Оренбургской области, на Алтае, в Хакасии и в Крыму. На данный момент в России создано 57 проектов СЭС совокупной установленной мощностью 1089 МВт, 26 из которых уже распределены между застройщиками и будут реализованы к 2022 году.

Ветровая энергетика. Сила ветра использовалась с давних времен, и сегодня она эффективно преобразуется в электроэнергию во многих странах. В Евросоюзе совокупная установленная мощность ветроэнергетических установок (ВЭУ) составляет 10% от совокупной мощности всей энергосистемы, что превышает даже долю угольной генерации. В одной только Германии ветряки производят более 20% электроэнергии, а в Дании – 42%!

Российская Федерация обладает наибольшим в мире ветроэнергетическим потенциалом. Он составляет примерно 260 ТВт⋅ч/год, что равно 30% энергии, производимой электростанциями страны. Сейчас доля ветрогенерации у нас составляет 0,01% от общей установленной мощности энергосистемы. На 70-ти процентах территории России децентрализованное энергоснабжение, но эта зона обладает богатыми ветроресурсами. Камчатка, Магаданская область, Чукотка, Сахалин, Якутия, Бурятия, Таймыр – здесь открываются большие перспективы для развития отечественной ветрогенерации. До 2022 года в России будут построены еще 43 ветроэлектростанции (ВЭС) совокупной мощностью 1651 МВт, для сравнения: на данный момент этот показатель составляет около 80 МВт.

Гидроэнергия также входит в состав возобновляемых источников энергии. Но большие ГЭС не относятся к альтернативной энергетике, так как наносят большой вред природе. Альтернативная гидроэнергетика включает малые ГЭС, приливные и волновые электростанции. Кислогубская приливная электростанция (ПЭС) была построена в 1968 году, став первой в России. Генераторы для нее были разработаны Ленинградским электромашиностроительным заводом, входящем сегодня в состав концерна «Русэлпром». На этапе строительства сейчас находятся еще 3 ПЭС.

Волновая энергетика – одно из самых молодых направлений, оно активно развивается во всем мире и имеет большие перспективы. Волновые электростанции бывают принципиально разных видов, и все они доказали свою эффективность: волновая энергетика уже составляет 1% от мировой добычи электроэнергии. Это связано с тем, что сила морской стихии имеет очень большую мощность. В этой области энергетики Россия старается не отставать от передовых технологий. В экспериментальном режиме у нас работают уже 2 волновые установки: в Приморье и в Крыму.

Геотермальная генерация. Не стоит забывать и об энергии недр земли. Источниками перегретых вод обладают множественные вулканические зоны планеты, в их числе: Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд. Потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных ВИЭ, и зоны их использования невелики. Однако, они составляют большую долю в энергетике таких стран, как Исландия, Филиппины, Мексика, Италия, Индонезия. А в России геотермальная энергия уже обеспечивает электричеством Камчатку на 40%, хотя ее ресурсы еще мало освоены. У нас есть и другие потенциальные регионы для развития геотермальной энергетики: Краснодарский край, Ставрополье, Карачаево-Черкессия, Дагестан.

При переходе на альтернативные источники энергии нужно учитывать особенности конкретного региона. Россия обладает большим потенциалом во всех областях альтернативной энергетики, что является преимуществом и стимулом к развитию технологий, снижению добычи природных ископаемых и вырубки леса, а также сохранению экологии.



Альтернативные источники энергии: виды, плюсы и минусы

Для получения любого вида энергии необходим определенный источник. Как известно, существуют традиционные и нетрадиционные источники энергии, то есть альтернативные.

Традиционными источниками энергии являются нефть, уголь, природный газ. Запасы данных источников энергии исчерпаемы, подлежат длительному восстановлению, а также отрицательно отражаются на экологическом состоянии планеты. Поэтому, большинством стран мира в качестве основного направления развития энергетики определено производство энергии с помощью альтернативных источников энергии. Альтернативные источники энергии относятся к возобновляемым ресурсам, они более экологичны и экономичны.

Основная классификация альтернативных источников энергии

№ п/п Вид альтернативного источника энергии Способ применения
1 Энергия солнечного излучения Фотоэлектрическая панель (ФЭП)

Солнечный коллектор

Солнечная электростанция (СЭС)

2 Энергия ветра Ветроэнергетическая установка (ВЭУ)

Ветряная электростанция (ВЭС)

3 Гидроэнергия Гидроэлектростанция (ГЭС)
4 Энергия приливов и отливов Приливная электростанция (ПЭС)
5 Энергия волн океанов и морей Волновая электростанция (ВЭС)
6 Геотермальная энергия Геотермальная станция (ГеоТЭС)
7 Энергия биомассы (биоэнергия) Переработка твердых, жидких и газообразных видов биотоплива термохимическими, физико-химическими, либо биохимическими методами

Энергия электромагнитного солнечного излучения

Она может использоваться для выработки как электроэнергии, как и тепловой энергии. Прямое преобразование солнечной радиации в электроэнергию производится как путем прямого преобразования за счет явления внутреннего фотоэффекта на фотоэлектрических панелях, так и косвенно с использованием термодинамических методов (получение пара с высоким давлением).

Солнечная электростанция

Получение тепловой энергии из солнечной производится за счет поглощения данной энергии и дальнейшего нагрева поверхности и теплоносителя, как специальными коллекторами, так и при помощи использования приемов «солнечной архитектуры».

Совокупность установок для преобразования энергии Солнца составляет солнечную электростанцию.

Кинетическая энергия ветра

Она служит для преобразования в механическую, тепловую, а также, чаще всего, в электроэнергию. Чтобы получить механическую энергию из кинетической энергии воздушных масс применяют элементарные ветряные мельницы. Однако, для дальнейшего преобразования полученной механической энергии необходимо использование ветрогенератора.

Ветрогенератор позволяет преобразовать механическую энергию вращения ротора в электрическую энергию. Существует возможность накопления полученной электроэнергии при помощи аккумуляторных батарей и использования только при необходимости. Такая установка будет называться ветроэнергетической, или ветроустановкой. Совокупность нескольких ветроустановок будет называться ветряной электростанцией.

Преобразование ветровой энергии в тепловую энергию может производиться как косвенно (путем преобразования механической энергии в электрическую энергию, и затем, использованием полученной энергии для питания электрических приборов отопления), так и напрямую (прямое преобразование механической энергии в тепловую с нагревом теплоносителя производится путем применения вихревого теплогенератора)

Гидроэнергия

Гидроэнергия представляет собой солнечную энергию, преобразованную в потенциальную энергию, накопленную в плотине или водохранилище естественных и искусственных водоемов. Гидроэнергию можно преобразовывать в механическую либо электроэнергию с помощью гидротурбин. Данные установки называют гидроэлектростанциями (ГЭС).

Энергия приливов и отливов

Преобразование энергии приливов и отливов в электроэнергию производится на приливных электрических станциях двумя способами:

  1. Первый способ по принципу преобразования энергии аналогичен преобразованию энергии на гидроэлектростанции путем вращения турбины, связанной с электрогенератором;
  2. При втором способе используется энергия движения воды; данный способ основан на перепаде уровня воды при приливах и отливах.

Энергия волн

Энергия волн используется для получения механической и электрической энергии. Преобразование происходит на специальных волновых электростанциях, принцип работы которых основан на оказании воздействия волн на следующие применяемые устройства: поплавки, маятники, лопасти. Перемещение данных устройств образует механическую энергию, которая далее при помощи электрогенератора преобразуется в электроэнергию.

Геотермальная энергия или энергия тепла Земли

Она может использоваться по прямому назначению, либо для получения электроэнергии. Преобразование энергии происходит на геотермальных станциях – ГеоТЭС.

Источники геотермальной энергии могут быть высоко- и низкопотенциальными. К высокопотенциальным источникам относятся гидротермальные ресурсы (термальная вода). Их применяют для отопления помещений.

Низкопотенциальные источники энергии, в свою очередь, бывают естественными (воздух атмосферы, грунтовая вода, сам грунт) и искусственными (вентиляционный воздух помещения, отработанные воздух, вода или тепло). Данные источники применяют для кондиционирования, теплоснабжения и горячего водоснабжения.

Биоэнергия

Биоэнергию производят из разных видов биологического сырья, которое получается после переработки биоотходов. Из твердых (щепа, пеллеты, древесина, солома), жидких (биоэтанол, биометанол, биодизель) и газообразных (биогаз, биоводород) видов биологического топлива путем термохимических (пиролиз, сжигание), физико-химических (биоконверсия), либо биохимических (анаэробное брожение биомассы) методов преобразования получают тепловую или электрическую энергию.

Преимущества и недостатки альтернативных источников энергии следует рассматривать в индивидуальном порядке, однако выделим несколько общих плюсов и минусов, характерных для всех источников.

Плюсы использования альтернативных источников энергии

  • Возобновляемость
  • Экологический аспект.
  • Широкое распространение, доступность.
  • Низкая себестоимость производства энергии в обозримом будущем.

Минусы применения альтернативных источников энергии

  • Непостоянство, зависимость от погодных условий и времени суток.
  • Невысокий коэффициент полезного действия (за исключение водных источников энергии).
  • Высокая стоимость
  • Недостаточная единичная мощность установок.

Похожие записи

Альтернативная энергетика и ее виды

Альтернативная энергетика это совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии.

Альтернативная энергетика это совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии.

Устройство вырабатывающее электрическую энергию, либо другой вид энергии, и заменяющее традиционные источники энергии, использующие нефть, газ и уголь, называется – альтернативный источник энергии.

Разберем подробнее основные, широко используемые виды альтернативной энергетики:

  1. Солнечная энергетика


    Основным источником энергии являются фотоэлектрические модули (ФЭМ, солнечные панели) преобразующие солнечную энергию (энергию фотонов) в электрическую энергию. Солнечная энергетика все более широко развивается по всему миру, обеспечивая электроэнергией целые поселения. Компания АЛЬТЭКО с 2010 года установила частных солнечных электростанций суммарной мощностью свыше 120 кВт. Солнечная энергетика является самым развивающимся и перспективным видом альтернативной энергетики.

  2. Ветроэнергетика


    Ветро-электрические установки (ВЭУ) или ветрогенераторы – устройства преобразующие кинетическую энергию воздушных масс в электроэнергию. Состоит ветрогенератор из ветродвигателя, генератора электрического тока, мачты и системы управления. Ветрогенераторы бывают вертикально и горизонтально осевыми. Имеют разные вариации лопастей. Основной проблемой в использовании ветрогенератора в Московском регионе являются большие скорости ветра требующиеся для его оптимальной работы – обычно ветрогенератор выдает свою номинальную мощность при скорости ветра от 8-9 м/с, что бывает достаточно редко.

А также:

  • Приливная энергетика, использующая потенциальную энергию волн;
  • Геотермальная энергетика – способ получения электроэнергии путем преобразования внутреннего тепла Земли (энергии горячих пароводяных источников) в электрическую энергию.
  • Биомассовая энергетика – использующая биогаз, выделяющийся при гниении биомасс (навоз, растения и т.д.) для выработки электроэнергии и обогрева.

Возобновляемые источники энергии | Типы, формы и источники

В настоящее время наиболее популярными возобновляемыми источниками энергии являются:

  1. Солнечная энергия
  2. Ветровая энергия
  3. Гидроэнергетика
  4. Приливная энергия
  5. Геотермальная энергия
  6. Энергия биомассы


Как эти типы возобновляемой энергии Энергетическая работа

1) Солнечная энергия

Солнечный свет – один из самых богатых и свободно доступных энергетических ресурсов нашей планеты. Количество солнечной энергии, которая достигает поверхности Земли за один час, превышает общие потребности планеты в энергии за год.Хотя это звучит как идеальный возобновляемый источник энергии, количество солнечной энергии, которое мы можем использовать, варьируется в зависимости от времени суток и сезона года, а также географического положения. В Великобритании солнечная энергия становится все более популярным способом дополнить потребление энергии. Узнайте, подходит ли это вам, прочитав наше руководство по солнечной энергии.

2) Энергия ветра

Ветер – изобильный источник чистой энергии. Ветряные фермы становятся все более привычным явлением в Великобритании, поскольку ветроэнергетика вносит постоянно растущий вклад в национальную энергосистему.Чтобы использовать электричество из энергии ветра, турбины используются для приведения в действие генераторов, которые затем подают электроэнергию в национальную энергосистему. Несмотря на то, что существуют бытовые или «внесетевые» системы выработки электроэнергии, не каждая недвижимость подходит для использования в качестве домашней ветряной турбины. Узнайте больше о ветроэнергетике на нашей странице о ветроэнергетике.

3) Гидроэнергетика

Как возобновляемый источник энергии, гидроэнергетика является одним из наиболее коммерчески развитых. Построив плотину или барьер, можно использовать большой резервуар для создания контролируемого потока воды, который будет приводить в движение турбину, вырабатывающую электричество.Этот источник энергии часто может быть более надежным, чем солнечная или ветровая энергия (особенно если это приливно, а не река), а также позволяет хранить электроэнергию для использования, когда спрос достигает пика. Как и энергия ветра, в определенных ситуациях гидроэнергетика может быть более жизнеспособной в качестве коммерческого источника энергии (в зависимости от типа и по сравнению с другими источниками энергии), но в очень большой степени в зависимости от типа собственности ее можно использовать для бытовых, автономных ‘ поколение. Узнайте больше, посетив нашу страницу о гидроэнергетике.

4) Приливная энергия

Это еще одна форма гидроэнергетики, в которой для привода турбогенераторов используются приливные течения два раза в день.Хотя приливный поток, в отличие от некоторых других источников гидроэнергии, не является постоянным, он очень предсказуем и поэтому может компенсировать периоды, когда приливное течение невелико. Узнайте больше, посетив нашу страницу морской энергетики.

5) Геотермальная энергия

Используя естественное тепло под поверхностью земли, геотермальную энергию можно использовать для обогрева домов напрямую или для выработки электроэнергии. Хотя геотермальная энергия использует энергию прямо у нас под ногами, она имеет незначительное значение в Великобритании по сравнению с такими странами, как Исландия, где геотермальное тепло гораздо более свободно доступно.

6) Энергия биомассы

Это преобразование твердого топлива из растительных материалов в электричество. Хотя по сути, биомасса включает сжигание органических материалов для производства электроэнергии, и в настоящее время это гораздо более чистый и энергоэффективный процесс. Преобразуя сельскохозяйственные, промышленные и бытовые отходы в твердое, жидкое и газовое топливо, биомасса вырабатывает электроэнергию с гораздо меньшими экономическими и экологическими затратами.


Что не является возобновляемым источником энергии?

Ископаемое топливо не является возобновляемым источником энергии, потому что оно не безгранично.Кроме того, они выделяют в нашу атмосферу углекислый газ, который способствует изменению климата и глобальному потеплению.

Сжигать дрова вместо угля немного лучше, но это сложно. С одной стороны, древесина является возобновляемым ресурсом – при условии, что она поступает из устойчиво управляемых лесов. Древесные пеллеты и прессованные брикеты производятся из побочных продуктов деревообрабатывающей промышленности, поэтому, возможно, это отходы вторичной переработки.

Топливо из сжатой биомассы также производит больше энергии, чем бревна. С другой стороны, при сжигании древесины (будь то необработанная древесина или переработанные отходы) частицы попадают в нашу атмосферу.

Будущее возобновляемых источников энергии

По мере роста населения мира растет и спрос на энергию для обеспечения наших домов, предприятий и сообществ. Инновации и расширение возобновляемых источников энергии являются ключом к поддержанию устойчивого уровня энергии и защите нашей планеты от изменения климата.

Возобновляемые источники энергии составляют сегодня 26% мировой электроэнергии, но, по данным Международного энергетического агентства (МЭА), ожидается, что к 2024 году их доля достигнет 30%.«Это поворотное время для возобновляемых источников энергии», – сказал исполнительный директор МЭА Фатих Бирол.

В 2020 году Великобритания совершит новую удивительную веху в области возобновляемых источников энергии. В среду, 10 июня, страна впервые отметила два месяца работы исключительно на возобновляемых источниках энергии. Это большой шаг в правильном направлении для возобновляемых источников энергии. (1)

Ожидается, что в будущем количество возобновляемых источников энергии будет продолжать расти, поскольку мы видим рост спроса на электроэнергию.Это снизит цены на возобновляемые источники энергии – отлично для планеты и для наших кошельков.

Объяснение возобновляемых источников энергии – типы и использование

Какие бывают виды возобновляемой энергии?

  • Древесина —Древесная биомасса включает древесные гранулы; щепа из лесных хозяйств; остатки лесозаготовительных, целлюлозно-бумажных и мебельных производств; и дрова для отопления помещений и приготовления пищи. Самым крупным источником энергии на базе древесины является черного щелока, остатков производства целлюлозы, бумаги и картона.
  • Биотопливо —Биотопливо включает этанол и биодизельное топливо . Большая часть топливного этанола, используемого в Соединенных Штатах, производится из кукурузы. Биодизель производится из зерновых масел и животных жиров.
  • Твердые бытовые отходы и биогаз —Твердые бытовые отходы (ТБО) или мусор содержат биомассу (или биогенные) материалы, такие как бумага, картон, пищевые отходы, скошенная трава, листья, дерево, кожаные изделия и горючие небиомассы. материалы (в основном пластмассы и другие синтетические материалы из нефти).ТБО сжигаются на заводах по переработке отходов в энергию для выработки электроэнергии. Многие свалки в Соединенных Штатах собирают и сжигают биогаз для производства электроэнергии.

Древесина – наш второй по величине источник возобновляемой энергии

Источник: стоковая фотография (защищена авторским правом)

Ветряная электростанция

Источник: стоковая фотография (защищена авторским правом)

  • Обычная гидроэнергетика использует воду в плотинах или в ручьях и реках для вращения турбины и выработки электроэнергии.
  • Насосные системы хранения используют и вырабатывают электроэнергию, перемещая воду между двумя резервуарами на разной высоте.

Геотермальная энергия —Геотермальная энергия – это тепло из горячих недр земли или вблизи поверхности земли. Трещины в земной коре позволяют воде, нагретой за счет геотермальной энергии, естественным образом подниматься на поверхность у горячих источников и гейзеров. Скважины, пробуренные в земле, позволяют контролируемому выпуску пара или воды на поверхность, чтобы приводить в действие паровые турбины для выработки электроэнергии.Почти постоянная температура земли у поверхности земли используется в геотермальных тепловых насосах для отопления и охлаждения зданий.

Энергия ветра —В ветровых турбинах используются лопасти для сбора кинетической энергии ветра. Ветер обтекает лопасти, создавая подъемную силу, которая заставляет лопасти вращаться. Лопасти соединены с приводным валом, который вращает электрогенератор, вырабатывающий электричество.

  • Солнечные тепловые системы используют солнечные коллекторы для поглощения солнечного излучения для нагрева воды или воздуха для отопления помещений и нагрева воды.
  • Солнечные тепловые электростанции используют концентрирующие солнечные коллекторы для фокусировки солнечных лучей для нагрева жидкости до высокой температуры. Эта жидкость генерирует пар для питания турбины и генератора.
  • Фотоэлектрические (PV) системы используют солнечные электрические элементы, которые преобразуют солнечное излучение непосредственно в электричество. Индивидуальные фотоэлементы объединены в модули (панели) различной мощности по выработке электроэнергии. Фотовольтаические системы варьируются от одиночных фотоэлементов для питания вычислителей до крупных электростанций с сотнями модулей для выработки большого количества электроэнергии.

Нажмите для увеличения

Последнее обновление: 13 мая 2021 г.

10 различных альтернативных источников энергии (солнечная, ветровая, геотермальная, биомасса, океан и другие источники энергии)

В мире существует 10 основных альтернативных источников энергии, которые используются для выработки электроэнергии. В то время как другие источники обнаруживаются постоянно, ни один из них не достиг той стадии, когда их можно было бы использовать для обеспечения силы, помогающей функционированию современной жизни.

Все эти различные источники энергии используются в основном для производства электроэнергии. Мир запускается серией электрических реакций – независимо от того, говорите ли вы о машине, которую вы ведете, или о свете, которую вы включаете. Все эти различные источники энергии добавляют к запасу электроэнергии, которая затем отправляется в разные места по линиям высокой мощности.

Виды источников энергии

Их можно разделить на возобновляемые и невозобновляемые источники энергии.

Возобновляемый источник энергии

Возобновляемый источник энергии – это любой природный ресурс, который может быстро и надежно заменить его. Эти источники энергии многочисленны, устойчивы, восполняются естественным образом и не наносят вреда окружающей среде.

Основными видами или источниками возобновляемой энергии являются:

  • Солнечная энергия от солнца
  • Энергия ветра
  • Геотермальная энергия из тепла внутри земли
  • Гидроэнергетика на проточной воде
  • Энергия океана в форме волн, приливов, течений и тепловой энергии океана.
  • Биомасса растений

Невозобновляемый источник энергии

Невозобновляемый источник энергии – это источник с ограниченным запасом, который мы можем добывать или извлекать из земли, и в конечном итоге он закончится.

Они образовались за тысячи лет из захороненных останков древних морских растений и животных, которые жили миллионы лет назад. Большинство этих источников энергии представляют собой «грязные» ископаемые виды топлива, которые, как правило, вредны для окружающей среды.

Основными видами или источниками невозобновляемой энергии являются:

  • Нефть
  • Углеводородные газы сжиженные
  • Природный газ
  • Уголь
  • Атомная энергия

Различные источники энергии

Вот обзор каждого из различных источников энергии, которые используются, и каковы потенциальные проблемы для каждого из них.

1. Солнечная энергия

Первичный источник энергии – солнце.Солнечная энергия собирает энергию солнца с помощью коллекторных панелей для создания условий, которые затем можно превратить в своего рода энергию. Большие поля солнечных панелей часто используются в пустыне для сбора энергии, достаточной для зарядки небольших подстанций, а во многих домах солнечные системы используются для обеспечения горячей водой, охлаждения и дополнения своей электроэнергии.

Проблема с солнечной батареей заключается в том, что, хотя солнечного света достаточно, только определенные географические районы мира получают достаточное количество прямой энергии солнца на достаточно долгое время для выработки полезной энергии из этого источника.

Его доступность также зависит от смены времен года и погоды, когда они не всегда могут использоваться. Это требует больших начальных инвестиций для продуктивного использования, поскольку технология хранения солнечной энергии еще не достигла своего оптимального потенциала.

2. Ветровая энергия

Энергия ветра становится все более распространенной. Новые инновации, которые позволяют появляться ветряным электростанциям, делают их более распространенным явлением. Используя большие турбины, которые используют имеющийся ветер в качестве силы для вращения, турбина может затем вращать генератор для производства электроэнергии.

Это требует больших вложений, и скорость ветра также не всегда одинакова, что влияет на выработку электроэнергии. Хотя многим это казалось идеальным решением, в реальности ветряные электростанции начинают обнаруживать непредвиденные экологические последствия, которые могут не сделать их идеальным выбором.

3. Геотермальная энергия

Источник: Canva

Геотермальная энергия – это энергия, которая вырабатывается из-под земли. Он чистый, экологичный и экологически чистый. В земной коре из-за медленной задержки радиоактивных частиц постоянно возникают высокие температуры.Горячие камни, находящиеся под землей, нагревают воду, которая производит пар. Затем пар улавливается, что помогает двигать турбины. Затем вращающиеся турбины приводят в действие генераторы.

Геотермальная энергия может использоваться в жилых помещениях или в промышленных масштабах. В древние времена он использовался для купания и обогрева помещений. Геотермальные установки обычно имеют низкие выбросы, если они закачивают пар и воду, которые они используют, обратно в резервуар.

Самым большим недостатком геотермальной энергии является то, что ее можно производить только на определенных участках по всему миру.Самая большая группа геотермальных электростанций в мире расположена на геотермальном поле Гейзеры в Калифорнии, США.

Другой недостаток заключается в том, что там, где нет подземных резервуаров, создание геотермальных электростанций может увеличить риск землетрясения в районах, которые уже считаются геологическими горячими точками.

4. Водородная энергия

Водород доступен вместе с водой (h3O) и является наиболее распространенным элементом на Земле. Вода содержит две трети водорода и может быть найдена в сочетании с другими элементами.

После отделения его можно использовать в качестве топлива для выработки электроэнергии. Водород является огромным источником энергии и может использоваться в качестве источника топлива для кораблей, транспортных средств, домов, промышленных предприятий и ракет. Он полностью возобновляем, может производиться по запросу и не оставляет токсичных выбросов в атмосферу.

5. Приливная энергия

Источник: Canva

Приливная энергия использует приливы и отливы для преобразования кинетической энергии приходящих и исходящих приливов в электрическую.Производство энергии с помощью приливной энергии наиболее распространено в прибрежных районах. Приливная энергия является одним из возобновляемых источников энергии и производит большое количество энергии, даже когда приливы идут с небольшой скоростью.

Когда уровень воды в океане увеличивается, возникают приливы, которые несутся в океане взад и вперед. Чтобы получить достаточную мощность от потенциала приливной энергии, высота прилива должна быть как минимум на пять метров (около 16 футов) выше, чем при отливе.

Огромные инвестиции и ограниченная доступность участков – вот лишь некоторые из недостатков приливной энергии. Высокое гражданское строительство и высокие тарифы на закупку электроэнергии делают капитальные затраты на электростанции с приливной энергией очень высокими.

6. Волновая энергия

Источник: Canva

Волновая энергия вырабатывается волнами, производимыми в океанах. Поскольку океан управляется гравитацией луны, использование ее силы становится привлекательным вариантом. Были изучены различные методы преобразования энергии волн в электроэнергию с использованием плотиноподобных конструкций или устройств, закрепленных на дне океана, на поверхности воды или чуть ниже нее.

Волновая энергия является возобновляемой, экологически чистой и не наносит вреда атмосфере. Его можно использовать в прибрежных регионах многих стран, и он может помочь стране уменьшить свою зависимость от зарубежных стран в плане топлива.

Производство волновой энергии может нанести ущерб морской экосистеме, а также может быть источником беспокойства для частных и коммерческих судов. Он сильно зависит от длины волны, а также может быть источником визуального и шумового загрязнения. Эта энергия также менее интенсивна по сравнению с тем, что доступно в более северных и южных широтах.

7. Гидроэнергетика

Источник: Canva

Многие люди не знают, что большинство крупных и малых городов мира полагаются на гидроэнергетику в прошлом веке. Каждый раз, когда вы видите крупную плотину, она дает электроэнергию где-то на электростанции. Сила воды используется для включения генераторов для производства электричества, которое затем используется. Он не загрязняет окружающую среду, не влечет за собой отходов и выделяет токсичные газы.

Проблемы, с которыми сейчас сталкивается гидроэнергетика, связаны со старением плотин.Многие из них нуждаются в серьезных реставрационных работах, чтобы они оставались функциональными и безопасными, а это стоит огромных денег. Утечка питьевой воды в мире также вызывает проблемы, поскольку поселкам может потребоваться питьевая вода, которая обеспечивает их электроэнергией.

8. Энергия биомассы

Источник: Canva

Энергия биомассы производится из органических материалов и широко используется во всем мире. Хлорофилл, присутствующий в растениях, улавливает солнечную энергию, превращая углекислый газ из воздуха и воды из земли в углеводы в процессе фотосинтеза.Когда растения сжигаются, вода и углекислый газ снова выбрасываются обратно в атмосферу.

Биомасса обычно включает зерновые культуры, растения, деревья, обрезки дворов, древесную стружку и отходы животноводства. Энергия биомассы используется для отопления и приготовления пищи в домах, а также в качестве топлива в промышленном производстве.

Однако сбор топлива был тяжелым. Этот вид энергии производит большое количество углекислого газа в атмосферу. В отсутствие достаточной вентиляции при приготовлении пищи в помещении топливо, такое как навоз, вызывает загрязнение воздуха, что представляет серьезную опасность для здоровья.Более того, неустойчивое и неэффективное использование биомассы приводит к уничтожению растительности и, следовательно, к деградации окружающей среды.

9. Атомная энергетика

Источник: Canva

. Хотя ядерная энергетика остается предметом споров о том, насколько безопасно ее использовать и действительно ли она энергоэффективна, если принять во внимание отходы, которые она производит, факт остается фактом. возобновляемые источники энергии, доступные в мире.

Энергия создается посредством определенной ядерной реакции, которая затем собирается и используется в генераторах.Хотя почти в каждой стране есть ядерные генераторы, существуют моратории на их использование или строительство, поскольку ученые пытаются решить проблемы безопасности и утилизации отходов.

Ядерная энергия производится из урана, невозобновляемого источника энергии, атомы которого расщепляются (посредством процесса, называемого ядерным делением) для получения тепла и, в конечном итоге, электричества. Ученые считают, что уран был создан миллиарды лет назад, когда образовались звезды. Уран находится повсюду в земной коре, но добывать его и перерабатывать в топливо для атомных электростанций слишком сложно или слишком дорого.

В будущем ядерная энергетика будет использовать реакторы на быстрых нейтронах, не только за счет использования примерно в 60 раз больше энергии урана, но и за счет раскрытия потенциального использования тория, который является более распространенным элементом, в качестве топлива. Теперь около 1,5 миллиона тонн обедненного урана, считающегося не более чем отходами, становятся топливным ресурсом.

Фактически, в процессе работы они будут «обновлять» свой собственный топливный ресурс. Возможный результат состоит в том, что ресурс топлива, доступный для реакторов на быстрых нейтронах, настолько велик, что значительное истощение источника топлива практически невозможно.

10. Ископаемое топливо (уголь, нефть и природный газ)

Источник: Canva

Когда большинство людей говорят о различных источниках энергии, они перечисляют природный газ, уголь и нефть в качестве возможных вариантов – все они считаются лишь одним источником энергии из ископаемого топлива. Ископаемое топливо является источником энергии для большей части мира, в основном с использованием угля и нефти.

Нефть перерабатывается во многие продукты, наиболее используемым из которых является бензин. Природный газ становится все более распространенным, но используется в основном для отопления, хотя на улицах появляется все больше и больше автомобилей, работающих на природном газе.

С ископаемым топливом существует двоякая проблема. Чтобы получить ископаемое топливо и преобразовать его для использования, должно произойти сильное разрушение и загрязнение окружающей среды. Запасы ископаемого топлива также ограничены, ожидается, что их хватит еще на 100 лет с учетом базового уровня потребления.

Трудно определить, какой из этих источников энергии лучше всего использовать. У всех есть свои плюсы и минусы. Хотя сторонники каждого типа власти рекламируют свою как лучшую, правда в том, что все они ошибочны.Что должно произойти, так это согласованные усилия, чтобы изменить то, как мы потребляем энергию, и создать баланс между тем, из каких из этих источников мы черпаем.

Что такое возобновляемая энергия? – Определение, типы, преимущества и проблемы

Хотя возобновляемые источники энергии часто рассматриваются как решение будущего наших энергетических потребностей, мы веками использовали естественную силу природы. Ветряные мельницы и водяные колеса использовались для питания зернохранилищ, а солнце использовалось для создания огня для тепла и света.

Однако люди стали все больше зависеть от использования ископаемых видов топлива, включая уголь и природный газ. Было показано, что широкое использование этих типов энергии оказало пагубное воздействие на планету, вызвав повышение глобальных температур, учащение экстремальных погодных явлений и, как следствие, потерю естественной среды обитания.

Последние достижения в области улавливания и хранения, наряду с глобальным движением к Net Zero, привели к расширению производства возобновляемой и зеленой энергии.Эти достижения варьируются от мелкомасштабного производства, такого как установка солнечных панелей в доме, до крупных объектов, таких как морские ветряные электростанции.

Существует ряд разработанных возобновляемых источников энергии, каждый из которых предлагает свои преимущества и проблемы в зависимости от таких факторов, как географическое положение, требования к использованию и даже время года.

1. Солнечная энергия

Потенциал Солнца в обеспечении наших потребностей в энергии огромен, учитывая тот факт, что энергия, достаточная для удовлетворения потребностей планеты в энергии в течение всего года, достигает Земли от Солнца всего за один час.Однако проблема всегда оставалась в том, как использовать и использовать этот огромный потенциал.

В настоящее время мы используем солнечную энергию для обогрева зданий, нагрева воды и питания наших устройств. Электроэнергия собирается с помощью солнечных или фотоэлектрических элементов, изготовленных из кремния или других материалов. Эти клетки преобразуют солнечный свет в электричество и могут питать все, от мельчайшего садового светильника до целых кварталов. Панели на крыше могут обеспечивать электричеством дом, в то время как общественные проекты и солнечные фермы, использующие зеркала для концентрации солнечного света, могут создавать гораздо более крупные запасы.Солнечные фермы также могут быть созданы в водоемах, так называемые «плавающие вольтаики». Они предоставляют еще один вариант для размещения солнечных панелей.

Помимо возобновляемых источников энергии, солнечные энергетические системы также являются экологически чистыми источниками энергии, поскольку они не производят загрязнителей воздуха или парниковых газов. Если панели правильно расположены и изготовлены, они также могут считаться зеленой энергией, поскольку не оказывают неблагоприятного воздействия на окружающую среду.

2. Ветроэнергетика

Энергия ветра работает так же, как и старые ветряные мельницы, используя силу ветра для вращения лопасти.Если движение этих лопастей раньше заставляло жерновы измельчать вместе и производить муку, то современные турбины приводят в действие генератор, который вырабатывает электричество.

Когда ветряные турбины устанавливаются на суше, их необходимо размещать в местах с сильным ветром, таких как вершины холмов или открытые поля и равнины. Оффшорная ветроэнергетика развивалась десятилетиями, и ветряные электростанции обеспечивали хорошее решение для выработки энергии, избегая при этом многих жалоб на неприглядный вид или шум на суше.Конечно, использование на море имеет свои недостатки из-за агрессивных сред, в которых турбины должны работать.

3. Гидроэнергетика

Гидроэлектроэнергия работает аналогично ветровой энергии в том смысле, что она используется для вращения лопастей турбины генератора для выработки электричества. Гидроэнергетика использует быстро движущуюся воду из рек или водопадов для вращения лопастей турбин и широко используется в некоторых странах. В настоящее время это крупнейший возобновляемый источник энергии в Соединенных Штатах, хотя энергия ветра быстро сокращает разрыв.

Плотины гидроэлектростанций являются возобновляемым источником энергии, но это не обязательно источники зеленой энергии. Многие из более крупных «мегаплотин» отвлекают природные источники воды, что оказывает негативное воздействие на население животных и людей из-за ограниченного доступа к источнику воды. Однако при тщательном управлении меньшие гидроэлектростанции (менее 40 мегаватт) не оказывают такого катастрофического воздействия на местную окружающую среду, как отклонение лишь части водного потока.

4.Энергия биомассы

Энергия биомассы использует органические материалы растений и животных, включая сельскохозяйственные культуры, деревья и древесные отходы. Эта биомасса сжигается для получения тепла, которое приводит в действие паровую турбину и вырабатывает электричество. Хотя биомасса может быть возобновляемой, если она получена из устойчивых источников, во многих случаях это не зеленая или чистая энергия.

Исследования показали, что биомасса из лесов может производить более высокие выбросы углерода, чем ископаемое топливо, а также оказывать неблагоприятное воздействие на биоразнообразие.Несмотря на это, некоторые формы биомассы действительно предлагают вариант с низким содержанием углерода при определенных обстоятельствах. Например, опилки и древесная щепа с лесопилок могут использоваться для получения энергии из биомассы, где она обычно разлагается и выделяет более высокие уровни углерода в атмосферу.

6. Геотермальная энергия

Геотермальная энергия использует тепло, удерживаемое в ядре Земли, которое создается в результате медленного распада радиоактивных частиц в горных породах в центре планеты. Путем бурения скважин мы можем вывести на поверхность сильно нагретую воду, которая может использоваться в качестве гидротермального ресурса для вращения турбин и выработки электроэнергии.Этот возобновляемый ресурс можно сделать более экологичным, закачав пар и горячую воду обратно в землю, тем самым снизив выбросы.

Доступность геотермальной энергии тесно связана с географическим положением, так как такие места, как Исландия, имеют легкодоступные и готовые источники геотермальных ресурсов.

Прочтите наше полное руководство по геотермальной энергии

7. Приливная сила

Tidal power предлагает вариант возобновляемой энергии, поскольку приливом управляет постоянное гравитационное притяжение Луны.Мощность, которую может генерировать прилив, может быть непостоянной, но она надежна, что делает этот относительно новый ресурс привлекательным вариантом для многих.

Однако необходимо проявлять осторожность в отношении воздействия на окружающую среду приливной энергии, поскольку приливные заграждения и другие сооружения, похожие на плотины, могут нанести вред дикой природе.

Возобновляемая энергия предлагает ряд преимуществ, в том числе бесплатный источник выработки энергии. По мере роста сектора также наблюдается всплеск создания рабочих мест для разработки и внедрения решений в области возобновляемых источников энергии завтрашнего дня.Возобновляемые источники также обеспечивают больший доступ к энергии в развивающихся странах и также могут снизить счета за электроэнергию.

Конечно, одним из самых больших преимуществ возобновляемой энергии является то, что большая часть ее также считается зеленой и чистой энергией. Это привело к росту использования возобновляемых источников энергии, особенно преобладающими ветряными и солнечными источниками.

Однако эти экологические преимущества не являются исключительной прерогативой возобновляемых источников энергии. Ядерная энергия также является источником энергии с нулевым выбросом углерода, поскольку она генерирует или выделяет очень низкие уровни CO2.Некоторые предпочитают ядерную энергию таким ресурсам, как солнце и ветер, поскольку ядерная энергия является стабильным источником, не зависящим от погодных условий. Это подводит нас к некоторым недостаткам возобновляемой энергии…

Как упоминалось выше, нельзя постоянно полагаться на многие возобновляемые источники энергии. Когда солнце садится или прячется за облаком, мы не можем генерировать солнечную энергию, а когда не дует ветер, мы не можем производить достаточно энергии ветра. По этой причине ископаемое топливо все еще используется для пополнения возобновляемых источников во многих странах.

Эта переменная производственная мощность означает, что требуются большие решения по хранению энергии для обеспечения достаточного количества энергии, когда производство возобновляемой энергии сокращается. Альтернативным решением является развертывание нескольких возобновляемых технологий, создание более гибкой системы поставок, которая может противодействовать спаду производства для данного источника.

Некоторые возобновляемые ресурсы, такие как гидроэнергетика и биомасса, не страдают от этих проблем с поставкой, но у них обоих есть свои проблемы, связанные с воздействием на окружающую среду, как отмечалось выше.

В дополнение к этому, некоторые возобновляемые источники энергии, такие как солнечные и ветряные электростанции, вызывают жалобы местных жителей, которые не хотят жить рядом с ними.

Однако это не всегда так, как показывает пример ветряной электростанции Ардоссан в Шотландии, где, по мнению большинства местных жителей, ферма улучшила территорию. Кроме того, исследование, проведенное правительством Великобритании, показало, что «проекты, как правило, имеют больше шансов на успех, если они пользуются широкой общественной поддержкой и согласием местных сообществ.Это означает предоставление сообществам права голоса и доли ». Эта теория была подтверждена в Германии и Дании, где проекты возобновляемых источников энергии, принадлежащие сообществу, оказались популярными.

Что такое невозобновляемая энергия?

Невозобновляемая энергия поступает из источников, которые либо закончатся, либо не будут восполняться в течение тысяч (или миллионов) лет. К ним относятся ископаемое топливо, такое как уголь, и природный газ, которые сжигаются для выработки электроэнергии.

Почему это важно?

Возобновляемые источники энергии важны, поскольку они могут обеспечить бесперебойную подачу электроэнергии без использования природных ресурсов.Также снижается риск возникновения экологических проблем, таких как разливы топлива, и минимальные проблемы с выбросами, а также уменьшается потребность в импортном топливе. Благодаря надежным поставкам и диверсификации видов топлива возобновляемые источники энергии могут удовлетворить наши потребности в электроэнергии на долгие годы.

Насколько это эффективно?

Эффективность возобновляемых источников энергии зависит от используемых ресурсов. Некоторые возобновляемые источники более доступны и эффективны, чем другие, в то время как некоторые, например геотермальные, в некоторых местах очень полезны, а в других – нет из-за доступности.Однако, несмотря на эти проблемы, возобновляемые источники энергии могут снизить выбросы в электроэнергетике примерно на 80%.

Какой вид возобновляемой энергии лучший?

Не существует «наилучшего типа» возобновляемой энергии, так как использование во многом зависит от местоположения. Исландия, например, обладает обширными геотермальными ресурсами, в то время как такие места, как высокогорье Шотландии, хорошо подходят для использования энергии ветра. В других областях лучше всего подходит солнечная энергия, в то время как Соединенные Штаты инвестировали в гидроэнергетику.У каждого типа возобновляемой энергии есть преимущества и недостатки, часто связанные с энергоснабжением, а это означает, что лучшим решением часто является совместное использование различных типов ресурсов.

Где чаще всего используются возобновляемые источники энергии?

Исследование стран по всему миру показало, что Германия использует наибольшее количество возобновляемой энергии – 12,74%. Далее следуют Великобритания (11,95%), Швеция (10,96%), Испания (10,17%), Италия (8,8%), Бразилия (7,35%), Япония (5,3%), Турция (5,25%), Австралия (4,75%). %) и США (4.32%) все входят в первую десятку.

Очевидно, что необходимо проделать большую работу для увеличения этих показателей использования, чтобы достичь полностью возобновляемого будущего, но эта потребность движет отрасль вперед и создает возможности в этом секторе.

Закончатся ли возобновляемые источники энергии?

Возобновляемые источники энергии не закончатся – по крайней мере, в течение многих миллионов лет (например, в случае солнца). Они представляют собой жизнеспособную альтернативу невозобновляемым ресурсам, таким как ископаемое топливо, в то время как многие из них также являются экологически чистыми и практически не производят CO2.

Может ли возобновляемая энергия заменить ископаемое топливо?

Есть надежда, что возобновляемая энергия однажды заменит ископаемое топливо. На планете ограниченное количество угля и нефти, поэтому они в конечном итоге закончатся. Это означает, что будущее должно быть возобновляемым. Кроме того, экологические преимущества чистой, зеленой и возобновляемой энергии в будущем становятся все более очевидными по мере того, как глобальное потепление продолжается.

Чтобы полностью заменить ископаемое топливо, необходимо будет продолжать внедрять инновационные решения в области возобновляемых источников энергии.Кроме того, существует большая вероятность того, что возобновляемые источники необходимо будет использовать совместно друг с другом для обеспечения стабильного снабжения. Существует потребность в более чистых методах производства и улучшенном управлении энергопотреблением и хранением.

Хотя полностью возобновляемое будущее возможно, предстоит еще много работы, прежде чем мир будет готов полностью отказаться от ископаемого топлива.

Возобновляемые источники энергии, похоже, станут важной частью будущего энергобаланса наряду с другими чистыми источниками, такими как ядерная энергия.Стремление к более экологичному будущему для производства электроэнергии способствует увеличению числа рабочих мест в отраслях возобновляемой энергетики, таких как солнечная и ветровая. Эта тенденция, похоже, сохранится, поскольку правительства стремятся достичь нулевого уровня.

Связанные часто задаваемые вопросы (FAQ)

Полное руководство по 7 возобновляемым источникам энергии

Что такое возобновляемая энергия и как она работает?

Вам было интересно, что на самом деле означает «возобновляемая энергия»? Возобновляемые источники энергии буквально находятся в солнечном свете, в воздухе, глубоко под землей и в наших океанах.Они являются частью физической структуры планеты, а это означает, что они постоянно обновляются естественным путем. Они просто не могут закончиться.

Эти устойчивые источники энергии часто называют «альтернативной энергией», потому что они считаются альтернативой традиционным ископаемым видам топлива, таким как нефть и уголь. Тот факт, что источник энергии является возобновляемым, не означает, что он на 100% экологически безопасен. Например, плотины используют силу движущейся воды, но они также могут нанести вред рыбе и дикой природе.Ветряные турбины используют солнечную энергию для производства чистой электроэнергии, но производственный процесс оказывает влияние на окружающую среду.

В общем, альтернативные источники энергии наносят гораздо меньший вред окружающей среде, чем ископаемое топливо. Вот почему возобновляемые источники энергии так важны – они являются нашим билетом в менее загрязненный мир. Даже если мы не столкнемся с угрозой изменения климата, минимизация загрязнения является основой хорошего здоровья.

И то, что хорошо для окружающей среды, становится все более выгодным с экономической точки зрения для домовладельцев и предприятий.В частности, солнечная и ветровая энергия сейчас дешевле ископаемого топлива во многих частях мира, и цена продолжает снижаться ежегодно. (Узнайте все о солнечной энергии в нашем Центре солнечных ресурсов.)

Так как же работают возобновляемые источники энергии? Вот семь источников чистой энергии, которые можно использовать прямо или косвенно, чтобы помочь нашему миру стать экологичным и бороться с глобальным потеплением. Помимо геотермальной энергии и водорода, солнце играет важную роль в каждом из этих типов возобновляемых источников энергии.

Экологичность и чистота: устойчивые источники энергии

Пять типов альтернативной энергии генерируются естественным процессом, таким как солнечный свет или волны. Как правило, это наиболее устойчивые формы энергии.

Солнечная энергия

Солнечный свет – это возобновляемый ресурс, и наиболее прямое его использование достигается за счет улавливания солнечной энергии. Для преобразования солнечной энергии и света в тепло используются различные технологии солнечной энергии: освещение, горячая вода, электричество и (как это ни парадоксально) системы охлаждения для предприятий и промышленности.

Фотоэлектрические системы используют солнечные элементы для преобразования солнечного света в электричество. Солнечные системы горячего водоснабжения могут использоваться для обогрева зданий за счет циркуляции воды через плоские солнечные коллекторы. Зеркальная посуда, предназначенная для кипячения воды в обычном парогенераторе, может производить электричество, концентрируя солнечное тепло. Коммерческие и промышленные здания также могут использовать солнечную энергию для более крупных нужд, таких как вентиляция, отопление и охлаждение. Наконец, продуманные архитектурные проекты могут пассивно использовать солнце в качестве источника света для обогрева и охлаждения.

Домовладельцы, предприятия и государственные учреждения могут воспользоваться преимуществами солнечной энергии разными способами: установить домашнюю солнечную систему или коммерческие солнечные панели; построить или переоборудовать здание, чтобы включить солнечные системы горячего водоснабжения, охлаждения или вентиляции; проектировать с нуля конструкции, которые используют естественные свойства солнца для пассивного обогрева и освещения.

Захват ветра

Ветер можно рассматривать как форму солнечной энергии, поскольку неравномерное нагревание и охлаждение атмосферы вызывают ветры (а также вращение Земли и другие топографические факторы).Ветровой поток может быть уловлен ветряными турбинами и преобразован в электричество. В меньшем масштабе ветряные мельницы все еще используются для перекачивания воды на фермах.

Имеются ветроэнергетические установки коммерческого класса для удовлетворения потребностей многих организаций в возобновляемых источниках энергии.

Одинарные ветряные турбины могут вырабатывать электроэнергию в дополнение к существующей электросети. Когда дует ветер, электроэнергия, вырабатываемая системой, идет на компенсацию потребности в электроэнергии, поставляемой коммунальными предприятиями.

Ветряные электростанции коммунального масштаба вырабатывают электроэнергию, которую можно купить на оптовом рынке электроэнергии по контракту или на конкурсной основе.

Геотермальная энергия: энергия Земли

Геотермальная энергия получается из тепла земли. Это тепло может поступать близко к поверхности или от нагретых камней и резервуаров с горячей водой на много миль под нашими ногами.

Геотермальные электростанции используют эти источники тепла для производства электроэнергии. В гораздо меньших масштабах система геотермального теплового насоса может использовать постоянную температуру земли, находящуюся всего в 10 футах от поверхности, чтобы обеспечить теплом соседнее здание зимой или охладить его летом.

Геотермальная энергия может быть частью решения коммерческой коммунальной энергетики в крупном масштабе или может быть частью устойчивой практики на местном уровне. Прямое использование геотермальной энергии может включать отопление офисных зданий или производственных предприятий; помощь в выращивании тепличных растений; подогрев воды в рыбных хозяйствах; и помощь в различных промышленных процессах (например, пастеризация молока).

Узнайте больше о геотермальной энергии на Energy Informative.

От водяных колес к гидроэлектроэнергии

Гидроэнергетика – не новое изобретение, хотя водяные колеса, которые когда-то использовались для работы мельниц и лесопилок в ранней Америке, теперь в основном функционируют как исторические места и музеи.

Сегодня кинетическая энергия текущих рек улавливается совершенно другим способом и преобразуется в гидроэлектричество. Вероятно, наиболее известный тип гидроэлектроэнергии вырабатывается системой, в которой сооружаются плотины для хранения воды в резервуаре, который при сбросе течет через турбины для производства электроэнергии.

Это известно как «гидроаккумулирующая энергия», при которой вода циркулирует между нижним и верхним резервуарами для контроля выработки электроэнергии между периодами низкого и пикового спроса.

Другой тип, называемый «русловая гидроэлектростанция», направляет часть речного стока через канал и не требует плотины. По размеру гидроэлектростанции могут варьироваться от масштабных проектов, таких как плотина Гувера, до микрогидроэнергетических систем.

Прямое использование гидроэлектроэнергии, естественно, зависит от географического положения. Предполагая, что надежный источник водного пути доступен и доступен, можно построить микрогидроэлектростанции для снабжения электроэнергией фермерских хозяйств и ранчо или небольших муниципалитетов.

Малые города могут использовать энергию местных водных путей, строя гидроэнергетические системы среднего размера.

Узнайте больше о гидроэнергетике на веб-сайте Геологической службы США.

Сила океана

Океан может производить два типа энергии: тепловую энергию солнечного тепла и механическую энергию приливов и волн.

Тепловая энергия океана может быть преобразована в электричество с помощью нескольких различных систем, которые зависят от температуры теплой поверхностной воды.«Механическая энергия океана» использует приливы и отливы, вызванные вращением Земли и гравитационным влиянием Луны. Энергию ветровых волн также можно преобразовать и использовать для снижения затрат на электроэнергию.

Существуют также менее развитые технологии, которые используют океанические течения, океанические ветры и градиенты солености в качестве источников преобразования энергии.

Холодная океанская вода из глубины под поверхностью может использоваться для охлаждения зданий (при этом опресненная вода часто образуется в качестве побочного продукта), а прибрежные общины могут использовать описанные выше методы для извлечения естественной энергии океана, чтобы дополнить городские потребности в электроэнергии и энергии.

Энергия океана является развивающимся источником альтернативной энергии, и, поскольку более 70 процентов поверхности нашей планеты покрыто океаном, ее будущее выглядит многообещающим, в зависимости от географического положения и нормативных требований.

Другие альтернативные источники энергии

Эти два типа возобновляемой энергии должны производиться механическими средствами, а не естественным путем.

Биоэнергетика – это тип возобновляемой энергии, получаемой из биомассы для производства тепла и электроэнергии или для производства жидкого топлива, такого как этанол и биодизель, используемых для транспорта.

Биомасса относится к любому органическому веществу, полученному из недавно появившихся растений или животных. Несмотря на то, что биоэнергетика генерирует примерно такое же количество углекислого газа, как ископаемое топливо, замещающие растения выращиваются в виде биомассы для удаления равного количества CO2 из атмосферы, сохраняя относительно нейтральное воздействие на окружающую среду.

Существует множество систем, используемых для выработки этого типа электричества, от прямого сжигания биомассы до улавливания и использования метана, образующегося в результате естественного разложения органических материалов.

Как используется биоэнергетика? Предприятия или организации, которые перевозят товары или людей, могут переоборудовать свой автопарк на автомобили, которые используют биотопливо, такое как этанол или биодизель.

Производственные мощности могут быть оборудованы для непосредственного сжигания биомассы для производства пара, улавливаемого турбиной для выработки электроэнергии.

В некоторых случаях этот процесс может иметь двойную цель: как для питания объекта, так и для его нагрева. Например, бумажные фабрики могут использовать древесные отходы для производства электроэнергии и пара для отопления.Фермерские хозяйства могут преобразовывать отходы животноводства в электричество с помощью небольших модульных систем.

Города могут использовать метан, образующийся в результате анаэробного сбраживания органических отходов на свалках, и использовать его в качестве топлива для выработки электроэнергии.

Узнайте больше о биоэнергетике здесь.

Водород: высокая энергия / низкое загрязнение

Водород – простейший (состоящий из одного протона и одного электрона) и самый распространенный элемент во Вселенной, но он не встречается на Земле в естественных условиях в виде газа.Вместо этого он содержится в органических соединениях (углеводородах, таких как бензин, природный газ, метанол и пропан) и воде (h3O). Водород также может производиться при определенных условиях некоторыми водорослями и бактериями, использующими солнечный свет в качестве источника энергии.

Водород содержит много энергии, но при сгорании производит мало или совсем не загрязняет окружающую среду. Жидкий водород использовался для запуска космических кораблей и других ракет на орбиту с 1950-х годов. Водородные топливные элементы преобразуют потенциальную химическую энергию водорода в электричество с чистой водой и теплом в качестве единственных побочных продуктов.

Однако коммерциализация этих топливных элементов в качестве практического источника зеленой энергии, вероятно, будет ограничена до тех пор, пока не снизятся затраты и не повысится срок службы. Почти весь водород, используемый в Соединенных Штатах, используется в промышленности для очистки нефти, обработки металлов, производства удобрений и обработки пищевых продуктов. Кроме того, водородные топливные элементы используются в качестве источника энергии, где атомы водорода и кислорода объединяются для выработки электроэнергии.

В настоящее время в Соединенных Штатах также эксплуатируется несколько сотен автомобилей с водородным двигателем, и это число может увеличиться по мере снижения стоимости производства топливных элементов и увеличения количества заправочных станций.Другие практические применения этого типа возобновляемой энергии включают большие топливные элементы, обеспечивающие аварийное электричество для зданий и удаленных мест, электромоторные транспортные средства, работающие на водородных топливных элементах, и морские суда, работающие на водородных топливных элементах.

Узнайте больше о водородной энергии на веб-сайте Energy Information Agency .

Похожие сообщения

Какие существуют шесть различных типов технологий использования возобновляемых источников энергии?

В последние годы популярность чистой энергии резко возросла, поскольку ряд крупнейших экономик стремятся уменьшить свою зависимость от ископаемых видов топлива, загрязняющих окружающую среду.

В 2018 году 28% мировой электроэнергии было произведено из возобновляемых источников энергии, 96% из которых было произведено с помощью гидроэнергетических, ветровых и солнечных технологий (Фото: Shutterstock / Альберто Масново)

Ветровая и солнечная энергия – это только две из шести различные типы технологий возобновляемых источников энергии, которые используются во всем мире.

В последние годы популярность чистой энергии резко возросла, поскольку ряд крупнейших экономик стремятся уменьшить свою зависимость от ископаемых видов топлива, загрязняющих окружающую среду, в условиях переходного периода в области энергетики.

В 2018 году 28% мировой электроэнергии было произведено из возобновляемых источников энергии, 96% из которых было произведено с помощью гидроэнергетических, ветряных и солнечных технологий.

В своем отчете International Energy Outlook 2019 Управление энергетической информации США (EIA) прогнозировало, что возобновляемые источники энергии совместно увеличат свою долю, чтобы обеспечить 49% мирового производства электроэнергии к 2050 году.

Здесь NS Energy описывает шесть различных типов технологий использования возобновляемых источников энергии.

Шесть различных типов технологий использования возобновляемых источников энергии

1. Энергия ветра

Энергия ветра – один из самых быстрорастущих возобновляемых источников энергии после того, как ряд стран обратились к этой технологии в попытке сократить свои выбросы.

Процесс включает использование ветра для производства электричества за счет использования кинетической энергии, создаваемой движущимся воздухом.Она преобразуется в электрическую энергию с помощью ветряных турбин или систем преобразования энергии ветра.

Технология может быть развернута либо на суше, что на сегодняшний день является крупнейшим рынком, либо на море, используя либо турбины с фиксированным дном, прикрепленные к морскому дну, либо, в гораздо меньших масштабах, плавучие конструкции, которые могут базироваться в более глубоких водах.

В Китае, крупнейшем в мире источнике выбросов, находится самый большой парк ветроэнергетических установок, общая мощность которого на конец 2020 года составляет чуть более 288 гигаватт (ГВт).

2. Солнечная энергия

В настоящее время Китай занимает самую большую долю солнечных электростанций в мире (Источник: Shutterstock / chinasong).

Солнечная энергия включает преобразование энергии солнца в тепловую или электрическую энергию с использованием одного из самых чистых и распространенных возобновляемых источников энергии.

Наряду с ветром, солнечная фотоэлектрическая энергия (PV) является наиболее распространенной из низкоуглеродных энергетических технологий, и по мере ее роста затраты на разработку снижаются.

По данным Международного энергетического агентства (МЭА), солнечная энергия находится на пути к установлению рекордов для новых глобальных развертываний каждый год после 2022 года, при этом ожидается, что в период с 2021 по 2025 год ожидается в среднем 125 ГВт новой мощности во всем мире.

Китай в настоящее время занимает наибольшую долю мощности в технологии возобновляемых источников энергии, введя в эксплуатацию около 40 ГВт в 2020 году, в результате чего общая установленная мощность солнечной энергии увеличилась до 240 ГВт.

3. Гидроэнергетика

Гидроэлектроэнергия вырабатывается за счет использования гравитационной силы текущей воды.Технологии в целом подразделяются на четыре категории: обычные (плотины), гидроаккумулирующие, русловые и морские (приливные).

По сравнению с электростанциями, работающими на ископаемом топливе, гидроэлектростанции выбрасывают меньше парниковых газов, но строительство электростанций и плотин требует огромных инвестиций.

Гидроэнергетика – крупнейший возобновляемый источник энергии, и МЭА ожидает, что к 2023 году она обеспечит 16% мирового спроса на электроэнергию.

Китай в настоящее время обладает наибольшей долей мощностей технологии и лидером в мире по выработке электроэнергии в 2019 году, составив 1302 тераватт-часа (ТВтч).

4. Энергия биомассы

Собирательный термин для всего растительного и животного материала, биомасса может принимать различные формы – от растений и древесины до отходов животноводства и сельского хозяйства.

В производстве электроэнергии он обычно используется в виде древесных пеллет, которые заготавливают в лесу и сжигают для высвобождения энергии.

В то время, когда угольные электростанции выводятся из эксплуатации из-за проблем, связанных с климатом и окружающей средой, они становятся все более широко рассматриваемым вариантом альтернативной генерации энергии.

Поскольку доступность источников биомассы, таких как растения, навоз и отходы, не может уменьшиться по сравнению с исчерпаемым ископаемым топливом, альтернативный источник энергии рассматривается многими как возобновляемая форма энергии.

5. Приливная энергия

Хотя первая в мире крупномасштабная установка такого типа была введена в эксплуатацию в 1966 году, приливная энергия до сих пор не получила широкого распространения (Фото: Shutterstock / Breedfoto).

Приливная энергия генерируется путем преобразования энергии силовых приливов в энергию, и ее производство считается большим. предсказуемо по сравнению с ветроэнергетикой и солнечной энергией.

Хотя первая в мире крупная установка такого типа была введена в эксплуатацию в 1966 году, приливная энергия до сих пор не получила широкого распространения.

Однако ожидается, что растущее глобальное внимание к производству энергии из возобновляемых источников ускорит разработку новых методов использования энергии приливов и отливов.

6. Геотермальная энергия

Геотермальная энергия использует естественную тепловую энергию, вырабатываемую под земной корой, с помощью тепловых насосов, отбирающих пар или горячую воду на уровень поверхности.

Для обработки сырой энергии в настоящее время существуют три типа геотермальных электростанций: установки сухого пара, установки мгновенного пара и установки двойного цикла.

Постоянная и предсказуемая доступность геотермальной энергии, наряду с ее относительно низкой стоимостью и небольшим углеродным следом, делают ее привлекательным источником энергии для будущего.

По состоянию на конец 2019 года в США была самая большая установленная мощность геотермальной энергии – 3676 мегаватт.

У вас есть интересный контент, которым вы можете поделиться с нами? Введите свой адрес электронной почты, чтобы мы могли с вами связаться.

Возобновляемая энергия, факты и информация

В любой дискуссии об изменении климата возобновляемая энергия обычно возглавляет список изменений, которые мир может осуществить, чтобы предотвратить наихудшие последствия повышения температуры. Это потому, что возобновляемые источники энергии, такие как солнце и ветер, не выделяют углекислый газ и другие парниковые газы, которые способствуют глобальному потеплению.

Чистая энергия может рекомендовать гораздо больше, чем просто быть «зеленой». Растущий сектор создает рабочие места, делает электрические сети более устойчивыми, расширяет доступ к энергии в развивающихся странах и помогает снизить счета за электроэнергию. Все эти факторы способствовали возрождению возобновляемых источников энергии в последние годы, когда ветер и солнце устанавливают новые рекорды для производства электроэнергии.

В течение последних 150 лет или около того люди в значительной степени полагались на уголь, нефть и другие ископаемые виды топлива для питания всего, от лампочек до автомобилей и заводов.Ископаемое топливо присутствует практически во всем, что мы делаем, и в результате выбросы парниковых газов при сжигании этого топлива достигли исторически высоких уровней.

Поскольку парниковые газы улавливают в атмосфере тепло, которое в противном случае могло бы уйти в космос, средняя температура на поверхности растет. Глобальное потепление является одним из симптомов изменения климата, этим термином ученые теперь предпочитают описывать сложные сдвиги, влияющие на погодные и климатические системы нашей планеты. Изменение климата включает в себя не только повышение средних температур, но и экстремальные погодные явления, изменение популяций и мест обитания диких животных, повышение уровня моря и ряд других воздействий.

Конечно, возобновляемые источники энергии – как и любой другой источник энергии – имеют свои собственные компромиссы и связанные с ними дискуссии. Один из них посвящен определению возобновляемой энергии. Строго говоря, возобновляемые источники энергии – это то, что вы могли подумать: они доступны постоянно, или, по выражению Управления энергетической информации США, «практически неисчерпаемы». Но «возобновляемый» не обязательно означает устойчивый, как часто спорят противники кукурузного этанола или крупных гидроэлектростанций. Он также не охватывает другие ресурсы с низким или нулевым уровнем выбросов, у которых есть свои сторонники, включая энергоэффективность и ядерную энергетику.

Смотрите все наши видеоролики о возобновляемых источниках энергии здесь.

Типы возобновляемых источников энергии

Гидроэнергетика: На протяжении веков люди использовали энергию речных течений, используя плотины для регулирования потока воды. Гидроэнергетика на сегодняшний день является крупнейшим источником возобновляемой энергии в мире, при этом ведущими производителями гидроэнергии являются Китай, Бразилия, Канада, США и Россия. Хотя гидроэнергетика теоретически является чистым источником энергии, восполняемым за счет дождя и снега, у нее также есть несколько недостатков.

Крупные плотины могут разрушить речные экосистемы и окружающие сообщества, нанося вред дикой природе и вытесняя жителей. Производство гидроэлектроэнергии уязвимо для накопления ила, который может снизить мощность и повредить оборудование. Засуха также может вызвать проблемы. Согласно исследованию 2018 года, в западной части США выбросы углекислого газа за 15-летний период были на 100 мегатонн выше, чем обычно, когда коммунальные предприятия обратились к углю и газу, чтобы заменить потерянную из-за засухи гидроэнергетику. Даже гидроэнергетика, работающая на полную мощность, несет свои собственные проблемы с выбросами, поскольку разлагающийся органический материал в водохранилищах выделяет метан.

Плотины – не единственный способ использовать воду в качестве источника энергии: проекты в области приливной и волновой энергетики по всему миру стремятся запечатлеть естественные ритмы океана. В настоящее время проекты морской энергетики вырабатывают около 500 мегаватт электроэнергии – менее одного процента всех возобновляемых источников энергии, – но потенциал намного больше. Такие программы, как премия Шотландии Saltire Prize, поощряют инновации в этой области.

ЧАСЫ: Эти ветряные турбины, более высокие, чем Статуя Свободы, путешествовали по морю.

Ветер: Использование ветра в качестве источника энергии началось более 7000 лет назад. В настоящее время ветряные турбины, вырабатывающие электричество, распространяются по всему миру, а Китай, США и Германия являются ведущими производителями энергии ветра. С 2001 по 2017 год совокупная ветровая мощность во всем мире увеличилась до более чем 539 000 мегаватт с 23 900 мВт – более чем в 22 раза.

Некоторые люди могут возражать против того, как ветряные турбины выглядят на горизонте и как они звучат, но энергия ветра, цены на которую снижаются, оказывается слишком ценным ресурсом, чтобы отрицать это.Хотя большая часть энергии ветра вырабатывается наземными турбинами, появляются и морские проекты, больше всего в Великобритании и Германии. Первая в США оффшорная ветряная электростанция открылась в 2016 году в Род-Айленде, и другие оффшорные проекты набирают обороты. Еще одна проблема с ветряными турбинами заключается в том, что они представляют опасность для птиц и летучих мышей, ежегодно убивая сотни тысяч человек, не так много, как от столкновений со стеклом и других угроз, таких как потеря среды обитания и инвазивные виды, но достаточно, чтобы инженеры работали над решениями, чтобы сделать они безопаснее для летающих диких животных.

Солнечная энергия: Солнечная энергия меняет энергетические рынки по всему миру, от крыш домов до крупных ферм. За десятилетие с 2007 по 2017 год общая установленная в мире мощность фотоэлектрических панелей увеличилась на колоссальные 4300 процентов.

В дополнение к солнечным панелям, которые преобразуют солнечный свет в электричество, в электростанциях, концентрирующих солнечную энергию (CSP), используются зеркала, которые концентрируют солнечное тепло, получая вместо этого тепловую энергию. Китай, Япония и США.S. возглавляют преобразование солнечной энергии, но солнечной энергии еще предстоит пройти долгий путь, на нее приходится около двух процентов от общего объема электроэнергии, произведенной в США в 2017 году. Солнечная тепловая энергия также используется во всем мире для горячего водоснабжения, отопления и охлаждения .

Что такое солнечные элементы и как они работают? Узнайте больше о солнечной энергии – и узнайте, как этот возобновляемый ресурс превращает энергию солнца в полезную энергию.

Биомасса: Энергия биомассы включает биотопливо, такое как этанол и биодизель, древесные и древесные отходы, биогаз со свалок и твердые бытовые отходы.Как и солнечная энергия, биомасса является гибким источником энергии, способным заправлять транспортные средства, обогревать здания и производить электричество. Но биомасса может вызвать острые проблемы.

Критики этанола на основе кукурузы, например, говорят, что он конкурирует с продовольственным рынком за кукурузу и поддерживает те же вредные методы ведения сельского хозяйства, которые привели к цветению токсичных водорослей и другим опасностям для окружающей среды. Точно так же разгорелись дебаты по поводу того, стоит ли доставлять древесные гранулы из лесов США в Европу, чтобы их можно было сжигать для получения электроэнергии.Тем временем ученые и компании работают над способами более эффективного преобразования кукурузной соломы, осадка сточных вод и других источников биомассы в энергию, стремясь извлечь пользу из материалов, которые в противном случае пошли бы в отходы.

Геотермальная энергия: Используемая на протяжении тысячелетий в некоторых странах для приготовления пищи и обогрева геотермальная энергия извлекается из внутреннего тепла Земли. В больших масштабах подземные резервуары пара и горячей воды можно использовать через скважины, глубина которых может достигать мили и более, для выработки электроэнергии.В меньшем масштабе в некоторых зданиях есть геотермальные тепловые насосы, которые используют разницу температур в несколько футов под землей для обогрева и охлаждения. В отличие от солнечной и ветровой энергии, геотермальная энергия доступна всегда, но у нее есть побочные эффекты, которые необходимо контролировать, например запах тухлых яиц, который может сопровождать выделенный сероводород.

Мировое производство биотоплива увеличилось, основным источником которого является этанол на основе кукурузы.

Способы стимулирования использования возобновляемых источников энергии

Города, штаты и федеральные правительства по всему миру проводят политику, направленную на расширение использования возобновляемых источников энергии.По крайней мере, 29 штатов США установили стандарты портфеля возобновляемых источников энергии – политики, которые требуют определенного процента энергии из возобновляемых источников, более 100 городов по всему миру в настоящее время могут похвастаться как минимум 70 процентами возобновляемой энергии, а третьи берут на себя обязательства достичь 100 процентов. Другие стратегии, которые могут стимулировать рост возобновляемой энергии, включают ценообразование на выбросы углерода, стандарты экономии топлива и стандарты эффективности зданий.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *