Атомная реакция: Ядерные реакции

Ядерные реакции

11. Ядерные реакции

    Большую роль в развитии представлений о структуре ядер сыграло изучение ядерных реакций, что дало обширную информацию о спинах и четностях возбужденных состояний ядер, способствовало развитию модели оболочек. Изучение реакций с обменом несколькими нуклонами между сталкивающимися ядрами позволило исследовать ядерную динамику в состоянии с большими угловыми моментами. В результате были открыты длинные ротационные полосы, что послужило одной из основ создания обобщенной модели ядра. При столкновении тяжелых ядер образуются ядра, которых нет в природе. Синтез трансурановых элементов в значительной мере основывается на физике взаимодействия тяжелых ядер. В реакциях с тяжелыми ионами образуются ядра, удалённые от полосы β-стабильности. Ядра, удаленные от полосы β-стабильности, отличаются от стабильных ядер другим соотношением между кулоновским и ядерным взаимодействиями, соотношением между числом протонов и числом нейтронов, существенными различием в энергиях связи протонов и нейтронов, что проявляется в новых типах радиоактивного распада – протонной и нейтронной радиоактивности и рядом других специфических особенностей атомных ядер.


    При анализе ядерных реакций необходимо учитывать волновую природу частиц, взаимодействующих с ядрами. Волновой характер процесса взаимодействия частиц с ядрами отчетливо проявляется при упругом рассеянии. Так для нуклонов с энергией 10 МэВ приведенная дебройлевская длина волны меньше радиуса ядра и при рассеянии нуклона возникает характерная картина дифракционных максимумов и минимумов. Для нуклонов с энергией 0.1 МэВ длина волны больше радиуса ядра и дифракция отсутствует. Для нейтронов с энергией << 0.1 МэВ сечение реакции ~π
2
гораздо больше, чем характерный размер площади ядра πR.
    Ядерные реакции являются эффективным методом исследования ядерной динамики. Ядерные реакции происходят при взаимодействии двух частиц. При ядерной реакции происходит активный обмен энергией и импульсом между частицами, в результате чего образуются одна или несколько частиц, разлетающихся из области взаимодействия. В результате ядерной реакции происходит сложный процесс перестройки атомного ядра.
Как и при описании структуры ядра, при описании ядерных реакций практически невозможно получить точное решение задачи. И подобно тому, как строение ядра описывается различными ядерными моделями, протекание ядерной реакции описывается различными механизмами реакций. Механизм протекания ядерной реакции зависит от нескольких факторов – от типа налетающей частицы, типа ядра-мишени, энергии налетающей частицы и от ряда других факторов. Одним из предельных случаев ядерной реакции является прямая ядерная реакция. В этом случае налетающая частица передаёт энергию одному-двум нуклонам ядра, и они покидают ядро, не взаимодействуя с другими нуклонами ядра. Характерное время протекания прямой ядерной реакции 10
-23
с. Прямые ядерные реакции идут на всех ядрах при любой энергии налетающей частицы. Прямые ядерные реакции используются для изучения одночастичных состояний атомных ядер, т.к. продукты реакции несут информацию о положении уровней, из которых выбивается нуклон. С помощью прямых ядерных реакций была получена детальная информация об энергиях и заполнении одночастичных состояний ядер, которая легла в основу оболочечной модели ядра. Другим предельным случаем являются реакции, идущие через образование составного ядра
.

    Описание механизма ядерных реакций было дано в работах В.Вайскопфа.

    В.Вайскопф: «Что происходит, когда частица входит в ядро и сталкивается с одной из ядерных составных частей? Рисунок иллюстрирует некоторые из этих возможностей.
    1) Падающая частица теряет часть своей энергии, поднимая ядерную частицу в более высокое состояние. Это будет результатом неупругого рассеяния, если падающая частица остается с энергией, достаточной для того, чтобы снова покинуть ядро. Этот процесс называют прямым неупругим рассеянием, поскольку он предполагает рассеяние только на одной составной части ядра.
    2) Падающая частица передает энергию коллективному движению, как это символически показано на второй схеме рисунка, это также является прямым взаимодействием.


    3) На третьей схеме рисунка переданная энергия достаточно велика для того, чтобы вырвать нуклон из мишени. Этот процесс также дает вклад в прямую ядерную реакцию. В принципе он не отличается от 1), он соответствует «обменной реакции».
    4) Падающая частица может потерять так много энергии, что остается связанной внутри ядра, переданная энергия может быть принята низколежащим нуклоном таким образом, что он не сможет оставить ядро. Мы получаем тогда возбужденное ядро, которое не может испустить нуклон. Это состояние с необходимостью приводит к дальнейшим возбуждениям нуклонов внутренними столкновениями, в которых энергия на возбужденную частицу в среднем убывает, так что в большинстве случаев нуклон не может покинуть ядро. Следовательно, будет достигнуто состояние с очень большим временем жизни, которое может распасться только в том случае, когда одна частица при столкновениях внутри ядра случайно приобретет достаточную энергию для того, чтобы покинуть ядро. Такую ситуацию мы называем образованием компаунд-ядра.
Энергия может быть потеряна также излучением, после которого вылет частицы становится энергетически невозможным: падающий нуклон испытает радиационный захват.
    5) Образование компаунд-ядра может осуществляться в два или более шагов, если после процесса типа 1) или 2) падающий нуклон на своем пути ударяет другой нуклон и возбуждает его таким образом, что вылет из ядра оказывается невозможным для любого нуклона».

    Впервые представление о протекании ядерной реакции через стадию составного ядра было высказано Н.Бором. Согласно модели составного ядра, падающая частица после взаимодействия с одним или двумя нуклонами ядра передаёт ядру большую часть своей энергии и оказывается захваченной ядром. Время жизни составного ядра гораздо больше, чем время пролёта налетающей частицы через ядро. Внесенная налетающей частицей в ядро энергия перераспределяется между нуклонами ядра до тех пор, пока значительная её часть не сосредоточится на одной частице и тогда она вылетает из ядра.

Образование долгоживущего возбужденного состояния может в результате деформации привести к его делению.

Механическая модель описания ядерной реакции

    Н. Бор: «Явление захвата нейтронов заставляет нас предполагать, что столкновение между быстрым нейтроном и тяжелым ядром должно вести прежде всего к образованию сложной системы, характеризующейся замечательной устойчивостью. Возможный последующий распад этой промежуточной системы с вылетом материальной частицы или переход к конечному состоянию с эмиссией кванта лучистой энергии следует рассматривать как самостоятельные процессы, не имеющие непосредственной связи с первой фазой соударения. Мы встречаемся здесь с существенной разницей, ранее еще нераспознанной, между настоящими ядерными реакциями – обычными соударениями быстрых частиц и атомных систем – соударениями, которые до сих пор для нас являлись главным источником сведений относительно строения атома.

Действительно, возможность счета посредством таких столкновений отдельных атомных частиц и изучение их свойств обязаны, прежде всего, «открытости» рассматриваемых систем, которая делает весьма маловероятными обмен энергии между отдельными составляющими частицами в продолжение удара. Однако вследствие тесной упаковки частиц в ядре, мы должны быть готовы к тому, что именно этот обмен энергии играет основную роль в типичных ядерных реакциях».

    Классификация ядерных реакций. Ядерные реакции являются эффективным средством изучения структуры атомных ядер. Если длина волны налетающей частицы больше размеров ядра, то в таких экспериментах получается информация о ядре в целом. Если меньше размеров ядра, то из сечений реакций извлекается информация о распределении плотности ядерной материи, строении поверхности ядра, корреляции между нуклонами в ядре, распределении нуклонов по ядерным оболочкам.

  • Кулоновское возбуждение ядер под действием заряженных частиц относительно большой массы (протоны, α-частицы и тяжелые ионы углерода, азота) используется для изучения низколежащих вращательных уровней тяжелых ядер.
  • Реакции с тяжелыми ионами на тяжелых ядрах, приводящие к слиянию сталкивающихся ядер, являются основным методом получения сверхтяжелых атомных ядер.
  • Реакции слияния легких ядер при сравнительно низких энергиях столкновения (так называемые термоядерные реакции). Эти реакции происходят за счет квантовомеханического туннелирования сквозь кулоновский барьер. Термоядерные реакции протекают внутри звезд при температурах 107–1010 К и являются основным источником энергии звезд.
  • Фотоядерные и электроядерные реакции происходят при столкновении с ядрами γ-квантов и электронов с энергией E > 10 МэВ.
  • Реакции деления тяжелых ядер, сопровождающиеся глубокой перестройкой ядра.
  • Реакции на пучках радиоактивных ядер открывают возможности получения и исследования ядер с необычным соотношением числа протонов и нейтронов, далеких от линии стабильности.

    Классификацию ядерных реакций обычно проводят по типу и энергии налетающей частицы, типу ядер-мишеней и энергии налетающей частицы.

Реакции на медленных нейтронах

    «1934 г. Однажды утром Бруно Понтекорво и Эдуардо Амальди испытывали на радиоактивность некоторые металлы. Этим образцам была придана форма маленьких полых цилиндров одинаковой величины, внутри которых можно было поместить источник нейтронов. Чтобы облучать такой цилиндр, в него вставляли источник нейтронов, а затем всё помещали в свинцовый ящик. В это знаменательное утро Амальди и Понтекорво проводили опыты с серебром. И вдруг Понтекорво заметил, что с серебряным цилиндром происходит что-то странное: активность его не всегда одинакова, она меняется в зависимости от того, куда его поместят, в середину или в угол свинцового ящика. В полном недоумении Амальди и Понтекорво отправились доложить об этом чуде Ферми и Разетти. Франке был склонен приписать эти странности какой-нибудь статистической ошибке или неточным измерениям. А Энрико, считавший, что каждое явление требует проверки, предложил им попробовать облучить этот серебряный цилиндрик вне свинцового ящика и посмотреть, что из этого получится. И тут у них пошли совсем невероятные чудеса. Оказалось, что предметы, находящиеся поблизости от цилиндрика, способны влиять на его активность. Если цилиндрик облучали, когда он стоял на деревянном столе, его активность была выше, чем когда его ставили на металлическую пластинку. Теперь уже вся группа заинтересовалась этим и все приняли участие в опытах. Они поместили источник нейтронов вне цилиндрика и между ним и цилиндриком ставили разные предметы. Свинцовая пластинка слегка увеличивала активность. Свинец вещество тяжелое. «Ну-ка, давайте попробуем теперь легкое! предложил Ферми. Скажем, парафин». Утром 22 октября и был произведен опыт с парафином.
    Они взяли большой кусок парафина, выдолбили в нем ямку, а внутрь поместили источник нейтронов, облучили серебряный цилиндрик и поднесли его к счетчику Гейгера. Счетчик, словно с цепи сорвался, так и защелкал. Все здание загремело возгласами: «Немыслимо! Невообразимо! Черная магия!» Парафин увеличивал искусственную радиоактивность серебра в сто раз.
    В полдень группа физиков неохотно разошлась на перерыв, установленный для завтрака, который обычно продолжался у них часа два… Энрико воспользовался своим одиночеством, и когда он вернулся в лабораторию, у него уже была готова теория, которая объясняла странное действие парафина».

Л. Ферми. «Атомы у нас дома»

1934 г. Реакции под действием тепловых нейтронов.
1934 г. Э. Ферми сформулировал теорию
β-распада и ввел новое понятие
слабое взаимодействие.
 1942 г. Э. Ферми осуществил управляемую цепную реакцию деления в первом атомном реакторе.

Энрико Ферми
(1901–1954)

    Ферми нашёл объяснение этого странного поведения отфильтрованных нейтронов. Эти нейтроны замедляются в результате многочисленных упругих столкновений с протонами, находящимися в парафине и у них возрастает способность к взаимодействию. Последнее, т.е. увеличение сечения реакции при снижении скорости нейтронов, всё же противоречило в ту пору нашим ожиданиям… Для объяснения этих аномальных сечений захвата явно нужна квантовая механика. Для частиц со столь малой скоростью, что длина их волны значительно превосходит радиус ядра R мишени, пределом поперечного сечения является не πR2, a π2 с коэффициентом, который не может быть намного меньше единицы… В некоторых случаях σc составляет 103 или даже 104 от геометрического поперечного сечения ядра.

Э. Амальди. 1934–1936 гг. Воспоминания.

Нобелевская премия по физике
1938 г. — Э. Ферми
За демонстрацию существования новых радиоактивных элементов, полученных с помощью нейтронного облучения и за открытие реакций, вызванных медленными нейтронами.

Атомный или ядерный

Какое из этих слов применимо в той или иной ситуации? Путаница возникает нередко.

Строго говоря, мы используем энергию, заключенную в ядре атома. Поэтому более правильное определение — «ядерный», которое в большинстве случаев без потери смысла можно заменить словом «атомный».

Однако существуют традиционные, устоявшиеся словосочетания: «атомная электростанция», «атомный ледокол», «атомная бомба», а также «ядерный реактор», «ядерное топливо», «ядерная энергетическая установка». То есть сочетание «ядерный ледокол» тоже правильное, но режет слух.

Слово «атомный» в большей степени ассоциируется с мирными технологиями. Например, атомный ледокол — гражданское судно.

Негатив и позитив

Наталия Фельдман посвятила анализу слов «атомный» и «ядерный» большой материал. В основе переносных значений этих прилагательных, по ее словам, лежат такие характеристики, как «мощное высвобождение энергии», «концентрация», «инновационность», «движение вперед». Исследователь показала механизм изменения смысла словосочетания «атомная бомба», возникающего при его употреблении в прямом значении, и появления позитивного смысла у нейтрального словосочетания «ядерный реактор». В переносных значениях слова не фиксируются лексико-графическими источниками, поскольку в речи политиков встречаются редко. В разное время слова «атомный» и «ядерный» использовались в текстах с разной частотой, о чем свидетельствуют данные Нового частотного словаря русской лексики О. Н. Ляшевской и С. А. Шарова. Изменение частоты употребления прилагательных обусловлено экономическими и общественно-политическими причинами. Так, например, в 1950–1960-е годы были созданы первые ядерные реакторы и первые атомные бомбы, в 1954 году заработала первая в мире атомная электростанция — Обнинская АЭС. Успехам в сфере мирного атома и незасекреченным военным технологиям посвящались газетные статьи и художественные произведения. Увеличение частоты употребления прилагательных «атомный» и «ядерный» в публицистике в 1970–1980-е и 1990–2000-е годы обусловлено тем, что 26 апреля 1986 года произошла авария на Чернобыльской АЭС, которая вызвала широкий общественный резонанс и привлекает внимание СМИ до сих пор. Дата аварии является особым информационным поводом, способствующим росту количества публикаций. Значительное повышение частотности употребления слова «ядерный» в публицистике 1990–2000 годов может быть связано как с развитием темы аварии на АЭС (Чернобыльской, «Фукусиме‑1»), так и с обсуждением темы ядерного разоружения, активно освещавшейся в СМИ в 1990-е годы.

Атомное ядро и атомные цены

Из таблицы видно, что слово «ядерный» в художественной литературе употребляется реже, чем слово «атомный». Возможно, слово «атомный» в большей степени ассоциировалось с мирными технологиями (например, АЭС), а «ядерный» — с технологиями военными. В Словаре русского языка С. И. Ожегова слову «атомный» посвящена отдельная статья, где представлен ряд однокоренных слов: «атом», «атомистический», «атомник», «атомоход», «атомщик». В том же словаре у слова «ядерный» зафиксировано три значения. Во-первых, «связанный с ядром». Во-вторых, «относящийся к процессам, происходящим в атомном ядре». И, наконец, «относящийся к ядерному оружию, обладающий этим оружием». В Большом толковом словаре русского языка кроме основных значений указано дополнительное, у слова «атомный» со стилистической пометкой «разг.», у «ядерный» — «жарг.». Например, они употребляются в сочетаниях «атомная смесь» (когда говорят о чем-либо совершенно несовместимом), «атомные цены» (непомерно высокие). «Ядерный» также употребляется в нескольких значениях: «ядерная часть клетки», «относящийся к процессам, происходящим в атомном ядре, к использованию энергии атомного ядра: ядерная реакция, ядерная энергия, ядерное топливо, ядерная катастрофа и ядерный реактор (устройство, в котором осуществляется управляемая цепная реакция деления атомных ядер)». Далее «ядерная физика (раздел физики, в котором изучаются атомные ядра и их превращения)». И, наконец, «обладающий ядерным оружием: ядерные страны, ядерная подводная лодка». Также это слово используют как жаргонизм, когда хотят сказать «чрезмерный в своем проявлении»: «ядерные цены» (очень высокие), «ядерный плащ» (сверхмодный).

Ядерный чемоданчик

В Толковом словаре русского языка начала XXI века слово «атомный» отсутствует вовсе. А «ядерный» фиксируется в составе словосочетания «ядерный чемоданчик» и в устойчивом выражении «держать палец на ядерной кнопке». Приводится такое определение: «Ядерный чемоданчик — находящееся у главы государства устройство, сигналом с которого санкционируется нанесение ответного ядерного удара». «Держать палец на ядерной кнопке» трактуется как «быть готовым к нанесению ядерного удара».

Владелец ядерного чемоданчика держит палец на ядерной кнопке.

ГОВОРЯТ СЛОВАРИ

В атомном словаре прилагательные «атомный» и «ядерный» используются как синонимы-дублеты.

Атомная энергетика

Отрасль энергетики, использующая ядерную энергию для целей электрификации и теплофикации. Как область науки и техники, разрабатывает методы и средства преобразованияь ядерной энергии в электрическую и тепловую.

Ядерная энергетика

См. «Атомная энергетика». В зарубежной литературе употребляются более точные термины «ядерная энергетика» и «ядерная электростанция». У нас укоренились термины «атомная энергетика» и «атомная электростанция».

Атомная энергетическая установка

Устоявшееся название ядерной энергетической установки на атомных подводных лодках.

Ядерная установка

Любая установка, на которой образуются, обрабатываются или находятся в обращении радиоактивные или делящиеся материалы в таких количествах, при которых необходимо учитывать вопросы ядерной безопасности.

Атомная энергия

Энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях и радиоактивном распаде.

Ядерная энергия

Внутренняя энергия атомных ядер, выделяющаяся при ядерном делении или ядерных реакциях.

 

В Большом академическом словаре русского языка зафиксировано три значения слова «атомный»: «относящийся к атому, связанный с ним», «связанный с исследованием атома», «связанный с использованием энергии распада ядра атома» (Большой академический словарь. М., 2016. Т. 1. С. 304). В Активном словаре русского языка слово «атомный» дается в более широком значении: «такой, в котором используется или перерабатывается энергия, освобождающаяся при распаде ядер атомов» (Активный словарь русского языка. М., 2014. Т. 1: А–Б. С. 123). Авторы словарей отмечают, что слово «атомный» стало чаще употребляться, когда атомная энергетика и ядерные технологии начали использовать в медицине, сельском хозяйстве и других отраслях. В частности, приводятся примеры словосочетаний «атомный век» и «атомная эра». Кроме того, слово «атомный» употребляют применительно к явлениям, процессам, устройствам, связанным с разработкой и применением ядерного оружия: «атомные испытания», «атомный гриб», «атомная война», «атомная бомбардировка», «атомное бомбоубежище», «атомная стратегия» и т. п. (Там же).

Синонимы

В современной публицистике, хотя в словаре зафиксирован один вариант, прилагательные «атомный» и «ядерный» употребляют как синонимы. Вот, например, статья Lenta. ru «И даже в области балета…» (от 9 июня 2017 года), рассказывающая о проекте «Прорыв»: «Строящийся под Томском ядерный реактор откроет новую страницу в энергетике Земли… В мире сегодня работают 449 мирных промышленных атомных реакторов и еще 60 строятся». Или новая разработка «Росатома» — батарейка. Ее тоже называют и атомной, и ядерной: «российская атомная батарейка прослужит 50 лет» и «наша ядерная батарейка — это своего рода слоеный пирог, между 200 алмазными полупроводниками установлены 200 изготовленных из никеля‑63 источников энергии» (Российская газета. М. 2018. № 7571. 22 мая). Да и технологии в одной статье называют то атомными, то ядерными: «без атомных технологий здесь действительно не обойтись» и «на «Атомэкспо‑2019» широко обсуждались и неэнергетические способы применения ядерных технологий, например в медицине и сельском хозяйстве, и даже разработки вообще из других областей, которые благодаря атомщикам получили новый импульс, новое качество, — цифровые продукты, управление сложными системами и др. » (Новая газета [Электронный ресурс]. URL: https://novayagazeta.ru (18.04.2019). А вот атомная и ядерная физика — это все же разные дисциплины: атомная физика изучает строение и свойства атомов, а ядерная — строение, свойства и последствия столкновения атомных ядер.Другими словами, атомная физика изучает атом в целом, ядерная — его ядро.

Опубликовано в газете «Страна РОСАТОМ»

Ядерная реакция | Определение, история, типы и факты

  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Этот день в истории
  • Викторины
  • Подкасты
  • Словарь
  • Биографии
  • Резюме
  • Популярные вопросы
  • Инфографика
  • Демистификация
  • Списки
  • #WTFact
  • Товарищи
  • Галереи изображений
  • Прожектор
  • Форум
  • Один хороший факт
  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Britannica объясняет
    В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы.
  • Britannica Classics
    Посмотрите эти ретро-видео из архивов Encyclopedia Britannica.
  • Demystified Videos
    В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
  • #WTFact Видео
    В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти.
  • На этот раз в истории
    В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
  • Студенческий портал
    Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д.
  • Портал COVID-19
    Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня.
  • 100 женщин
    Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.
  • Спасение Земли
    Британника представляет список дел Земли на 21 век. Узнайте об основных экологических проблемах, стоящих перед нашей планетой, и о том, что с ними можно сделать!
  • SpaceNext50
    Britannica представляет SpaceNext50. От полета на Луну до управления космосом — мы изучаем широкий спектр тем, которые питают наше любопытство к космосу!

Содержание

  • Введение

Краткие факты

  • Связанный контент

Викторины

  • Викторина “Все о физике”

ядерных реакций | ChemTalk

Основные понятия

В этом руководстве вы узнаете все о ядерных реакциях . Это включает в себя введение в ядерные реакции и обсуждение того, как писать их уравнения. Мы также рассматриваем различные типы ядерных реакций, в том числе ядерное деление, ядерный синтез и радиоактивный распад.

Темы, освещенные в других статьях

  • Структура атома
  • Как найти число протонов, нейтронов и электронов
  • Содержание изотопов и средняя атомная масса
  • Как читать Периодическую таблицу

  • 7 Введение в атомную энергетику Реакции

    Что такое ядерные реакции? Большая часть известной нам химии имеет дело с реакциями между атомами и молекулами. Хотя химические свойства соединений могут резко меняться, идентичность атомов в этих реакциях остается неизменной.

    Ядерные реакции, напротив, модифицируют ядра атомов; это может превратить атом из одного элемента в другой, создать различные изотопы элемента или даже создать новые элементы, которых не существует в природе.

    Многие из синтетических элементов, открытых в конце двадцатого и начале двадцать первого веков, были созданы в результате ядерных реакций. Большинство из них стабильны лишь доли секунды, после чего распадаются!

    Написание уравнений ядерных реакций

    Запись ядерных реакций требует несколько иной информации, чем та, которую мы привыкли предоставлять в уравнениях обычных химических реакций. Иногда мы начинаем и заканчиваем здесь одними и теми же атомами, так как же показать, что меняется? Нам нужно показать массу и атомный номер каждого ядра или субатомной частицы, используемых в уравнении. Для этого мы записываем каждую частицу с надстрочным и нижним индексами слева от ее символа.

    Например, ниже представлено обозначение свинца-207, изотопа свинца, содержащего 125 нейтронов и 82 протона. Количество протонов равно заряду ядра и идет в качестве нижнего индекса перед символом элемента. Общее количество протонов и нейтронов идет чуть выше, чтобы получить окончательную письменную форму.

    Помимо обычных ядер, подобных этому, у нас также могут быть субатомные частицы, не имеющие символа элемента (например, электроны, позитроны, нейтрино и антинейтрино). Электроны записываются как е или греческая буква бета с зарядом -1 и массой 0 (это приблизительная величина, поскольку она весит намного меньше 1 а.е.м. или массы протона). Позитроны такие же, но мы используем p (или снова греческую букву бета) и положительную 1 для заряда. Нейтрино обозначаются греческой буквой мю с нулем для заряда и массы. Антинейтрино просто имеют черту над символом, чтобы различать их. Ниже вы можете увидеть, как пишутся многие распространенные частицы.

    Способы представления различных субатомных частиц в ядерной реакции. Слева направо: два способа записи бета-частицы или электрона, два способа записи бета плюс частица или позитрон, нейтрино, антинейтрино, нейтрон и протон. Обратите внимание, что протон можно просто записать как ядро ​​водорода.

    Типы ядерных реакций

    Реакции деления

    Одной из наиболее известных категорий ядерных реакций является реакция деления. Ядерное деление — это когда ядро ​​делится пополам, образуя два меньших ядра. Некоторые очень тяжелые элементы делятся спонтанно, в то время как большинству требуется толчок — что-то, чтобы зажечь процесс. Этот толчок обычно обеспечивается нейтроном, ударяющим по ядру.

    Реакции синтеза

    Другим типом ядерных реакций является реакция синтеза. Фактически обратная реакция деления, этот тип включает объединение двух ядер с образованием третьего, более тяжелого ядра.

    Слияние является обычным элементом научно-фантастических историй, так как при этом высвобождается большое количество энергии. В настоящее время трудно добиться термоядерного синтеза в условиях, пригодных для производства энергии, но разработка более совершенных термоядерных реакторов является горячей областью исследований!

    Радиоактивный распад

    Радиоактивные ядра со временем «распадаются» или переходят в другое состояние. Когда они это делают, они выбрасывают в окружающую среду частицы, которые могут быть потенциально полезными или вредными. Некоторыми примерами являются альфа-частица, высокоэнергетический электрон или бета-частица и высокоэнергетический фотон или гамма-частица.

    Скорость радиоактивного распада измеряется с помощью так называемого «периода полураспада». Определение периода полураспада — это время, необходимое для распада половины исходных атомов в образце, и обозначается символом t 1/2 . Чтобы понять, что это значит, предположим, что у вас есть образец из шестнадцати атомов с периодом полураспада пять минут. Через пять минут в среднем останется только восемь таких атомов. Остальные восемь распадутся во что-то другое. Через 10 минут (два периода полураспада) распадутся в среднем двенадцать атомов — восемь из предыдущих плюс половина из оставшихся восьми. Через 15 минут (три периода полураспада) распадутся в среднем 14 атомов. осталось всего два. В конце концов, через 20 минут останется только 1 атом.

    Мы можем сказать только «в среднем», потому что мы никогда не знаем наверняка, когда распадется отдельный атом, а знаем только скорость, с которой они обычно распадаются. Если бы мы провели описанный выше эксперимент в реальной жизни, то, скорее всего, получили бы другие результаты. Однако, если бы мы запускали его много раз, результаты становились бы все ближе и ближе к тому, что мы описали.

    Иллюстрация ядерного распада, демонстрирующая концепцию периода полураспада.
    Альфа-распад

    Альфа-распад — это тип ядерного деления. В этой разновидности одним из новых ядер всегда является ядро ​​гелия — 2 протона и 2 нейтрона. Это означает, что для вычисления другого произведения мы можем просто вычесть 2 протона и 4 единицы массы. Например, если уран-238 подвергается альфа-распаду, он производит альфа-частицу и атом тория-234. Ниже вы можете увидеть еще один распад урана, который начинается с обычного изотопа U-235 и приводит к образованию тория-231. Ниже показаны два распространенных метода записи этой реакции (один, в котором альфа-частица записывается как продукт явно, а другой, где она записывается над стрелкой реакции в качестве сокращения).

    Альфа-распад U-235 в Th-231, записанный двумя распространенными способами.
    Бета-распад

    Один из видов радиоактивного распада приводит к распаду нейтрона на две части: высокоэнергетический электрон, вылетающий из ядра, известный как бета-частица, и протон, который остается в ядре, давая ему одну дополнительная единица положительного заряда. Генерируется и другая менее часто обсуждаемая субатомная частица — антинейтрино. Важно отметить, что поскольку нейтрон распадается на положительно и отрицательно заряженную частицу, в процессе сохраняется заряд. Ниже вы можете увидеть бета-распад, начинающийся с тория-231 сверху и заканчивающийся протактинием-231.

    Бета-распад Th-231 в Pa-231, записанный двумя распространенными способами.

    Существует вариант бета-распада, называемый бета-плюс-распадом, при котором вместо электрона создается позитрон, а вместо антинейтрино — нейтрино.

    Гамма-излучение

    Некоторые типы ядерных реакций не связаны с изменением числа протонов и нейтронов в ядре. Наиболее известная, гамма-излучение, представляет собой реакцию, в результате которой высвобождаются фотоны очень высокой энергии (свет), известные как гамма-излучение. Это излучение очень опасно для живых организмов, и это основная причина, по которой с радиоактивными материалами так трудно безопасно обращаться.

    Причиной испускания гамма-квантов является распад ядра из более высокого энергетического состояния в более низкое.

Оставить комментарий