Базон хиггса: одно из самых важных открытий в науке — Naked Science

10 лет открытию бозона Хиггса. Что учёные до сих пор не знают о частице?

Физики по всему миру отпраздновали десятилетие со дня пресс-конференции, на которой было объявлено о выдающемся открытии современности. Однако многие свойства “частицы бога” до сих пор остаются для учёных загадкой. Почему бозон Хиггса так называется? Чем он так важен для науки и нашего понимания Вселенной? И как он влияет на стабильность Вселенной? Ответы на все эти вопросы — в нашем материале.

Научная редакция Вести.Ru с интересом следила за объявлением в прямом эфире. По значимости это достижение можно сравнить разве что с созданием примерно в те же годы технологии редактирования генов CRISPR и долгожданном обнаружении гравитационных волн.

В понедельник, 4 июля 2022 года, исполнилось 10 лет со дня проведения знаменитой пресс-конференции в ЦЕРНе, главной европейской лаборатории по изучению основ мироздания. 10 лет назад учёные объявили о долгожданном открытии бозона Хиггса – частицы, которую в те времена часто называли в СМИ “частицей бога”.

Яркий пример силы международного сотрудничества позволил обнаружить частицу, которая до этого существовала только в расчётах теоретиков.

Открытие неуловимой частицы заполнило последний пробел в Стандартной модели элементарных частиц — лучшем физическом описании частиц и их взаимодействий на сегодняшний день — и открыло окно в так называемую Новую физику.

С этим открытием в 2012 году фактически завершилось экспериментальное обнаружение элементарных частиц, предсказываемых Стандартной моделью.

Многие тогда надеялись, что теперь начнётся новая эра в физике, которая позволит открыть явления, которые невозможно объяснить с помощью Стандартной модели, и проверить новые экзотические теории, которые объясняют, как устроена Вселенная.

Однако пока этого так и не произошло. Хотя учёные с тех пор провели не один цикл запуска и многолетней работы Большого адронного коллайдера (БАК) и сделали немало других важных открытий в ходе столкновений протонов и тяжёлых ионов внутри гигантского кольца БАК.

Учёные опубликовали 350 научных статей, касающихся бозона Хиггса. Однако многие свойства “частицы бога” до сих пор остаются для них загадкой.

5 вещей, которые узнали физики.

Масса бозона Хиггса составляет 125 миллиардов электронвольт.

Почему масса частицы измеряется не в килограммах? Дело в том, что массу столь малых и неуловимых объектов физикам проще выражать в единицах энергии. Масса и энергия, напомним, связаны знаменитой формулой E=mc2.

В 1960-х годах британский физик-теоретик Питер Хиггс и его коллеги предположили, что то, что сейчас называется полем Хиггса, может объяснить:

– почему у частицы света фотона, переносчика электромагнитного взаимодействия, нет массы,

– почему нет массы у глюона, переносчика сильного взаимодействия,

– почему W- и Z- бозоны, переносчики слабого взаимодействия, обладают столь высокой массой (для элементарных частиц).

W- и Z- бозоны почти в 100 раз тяжелее протона и сопоставимы по этому показателю с гигантами мира химических элементов — технецием и рубидием.

Особые свойства поля Хиггса позволили одной и той же математике объяснить массы всех частиц, и оно стало неотъемлемой частью Стандартной модели. Но теория не делала предсказаний о массе бозона Хиггса и, следовательно, о том, когда БАК сможет его создать.

Тем не менее частица проявила себя намного раньше, чем ожидалось. БАК начал собирать данные в поисках бозона Хиггса в 2009 году, а детекторы ATLAS и CMS фактически поймали его за хвост уже в 2012 году.

Детекторы наблюдали распад всего нескольких десятков бозонов Хиггса на фотоны, W- и Z-бозоны. На них указывал скачок в данных на уровне 125 миллиардов электронвольт (или гигаэлектронвольт, ГэВ), что примерно в 125 раз превышает массу протона.

Масса бозона Хиггса в 125 ГэВ ставит его в золотую середину, что означает, что бозон распадается на широкий спектр частиц с частотой, достаточно высокой для наблюдения в экспериментах на БАК, рассказывает Мэтью Маккалоу, физик-теоретик из ЦЕРН.

“Это очень странно и, вероятно, случайно, но так уж получилось, что [при такой массе] вы можете узнать многое о бозоне Хиггса”, ‒ добавляет учёный.

Что же ещё узнали физики?

Бозон Хиггса — частица с нулевым спином.

Спин — это квантово-механическое свойство частицы, которое проще всего представить, если сравнить частицу с магнитом.

Но, чтобы не слишком углубляться в физику элементарных частиц, просто скажем, что все известные фундаментальные частицы имели спин 1/2 или 1. Вместе с тем теории предсказывали, что бозон Хиггса должен быть уникален в этом отношении, так как он имеет нулевой спин (также учёные правильно предсказали, что он имеет нулевой заряд).

В 2013 году эксперименты, проводимые на БАК, позволили изучить угол, под которым фотоны, образующиеся при распаде бозона Хиггса, вылетали в детекторы. Эту информацию учёные использовали, чтобы с высокой вероятностью показать: бозон Хиггса имеет нулевой спин.

К слову, до тех пор, пока это не было продемонстрировано, мало кто из физиков был готов назвать обнаруженную частицу бозоном Хиггса, поясняет Рамона Грёбер, физик-теоретик из Падуанского университета в Италии.

Свойства бозона Хиггса исключили некоторые теории, дополнявшие Стандартную модель.

Физики знают, что Стандартная модель не полностью описывает то, что происходит во Вселенной.

Так, она фактически не работает при высоких энергиях и не может объяснить ключевые наблюдения, такие как существование тёмной материи или почему во Вселенной так мало антиматерии.

Поэтому физики придумали расширения модели, учитывающие это. По словам Грёбер, открытие массы бозона Хиггса в 125 ГэВ сделало некоторые из этих теорий менее привлекательными для исследователей.

Однако из-за массы в 125 ГэВ не так много теорий оказались в ранге несостоятельных.

“У нас есть частица, которая более или менее совместима со всем [, что есть в арсенале физиков]”, ‒ рассказала Фрейя Блекман, физик Немецкого электронного синхротрона DESY.

Бозон Хиггса взаимодействует с другими частицами, как и предсказывает Стандартная модель.

Согласно Стандартной модели, масса частицы определяется тем, насколько сильно она взаимодействовала с полем Хиггса.

Хотя бозон, который подобен ряби в поле Хиггса, не играет роли в этом процессе, скорость, с которой бозоны Хиггса распадаются на любую другую частицу или производятся ею, даёт представление о том, насколько сильно эта частица взаимодействует с полем Хиггса.

Эксперименты на БАК подтвердили, что, по крайней мере, для самых тяжёлых частиц, наиболее часто образующихся при распаде бозона Хиггса, масса частиц пропорциональна взаимодействию с полем. И это стало замечательным достижением для теории возрастом 60 лет.


Как частицы получают массу, взаимодействуя с полем Хиггса, или механизм Браута-Энглера-Хиггса.

Теоретики Роберт Браут, Франсуа Энглер и Питер Хиггс предположили, что частицы приобретают массу, взаимодействуя с “полем Хиггса”.

Сразу после Большого взрыва поле Хиггса было равно нулю, но по мере охлаждения Вселенной и падения температуры ниже критического значения поле спонтанно возрастало, так что любая взаимодействующая с ним частица приобретала массу.

Чем больше частица взаимодействовала с этим полем, тем она тяжелее. Частицы, подобные фотону, которые не взаимодействовали с ним, вообще не имеют массы.

Всего же частицы “общались” с полем Хиггса порядка 10

-12 секунды. До того они не имели массы и путешествовали в пространстве со скоростью света.

Как и все фундаментальные поля, поле Хиггса имеет связанную с ним частицу — бозон Хиггса. Бозон Хиггса — это видимое проявление поля Хиггса, похожее на волну на поверхности моря.


Вселенная стабильна, но только пока.

Расчёты с использованием массы бозона Хиггса показали, что Вселенная может быть стабильной только небольшой промежуток времени, и что существует исчезающе малый шанс, что она может перейти в более низкое энергетическое состояние — с катастрофическими последствиями для всего.

В отличие от других известных полей поле Хиггса имеет низшее энергетическое состояние выше нуля даже в вакууме, и оно пронизывает всю Вселенную.

Согласно Стандартной модели, это так называемое основное состояние системы зависит от того, как частицы взаимодействуют с полем. Вскоре после того, как физики определили массу бозона Хиггса, теоретики использовали это значение (наряду с другими измерениями), чтобы предсказать, что также существует более низкое и более предпочтительное энергетическое состояние для Вселенной.

Попробуем провести аналогию. Все мы порой хотим покоя. Так вот, Вселенная в каком-то смысле пока что подпрыгивает на одной ножке или, если хотите, твёрдо стоит на двух ногах. Но в принципе она хотела бы присесть. Так ей было бы комфортнее.

Впрочем, по словам Маккалоу, переход в другое ещё более энергетически низкое состояние потребует от Вселенной преодоления огромного энергетического барьера. Условно говоря, для того чтобы присесть, Вселенной для начала придётся пробежать марафон.

Вероятность такого исхода настолько мала, что физики полагают следующее: вряд ли это произойдет в масштабе времени жизни Вселенной.

“Наш конец света наступит гораздо раньше по другим причинам”, — говорит Маккалоу.

Не слишком вдохновляюще, зато честно. По крайней мере, с точки зрения науки.

5 вещей, которые учёные всё ещё хотят выяснить.

Можем ли мы сделать измерения бозона Хиггса более точными?

На данный момент свойства “частицы бога” соответствуют предсказанным Стандартной моделью, но погрешность измерений составляет около 10%.

Это как если бы мы узнали, что “рост” человека составляет 150 см плюс-минус 15 см. То есть он может быть ростом как 165 см, так и ростом 135 см и всё, что посередине. Довольно ощутимый разброс, не правда ли?

В общем, имеющихся данных, несмотря на все впечатляющие возможности самой большой в мире экспериментальной установки (каковой является БАК), недостаточно. Они не позволяют выявить тонкие различия, предсказанные новыми физическими теориями, которые лишь немногим отличаются от Стандартной модели.

Что может помочь снизить эту погрешность? Новые данные, собранные в ходе новых столкновений. Как те, которые ещё обрабатываются, так и те, что будут получены лишь в будущем.

На данный момент детекторы БАК собрали только одну двадцатую от общего объёма информации, которую он призван собрать. И учёным все эти данные ещё довольно долго придётся обрабатывать.

Увидеть намёки на Новую физику, то есть те теории, которые позволят объяснить то, что не объясняет Стандартная модель, можно будет в новых более точных исследованиях.

Взаимодействует ли бозон Хиггса с более лёгкими частицами?

До сих пор взаимодействия бозона Хиггса с другими частицами, казалось, соответствовали Стандартной модели. Однако физики видели, как он распадается только на самые тяжёлые частицы.

Теперь физики хотят проверить, взаимодействует ли он таким же образом с частицами из более лёгких семейств.

В 2020 году детекторы CMS и ATLAS наблюдали одно такое взаимодействие — редкий распад бозона Хиггса на двоюродного брата второго поколения электрона, называемого мюоном.

Хотя это свидетельствует о том, что связь между массой и силой взаимодействия с полем Хиггса сохраняется и для более лёгких частиц, физикам нужно больше данных, чтобы подтвердить это.

Взаимодействует ли бозон Хиггса сам с собой?

Бозон Хиггса имеет массу, поэтому он должен взаимодействовать сам с собой. А вот нейтрино в этом смысле куда более неуловимо.

Однако такие взаимодействия — например, распад энергичного бозона Хиггса на два менее энергичных — происходят крайне редко, потому что все вовлечённые в этот процесс частицы очень тяжёлые.

Учёные надеются найти намёки на подобное взаимодействие после запланированной модернизации БАК в 2026 году. Впрочем, для убедительных доказательств этому физикам, вероятно, потребуется построить даже более мощный коллайдер.

Скорость этого взаимодействия с самим собой имеет решающее значение для понимания Вселенной, говорит Маккалоу.

Вероятность такого взаимодействия связана с изменением потенциальной энергии поля Хиггса вблизи своего минимума, который описывает условия сразу после Большого взрыва. Таким образом, знания об этом процессе может помочь учёным понять динамику ранней Вселенной.

Грёбер отмечает, что многие теории, которые пытаются объяснить, как материя во Вселенной каким-то образом стала более распространённой, чем антиматерия, требуют взаимодействия бозонов Хиггса между собой.

Однако в этом они расходятся с предсказанием Стандартной модели на целых 30%.

“Я даже не могу передать, насколько важны [эти измерения]”, ‒ говорит Маккалоу.

Каково время жизни бозона Хиггса?

Физики хотят знать время жизни бозона Хиггса — сколько в среднем он существует, прежде чем распасться на другие частицы. И дело не в самой цифре, как таковой, а в том, что любое отклонение от предсказаний может указывать на взаимодействие с неизвестными частицами, такими как те, которые составляют тёмную материю. Однако его время жизни слишком мало, чтобы его можно было измерить напрямую.

Чтобы измерить его косвенно, физики смотрят на разброс энергии частицы по нескольким измерениям (квантовая физика предполагает, что неопределённость в энергии частицы должна быть обратно пропорциональна времени её жизни).

В 2021 году физики, работающие с данными детектора CMS, произвели первое грубое измерение времени жизни бозона Хиггса: получилось 2,1×10–22 секунды.

Этот результат показывает, что время жизни соответствует Стандартной модели.

Насколько верны и верны ли экзотические прогнозы?

Некоторые теории, расширяющие Стандартную модель, предсказывают, что бозон Хиггса не является фундаментальной частицей. То есть он, подобно, например, протону, состоит из других составляющих элементов (кварков).

Другие предполагают, что бозонов Хиггса несколько, просто мы пока ещё не в состоянии их различить, так как ведут они себя одинаково. Однако они отличаются, к примеру, зарядом или спином.

Новые эксперименты на БАК, о которых мы подробно расскажем в ближайшее время, позволят понять, действительно ли бозон Хиггса является частицей Стандартной модели. Также новые опыты по столкновению частиц позволят выявить свойства, предсказанные другими теориями. Так, физики будут искать в данных распады на запрещённые комбинации частиц.

Получается, непаханое поле Хиггса ждёт ещё немало испытаний и новых исследователей.

Питер Хиггс стоял у истоков создания БАК. На этом снимке он стоит возле детектора CMS, который на тот момент был на техобслуживании.

Фото Maximilien Brice/CERN.

Почему “бозон Хиггса” и почему “частица бога”?

Отчего поле Хиггса и бозон назвали именем британского физика, понятно.

Но почему “частица бога”? Такое название ей придумал нобелевский лауреат Леон Ледерман, написавший книгу “Частица бога: если Вселенная это ответ, то каков вопрос?”. Американские и британские издательства любят громкие названия, даже если они не отражают сути.

К слову, сам Ледерман предлагал назвать бозон Хиггса частицей, “проклятой Богом” (goddamn particle). Но у этого слова сильный негативный оттенок в английском языке, вероятно, поэтому редактор отверг такой вариант.

Так как, как мы уже рассказали, бозон Хиггса определяет массы других частиц и своего рода материальность всего известного нам мира, “частица бога” выглядит довольно естественно.

Правда, самим учёным больше по душе другой ироничный вариант — “бозон бутылки шампанского” (champagne bottle boson) — из-за сходства потенциала комплексного поля Хиггса с дном стандартной бутылки игристого вина.

Пример потенциала поля Хиггса при фиксированном значении одной из переменных.

Иллюстрация Gonis/Wikimedia Commons.

Было ли открытие бозона Хиггса вершиной достижений физики высоких энергий в ЦЕРНе?

Как, надеемся, стало понятно из нашего длинного рассказа: нет. Впереди ещё много открытий.

Но хочется отметить, сколь огромен вклад стран-создателей БАК и ЦЕРНа в частности, в популяризацию физики элементарных частиц.

До того как была построена эта огромная, сложная, очень дорогостоящая и столь нужная для понимания Вселенной машина, широкую общественность куда больше волновало, не создадут ли “горе-физики” в БАК чёрную дыру, которая затем поглотит Землю и всё живое.

Однако с годами сами учёные, представители пресс-служб научных организаций и приглашённые ими журналисты смогли создать у обычных людей адекватное представление о происходящем на БАК.

Объявление об открытии бозона Хиггса смотрели тысячи людей по всему миру. И они искренне хотели понять, отчего же “частица бога”? Возможно, не будь тогда проведена столь впечатляющая работа, не увидели бы мы сегодня в неспециализированных изданиях заголовки, подобные этому.

Вместе с тем складывающая в мире (и в науке) ситуация не позволяет надеяться на то, что в ближайшие годы сотрудничество между странами возобновится с той же силой, что и прежде.

Да, Большой адронный коллайдер готовится к новым рекордам, и об этом мы тоже напишем в ближайшие дни. Однако Россия фактически перестала быть полноценным партнёром ЦЕРНа, а значит, наши учёные с их блестящими компетенциями перестанут пополнять ряды европейских лабораторий.

Разрушение былых связей признают даже за океаном, где учёным также пришлось сконцентрироваться на других проектах.

В то же время Япония вряд ли построит Международный линейный коллайдер, да и планы Китая относительно Китайского электрон-позитронного коллайдера могут оказаться слишком амбициозными даже для Поднебесной.

Видимо, очередной праздник физики высоких энергий нам придётся подождать.

Физики объяснили малую массу бозона Хиггса существованием мультивселенной

https://ria.ru/20220113/bozon-1767681998.html

Физики объяснили малую массу бозона Хиггса существованием мультивселенной

Физики объяснили малую массу бозона Хиггса существованием мультивселенной – РИА Новости, 14.01.2022

Физики объяснили малую массу бозона Хиггса существованием мультивселенной

Физики из Франции и Швейцарии предложили альтернативную модель формирования Вселенной, объясняющую сразу несколько несоответствий Стандартной модели физики… РИА Новости, 14.01.2022

2022-01-13T15:24

2022-01-13T15:24

2022-01-14T11:38

наука

швейцария

франция

космос – риа наука

бозон хиггса

физика

вселенная

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdnn21. img.ria.ru/images/07e4/09/08/1576940819_4:0:1024:574_1920x0_80_0_0_40e46a474bd4fd8eaa28dfcfd0b9cdae.jpg

МОСКВА, 13 янв — РИА Новости. Физики из Франции и Швейцарии предложили альтернативную модель формирования Вселенной, объясняющую сразу несколько несоответствий Стандартной модели физики. Результаты исследования опубликованы в журнале Physical Review Letters.Результаты экспериментов, которые проводят ученые, подтвердили верность основных положений Стандартной модели физики элементарных частиц. Эта модель точно описывает большую часть взаимодействий фундаментальных частиц нашей Вселенной, но есть у нее и явные пробелы. В частности, в ней отсутствуют частицы темной материи, она не позволяет объяснить ускоряющееся расширение Вселенной, а масса бозона Хиггса, предсказанная этой моделью, как минимум втрое больше, чем полученная в экспериментах.Для объяснения последнего несоответствия физики Раффаэле Тито Д’Аньоло из французского Университета Париж-Сакле и Даниэле Терези из ЦЕРНа предложили альтернативную модель, основанную на гипотезе мультивселенной. Эта гипотеза предполагает, что в то время, когда образовалась наша Вселенная, существовало множество других параллельных вселенных. Распределение бозонов Хиггса между разными вселенными и их регионами было неоднородным: одни области содержали тяжелые бозоны, а другие — более легкие.Заложив такие начальные условия в свою модель, исследователи увидели, что по мере своего развития регионы мультивселенной с тяжелым бозоном Хиггса быстро становились нестабильными и разрушались за очень короткий промежуток времени — около 10−5 секунды.Такой сценарий, известный в космологии как Большое сжатие или Большой хлопок (Big Crunch), предполагает, что в какой-то момент под действием темной энергии расширение вселенной сменяется резким сжатием и вселенная коллапсирует, схлопываясь в сингулярность. В итоге, по мнению исследователей, осталась одна наша Вселенная, содержащая очень легкий бозон Хиггса.Кроме того, анализируя свою модель, авторы обнаружили еще один фактор, который предотвратил сжатие нашей Вселенной, — симметричное сильное взаимодействие — фундаментальная сила природы, возникающая между субатомными частицами материи и антиматерии. Таким образом, считают ученые, их модель позволяет объяснить еще одно фундаментальное противоречие Стандартной модели: нарушения СР-симметрии — симметрии взаимодействия между частицами и античастицами.Исследователи надеются, что их гипотеза получит подтверждение в будущих экспериментах по взаимодействию адронов с частицами темной материи.

https://ria.ru/20220112/puzyr-1767541944.html

https://ria.ru/20210831/zvezdy-1747834094.html

швейцария

франция

РИА Новости

1

5

4.7

96

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2022

РИА Новости

1

5

4.7

96

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og. xn--p1ai/

РИА Новости

1

5

4.7

96

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

1920

1080

true

1920

1440

true

https://cdnn21.img.ria.ru/images/07e4/09/08/1576940819_238:0:1003:574_1920x0_80_0_0_8c172ddef275723f975747ba0b5d3d77.jpg

1920

1920

true

РИА Новости

1

5

4.7

96

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

1

5

4.7

96

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

швейцария, франция, космос – риа наука, бозон хиггса, физика, вселенная

Наука, Швейцария, Франция, Космос – РИА Наука, бозон Хиггса, Физика, Вселенная

МОСКВА, 13 янв — РИА Новости. Физики из Франции и Швейцарии предложили альтернативную модель формирования Вселенной, объясняющую сразу несколько несоответствий Стандартной модели физики. Результаты исследования опубликованы в журнале Physical Review Letters.

Результаты экспериментов, которые проводят ученые, подтвердили верность основных положений Стандартной модели физики элементарных частиц. Эта модель точно описывает большую часть взаимодействий фундаментальных частиц нашей Вселенной, но есть у нее и явные пробелы. В частности, в ней отсутствуют частицы темной материи, она не позволяет объяснить ускоряющееся расширение Вселенной, а масса бозона Хиггса, предсказанная этой моделью, как минимум втрое больше, чем полученная в экспериментах.

Для объяснения последнего несоответствия физики Раффаэле Тито Д’Аньоло из французского Университета Париж-Сакле и Даниэле Терези из ЦЕРНа предложили альтернативную модель, основанную на гипотезе мультивселенной.

Эта гипотеза предполагает, что в то время, когда образовалась наша Вселенная, существовало множество других параллельных вселенных. Распределение бозонов Хиггса между разными вселенными и их регионами было неоднородным: одни области содержали тяжелые бозоны, а другие — более легкие.

Землю окружает огромный космический пузырь, установили ученые

12 января 2022, 19:00

Заложив такие начальные условия в свою модель, исследователи увидели, что по мере своего развития регионы мультивселенной с тяжелым бозоном Хиггса быстро становились нестабильными и разрушались за очень короткий промежуток времени — около 10−5 секунды.

Такой сценарий, известный в космологии как Большое сжатие или Большой хлопок (Big Crunch), предполагает, что в какой-то момент под действием темной энергии расширение вселенной сменяется резким сжатием и вселенная коллапсирует, схлопываясь в сингулярность. В итоге, по мнению исследователей, осталась одна наша Вселенная, содержащая очень легкий бозон Хиггса.

Кроме того, анализируя свою модель, авторы обнаружили еще один фактор, который предотвратил сжатие нашей Вселенной, — симметричное сильное взаимодействие — фундаментальная сила природы, возникающая между субатомными частицами материи и антиматерии. Таким образом, считают ученые, их модель позволяет объяснить еще одно фундаментальное противоречие Стандартной модели: нарушения СР-симметрии — симметрии взаимодействия между частицами и античастицами.

Исследователи надеются, что их гипотеза получит подтверждение в будущих экспериментах по взаимодействию адронов с частицами темной материи.

Из другого измерения. Ученые оценили возможность существования антизвезд

31 августа 2021, 08:00

Что такого особенного в бозоне Хиггса?

Что такое бозон Хиггса?

В квантовой теории поля частицы можно описать как волны в поле (Изображение: Петр Трачик/ЦЕРН)

Чтобы ответить на этот вопрос, необходимо исследовать квантовый мир и то, как частицы взаимодействуют… бозон впервые появился в научной статье, написанной Питером Хиггсом в 1964 году. В то время физики работали над описанием слабого взаимодействия — одной из четырех фундаментальных сил природы — с использованием структуры, называемой квантовой теорией поля.

Частица, волна или и то, и другое?

Квантовая теория поля описывает микроскопический мир частиц совершенно иначе, чем повседневная жизнь. Фундаментальные «квантовые поля» заполняют вселенную и диктуют, что природа может и чего не может делать. В этом описании каждая частица может быть представлена ​​волной в «поле», похожей на рябь на поверхности огромного океана. Одним из примеров является фотон, частица света, представляющая собой волну в электромагнитном поле.

Когда два электрона взаимодействуют, они обмениваются фотоном, частицей света. (Изображение: Ана Товар/ЦЕРН)

Носители силы

Когда частицы взаимодействуют друг с другом, они обмениваются «носителями силы». Эти носители силы являются частицами, и их также можно описать как волны в соответствующих полях. Например, когда два электрона взаимодействуют, они обмениваются фотонами — фотоны являются переносчиками силы электромагнитного взаимодействия.

Симметрия

Еще одним важным компонентом этой картины является симметрия. Подобно тому, как фигуру можно назвать симметричной, если она не меняется при вращении или переворачивании, аналогичные требования предъявляются и к законам Природы.

Например, электрическая сила между частицами с электрическим зарядом, равным единице, всегда будет одинаковой, независимо от того, является ли частица электроном, мюоном или протоном. Такие симметрии составляют основу и определяют структуру теории.

Механизм Браута-Энглерта-Хиггса.

Квантовая теория поля уже легла в основу квантового электромагнетизма, очень успешного описания электромагнитного взаимодействия. Однако применить аналогичный подход к слабому взаимодействию было невозможно из-за фундаментальной проблемы: теория не допускала, чтобы частицы имели массу.

В частности, переносчики слабых взаимодействий, известные как бозоны W и Z, должны были быть безмассовыми, иначе фундаментальная симметрия теории была бы нарушена, и теория не работала бы. Это создавало серьезную проблему, поскольку носители слабого взаимодействия должны были быть массивными, чтобы соответствовать очень короткому диапазону слабого взаимодействия.

Решение этой проблемы было найдено с помощью механизма Браута-Энглерта-Хиггса. Этот механизм состоит из двух основных компонентов: совершенно нового квантового поля и особого трюка. Новое поле — это то, что мы теперь называем полем Хиггса, а хитрость заключается в спонтанном нарушении симметрии.

Спонтанно нарушенная симметрия — это симметрия, которая присутствует в уравнениях теории, но нарушена в физической системе. Представьте себе карандаш, стоящий на кончике в центре стола. Совершенно симметричная ситуация, но только на мгновение: карандаш немедленно упадет, нарушив вращательную симметрию, выбрав единственное направление, в котором будет указывать карандаш. Однако законы Природы останутся неизменными, без предопределенного направления, записанного в них. Таким образом, отсутствие симметрии было по существу «обмануто» в картину, не нарушая симметрии физики.

Частица в форме «мексиканской шляпы» поля Хиггса (слева) и карандаш, стоящий на его кончике (справа), демонстрируют спонтанное нарушение симметрии — симметрия присутствует, но только на мгновение. (Изображение: Ана Товар/ЦЕРН)

Для масс частиц это работает следующим образом: когда Вселенная родилась, она была заполнена полем Хиггса в нестабильном, но симметричном состоянии. Через долю секунды после Большого взрыва поле обрело стабильную конфигурацию, но нарушающую исходную симметрию. В этой конфигурации уравнения остаются симметричными, но нарушенная симметрия поля Хиггса приводит к массам бозонов W и Z.

Как позже выяснилось, другие элементарные частицы также приобретают массы, взаимодействуя с полем Хиггса, что приводит к свойствам частиц, которые мы наблюдаем сегодня.

Бозон Хиггса

В ЦЕРНе 4 июля 2012 г. коллаборации ATLAS и CMS представили доказательства в данных БАК о частице, соответствующей бозону Хиггса, частице, связанной с механизмом, предложенным в 1960-х годах для придания массы W, Z и другим частицам. (Изображение: Максимилиан Брис/Лоран Эгли/ЦЕРН)

Так что же такое бозон Хиггса? Поскольку каждую частицу можно представить как волну в квантовом поле, введение в теорию нового поля означает, что частица, связанная с этим полем, тоже должна существовать.

Большинство свойств этой частицы предсказываются теорией, поэтому, если будет найдена частица, соответствующая описанию, это станет убедительным доказательством механизма BEH — иначе у нас не будет возможности проверить существование поля Хиггса.

Бозон Хиггса является этой частицей, и его открытие в 2012 году подтвердило механизм BEH и поле Хиггса, что позволило исследователям еще больше углубиться в свое понимание материи.

Детальное измерение свойств бозона Хиггса имеет решающее значение для изучения многих выдающихся тайн физики элементарных частиц и космологии, от диких вариаций масс элементарных частиц до судьбы Вселенной.

 

Бозон Хиггса. Возврат к основам (Видео: ЦЕРН)

Министерство энергетики объясняет… бозон Хиггса | Департамент энергетики

Управление Наука

Эксперименты CMS (вверху слева) и ATLAS (внизу слева) на Большом адронном коллайдере (справа) в ЦЕРН.

Фото предоставлено Максимилианом Брайсом, ЦЕРН

Бозон Хиггса — это фундаментальная частица, связанная с полем Хиггса, полем, которое придает массу другим фундаментальным частицам, таким как электроны и кварки. Масса частицы определяет, насколько она сопротивляется изменению своей скорости или положения, когда сталкивается с силой. Не все элементарные частицы имеют массу. Фотон, являющийся частицей света и переносчиком электромагнитной силы, вообще не имеет массы.

Бозон Хиггса был предложен в 1964 году Питером Хиггсом, Франсуа Энглером и четырьмя другими теоретиками для объяснения того, почему определенные частицы имеют массу. Ученые подтвердили его существование в 2012 году в ходе экспериментов ATLAS и CMS на Большом адронном коллайдере (LHC) в ЦЕРН в Швейцарии. Это открытие привело к тому, что Нобелевская премия по физике 2013 года была присуждена Хиггсу и Энглерту.

В настоящее время ученые изучают характерные свойства бозона Хиггса, чтобы определить, точно ли он соответствует предсказаниям Стандартной модели физики элементарных частиц. Если бозон Хиггса отклоняется от модели, он может дать ключ к разгадке новых частиц, которые взаимодействуют с другими частицами Стандартной модели только через бозон Хиггса, и тем самым привести к новым научным открытиям.

Управление науки Министерства энергетики США: Вклад в исследование бозона Хиггса

БАК в ЦЕРНе — это самый высокоэнергетический коллайдер частиц в мире. В настоящее время это единственное место, где ученые могут создавать и изучать бозоны Хиггса. Управление науки Министерства энергетики (SC) предоставило важные ускорительные магниты для помощи в строительстве LHC. Министерство энергетики также поддерживает многих ученых, инженеров и техников в программе LHC. На БАК установлены четыре больших экспериментальных детектора частиц, два из которых частично поддерживаются Управлением физики высоких энергий SC: ATLAS и CMS. На американских исследователей приходится примерно 20% и 25% коллабораций ATLAS и CMS соответственно. Они также играют ведущую роль во многих аспектах каждого эксперимента. Эти эксперименты проводят точные измерения свойств бозона Хиггса, чтобы определить, соответствует ли он предсказаниям Стандартной модели или предлагает ключи к новой физике, исследуют новые частицы и их взаимодействия, а также определяют новую физику темной материи.

Оставить комментарий