Чему равно эдс: Формула ЭДС в физике

Содержание

ЭДС и напряжение в электрической цепи

Многие люди (в то числе и некоторые электрики) путают понятие электродвижущей силы (ЭДС) и напряжения. Хотя эти понятия имеют отличия. Несмотря на то, что они незначительные, не специалисту сложно в них разобраться. Не маловажную роль в этом играет единица измерения. Напряжение и ЭДС измеряются в одних единицах – Вольтах. На этом отличия не заканчиваются, подробно обо всем мы рассказали в статье!

  • Что такое электродвижущая сила
  • Что такое напряжение
  • Так в чем же отличие
  • Вывод

Что такое электродвижущая сила

Подробно этот вопрос мы рассмотрели в отдельной статье: https://samelectrik.ru/chto-takoe-eds-obyasnenie-prostymi-slovami.html

Под ЭДС понимается физическая величина, характеризующая работу каких-либо сторонних сил, находящихся в источниках питания постоянного или переменного тока. При этом, если имеется замкнутый контур, то можно сказать, что ЭДС равна работе сил по перемещению положительного заряда к отрицательному по замкнутой цепи. Или простыми словами, ЭДС источника тока представляет работу, необходимую для перемещения единичного заряда между полюсами.

При этом если источник тока имеющего бесконечную мощность, а внутреннее сопротивление будет отсутствовать (позиция А на рисунке), то ЭДС можно рассчитать по закону Ома для участка цепи, т.к. напряжение и электродвижущая сила в этом случае равны.

I=U/R,

где U – напряжение, а в рассмотренном примере — ЭДС.

Однако, реальный источник питания имеет конечное внутреннее сопротивление. Поэтому такой расчет нельзя применять на практике. В этом случае для определения ЭДС пользуются формулой для полной цепи.

I=E/(R+r),

где E (также обозначается как «ԑ») — ЭДС; R – сопротивление нагрузки, r – внутреннее сопротивление источника электропитания, I – ток в цепи.

Однако, эта формула не учитывает сопротивление проводников цепи. При этом необходимо понимать, что внутри источника постоянного тока и во внешней цепи, ток течет в разных направлениях. Разница заключается в том, что внутри элемента он течет от минуса к плюсу, то во внешней цепи от плюса к минусу.

Это наглядно представлено на ниже приведенном рисунке:

При этом электродвижущая сила измеряется вольтметром, в случае, когда нет нагрузки, т.е. источник питания работает в режиме холостого хода.

Чтобы найти ЭДС через напряжение и сопротивление нагрузки нужно найти внутреннее сопротивление источника питания, для этого измеряют напряжение дважды при разных токах нагрузки, после чего находят внутреннее сопротивление. Ниже приведен порядок вычисления по формулам, далее R1, R2 — сопротивление нагрузки для первого и второго измерения соответственно, остальные величины аналогично, U1, U2 – напряжения источника на его зажимах под нагрузкой.

Итак, нам известен ток, тогда он равен:

I1=E/(R1+r)

I2=E/(R2+r)

При этом:

R1=U1/I1

R2=U2/I2

Если подставить в первые уравнения, то:

I1=E/( (U1/I1)+r)

I2=E/( (U2/I2)+r)

Теперь разделим левые и правые части друг на друга:

(I1/I2)= [E/( (U1/I1)+r)]/[E/( (U2/I2)+r)]

После вычисления относительно сопротивления источника тока получим:

r=(U1-U2)/(I1-I2)

Внутреннее сопротивление r:

r= (U1+U2)/I,

где U1, U2 — напряжение на зажимах источника при разном токе нагрузки, I — ток в цепи.

Тогда ЭДС равно:

E=I*(R+r) или E=U1+I1*r

Что такое напряжение

Электрическое напряжение (обозначается как U) – это физическая величина, которая отражает количественную характеристику работы электрического поля по переносу заряда из точки А в точку В. Соответственно напряжение может быть между двумя точками цепи, но в отличии от ЭДС оно может быть между двумя выводами какого-то из элементов цепи. Напомним, что ЭДС характеризует работу, выполненную сторонними силами, то есть работу самого источника тока или ЭДС по переносу заряда через всю цепь, а не на конкретном элементе.

Это определение можно выразить простым языком. Напряжение источников постоянного тока – это сила, которая перемещает свободные электроны от одного атома к другому в определенном направлении.

Для переменного тока используют следующие понятия:

  • мгновенное напряжение — это разность потенциалов между точками в данный промежуток времени;
  • амплитудное значение – представляет максимальную величину по модулю мгновенного значения напряжения за промежуток времени;
  • среднее значение – постоянная составляющая напряжения;
  • среднеквадратичное и средневыпрямленное.

Напряжение участка цепи зависит от материала проводника, сопротивления нагрузки и температуры. Так же как и электродвижущая сила измеряется в Вольтах.

Часто для понимания физического смысла напряжения, его сравнивают с водонапорной башней. Столб воды отождествляют с напряжением, а поток с током.

При этом столб воды в башне постепенно уменьшается, что характеризует понижение напряжения и уменьшения силы тока.

Так в чем же отличие

Для лучшего понимания, в чем состоит разница электродвижущей силы от напряжения, рассмотрим пример. Имеется источник электрической энергии бесконечной мощности, в котором отсутствует внутреннее сопротивление. В электрической цепи смонтирована нагрузка. В этом случае будет справедливо утверждение, что ЭДС и напряжение тождественно равны, т.е между этими понятиями отсутствует разница.

Однако, это идеальные условия, которые в реальной жизни не встречаются. Эти условия используют исключительно при расчетах. В реальной жизни учитывается внутреннее сопротивление источника питания. В этом случае ЭДС и напряжение имеют отличия.

На рисунке представлено, какая разница будет в значениях электродвижущей силы и напряжении в реальных условиях. Вышеприведенная формула закона Ома для полной цепи описывает все процессы. При разомкнутой цепи на клеммах батарейки будет значение 1,5 Вольта. Это значение ЭДС. Подключив нагрузку, в данном случае это лампочка, на ней будет напряжение 1 вольт.

Разница от идеального источника заключается в наличии внутреннего сопротивления источника питания. На этом сопротивлении и происходит падение напряжения. Эти процессы описывает закон Ома для полной цепи.

Если измерительный прибор на зажимах источника электроэнергии показывает значение 1,5 Вольта, это будет электродвижущая сила, но повторим, при условии отсутствия нагрузки.

При подключении нагрузки на клеммах будет заведомо меньшее значение. Это и есть напряжение.

Вывод

Из вышесказанного можно сделать вывод, что основная разница между ЭДС и напряжением состоит:

  1. Электродвижущая сила зависит от источника питания, а напряжение зависит от подключенной нагрузки и тока, протекающего по цепи.
  2. Электродвижущая сила это физическая величина, характеризующая работу сторонних сил неэлектрического происхождения, происходящих в цепях постоянного и переменного тока.
  3. Напряжение и ЭДС имеет единую единицу измерения – Вольт.
  4. U -величина физическая, равная работе эффективного электрического поля, производимой при переносе единичного пробного заряда из точки А в точку В.

Таким образом, кратко, если представить U в виде столба воды, то ЭДС можно представить что это насос, поддерживающий уровень воды на постоянном уровне. Надеемся, после прочтения статьи Вам стало понятно основное отличие!

Материалы по теме:

  • Чем отличается трансформатор от автотрансформатора
  • Разница между контактором и пускателем
  • Как узнать, есть ли напряжение в розетке

Лабораторная работа №6

Лабораторная работа №6

ЛАБОРАТОРНАЯ РАБОТА №6

ЭДС и внутреннее сопротивление источников постоянного тока. Закон Ома для полной цепи.

Цель работы:
определить внутреннее сопротивление источника тока и его ЭДС.

 


1.Пояснение к работе
Краткие теоретические сведения

Электрический ток в проводниках вызывают так называемые источники постоянного тока. Силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля, называются сторонними силами. Отношение работы Астор., совершаемой сторонними силами по перемещению заряда D Q вдоль цепи, к значению этого заряда называется электродвижущей силой e источника (ЭДС):


     (1)    Электродвижущая сила выражается в тех же единицах, что и напряжение или разность потенциалов, т.е. в Вольтах.

Работа – эта мера превращения энергии из одного вида в другой. Следовательно, в источнике сторонняя энергия преобразуется в энергию электрического поля

       W = e * Q        (2)


При движении заряда Q на внешнем участке цепи преобразуется энергия стационарного поля, созданного и поддерживаемого источником:

W1 = U * Q ,      (3)



а на внутреннем участке:

W2 = Uвн. * Q       (4)


По закону сохранения энергии

W = W1 + W2 или e * Q = U * Q + Uвн. * Q       (5)


Сократив на Q, получим:

e = Uвн. + U       (6)


т. е. электродвижущая сила источника равна сумме напряжений на внешнем и внутреннем участке цепи.

При разомкнутой цепи Uвн.= 0, то

e = U     (7)


Подставив в равенство (6) выражения для U и Uвн. по закону Ома для участка цепи

U = I * R; Uвн. = I * r,


получим:

e = I * R + I * r = I * (R + r)        (8)


Отсюда
 
(9)

  Таким образом, сила тока в цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участков цепи. Это закон Ома для полной цепи. В формулу (9) входит внутреннее сопротивление r.

Рисунок 1. Схема электрическая принципиальная.Пусть известны значения сил токов I1 и I2 и падения напряжений на реостате U1 и U2 (см. рис.1.). Для ЭДС можно записать:

e = I1 * (R1 + r) и e = I2 * (R2 + r)       (10)


Приравнивая правые части этих двух равенств, получим

I1 * (R1 + r) = I2 * (R2 + r)


или

I1 * R1 + I1 * r = I2 * R2 + I2* r


I1 * r – I2 * r = I2 * R2 – I1 * R1


Т.к. I1 * R1 = U1 и I2 * R2 = U2, то можно последнее равенство записать так

r * (I1 – I2) = U2 – U1 ,


откуда


2.Техническое задание
2.1.Собрать электрическую цепь  (рисунок 1)
2.2.Снять показания приборов и записать их в таблицу
2. 3.Произвести расчеты
2.4.Ответить на контрольные вопросы
2.5. Сделать вывод

 


3.Работа в лаборатории

3.1. Собрать схему (Рисунок 2).



Рисунок 2. Схема исследования.

3.2. Установите сопротивление реостата 7 Ом + N, ЭДС батарейки 5 В, внутреннее сопротивление батарейки 2 Ом + N

,
где  N – номер студента по журналу.

3.3. При помощи мультиметра определите напряжение на батарейке при разомкнутом ключе. Это и будет ЭДС батарейки в соответствии с формулой (7)
3.4. Замкните ключ и измерьте силу тока и напряжение на реостате. Результаты запишите в таблицу 1.
3.5. Измените сопротивление реостата и запишите другие значения силы тока и напряжения в таблицу 1.
3.6. Повторите измерения силы тока и напряжения для 7 различных положений ползунка реостата и запишите полученные значения в таблицу 1.
3.7. Рассчитайте внутреннее сопротивление по формуле (11).
3.8. Отключить схему.

Таблица 1 – Результаты измерений

№ изм.

U

I

Rреост

r

В

А

Ом

Ом

1

 

 

 

 

 

2

 

 

 

3

 

 

 

 

4

 

 

 

 

5

 

 

 

 

6

 

 

 

 

7

 

 

 

 

8

 

 

 

 


4. Содержание отчета
4.1. Название и цель работы
4.2. Схемы
4.3. Таблицы
4.4. Ответы на контрольные вопросы
4.5. Вывод

 


5.Контрольные вопросы
5.1. Сформулируйте закон Ома для полной цепи.
5.2. Чему равно ЭДС источника при разомкнутой цепи?
5.3. Чем обусловлено внутреннее сопротивление источника тока?
5.4. Чем определяется сила тока короткого замыкания батарейки?

Назад в оглавление

Сайт создан в системе uCoz

Электричество и магнетизм

Применим теперь к рассмотренной системе закон сохранения энергии. Пусть — изменение магнитного потока при небольшом перемещении проводника за время . Совершенная работа равна . За счет какого источника совершается эта работа? В окружающем пространстве ничего не изменилось. Единственная доступная энергия черпается из источника тока. Если его ЭДС равна  то за время  источник израсходует энергию . Эта энергия тратится на выделение тепла на сопротивлении R  и на работу по перемещению проводника

(8.5)

Разделив обе части на  и перенося слагаемое с потоком в левую часть равенства, получаем

(8.6)

В этом уравнении нетрудно узнать закон Ома: в правой части стоит падение напряжения на сопротивлении, а в левой должна стоять сумма всех действующих в цепи ЭДС. Поэтому уравнение можно переписать в виде

(8. 7)

где

                   

(8.8)

Это соотношение есть математическая запись закона электромагнитной индукции Фарадея (рис. 8.7). 

Видео 8.4. Вихревое электрическое поле.

 

Рис. 8.7. Магнитный поток через замкнутый контур 

В чем же физическая причина возникновения ЭДС индукции в данном случае? Рассмотрим почти такую же систему, но без источника тока и без замкнутой цепи. Пусть отрезок проводника длиной l  движется со скоростью v перпендикулярно вектору магнитной индукции В (рис. 8.8).

Рис. 8.8. Возникновение на концах проводника, движущегося в магнитном поле,
разности потенциалов, равной ЭДС электромагнитной индукции
 

Магнитное поле однородно и линии магнитной индукции  перпендикулярны чертежу и направлены от нас. На свободные электроны в проводнике действует сила Лоренца (направление которой определяется правилом буравчика)

                    

(8.9)

где е — заряд электрона. Под влиянием силы Лоренца произойдет перемещение зарядов и на концах проводника возникнет некоторая разность потенциалов . Возникшее электрическое поле Е будет препятствовать передвижению зарядов, и их дальнейшее движение прекратится, когда сила со стороны индуцированного электрического поля  будет равна по величине, но противоположна по направлению силе Лоренца .

Таким образом, получаем

откуда

               

(8.10)

Так как , то

              

(8. 11)

Скорость проводника равна , а произведение  есть площадь поверхности, заметаемая проводником за время . Получаем, следовательно,

               

(8.12)

Мы пришли к тому же результату, так как разность потенциалов на концах разомкнутого проводника равняется ЭДС индукции. (Напомним, что и для обычного источника тока разность потенциалов на его клеммах при разомкнутой цепи равна ЭДС.) Поскольку сила Лоренца, действующая на отрицательно заряженные электроны, направлена на рис. 8.3 вниз, на нижнем конце проводника скапливается избыток отрицательного заряда, а на верхнем — положительного. Следовательно, потенциал верхнего конца выше потенциала нижнего. Впрочем, о знаке ЭДС индукции мы поговорим особо. 

Напомним, что ранее мы рассмотрели пример (п. 6.7), в котором речь шла о самолете, летящем в вертикальном магнитном поле. Нетрудно заметить, что проблема в том примере идентична только что рассмотренной задаче о движении проводника. И из преобразований Лоренца мы получили тогда в точности те же результаты, что и сейчас: сравните формулы (8.10) и (6.43). Таким образом, и закон сохранения энергии, и уравнение динамики заряда в магнитном поле, и даже релятивистские преобразования Лоренца для электромагнитного поля приводят к тому же закону Фарадея — в физике (как и вообще в мире) все взаимосвязано. 

Выражение (8.8) для ЭДС электромагнитной индукции имеет очень общий вид: в него не вошли никакие конкретные характеристики движения: скорость проводника, его длина и т. п. Все определяется только скоростью изменения потока вектора магнитной индукции. При этом совершенно неважно, каким путем мы изменяем этот поток. Можно деформировать виток, перемещать его или просто увеличивать магнитную индукцию (рис 8.9, 8.10, 8.11, 8.12, 8.13). Именно последний вариант реализовался в опытах, которые мы обсуждали в начале этой главы. Механизм возникновения ЭДС индукции может бытьразным, но конечный результат будет описываться тем же уравнением (8.8), которое носит название закона Фарадея. 

Рис. 8.9. Закон Фарадея

 

Рис. 8.10. Возникновение тока в контуре при перемещении провода в  постоянном магнитном поле 

 

Рис. 8.11. Возникновение тока в контуре при подключении батареи  

 

Рис. 8.12. Яркое вспыхивание лампочки при размыкании ключа 

Видео 8.5. Токи замыкания и размыкания. К вопросу: «Можно ли сжечь прибор при его выключении?»

Рис. 8.13. Возникновение переменного тока при вращении контура 

Пример 1. В однородном магнитном поле с индукцией 0,4 Тл в плоскости, перпендикулярной линиям индукции поля, вращается стержень длиной 10 см. Ось вращения проходит через один из концов стержня. Определить разность потенциалов U на концах стержня при частоте вращения 16 .

Решение. За время стержень повернется на угол  и заметет сектор площадью

Разность потенциалов равна скорости изменения потока магнитной индукции

 

Закон Фарадея применим не только к отдельному контуру или витку, но и к катушке, которую можно рассматривать как N  витков, соединенных последовательно. В этом случае суммарная ЭДС будет в N раз больше, чем ЭДС отдельного витка, то есть

(8.13)

где величина

называется потокосцеплением или полным магнитным потоком ( измеряется в тех же единицах, что и , то есть в веберах).

Видео 8. 6. Потокосцепление: почему в обмотке чаще всего много витков.

Пример 2. Магнитная индукция поля между полюсами магнита генератора равна 0,8 Тл. Ротор имеет 100 витков площадью 400 см2. Определить частоту вращения якоря, если максимальная ЭДС индукции равна = 200 В (рис. 8.14). 

 

Рис. 8.14. Вращение контура в постоянном магнитном поле 

Решение. Угол между магнитным полем и нормалью к плоскости витков изменяется по закону . Полный магнитный поток через обмотку ротора в момент времени t  равен . Дифференцируямагнитный поток по времени, получаем

Максимальное значение синуса равно единице, следовательно, максимальное значение ЭДС индукции равно

откуда

 

ЭДС индукции возникает не только при перемещении замкнутого контура в магнитном поле или перемещении магнита относительно неподвижного контура. Пусть имеются две катушки с общим железным сердечником, служащим в качестве магнитопровода (рис. 8.15).

Рис. 8.15. Железный сердечник как магнитопровод между двумя катушками 

При разомкнутой цепи магнитный поток в системе равен нулю. При замыкании ключа К через катушку 1 пойдет ток, который создаст магнитное поле, так что катушка 2 будет пронизываться магнитным потоком . Поэтому при замыкании ключа за время нарастания тока до стационарного значения поток через катушку 2, меняется на величину . Соответственно, в ней возникает ЭДС

где N — число витков в катушке 2, и идет индукционный ток, который зарегистрирует гальванометр G.

Когда возрастание тока в катушке 1 прекратится, поток магнитной индукции станет постоянным и ЭДС будет равна нулю. Ток в катушке 2 также перестанет идти, и стрелка гальванометра вернется в исходное положение. Такая же картина будет наблюдаться и при размыкании цепи катушки 1, только стрелка гальванометра отклонится в другую сторону, что свидетельствует об изменении направления тока в катушке 2.

Если через катушку 1 пропустить переменный ток, то по цепи катушки 2 пойдет переменный ток той же частоты. Этот принцип широко используется в трансформаторной технике. 

Пусть контур имеет сопротивление R и пусть магнитный поток через него меняется по какому-то закону. Возникающая в контуре ЭДС электромагнитной индукции

вызывает в контуре ток

                            

(8.14)

Заряд , протекший в контуре за время , связан с током 

Интегрируя, получаем для заряда Q, протекшего по контуру при изменении потока следующее выражение

 

                          

(8. 15)

(мы используем модуль изменения потока, так как направление перетекания заряда нам сейчас не важно). Отсюда, кстати, вытекает связь единицы измерения магнитного потока с зарядом и сопротивлением

Пример 3. Проволочное кольцо радиусом 10 см лежит на столе. Какой заряд протечет по кольцу, если его повернуть с одной стороны на другую. Сопротивление кольца 3 Ом. Вертикальная составляющая индукции магнитного поля Земли равна 50 мкТл.

Решение. Начальный поток магнитной индукции через кольцо равен . После переворачивания кольца величина потока будет той же, но силовые линии входят теперь с другой стороны кольца: . Искомый заряд равен

 

В 1833 г. Э.X. Ленц (рис. 8.16) сформулировал правило (правило Ленца): 

 

Рис. 8.16. Э.Х. Ленц (1804–1865) —  русский физик

Индукционный ток всегда имеет такое направление, что его магнитное поле противодействует изменению магнитного потока, пронизывающего контур.  

Приведем пример использования правила Ленца (рис. 8.17, 8.18).

Рис. 8.17. Иллюстрация правила Ленца

  

Рис. 8.18. Иллюстрация правила Ленца 

Рассматривая рис. 8.8, мы видели, что избыточный положительный заряд накапливался на верхнем конце проводника. Следовательно, в то короткое время, пока движение зарядов в проводнике не прекратилось, индукционный ток тек снизу вверх. По правилу буравчика (поворот ручки от направления тока к направлению поля), сила Ампера была направлена налево, препятствуя движению проводника направо. В опыте, когда постоянный магнит приближается к витку, индуцированный ток также создает противодействующее магнитное поле (рис. 8.19).

Рис. 8.19. При перемещении постоянного магнита в катушке возникает индукционный ток,
поле которого препятствует перемещению магнита
 

На рис. 8.20 показан опыт, иллюстрирующий правило Ленца. На концах коромысла, которое может вращаться вокруг вертикальной оси, укреплены два алюминиевых кольца: одно сплошное, а другое — с разрезом. при приближении к первому кольцу постоянного магнита оно отталкивается от него. а при удалении — притягивается, поскольку индукционные токи в соответствии с правилом Ленца препятствуют изменению магнитного потока, охватываемого кольцом. С разрезанным кольцом магнит не взаимодействует.

 

Рис. 8.20. Взаимодействие постоянного магнита с проводящим кольцом

Видео 8.7. Парение колец в магнитном поле.

На рис. 8.21 представлен опыт, в котором демонстрируется взаимодействие проводящего кольца и электромагнита. Кольцо, надетое на выступающий из обмотки конец вертикального сердечника, при включении тока в обмотке взлетает вверх. При горизонтальном расположении сердечника в соответствии с правилом Ленца при включении поля перемещается по сердечнику в сторону от обмотки, а при выключении — обратно к обмотке.  

 

Рис. 8.21. Взаимодействие электромагнита с проводящим кольцом 

Видео 8.8. Электромагнитная пушка.

Математически правило Ленца отображается знаком минус в уравнении (8.8) закона Фарадея. Обсудим подробнее эту связь. Здесь могут возникнуть трудности с определением знака потока вектора магнитной индукции. Когда мы имели дело с замкнутыми поверхностями в электростатике, положительное направление задавалось внешней нормалью. Когда незамкнутая поверхность «натянута» на контур с уже текущим током, направление тока задает положительное направление нормали по правилу буравчика. С этим мы познакомились уже при решении задач онахождении работы по деформированию контура. Но как быть в случае использования закона Фарадея, когда поверхность не замкнута, а направление тока нам не известно и мы только хотим его определить? 

Рассмотрим рис. 8.22. На нем показан контур, пронизываемый силовыми линиями внешнего магнитного поля В.

Рис. 8.22. Иллюстрация применения правила Ленца:
изменение направления обхода контура не меняет знака ЭДС индукции в законе Фарадея 

Выберем положительное направление обхода контура против часовой стрелки (верхний ряд). На рис. 8.22-1 магнитное поле постоянно. При данном выборе положительного направления обхода контура и остром угле между нормалью n к контуру и вектором магнитной индукции В магнитный поток через контур положителен . На рис. 8.22-2 магнитное поле увеличивается. Положительный поток через контур также растет, и потому  Из закона Фарадея следует тогда, что ЭДС индукции и, следовательно, индукционный ток отрицательны. Это значит, что ток течет в обратном направлении по отношению к выбранному пути обхода контура, то есть по часовой стрелке.

Выберем теперь иное положительное направление обхода контура — по часовой стреле (рис. 8.22-3). Поток постоянного магнитного поля здесь отрицателен (угол между n и В тупой, и его косинус отрицателен). При увеличении поля абсолютная величина потока растет, но так как он отрицателен, то (, как показано на рис. 8.22-4). Из закона Фарадея следует тогда, что ЭДС и индукционный ток положительны. Это значит, что направление тока совпадаетс выбранным направлением обхода контура, то есть ток течет по часовой стрелке.

Мы показали, что направление индукционного тока не зависит от выбора положительного направления обхода контура. Так и должно быть, поскольку выбор направления обхода контура делаем мы и притом произвольно, а направление тока — физическая реальность, которая не может зависеть от нашего произвола. С аналогичной ситуацией мы сталкивались при изучении правил Кирхгофа.

Индукционные токи возникают не только в проволочных витках, но и в толще массивных проводников. В этом случае их называют вихревыми токами или токами Фуко. Из–за малого сопротивления проводников они могут достигать большой силы. По правилу Ленца вихревые токи также действуют против причины, их вызывающей. На этом основана идея электромагнитных демпферов, успокаивающих колеблющиеся части приборов (стрелки гальванометров и т. п.). На подвижной части прибора укрепляется металлическая полоска, находящаяся в поле сильного магнита. При движении системы токи Ж. Фуко (рис. 8.23) тормозят ее, но они отсутствуют при покоящейся стрелке и не препятствуют её остановке в нужном месте, согласно значению измеряемой величины (в отличие от сил трения).

Рис. 8.23. Леон Фуко (1819–1868) — французский физик и астроном 

Итогом проведенных рассуждений может быть такая формулировка правила Ленца: индукционный ток всегда направлен так, чтобы препятствовать той причине, которая его породила. Вне зависимости от того, что это за причина.

Например, если проволочное кольцо падает в неоднородном магнитном поле под действием силы тяжести, то в нем течет индукционный ток. Соответственно на кольцо действует сила Ампера. Ничего не вычисляя, можно быть уверенным в том, что эта сила Ампера будет направлена вверх, чтобы — согласно правилу Ленца — мешать силе тяжести, которая является причиной падения кольца, что влечет за собой изменение магнитного потока, а это приводит к появлению индукционного тока, на который действует сила Ампера, тормозящая падение…

Ниже рассматриваются опыты, в которых изучаются свойства токов Фуко.  

На рис. 8.24 показан опыт, демонстрирующий падение тел в неоднородном магнитном поле. Неоднородное магнитное поле тормозит движение проводящих предметов из-за токов Фуко, возникающих в проводниках при изменении магнитного потока через них. Демонстрируется беспрепятственное падение диэлектрического деревянного диска между полюсами сильного электромагнита и медленное падение медного и алюминиевого дисков в магнитном поле, напоминающее движение тел в среде с большой вязкостью.

Рис. 8.24. Падение тел в неоднородном магнитном поле 

Видео 8.9. Электромагнитное торможение: падение медных и алюминиевых дисков  («монет») в магнитном поле.

При падении сильного постоянного магнита внутри вертикальной проводящей трубки в ее стенках возникают токи Фуко, тормозящие это падение. В опыте (рис. 8.25) демонстрируется свободное падение немагнитного алюминиевого цилиндра в разных трубках, а также маленького магнита в стеклянной трубке. Затем показывают замедление падения этого магнита в алюминиевой трубке и его очень медленное падение в толстостенной медной трубке.

 

Рис. 8.25. Падение магнита в трубках 

На рис. 8.26 показано демпфирование колебаний маятника. Толстая сплошная медная пластина, прикрепленная на конце физического маятника, движется при его колебаниях между полюсами сильного электромагнита. Слабо затухающие колебания маятника после включения магнитного поля начинают быстро затухать, превращаясь практически в апериодические колебания. Если на конце маятника закрепить медную пластинку, разрезанную в виде гребенки, то сильное затухание колебаний маятника исчезает, поскольку токи Фуко уже не могут замыкаться в объеме проводника. 

 

Рис. 8.26. Демпфирование колебаний маятника 

Видео 8.10. Электромагнитное торможение: маятник.

В опыте на рис. 8.27 показана левитация сплошного проводящего кольца. Токи Фуко могут возникать не только в проводниках при их перемещении в неоднородном магнитном поле, но и при быстром изменении этого поля. сплошное кольцо из алюминия, надетое на вертикальный сердечник электромагнита, питаемого переменным током частотой 50 Гц, висит в воздухе. в то время как такое же, но разрезанное кольцо свободно падает на обмотку. 

 

Рис. 8.27. Левитация сплошного проводящего кольца 

На рис. 8.28 показано взаимодействие проводника и электромагнита. Толстый медный диск укреплен в подшипниках на оси с ручкой. Вблизи него на такой же оси закреплен электромагнит. Если вращать за ручку включенный электромагнит, то диск начинает вращаться в ту же сторону. Если же, наоборот, вращать за ручку диск вблизи электромагнита, то последний также начинает вращаться. Силы взаимодействия диска и электромагнита, похожие по характеру на силы вязкого трения, обусловлены возникновением токов Фуко в диске.

 

Рис. 8.28. Взаимодействие проводника и электромагнита 

При перемещении сверхпроводника в магнитном поле возникающие в нем незатухающие токи Фуко не позволяют проникать вешнему полю внутрь него. Получается как бы зеркальное отражение магнита, отталкивающее его от сверхпроводника. На рис. 8.29 демонстрируется левитация маленького магнита над большой шайбой из высокотемпературного сверхпроводника (ВТСП-керамики), охлажденной до температуры жидкого азота (77 К), то есть ниже критической температуры перехода ВТСП-керамики в сверхпроводящее состояние. 

 

Рис. 8.29. Левитация маленького магнита над большой шайбой из высокотемпературного сверхпроводника (ВТСП-керамики) 

Видео 8.11. Зависание намагниченного ферромагнетика над сверхпроводником.

Тепловое действие токов Фуко используется в индукционных печах при плавке металла или приготовлении пищи. Такая печь, в сущности, является большой катушкой, питаемой высокочастотным током большой силы. Катушка создает переменный магнитный поток через помещенный в печь образец, а возникающие токи Фуко разогревают последний. 

На рис. 8.30 демонстрируется тепловое действие токов Фуко. Алюминиевое кольцо надевают на сердечник электромагнита, питаемого переменным током частотой 50 Гц, и некоторое время удерживают плоскогубцами в переменном магнитном поле. Затем кольцо опускают в воду, и она закипает, показывая, что кольцо разогрелось индукционными токами до высокой температуры. 

 

Рис. 8.30. Тепловое действие токов Фуко 

Видео 8.12. Кипячение воды индукционным током или основной способ нагрева плазмы в будущем термоядерном реакторе — токамаке.

 

Дополнительная информация

http://www.transformersonline.ru/trans/412/5/index.shtml — трансформаторы;

http://www.electrotrans.org/ — трансформаторы для аппаратуры;

http://principact.ru/content/view/65/108/1/2/ — трансформаторы, принцип работы;

http://electricalschool. info/main/osnovy/532-vikhrevye-toki.html — вихревые токи;

http://374.ru/index.php?x=2007-10-09-61 — вихревые токи, изобретение микроволновой печи;

http://eletan.ru/index.php?newsid=168 — принцип работы индукционной плиты;

http://electricalschool.info/main/drugoe/235-indukcionnyjj-nagrev-i-indukcionnaja.html — индукционный нагрев, индукционная плавка металлов;

http://www.induction.kaboard.com/induction%20furnace%20-%20page-1.html — индукционные печи, плавка металлов;

http://www.reltec.biz/ru/txt_013.php — индукционные печи;

http://www.superconductors.org/ — сверхпроводники, все о сверхпроводимости;

http://www.chem.msu.su/rus/journals/xr/tretyak.html — химически сверхпроводники;

http://www.americanmagnetics.com/tutorial/supercon.html — сверхпроводимость;

http://www.physics.ubc.ca/~supercon/intro.html — кафедра сверхпроводимости университета UBC;

http://elementy.ru/lib/430825/430831 — сверхпроводимость, применение сверхпроводников;

http://nextbigfuture. com/2010/03/high-temperature-superconductor-status.html — высокотемпературные сверхпроводники;

http://www.can-superconductors.com/ — ВТСП — керамики.

3/9

Сторонние силы. Электродвижущая сила и напряжение — Студопедия

Поделись  


Сторонние силы. ЭДС.

 

 

Сторонние силы и ЭДС
 

 

Для того, чтобы поддерживать ток достаточно длительное время, необходимо от конца проводника с меньшим потенциалом непрерывно отводить, а к другому концу – с большим потенциалом – подводить электрические заряды. Т.е. необходим круговорот зарядов. Поэтому в замкнутой цепи, наряду с нормальным движением зарядов, должны быть участки, на которых движение (положительных) зарядов происходит в направлении возрастания потенциала, т.е. против сил электрического поля (рис. 7.3). Рис. 7.3 Перемещение заряда на этих участках возможно лишь с помощью сил неэлектрического происхождения (сторонних сил): химические процессы, диффузия носителей заряда, вихревые электрические поля. Аналогия: насос, качающий воду в водонапорную башню, действует за счет негравитационных сил (электромотор). Сторонние силы можно характеризовать работой, которую они совершают над перемещающимися по замкнутой цепи или ее участку зарядами. Величина, равная работе сторонних сил по перемещению единичного положительного заряда в цепи, называется электродвижущей силой (ЭДС), действующей в цепи:
  . (7.4.1)  

Как видно из (7.4.1), размерность ЭДС совпадает с размерностью потенциала, т.е. измеряется в вольтах.

Стороннюю силу, действующую на заряд, можно представить в виде:

  (7.4.2)  

– напряженность поля сторонних сил.

Работа сторонних сил на участке 1 – 2:

  тогда (7. 4.3)  

Для замкнутой цепи:

  (7.4.4)  

Циркуляция вектора напряженности сторонних сил равна ЭДС, действующей в замкнутой цепи (алгебраической сумме ЭДС).

При этом необходимо помнить, что поле сторонних сил не является потенциальным, и к нему нельзя применять термин разность потенциалов или напряжение.

Сторонние силы. ЭДС и напряжение.

Смещение под действием электрического поля зарядов в проводнике всегда происходит таким образом, что электрическое поле в проводнике исчезает и ток прекращается. Для протекания тока в течение продолжительного времени на заряды в электрической цепи должны действовать силы, отличные по природе от сил электростатического поля, такие силы получили название сторонних сил. Эти силы могут быть обусловлены химическими процессами, диффузией носителей тока в неоднородной среде, электрическими (но не электростатическими) полями, порождаемыми переменными во времени магнитными полями, и т. д. Всякое устройство, в котором возникают сторонние силы, называется источником электрического тока. Сторонние силы характеризуют работой, которую они совершают над перемещаемыми по электрической цепи носителями заряда. Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС) , действующей в электрической цепи или на ее участке. Представим стороннюю силу , действующую на заряд q, в виде

,

где векторная величина представляет напряженность поля сторонних сил. Тогда на участке цепи ЭДС равна

.

Интеграл, вычисленный для замкнутой цепи, дает ЭДС, действующую в этой цепи,

.

Последнее выражение дает самое общее определение ЭДС и пригодно для любых случаев. Если известно, какие силы вызывают движение зарядов в данном источнике, то всегда можно найти напряженность поля сторонних сил и вычислить ЭДС источника. Физическая природа электродвижущих сил в разных источниках весьма различна.

Рассмотрим пример. Пусть имеется металлический диск радиуса R (рис. 4.2), вращающийся с угловой скоростью . Диск включен в электрическую цепь при помощи скользящих контактов, касающихся оси диска и его окружности. Центростремительная сила , где m – масса электрона; r – расстояние от оси диска. Эта сила действует на электрон и поэтому , возникающая ЭДС равна

.

Источник ЭДС (идеальный источник напряжения) — двухполюсник, напряжение на зажимах которого постоянно (не зависит от тока в цепи). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.

В простейшем случае напряжение определено как константа, то есть напряжение источника ЭДС постоянно.

Реальные источники напряжения [править]

Рисунок 2

Рисунок 3 — Нагрузочная характеристика

Идеальный источник напряжения (источник ЭДС) является физической абстракцией, то есть подобное устройство не может существовать. Если допустить существование такого устройства, тоэлектрический ток I, протекающий через него, стремился бы к бесконечности при подключении нагрузки, сопротивление RH которой стремится к нулю. Но при этом получается, что мощностьисточника ЭДС также стремится к бесконечности, так как . Но это невозможно, по той причине, что мощность любого источника энергии конечна.

В реальности, любой источник напряжения обладает внутренним сопротивлением r, которое имеет обратную зависимость от мощности источника. То есть, чем больше мощность, тем меньше сопротивление (при заданном неизменном напряжении источника) и наоборот. Наличие внутреннего сопротивления отличает реальный источник напряжения от идеального. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника энергии. Эквивалентная схема реального источника напряжения представляет собой последовательное включение источника ЭДС — Е (идеального источника напряжения) и внутреннего сопротивления — r.

На рисунке 3 приведены нагрузочные характеристики идеального источника напряжения (источника ЭДС) (синяя линия) и реального источника напряжения (красная линия).

где

— падение напряжения на внутреннем сопротивлении;

— падение напряжения на нагрузке.

При коротком замыкании ( ) , то есть вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток будет максимальным для данного источника ЭДС. Зная напряжение холостого хода и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:

Сторонние силы. Электродвижущая сила и напряжение

Если два разноименных проводника А и В, заряженных до потенциалов φ1 и φ2, соединить проводником С (рисунок 2), то под действием поля начнется перемещение электронов в направлении АСВ, т. е. по проводнику пойдет ток в направлении ВСА. В процессе прохождения тока произойдет выравнивание потенциалов и напряженность поля внутри проводника станет равной нулю, ток прекратится. Таким образом, электрическое поле создает в проводнике кратковременный импульс тока (сила тока в момент соединения возрастает от нуля до некоторого максимума, а затем постепенно убывает до нуля).

Рисунок 2 Иллюстрация возникновения тока в два разноименных проводниках А и В, заряженных до потенциалов φ1 и φ2, соединённых проводником С

Для поддержания в цепи постоянного тока необходимо иметь специальное устройство, внутри которого происходило бы непрерывное разделение разноименных зарядов и их перенос к соответствующим проводникам (положительные заряды — к проводнику В, отрицательные — к А). Подобное устройство, называемое источником тока (или генератором), должно действовать на электроны (или вообще на заряды) силами неэлектростатического происхождения. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.

Природа сторонних сил может быть различной. Например, в гальванических элементах эти силы возникают за счет энергии химических реакций между электродами и электролитами; в генераторах постоянного тока — за счет энергии магнитного поля и механической энергии вращения якоря и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. За счет создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах внешней цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.

Сторонние силы, перемещая электрические заряды, совершают работу. Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (э. д. с ) ε ; действующей в цепи:

ε = A/Q0. (7)

Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину ε можно также называть электродвижущей силой источника тока, включенного в цепь. Часто вместо того, чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует э.д.с.», т.е. термин «электродвижущая сила» употребляется как характеристика сторонних сил.Э.д. с., как и потенциал, выражается в вольтах.

Сторонняя сила , действующая на заряд Q0, может быть выражена как

, (8)

где — напряженность поля сторонних сил. Работа же сторонних сил над зарядом Q0 на замкнутом участке цепи равна

(9)

Разделив (96.2) на Q0, получим э. д. с., действующую в цепи:

(10)

т. е. э. д. с., действующая в замкнутой цепи, определяется как циркуляция вектора напряженности сторонних сил. Э.д.с., действующая на участке 1-2, равна

(11)

На заряд Q0 помимо сторонних сил действуют также силы электростатического поля . Таким образом, результирующая сила, действующая в цепи на заряд Q0, равна

(12)

Работа, совершаемая результирующей силой над зарядом Q0 на участке 1-2, равна

(13)

Используя выражения (13) и , можем записать

(14)

Для замкнутой цепи работа электростатических сил равна нулю, поэтому в данном случае A12 = Q0ε12.

Напряжением U на участке 1-2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (14),

U12 = φ1212(15)

Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не приложена э. д. с., т. е. сторонние силы отсутствуют.

Сторонние силы. ЭДС

Пусть на концах проводника длиной l создана разность потенциалов которая порождает внутри него электрическое поле Е, направленное в сторону падения потенциала (рис. 4.5-1). Если поле внутри проводника можно считать однородным, то

(4.11)

 

Рис. 4.5. Для возникновения тока необходима разность потенциалов на концах проводника.
Для поддержания разности потенциалов нужен источник тока

При этом в проводнике возникает электрический ток, который идет от большего потенциала к меньшему . Движение (положительных) зарядов от к приводит к выравниванию потенциалов во всех точках. Электрическое поле в проводнике при этом исчезает, и ток прекращается. Очевидно, обязательным условием существования тока является наличие разности потенциалов

а для ее поддержания необходимо иметь специальное устройство, с помощью которого будет происходить разделение зарядов на концах проводника. Такое устройство называется источником тока. Таким образом, для получения тока требуется наличие замкнутой цепи и источника тока (рис. 4.5-2). Гальванические элементы, аккумуляторы, термоэлементы, электрические генераторы — примеры источников тока. Источник тока выполняет одновременно и вторую задачу — он замыкает электрическую цепь, по которой можно было бы осуществить непрерывное движение зарядов. Ток течет по внешней части — проводнику и по внутренней — источнику тока. Источник тока имеет два полюса: положительный, с более высоким потенциалом, и отрицательный, с более низким потенциалом. При разомкнутой внешней цепи на отрицательном полюсе источника тока образуется избыток электронов, а на положительном — недостаток. Разделение зарядов в источнике тока производится с помощью внешних, так называемых сторонних сил, направленных против электрических сил, действующих на разноименные заряды в проводниках самого источника тока. Природа сторонних сил может быть самой различной: механической, химической (рис. 4.6), тепловой, биологической и т. д.

Рис. 4.6. Действие сторонних сил химического происхождения

Итак, перемещение заряда по замкнутому проводнику под действием источника тока происходит за счет сил не электростатического происхождения — сторонних сил, действующих внутри источника. Электростатические силы не могут обеспечить движение зарядов по замкнутому контуру в силу своей консервативности (работа этих сил по замкнутому контуру равна нулю).

Таким образом, если цепь, состоящая из проводника и источника тока, замкнута, то по ней проходит ток, и при этом совершается работа сторонних сил. Эта работа складывается из работы, совершаемой против сил электрического поля внутри источника тока , и работы, совершаемой против механических сил сопротивления среды источника , то есть

(4.12)

 

Отношение работы, которую совершают сторонние силы при перемещении точечного заряда вдоль всей цепи, включая и источник тока, к заряду, называется электродвижущей силой (ЭДС) источника тока:
(4.13)

 

Работа против сил электрического поля равна

(4.14)

Если полюсы источника разомкнуты, то , и тогда

(4.15)

то есть ЭДС источника тока при разомкнутой внешней цепи равна разности потенциалов, которая создается на его полюсах.

Распределение потенциала в замкнутой цепи представлено на рис. 4.7.

Рис. 4.7. Распределение потенциала в замкнутой электрической цепи

Ясно, что движение положительных зарядов происходит в сторону уменьшения потенциала. В то же время необходимо наличие области, где движение зарядов происходит в сторону увеличения потенциала за счет сторонних сил. Проще говоря: чтобы вода текла вниз, кто-то должен поднять её наверх.

Сторонние силы. Электродвижущая сила След. »

Если в проводнике создать электрическое поле, то носители тока начнут перемещаться от точки с большим потенциалом к точке с меньшим потенциалом (j1 > j2). Через некоторое время это приведёт к выравниванию потенциала и к исчезновению электрического поля, и ток прекратиться.

Рис. 20.1

 

Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счёт работы сил не электростатического происхождения. Такие устройства называют источниками тока, а силы не электростатического происхождения – называют сторонними.

Сторонние силы способны перемещать заряды от точки с меньшим потенциалом к точке с большим потенциалом. Природа сторонних сил может быть различна, эти силы могут быть обусловлены химическими процессами, электрическими полями (но не электростатическими), порождаемыми меняющимися во времени магнитными полями.

Итак, сторонние силы совершают работу по перемещению электрических зарядов.

Характеристикой сторонних сил является ЭДС ( ):

ЭДС – физическая величина равная отношению работы сторонних сил по перемещению положительного единичного заряда к величине этого заряда:

  . (20.1)

как и j выражается в вольтах.

Сторонняя сила , действующая на заряд q, может быть выражена как:

  , (20. 2)

где – напряженность поля сторонних сил.

Работа сторонних сил на участке цепи 1–2 равна:

  . (20.3)

Разделив эту работу на q, получим ЭДС, действующую на данном участке 1–2, т.е. ,

  . (20.4)

Для замкнутой цепи имеем:

  , (20.5)

где – ЭДС, действующая в замкнутой цепи.



Чему равна эдс самоиндукции в катушке — dj-sensor.ru

Самоиндукция: — явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур. Самоиндукция — частный случай электромагнитной индукции.

Индуктивность: L — коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность — величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. 1 Гн = 1 Вб / 1 А.

ЭДС самоиндукции: ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Индуктивность соленоида:Магнитное поле соленоида определяется формулой:

, .

Магнитный поток, пронизывающий все N витков соленоида, равен:

.

Следовательно, индуктивность катушки равна:

.

Электродвижущая сила(ЭДС) это работа сторонних сил по перемещению единичного положительного заряда по замкнутому контору.

Энергия взаимодействия токов. Энергия и плотность энергии магнитного поля.

Энергия взаимодействия токов:

Для n токов:

i = от 1 доn

Энергия магнитного поля:При отсутствии ферромагнетиков контур с индуктивностью L, по которому течет ток I, обладает магнитной энергией (собственной энергией тока), т. е.

Плотность энергии магнитного поля:— физическая величина, равная отношению:

— энергии магнитного поля в некотором объеме; к

— величине этого объема.

, — плотность энергии магнитного поля соленоида.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8921 —

| 7231 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Самоиндукция: — явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур. Самоиндукция — частный случай электромагнитной индукции.

Читайте также:  Чему равны координаты радиус вектора точки

Индуктивность: L — коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность — величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. 1 Гн = 1 Вб / 1 А.

ЭДС самоиндукции: ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Индуктивность соленоида:Магнитное поле соленоида определяется формулой:

, .

Магнитный поток, пронизывающий все N витков соленоида, равен:

.

Следовательно, индуктивность катушки равна:

.

Электродвижущая сила(ЭДС) это работа сторонних сил по перемещению единичного положительного заряда по замкнутому контору.

Энергия взаимодействия токов. Энергия и плотность энергии магнитного поля.

Энергия взаимодействия токов:

Для n токов:

i = от 1 доn

Энергия магнитного поля:При отсутствии ферромагнетиков контур с индуктивностью L, по которому течет ток I, обладает магнитной энергией (собственной энергией тока), т. е.

Плотность энергии магнитного поля:— физическая величина, равная отношению:

— энергии магнитного поля в некотором объеме; к

— величине этого объема.

, — плотность энергии магнитного поля соленоида.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: “Что-то тут концом пахнет”. 8526 —

| 8113 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Дано t =2 c ΔI=-4A L=3 Гн e -?
e = — L*ΔI/Δt=3*(5-1)/2=6В

Другие вопросы из категории

воздуха 1.29 кг/м3. Чему равен объем шара?

Перемещение движущегося тела, изменяется согласно уравнению S = -5t + 5t2. Охарактеризуйте движение тела, определите параметры этого движения и запишите уравнение зависимости скорости от времени.
Заранее огромное вам спасибо!”!!

Читайте также:  Факс панасоник как вставить бумагу

Двигатель реактивного самолета развивает мощность 4,4*104кВт при скорости 900 км/ч и потребляет 2,04*103кг керосина (q = 4,6 • 107 Дж/кг) на 100км пути. Определи коэффициент полезного действия двигателя.

Читайте также

а) определите индуктивность соленоида
б) на сколько и как изменилась ( увеличилась или уменьшилась) энергия магнитного поля соленоида за это время
в)определите сопротивление соленоида

взятым с рисунка, определите начальную температуру цилиндра до погружения его в воду(первая фотка) 2)внутренняя энергия алюминевого бруска при нагревании на 2 С увеличилась на 1760 дж. Чему равна масса этого бруска 3)определите удельную теплоемкость металла, если для изменения температуры от 20С до 24С у бруска массой 100г, сделанного из этого метала внутренняя энергия увеличивается на 152 дж.

равна длина медного провода, из которого изготовлен резистор, если площадь его поперечного сечения 0,68 мм2? Напряжение В 1, 2,3. Сила тока, А 0,4 0,8 1,2

  • Автор: Мария Сухоруких