Черная дыра как устроена: Заглянуть во тьму: как устроена черная дыра

Заглянуть во тьму: как устроена черная дыра

  • Технологии
Фото Getty Images

Астрономы рассмотрели, как в далекой галактике объект размером с Землю исчезает в черной дыре. Оказалось, что черные дыры устроены куда интереснее, чем думали раньше

Широкая публика питает огромный интерес к черным дырам — возможно, концепция «горизонта событий» как-то перекликается с человеческим опытом непоправимости жизненных ошибок. Что касается астрофизиков, то многие из них воспринимают этот интерес скептически: черная дыра, говорят они, все же достаточно простой объект по сравнению, к примеру, с нейтронной звездой. Однако недавняя работа профессора Кена Паундза из университета Лестера и его коллег свидетельствует, что жизнь черных дыр, возможно, куда сложнее и разнообразнее, чем считалось раньше.

О том, как выглядит черная дыра в представлении физиков-теоретиков, можно узнать из фильма «Интерстеллар»: картинку для фильма помогал разрабатывать нобелевский лауреат Кип Торн. Согласно этому представлению, дыру окружает диск из падающего на нее газа. Газ вращается вокруг дыры, разгоняясь при этом до огромных скоростей, и излучает огромную энергию (это, видимо, самый эффективный способ преобразования материи в энергию, существующий во Вселенной). Излучение этого газа столь мощно, что земные астрономы способны фиксировать его, даже если черная дыра находится от нас на расстоянии в миллиарды световых лет.

Подобные объекты известны с середины ХХ века и получили название квазаров.

Отчего-то было принято считать, что вокруг черной дыры образуется всего один диск из падающего газа («диск аккреции»), причем ось его вращения совпадает с осью вращения самой черной дыры. Однако такая картина выглядит упрощенной. Оси вращения в системах небесных тел, вообще говоря, не обязаны быть параллельны. К примеру, ось вращения Земли не параллельна оси ее орбиты, и из-за этого мы имеем шанс наслаждаться таким захватывающим явлением, как смена времен года. Возможно, в случае черных дыр несовпадение осей вращения тоже способно породить много интересных явлений. Именно такой случай и наблюдали британские астрономы.

Их внимание привлекла галактика PG211+143, находящаяся примерно в миллиарде световых лет от нас в созвездии Волосы Вероники (его можно найти в северном небе между Девой и Большой Медведицей). В ее центре находится черная дыра в 40 млн солнечных масс.

Наблюдали ее с помощью рентгеновской обсерватории XMM-Newton Европейского космического агентства.

Спектр излучения газа свидетельствовал, что он падает на дыру почти отвесно, практически не вращаясь. При этом скорость его падения достигает трети скорости света — 100 000 километров в секунду. Исследователи в течение суток наблюдали за судьбой одного сгустка материи размером примерно с нашу планету, который за это время приблизился к черной дыре на беспрецедентно малое расстояние — всего в 20 раз больше, чем радиус горизонта.

О том, что чего-то в этом роде следовало ожидать, астрономы заранее знали из результатов компьютерной симуляции, проведенной на суперкомпьютере Dirac учеными из того же университета Лестера. Исследователи пытались понять, как будут взаимодействовать между собой несколько дисков аккреции, при условии что газ приближается к черной дыре по произвольным траекториям. Установлено, что взаимодействие образующихся при этом дисков и колец приведет к тому, что вращение будет тормозиться, а падение на дыру значительно ускорится.

Астрономы полагают, что подобная ситуация может быть довольно типична для черных дыр, находящихся в центрах галактик. В этом случае следует ожидать, что они будут вращаться сравнительно медленно, зато смогут заглатывать материю с очень высокой скоростью. Это может быть ответом на давний вопрос: каким образом сверхмассивные черные дыры успели набрать свою массу.

К той же проблеме с другой стороны подошли исследователи из Джорджии, проведя компьютерную симуляцию образования черной дыры путем «прямого коллапса» (то есть непосредственно из облака газа в момент образования галактики). Результаты опубликованы в Nature на этой неделе. Если верить суперкомпьютеру, в ходе этого процесса происходит много интересного, в том числе активное образование звезд в облаке коллапсирующего газа. Этот процесс мог происходить на ранних стадиях существования Вселенной, а это значит, что наблюдать нечто подобное можно лишь в галактиках, находящихся во многих миллиардах световых лет от нашей.

Такую возможность астрономам даст космический телескоп James Webb, запуск которого намечен на 2021 год. На это событие и нацелена работа ученых из Джорджии: их симуляция призвана выявить характерные черты («подписи», или «сигнатуры») подобных объектов, чтобы астрономы, зафиксировав нечто подобное, сразу поняли, с чем имеют дело.

Итогом этих недавних научных работ стало более глубокое понимание того, насколько сложным объектом может оказаться черная дыра. Благодаря открытиям астрофизиков теперь совсем не обязательно лично падать в черную дыру, чтобы познакомиться с ее устройством. А если нечто подобное все-таки с вами случится, вы будете лучше подготовлены к тому, что вам предстоит увидеть.

  • Алексей Алексенко

    Автор

#физика #космос

Рассылка Forbes

Самое важное о финансах, инвестициях, бизнесе и технологиях

секрет самого загадочного явления во Вселенной

Черные дыры — одни из самых удивительных и таинственных объектов в известной нам Вселенной.

Современные технологии уже позволили получить их фото, но как на самом деле устроена черная дыра?

Роман Фишман

Впервые предсказанные еще в конце XVIII века, описанные Теорией относительности в начале ХХ века черные дыры чересчур малы или слишком далеки для того, чтобы их можно было различить с помощью обычных телескопов. Но с совершенствованием науки и техники у нас появились и более продвинутые телескопы, которые способны фиксировать сигналы в различных диапазонах длин волн. Это и сделало возможным наблюдение черных дыр.

Черная дыра в центре Млечного Пути

Сверхмассивная черная дыра Стрелец А* в центре нашей Галактики насчитывает около 4 миллионов масс Солнца, упакованных в пространстве радиусом меньше орбиты Меркурия. Для наблюдения за ней несколько лет назад был запущен громадный радиоинтерферометр EHT – «телескоп горизонта событий» размером с Землю. При помощи этого инструмента ученые хотели выяснить, как устроена черная дыра в центре нашей галактики.

Но первой добычей нового инструмента оказалась сверхмассивная черная дыра галактики M87. Она расположена в тысячи раз дальше Стрельца А*, зато и в тысячи раз крупнее него. Обработка полученных еще в 2017 году данных заняла около двух лет, однако дело того стоило: «Это как заглянуть во врата ада, за пределы пространства и времени», – описал свои впечатления один из авторов этой грандиозной работы. Давайте полюбопытствуем вместе.

Галактика M87, одна из крупнейших в Местном сверхскоплении галактик, расположена на расстоянии около 54 млн световых лет. Сверхмассивная черная дыра M87* в ее центре насчитывает 6,5 млрд масс Солнца и ежедневно поглощает 90 масс Земли (одну массу Солнца примерно за 10 лет).

Из чего состоит черная дыра?

Каким бы простым не казалось устройство этого «звездного водостока», на самом деле у черной дыры есть несколько частей — некоторые мы можем видеть напрямую, другие — лишь предсказать теоретически.

Итак, взглянем на состав типичной черной дыры.

Горизонт событий – воображаемая линия, оказавшись за которой ничто не может вернуться обратно. Горизонт событий черной дыры имеет характерный размер – гравитационный радиус. Пересекая его, все объекты уходят за пределы наблюдаемой Вселенной, исчезая в сингулярности. Гравитационный радиус черной дыры M87* составляет 0,019 светового года, более чем в сто раз превышая орбиту Земли.

Аккреционный диск

материи, падающей в черную дыру: ускоряясь и раскаляясь, вещество активно излучает в широком диапазоне волн, позволяя увидеть если не саму дыру, то ее ближайшие окрестности. Аккреционный диск сверхмассивной черной дыры M87* тянется на 0,4 светового года – в тысячи раз дальше орбиты Плутона.

Релятивистские струи появляются при взаимодействии аккрецирующей плазмы с магнитными полями. Часть вещества на околосветовой скорости выбрасывается из полюсов диска двумя узкими противоположно направленными потоками. Сверхмассивная черная дыра M87* выбрасывает джеты длиной до 5000 световых лет. Один из них направлен в нашу сторону и виден в оптическом диапазоне.

Фотонная сфера образуется светом, оказавшимся на круговой орбите вокруг черной дыры. Положение попавших сюда частиц неустойчиво, и, совершив один или несколько оборотов, они неизбежно падают в недра дыры или уходят по спирали в космическое пространство.

Изображение черной дыры

На изображении черная дыра тоже не похожа на затягивающий в себя звездное вещество слив раковины, как ее иногда рисуют. На самом деле даже на фотографии черной дыры можно различить несколько ее основных частей, исследование которых может дать много информации об это загадочном объекте.

Тень дыры возникает из-за искривления траектории фотонов, пролетающих невысоко над сферой горизонта событий. Ее размеры примерно в 2,6 раза больше гравитационного радиуса черной дыры.

Обратная сторона аккреционного диска видна из-за мощного гравитационного линзирования. Некоторые фотоны с противоположной стороны черной дыры огибают сферу горизонта событий, и становятся видны дальние стороны аккреционного диска – верхняя и нижняя.

Кстати, у «TechInsider» появился новый раздел «Блоги компаний». Если ваша организация хочет рассказать о том, чем занимается — напишите нам

Черные дыры

Пожалуйста, соблюдайте авторские права. Несанкционированное использование запрещено.

Пожалуйста, соблюдайте авторские права. Несанкционированное использование запрещено.

Пожалуйста, соблюдайте авторские права. Несанкционированное использование запрещено.

Пожалуйста, соблюдайте авторские права. Несанкционированное использование запрещено.

1 / 4

1 / 4

На этой иллюстрации показаны легкие и другие космические объекты, притягиваемые к черной дыре.

На этой иллюстрации показаны легкие и другие космические объекты, притягиваемые к черной дыре.

Фотография Дэвида Агилара

В центре большинства галактик находится одна из самых странных и смертоносных вещей во Вселенной: черная дыра.

Большинство черных дыр, независимо от их размера, рождаются, когда у гигантской звезды заканчивается энергия. Звезда взрывается, а ее центр разрушается под собственным весом. Это вызывает взрыв, называемый сверхновой. Гигантская звезда в конечном итоге сжимается в сверхмаленькую точку, которую вы не можете видеть.

Гравитация черной дыры, или сила притяжения, настолько сильна, что притягивает к себе все, что подходит слишком близко. Он может даже проглотить целые звезды. Ничто не может двигаться достаточно быстро, чтобы избежать гравитации черной дыры. Это включает в себя свет, самую быструю вещь во Вселенной. Вот почему мы не можем видеть черные дыры в космосе — они поглотили весь свет. Хотя астрономы не могут видят черных дыр, они знают, что они там, по эффекту, который они оказывают на объекты, которые подходят слишком близко.

Существует два типа черных дыр. Сверхмассивные черные дыры — самый большой тип черных дыр. Они до 1 миллионов раз массивнее нашего Солнца. Это своего рода черная дыра, которая находится в центре нашей галактики, Млечного Пути; это называется Стрелец А*. (A* — научный код для «А-звезды».) Самый распространенный тип черных дыр, звездные черные дыры, только в 20 раз массивнее нашего Солнца.

Сильная гравитация вблизи черной дыры заставляет время вести себя странным образом. Если астронавт покинет свой космический корабль, чтобы вблизи исследовать черную дыру, он увидит, как стрелки его часов тикают с нормальной скоростью. Но если бы кто-то на борту космического корабля мог наблюдать за часами астронавта издалека, они бы увидели, что их стрелки замедляются по мере того, как выходец в открытый космос приближается к черной дыре. Когда выходец из космоса вернулся на космический корабль после часового выхода в открытый космос, для тех, кто находился на борту космического корабля, прошли годы.

Когда-нибудь люди смогут использовать черные дыры для путешествий во времени. Астронавт мог совершить короткое путешествие вблизи черной дыры и вернуться на Землю после того, как там прошли годы, десятилетия или даже столетия. Машина времени в виде черной дыры может позволить астронавту узнать, каким будет мир в будущем. Но вернуться в прошлое? Это совсем другая задача!

ЗНАЕТЕ ЛИ ВЫ?

• Были обнаружены тысячи потенциальных черных дыр, но НАСА считает, что в космосе их может быть более миллиарда.

• Черные дыры не живут вечно. Они медленно испаряются с течением времени, возвращая свою энергию Вселенной.

• В 2015 году две черные дыры столкнулись друг с другом на расстоянии более миллиарда световых лет от Земли. (Световой год — это расстояние, которое свет проходит за один год.) Однако они не были уничтожены — они просто слились, образовав большую черную дыру.

Космические видео

  • Сейчас играет

    0:38

    Outer This World

  • Далее

    0:45

    Планета Земля

  • Сейчас играет

    0:34

    Согласно всем землянам

  • 2:32

    .

    :47

    Shoot for the Stars

  • Сейчас играет

    3:18

    Что такое Хаббл?

  • Проигрывается

    2:32

    Space Art

  • Проигрывается

    3:25

    Как работает Хаббл

Читать дальше

Куда ведут черные дыры?

Куда ведут черные дыры? (Изображение предоставлено журналом All About Space)

Итак, вы вот-вот прыгнете в черную дыру. Что может вас ждать, если вы, несмотря ни на что, каким-то образом выживете? Где бы вы оказались и какими дразнящими историями вы бы смогли насладиться, если бы вам удалось вернуться обратно?

Простой ответ на все эти вопросы, как объясняет профессор Ричард Мэсси, звучит так: «Кто знает?» Как научный сотрудник Королевского общества в Институте вычислительной космологии Даремского университета, Мэсси полностью осознает, что тайны черных дыр очень глубоки.

«Падение за горизонт событий — это буквально выход за пределы завесы — как только кто-то упадет за него, никто не сможет отправить сообщение в ответ», — сказал он. «Они были бы разорваны на куски огромной гравитацией, так что я сомневаюсь, что кто-то, кто провалился бы, смог бы куда-нибудь добраться».

Связанный: Викторина о черной дыре: насколько хорошо вы знаете самые странные творения природы?

Если это звучит как разочаровывающий — и болезненный — ответ, то этого следовало ожидать. С тех пор, как считалось, что общая теория относительности Альберта Эйнштейна предсказала черные дыры, связав пространство-время с действием гравитации, было известно, что черные дыры возникают в результате смерти массивной звезды, оставляющей после себя небольшой плотный остаток ядра. Если предположить, что масса этого ядра более чем в три раза превышает массу Солнца, гравитация превзойдет его до такой степени, что оно упадет само на себя в единую точку или сингулярность, понимаемую как бесконечно плотное ядро ​​черной дыры.

Получившаяся в результате непригодная для жизни черная дыра будет иметь такое сильное гравитационное притяжение, что даже свет не сможет избежать ее. Итак, если вы окажетесь на горизонте событий — точке, в которой свет и материя могут проходить только внутрь, как предложил немецкий астроном Карл Шварцшильд, — спасения нет. По словам Мэсси, приливные силы разрежут ваше тело на нити атомов (или «спагеттификация», как это также известно), и объект в конечном итоге окажется раздавленным в сингулярности. Идея о том, что вы можете выскочить где-нибудь — возможно, на другой стороне — кажется совершенно фантастической.

А червоточины?

Черные дыры — это странные области, где гравитация достаточно сильна, чтобы искривлять свет, искривлять пространство и искажать время. (Изображение предоставлено Карлом Тейтом, автором SPACE.com)

На протяжении многих лет ученые изучали возможность того, что черные дыры могут быть червоточинами для других галактик. Они могут быть даже, как предполагают некоторые, путем в другую вселенную.

Такая идея витала в воздухе в течение некоторого времени: Эйнштейн объединился с Натаном Розеном, чтобы теоретизировать мосты, соединяющие две разные точки пространства-времени в 1935. Но в 1980-х годах она получила новое развитие, когда физик Кип Торн — один из ведущих мировых экспертов по астрофизическим последствиям общей теории относительности Эйнштейна — поднял дискуссию о том, могут ли объекты физически проходить сквозь них.

«Прочитав популярную книгу Кипа Торна о червоточинах, я в детстве увлекся физикой, — сказал Мэсси. Но маловероятно, что червоточины существуют.

Действительно, Торн, давший экспертный совет съемочной группе голливудского фильма «Интерстеллар», писал: «Мы не видим в нашей Вселенной объектов, которые могли бы превратиться в червоточины с возрастом» в своей книге «Наука межзвездного» (The Science of Interstellar). В. В. Нортон и компания, 2014 г.). Торн сказал Space. com, что путешествия через эти теоретические туннели, скорее всего, останутся научной фантастикой, и, конечно же, нет убедительных доказательств того, что черная дыра может позволить такой проход.

Связанный: Самые странные черные дыры во Вселенной

Но проблема в том, что мы не можем подойти поближе, чтобы увидеть это своими глазами. Да ведь мы даже не можем сфотографировать что-либо, что происходит внутри черной дыры — если свет не может вырваться из-под их огромной гравитации, то камера ничего не может заснять. В нынешнем виде теория предполагает, что все, что выходит за горизонт событий, просто добавляется к черной дыре, и, более того, поскольку время искажается вблизи этой границы, кажется, что это происходит невероятно медленно, поэтому ответы не будут быстрыми. предстоящий.

«Я думаю, что стандартная история состоит в том, что они ведут к концу времен», — сказал Дуглас Финкбейнер, профессор астрономии и физики Гарвардского университета. «Наблюдатель издалека не увидит, как его друг-космонавт падает в черную дыру. Они будут становиться все краснее и слабее по мере приближения к горизонту событий [в результате гравитационного красного смещения]. место за пределами «навсегда». Что бы это ни значило».

Художественная концепция червоточины. Если червоточины существуют, они могут вести в другую вселенную. Но нет никаких доказательств того, что червоточины реальны или что черная дыра может действовать как таковая. (Изображение предоставлено Shutterstock)

Возможно, черная дыра ведет к белой

Конечно, если черные дыры ведут в другую часть галактики или в другую вселенную, должно быть что-то напротив них на другой стороне . Могла ли это быть белая дыра — теорию, выдвинутую русским космологом Игорем Новиковым в 1964 году? Новиков предположил, что черная дыра связана с белой дырой, существовавшей в прошлом. В отличие от черной дыры, белая дыра позволит свету и материи уйти, но свет и материя не смогут войти.

Ученые продолжают исследовать возможную связь между черными и белыми дырами. В своем исследовании 2014 года, опубликованном в журнале Physical Review D , физики Карло Ровелли и Хэл М. Хаггард заявили, что «существует классическая метрика, удовлетворяющая уравнениям Эйнштейна вне конечной области пространства-времени, где материя коллапсирует в черная дыра, а затем появляется из временной дыры». Другими словами, весь материал, проглоченный черными дырами, может быть выброшен наружу, и черные дыры могут стать белыми дырами, когда умрут.

Истории по теме

Коллапс черной дыры не только не уничтожит поглощаемую ею информацию, но и остановит ее. Вместо этого он испытает квантовый отскок, позволяющий информации ускользнуть. Если это так, то это пролило бы некоторый свет на предложение бывшего космолога и физика-теоретика Кембриджского университета Стивена Хокинга, который в 1970-х исследовал возможность того, что черные дыры испускают частицы и излучение — тепловое тепло — в результате квантовых флуктуаций. .

— Хокинг сказал, что черная дыра не вечна, — сказал Финкбейнер. Хокинг подсчитал, что излучение заставит черную дыру терять энергию, сжиматься и исчезать, как описано в его статье 1976 года, опубликованной в Physical Review D. Учитывая его заявления о том, что испускаемое излучение будет случайным и не будет содержать никакой информации. о том, что упало, черная дыра после взрыва сотрет массу информации.

Это означало, что идея Хокинга противоречила квантовой теории, согласно которой информацию невозможно уничтожить. Физики утверждают, что информацию становится труднее найти, потому что, если она потеряется, становится невозможно узнать прошлое или будущее. Идея Хокинга привела к «информационному парадоксу черной дыры», который долгое время озадачивал ученых. Некоторые говорят, что Хокинг просто ошибался, а сам человек даже заявил, что допустил ошибку во время научной конференции в Дублине в 2004 г.

Итак, вернемся ли мы к концепции черных дыр, излучающих сохраненную информацию и выбрасывающих ее обратно через белую дыру? Может быть. В своем исследовании 2013 года, опубликованном в Physical Review Letters , Хорхе Пуллин из Университета штата Луизиана и Родольфо Гамбини из Университета Республики в Монтевидео, Уругвай, применили петлевую квантовую гравитацию к черной дыре и обнаружили, что гравитация увеличивается в направлении ядро, но уменьшало и отбрасывало все, что входило в другую область вселенной. Результаты придали дополнительную достоверность идее о том, что черные дыры служат порталами. В этом исследовании сингулярности не существует, и поэтому она не образует непреодолимого барьера, который в конечном итоге сокрушает все, что встречает на своем пути. Это также означает, что информация не исчезает.

Возможно, черные дыры никуда не делись

Однако физики Ахмед Альмхейри, Дональд Марольф, Джозеф Полчински и Джеймс Салли все еще верили, что Хокинг мог что-то понять. Они работали над теорией, которая стала известна как брандмауэр AMPS или гипотеза брандмауэра черной дыры. По их расчетам, квантовая механика могла реально превратить горизонт событий в гигантскую стену огня, и все, что соприкоснется с ней, сгорит в одно мгновение. В этом смысле черные дыры никуда не ведут, потому что ничто не может проникнуть внутрь.

Это, однако, нарушает общую теорию относительности Эйнштейна. Тот, кто пересекает горизонт событий, на самом деле не должен чувствовать каких-либо больших трудностей, потому что объект будет находиться в свободном падении и, исходя из принципа эквивалентности, этот объект — или человек — не будет испытывать экстремальных эффектов гравитации. Это могло бы следовать законам физики, присутствующим в других частях Вселенной, но даже если бы это не противоречило принципу Эйнштейна, это подорвало бы квантовую теорию поля или предположило бы, что информация может быть потеряна.

Представление художника о приливном разрушении, которое происходит, когда звезда проходит слишком близко к сверхмассивной черной дыре. (Изображение предоставлено журналом All About Space)

Черная дыра неопределенности

Шаг вперед Хокинг еще раз. В 2014 году он опубликовал исследование , в котором отказался от существования горизонта событий — то есть там нечему гореть — заявив, что вместо этого гравитационный коллапс создаст «видимый горизонт».

Этот горизонт будет приостанавливать световые лучи, пытающиеся удалиться от ядра черной дыры, и будет существовать в течение “периода времени”. В его переосмыслении кажущиеся горизонты временно сохраняют материю и энергию, прежде чем растворяться и высвобождаться позже. Это объяснение лучше всего согласуется с квантовой теорией, которая утверждает, что информацию нельзя уничтожить, и, если это когда-либо будет доказано, оно предполагает, что из черной дыры может вырваться что угодно.

Хокинг дошел до того, что сказал, что черные дыры могут даже не существовать. «Черные дыры следует переопределить как метастабильные связанные состояния гравитационного поля», — писал он. Не было бы сингулярности, и хотя видимое поле двигалось бы внутрь из-за гравитации, оно никогда не достигало бы центра и не объединялось бы в плотной массе.

(Изображение предоставлено: Karl Tate, SPACE.com Contributor)

(открывается в новой вкладке)

И все же все, что излучается, не будет в форме проглоченной информации. Было бы невозможно понять, что вошло, глядя на то, что выходит, что само по себе вызывает проблемы — не в последнюю очередь, скажем, для человека, оказавшегося в таком тревожном положении. Они больше никогда не будут чувствовать себя так, как прежде!

Одно можно сказать наверняка, эта конкретная загадка поглотит еще много научных часов в течение долгого времени. Ровелли и Франческа Видотто недавно предположили, что компонент темной материи может быть образован остатками испарившихся черных дыр, а статья Хокинга о черных дырах и «мягких волосах» была выпущена в 2018 году и описывает, как нулевая энергия частицы остаются вокруг точки невозврата, горизонта событий — идея, которая предполагает, что информация не теряется, а захватывается.

Это противоречит теореме об отсутствии волос, сформулированной физиком Джоном Арчибальдом Уилером и основанной на том, что две черные дыры будут неразличимы для наблюдателя, потому что ни один из специальных псевдозарядов физики элементарных частиц не сохранится. Это идея, которая заставила ученых говорить, но есть некоторый путь, прежде чем она станет ответом на вопрос, куда ведут черные дыры. Если бы мы только могли найти способ прыгнуть в один из них.

Дополнительные ресурсы

Вы можете узнать больше о черных дырах из подробной статьи НАСА и узнать, как было получено первое изображение черной дыры. Если вы ищете контент для детей, у ESA есть несколько отличных ресурсов (открывается в новой вкладке) для обучения малышей всему, что касается черных дыр и Вселенной.

Библиография

  • За пределами Эйнштейна: от Большого взрыва до черных дыр (открывается в новой вкладке) 
  • Червоточины: типы и создание (открывается в новой вкладке) 

(Изображение предоставлено журналом All About Space)

(открывается в новой вкладке)

Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: community@space.

Оставить комментарий