Что измеряется в омах: что измеряется в Омах, что такое Ом в физике, обозначение

Содержание

Как измерить сопротивление мультиметром: инструкции, фото, видео

Цифровой мультиметр — современный измерительный прибор, который помогает определять параметры электрический цепей, например, сопротивление. Для получения точных результатов нужно соблюдать важные правила. Из этой статьи вы узнаете, как измерить сопротивление мультиметром.

Contents

  • 1 Сопротивление и закон Ома: немного полезных знаний
  • 2 Несколько важных правил
  • 3 Как измерить сопротивление мультиметром
    • 3.1 Выбираем режим и диапазон
    • 3.2 Подключаем щупы
    • 3.3 Проводим измерения
  • 4 Как проверить мультиметром сопротивление провода

Сопротивление и закон Ома: немного полезных знаний

Ещё со школьных лет многие из нас помнят определение электрического тока — это направленное движение заряженных частиц. Происходит под влиянием электромагнитного поля от одного полюса замкнутой электроцепи к другому.

Электрическое сопротивление определяет свойство проводника препятствовать или сопротивляться прохождению тока. Чем больше препятствий на пути электронов, тем менее энергичными они становятся.

Сопротивление должно измеряться в Омах (обозначается Ом или греч. буквой Ω, далее вместо слова сопротивление мы иногда будем использовать этот знак). В формулах используется обозначение R.

На активность сопротивления оказывает влияние материал проводника, сечение и длина. Чем больше сечение, тем лучше проводимость. А вот с длиной ситуация обратная: чем длиннее, тем хуже проводимость. Сопротивление является обратным понятием проводимости.

Ω проводника проявляется, к примеру, в том, как он нагревается, когда в нем “бежит” ток. При этом нагрев проводника зависит от размера сечения и силы тока: чем меньше первое и больше второе, тем больше будет нагреваться материал.

Суть измерения Ω в законе Ома, благодаря которому мы понимаем, что сопротивление = отношению напряжения к силе тока. То есть R = U (напряжение) / I (сила тока). 1 Ом сопротивления указывает, что по кабелю движется ток в 1 Ампер, а напряжение составляет 1 Вольт.

Для измерения сопротивления есть специальный прибор — омметр.

Если же у вас есть мультиметр с функцией омметра, то вы тоже можете узнать величину Ω.

Но помните, что обычным мультиметром вы не сможете замерить большие сопротивления, потому что источником питания выступают пальчиковые батарейки или Крона (батарейка на 9 вольт в форме прямоугольника с двумя полюсами на одном из торцов).

Для проверки больших значений сопротивлений, например, изоляции, нужно использовать мегаомметр. На видео показано, как проверить сопротивление омметром:

А какой лучше использовать мультиметр для проверки сопротивления? Проще пользоваться цифровым, потому что такой прибор сразу показывает готовое значение. Кроме того, у цифрового тестера есть датчик разрядки: если силы тока не хватает, устройство работать не будет. А вот аналоговый мультиметр в такой ситуации будет давать неверные показания, а как вы поймёте, что они неправильные? В этом вся загвоздка. В остальных ситуациях вы можете использовать для проверки сопротивления любой мультиметр с нужным пределом измерений.

Несколько важных правил

В том, как замерить сопротивление мультиметром, учтите следующие моменты:

  1. Не переключайте режимы в ходе измерений.
  2. Работайте с мультиметром в перчатках, которые не проводят ток.
  3. Зачистите место контакта, если оно покрылось оксидной пленкой.
  4. Не проводите замеры, если в исследуемом месте повышена влажность.
  5. Не используйте тестер, если у него имеется механическое повреждение или деформирована оплетка щупов\проводов.
  6. Если вы хотите померить сопротивление впаянного в плату элемента, придётся выпаять хотя бы один вывод. Иначе результат измерений будет искажён (это обусловлено тем, что на схеме, скорее всего, имеются иные проводники). Если вы хотите проверить деталь с несколькими выводами, полностью отсоедините её от схемы.

Как измерить сопротивление мультиметром

Для проверки не нужно подключаться к сети. Батарейка даёт скромное напряжение, значит, не нужен иной источник тока. Теперь предметно поговорим о том, как измерить сопротивление мультиметром.

Выбираем режим и диапазон

Обычно мультиметр управляется круглой ручкой, которой и выбирается режим. Нам нужен уже известный значок Ω, который обозначает режим омметра на мультиметре. Но есть следующие нюансы:

  1. Если на вашем мультиметре стоит только знак Ω, значит, тестер определяет диапазон измерений автоматически. Тогда на циферблате, скорее всего, будут цифры с буквами. Например, 15kОм (приставка кило (буква k) означает увеличение единицы измерения в 1000 раз; Ом = единица, 1 кОм = 1000 Ом) или 2 MОм (миллиомы; 1 мОм = 0,001 Ом).
  2. На цифровых тестерах могут стоять значения 200, 2000, 200k и т.п. Это указывает на диапазоны, в которых можно мерить Ω, устанавливая ручку в конкретную позицию. Обозначение k, как уже было сказано, указывает на «кило». Например, если вы поставите ручку на 20k, а на приборе высветится 17, значит, Ω = 17000 Ом.
  3. На аналоговых тестерах можно увидеть такие значения: Ω, kΩ – x1, x10, x100, MΩ. На таких мультиметрах то, на что указывает стрелка, приходится переводить в привычные для нас показания. Подробности можно узнать в инструкции по применению.

Как выбрать нужный диапазон измерений (если тестер не определяет самостоятельно):

  1. Если вы приблизительно знаете, какого сопротивления ожидать, выставляйте ближайшее бОльшее значение.
  2. В случае, если приблизительное значение неизвестно, начинайте измерения с наибольшего диапазона, плавно переключаясь на меньший.
  3. Если важна точность, придется брать во внимание погрешности. Скажем, на резисторе стоит Ω 1 кОм. Учитывайте допуски для изготовления, составляющие 10%. Значит, настоящие показания могут быть в пределах 900-1100 Ом. Ещё один момент (на примере того же резистора): если вы поставите максимальный диапазон, например, 2000 kОм, тестер может выдать 1. Переведите ручку на 2 kОм: скорее всего, показания будут более точными.

Подключаем щупы

На корпусе мультиметра есть гнезда, в которые нужно вставить щупы. Чаще всего черный вставляется в отверстие с надписью СОМ, а красный в гнездо VΩmА. Но надписи могут отличаться, обязательно изучите инструкцию к мультиметру. Также советуем к прочтению статью о том, как пользоваться мультиметром. Она поможет разобраться, какие щупы к чему подключать, и в других моментах.

Проводим измерения

Теперь нужно дотронуться наконечниками контактов элемента, в котором нужно измерить сопротивление.

Помните, что наше тело тоже проводит ток, и у него есть сопротивление. Поэтому исключите прикосновение рук к контактам. В крайнем случае можете прижимать пальцами только одной руки контакт к щупу, но другой рукой этого делать нельзя, иначе показания будут неправильными.

Остаётся посмотреть на экран, чтобы увидеть значение сопротивления. Но учтите:

  1. Если показан 0, то нужно уменьшить диапазон измерений и провести измерение сопротивления мультиметром заново.
  2. Если вы увидели «ol» или «over» или «1», диапазон нужно увеличить. Кроме того, цифра 1 может указывать, что в сети нет тока из-за обрыва.

Как проверить мультиметром сопротивление провода

Обычно на мультиметрах есть режим прозвонки, с помощью которого можно проверить наличие или отсутствие обрыва на участке цепи. Режим прозвонки — значок “звуковой микшер”.

Как узнать целостность проводов:

  1. Выбираем режим прозвонки.
  2. Вставляем щупы в соответствующие гнезда.
  3. Проверяем щупы на повреждение (соединить наконечники друг с другом: при наличии сигнала всё в порядке).
  4. Наконечниками прикасаемся к контактам исследуемого участка кабеля, замкнув цепь.

Полезное видео о замере сопротивления мультиметром:

Затем слушаем сигнал и смотрим на дисплей мультиметра:

  1. Звуковой сигнал говорит о том, что кабель целый, обрыва нет.
  2. Если кабель целый, но сопротивление больше, чем то значение, на которое реагирует зуммер (такое может быть из-за длины провода), то на экране вы увидите значение сопротивления.
  3. Если сопротивление намного больше диапазона, вы увидите цифру 1. В таком случае измените диапазон.

Теперь вы знаете, как измерить сопротивление мультиметром. Надеемся, что наша статья была вам полезна.

Желаем безопасных и точных измерений!

Удельное электрическое сопротивление – формула, таблица

4.1

Средняя оценка: 4.1

Всего получено оценок: 258.

4.1

Средняя оценка: 4.1

Всего получено оценок: 258.

Величина электрического тока, возникающего в образце вещества под воздействием электрического поля, зависит от геометрических размеров образца и от величины удельного электрического сопротивления вещества. Удельное сопротивление характеризует способность различных веществ по разному проводить электрический ток. Чем больше величина удельного сопротивления вещества, тем меньше будет значение электрического тока, протекающего через образец (провод) при одинаковых величинах электрического поля и размерах образца.

Напряжение, сила тока, сопротивление

Сила тока I, протекающего через участок цепи, к которому приложено электрическое напряжение

U, определяется по формуле закона Ома:

$ I = {U\over R} $ (1),

где R — сопротивление.

Измеряя на образцах из различных материалов вольт-амперные характеристики I(U), немецкий физик Георг Ом обнаружил, что величина сопротивления R разная у одинаковых по размерам образцов из различных материалов. Количественная характеристика вещества, указывающая на это свойство, называется удельным электрическим сопротивлением.

Рис. 1. Вольт-амперные характеристики проводников.

Как рассчитать сопротивление

Экспериментальные данные на большом количестве образцов показали, что:

  • Сопротивление R , обратно пропорционально поперечной площади образца S, то есть $ R ∼ {1\over S } $;
  • Сопротивление R прямо пропорциональна длине образца, то есть чем больше длина образца L, тем больше его сопротивление, то есть $ R∼ L$;
  • Так как значения R у образцов из разных материалов с одинаковыми размерами S и L отличались, то была введена новая физическая величина, названная удельным электрическим сопротивлением ρ.

Полученные данные хорошо описывались формулой:

$ R = ρ * {L\over S} $ (2).

Из уравнения (2) следует формула удельного электрического сопротивления:

$ ρ = R * { S \over L } $ (3).

Значения ρ для большинства веществ можно найти, воспользовавшись справочниками в печатном или электронном виде.

Рис. 2. Таблица удельных электрических сопротивлений различных веществ при температуре 200С.

Единицы измерения удельного сопротивления

Из уравнения (3) следует, что в Международной системе СИ единицей измерения ρ будет (Ом*м), так как сопротивление измеряется в омах, а длина и площадь — в метрах и метрах квадратных соответственно. То есть единица удельного сопротивления равна сопротивлению образца площадью 1 м2 и длиной 1 м. Но на практике эта единица оказалась не очень удобной из-за слишком больших числовых значений. Поэтому для электротехнических расчетов чаще используют внесистемную единицу (Ом*мм

2/м), для которой площадь поперечного сечения берется в мм2. Характерные размеры сечений соединительных проводов и кабелей лежат в диапазоне 1-15 мм2, чем и объясняется удобство применения внесистемной единицы.

Алюминиевые провода устойчивы к коррозии, имеют низкое удельное сопротивление 0,026 (Ом*мм2/м) и небольшой вес на метр длины, что делает этот материал очень востребованным при изготовлении проводов и кабелей, работающих за пределами помещений. Недостатком чисто алюминиевой проводки является потеря прочности (целостности) при изгибах и скручиваниях. Решение этой проблемы было найдено путем вплетения в провода высоковольтных линий электропередач небольшого количества токопроводящих стальных нитей, имеющих высокие показатели прочности ко всем видам нагрузок. Это особенно важно при сильных порывах ветра, и при образовании наледи на проводах в зимнее время.

Проводники, полупроводники, диэлектрики

По величине удельного сопротивления все вещества разделяют на три основные вида: проводники, полупроводники, диэлектрики. Кроме значительной разницы в величине

ρ, вещества, относящиеся к разным видам, имеют разные температурные зависимости ρ(Т). Основные моменты, присущие каждому виду веществ отражены в таблице:

Проводники (металлы)

Полупроводники

Диэлектрики (изоляторы)

Имеют низкие значения ρ (хорошо проводят электрический ток)

ρ < 10-6 Ом*м

Занимают промежуточное положение по величине ρ

между проводниками и диэлектриками

10-6 Ом*м < ρ <108 Ом*м

Имеют высокие значения

ρ

(практически не проводят ток)

ρ > 108 Ом*м

Металлы: алюминий, серебро,

Медь, железо, сплавы металлов (латунь, бронза и т.п.) и др.

Кремний, германий, селен, индий, мышьяк и др.

Пластмассы, стекло, фарфор,

Бумага, дерево (сухое) и др.

С ростом температуры у проводников наблюдается возрастание величины удельного сопротивления, а у полупроводников и диэлектриков — падение. Облучение полупроводников и диэлектриков электромагнитным излучением приводит к уменьшению

ρ, а у проводников удельное сопротивление при облучении не меняется.

Рис. 3. Температурные зависимости удельного сопротивления проводников, полупроводников и диэлектриков.

Что мы узнали?

Итак, мы узнали, что удельное электрическое сопротивление характеризует способность веществ и материалов пропускать электрический ток. Приведена формула для вычисления удельного сопротивления. Проводники, полупроводники и диэлектрики отличаются друг от друга значениями удельных сопротивлений и поведением этой величины от воздействия внешних факторов (температуры, облучения).

Тест по теме

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.1

Средняя оценка: 4.1

Всего получено оценок: 258.


А какая ваша оценка?

Часто задаваемые вопросы: Руководство по измерению сопротивления

При измерении сопротивления точность превыше всего. Это руководство — то, что мы знаем о достижении максимально возможного качества измерений.


Индекс

  1. Введение в измерение сопротивления
  2. Приложения
  3. Сопротивление
  4. Принципы измерения сопротивления
  5. Способы подключения 4 клемм
  6. Возможные ошибки измерения
  7. Правильный выбор инструмента
  8. Примеры применения
  9. Полезные формулы и диаграммы
  10. Узнать больше

1. Введение

Измерение очень больших или очень малых количеств всегда затруднено, и измерение сопротивления не является исключением. Значения выше 1 ГОм и значения ниже 1 Ом представляют проблемы при измерении.

Cropico — мировой лидер в области измерения малых сопротивлений; мы производим широкий ассортимент омметров низкого сопротивления и принадлежностей, которые подходят для большинства измерительных приложений. В этом руководстве дается обзор методов измерения малых сопротивлений, объясняются распространенные причины ошибок и способы их предотвращения. Мы также включили полезные таблицы характеристик проводов и кабелей, температурных коэффициентов и различных формул, чтобы вы могли сделать наилучший выбор при выборе измерительного инструмента и метода измерения. Мы надеемся, что это руководство станет для вас ценным дополнением к вашему инструментарию.


2. Области применения

Производители компонентов
Резисторы, катушки индуктивности и дроссели должны убедиться, что их продукция соответствует указанным допускам сопротивления, окончанию производственной линии и контролю качества.

Производители переключателей, реле и соединителей
Требуется проверка того, что контактное сопротивление ниже заданных пределов. Это может быть достигнуто в конце тестирования производственной линии, что обеспечивает контроль качества.

Производители кабелей
Должны измерять сопротивление медных проводов, которые они производят, слишком высокое сопротивление означает снижение токопроводящей способности кабеля; слишком низкое сопротивление означает, что производитель слишком щедро подходит к диаметру кабеля, используя больше меди, чем ему нужно, что может быть очень дорого.

Установка и техническое обслуживание силовых кабелей, распределительных устройств и переключателей напряжения
Для этого требуется, чтобы кабельные соединения и контакты переключателя имели минимально возможное сопротивление, чтобы избежать чрезмерного нагрева соединения или контакта, плохого соединения кабеля или контакта переключателя скоро выйдет из строя из-за этого эффекта нагрева. Регулярное профилактическое обслуживание с регулярными проверками сопротивления обеспечивает максимально возможный срок службы.

Производители электродвигателей и генераторов
Требуется определить максимальную температуру, достигаемую при полной нагрузке. Для определения этой температуры используется температурный коэффициент медной обмотки. Сопротивление сначала измеряется при холодном двигателе или генераторе, т. е. при температуре окружающей среды, затем устройство работает с полной нагрузкой в ​​течение определенного периода, и снова измеряется сопротивление. По изменению значения сопротивления можно определить внутреннюю температуру двигателя/генератора. Наши омметры также используются для измерения отдельных катушек обмотки двигателя, чтобы убедиться в отсутствии коротких замыканий или разомкнутых витков и в том, что каждая катушка сбалансирована.

Автомобильная промышленность
Требование к измерению сопротивления кабелей для роботизированной сварки, чтобы гарантировать, что качество сварки не ухудшится, т. е. обжимные соединители выводов аккумулятора, сопротивление детонатора подушки безопасности, сопротивление жгута проводов и качество обжимных соединителей на компонентах .

Производители предохранителей
Для контроля качества, измерения сопротивления пайки на самолетах и ​​военных транспортных средствах необходимо убедиться, что все оборудование, установленное на самолетах, электрически связано с корпусом самолета, включая камбузное оборудование. Те же требования предъявляются к танкам и другой военной технике. Всем производителям и потребителям больших электрических токов необходимо измерять распределение сопротивления соединений, сборных шин и разъемов к электродам для гальванического покрытия.

Железнодорожные коммуникации
Включая трамваи и подземные железные дороги (Метро) – для измерения стыков силовых распределительных кабелей, включая сопротивление стыков рельсовых путей, поскольку рельсы часто используются для передачи информации.


3. Сопротивление

Закон Ома V = I x R (Вольт = ток x сопротивление). Ом (Ом) — это единица электрического сопротивления, равная сопротивлению проводника, в котором ток в один ампер создается потенциалом в один вольт на его клеммах. Закон Ома, названный в честь его первооткрывателя, немецкого физика Георга Ома, является одним из важнейших, основных законов электричества. Он определяет взаимосвязь между тремя основными электрическими величинами: током, напряжением и сопротивлением. Когда напряжение подается на цепь, содержащую только резистивные элементы, ток течет в соответствии с законом Ома, который показан ниже.


4. Принципы измерения сопротивления

Амперметр Вольтметр


Этот метод восходит к основам. Если мы используем батарею в качестве источника напряжения, вольтметр для измерения напряжения и амперметр для измерения тока в цепи, мы можем рассчитать сопротивление с достаточной точностью. Хотя этот метод может обеспечить хорошие результаты измерений, он не является практичным решением для повседневных измерений.

Двойной мост Кельвина
Мост Кельвина — это вариант моста Уитстона, который позволяет измерять низкие сопротивления. Диапазон измерения обычно составляет от 1 мОм до 1 кОм с наименьшим разрешением 1 мкОм. Ограничения моста Кельвина: –

  1. требуется ручная балансировка
  2. чувствительный нуль-детектор или гальванометр требуется для определения состояния баланса
  3. Измерительный ток
  4. должен быть достаточно высоким для достижения достаточной чувствительности

Двойной мост Кельвина обычно заменяется цифровыми омметрами.

Цифровой мультиметр — двухпроводное подключение
Для более высоких значений сопротивления можно использовать простой цифровой мультиметр. В них используется двухпроводной метод измерения, и они подходят только для измерения значений выше 100 Ом и там, где не требуется высокая точность.

При измерении сопротивления компонента (Rx) через компонент подается испытательный ток, и измеритель измеряет напряжение на его клеммах. Затем измеритель рассчитывает и отображает результирующее сопротивление и называется двухпроводным измерением. Следует отметить, что измеритель измеряет напряжение на своих клеммах, а не на компоненте. В результате этого падение напряжения на соединительных проводах также включается в расчет сопротивления. Тестовые провода хорошего качества будут иметь сопротивление примерно 0,02 Ом на метр. В дополнение к сопротивлению выводов, сопротивление соединения выводов также будет включено в измерение, и оно может быть таким же или даже выше, чем сами выводы.

При измерении больших значений сопротивления эту дополнительную ошибку сопротивления провода можно игнорировать, но, как видно из приведенной ниже диаграммы, ошибка становится значительно выше по мере уменьшения измеренного значения и совершенно неуместна ниже 10 Ом.

ТАБЛИЦА 1

Примеры возможных ошибок измерения

RX Сопротивление измерительного провода R1 + R2 Сопротивление соединения R3 + R4 Rx, измеренный на клеммах цифрового мультиметра = Rx + R1 + R2 + R3 + R4 Ошибка Ошибка %
1000 Ом 0,04 Ом 0,04 Ом 1000,08 Ом 0,08 Ом 0,008
100 Ом 0,04 Ом 0,04 Ом 100,08 Ом 0,08 Ом 0,08
10 Ом 0,04 Ом 0,04 Ом 10,08 Ом 0,08 Ом 0,8
1 Ом 0,04 Ом 0,04 Ом 1,08 Ом 0,08 Ом 8
100 мОм 0,04 Ом 0,04 Ом 180 мОм 0,08 Ом 80
10 мОм 0,04 Ом 0,04 Ом 90 мОм 0,08 Ом 800
1 мОм 0,04 Ом 0,04 Ом 81 мОм 0,08 Ом 8000
100 мкОм 0,04 Ом 0,04 Ом 80,1 мкОм 0,08 Ом 8000

Для измерения истинного постоянного тока омметры сопротивления обычно используют 4-проводное измерение. Постоянный ток проходит через Rx и через внутренний эталон омметра. Затем измеряется напряжение между Rx и внутренним эталоном, и отношение двух показаний используется для расчета сопротивления. При использовании этого метода ток должен быть стабильным только в течение нескольких миллисекунд, необходимых для того, чтобы омметр сделал оба показания, но для этого требуются две измерительные цепи. Измеряемое напряжение очень мало, и обычно требуется чувствительность измерения мкВ.

В качестве альтернативы источник постоянного тока используется для пропускания тока через Rx. Затем измеряется падение напряжения на Rx и рассчитывается сопротивление. Для этого метода требуется только одна измерительная цепь, но генератор тока должен быть стабильным при любых условиях измерения.

Четырехпроводное соединение
Четырехпроводной метод измерения (Кельвин) предпочтителен для значений сопротивления ниже 100 Ом, и все миллиомметры и микроомметры Seaward используют этот метод. Эти измерения выполняются с использованием 4 отдельных проводов. 2 провода передают ток, известный как источник или токоподводы, и пропускают ток через Rx. Другие 2 провода, известные как измерительные или потенциальные провода, используются для измерения падения напряжения на Rx. Хотя в сенсорных проводах будет протекать небольшой ток, он незначителен и им можно пренебречь. Таким образом, падение напряжения на измерительных клеммах омметра практически такое же, как падение напряжения на Rx. Этот метод измерения даст точные и стабильные результаты при измерении сопротивлений ниже 100 Ом.

С точки зрения измерений это лучший тип соединения с 4 отдельными проводами; 2 токовых (C и C1) и 2 потенциальных (P и P1). Токовые провода всегда должны располагаться за пределами потенциала, хотя точное размещение не имеет решающего значения. Потенциальные провода должны быть подключены точно в точках, между которыми вы хотите провести измерения. Измеренное значение будет находиться между потенциальными точками. Хотя это дает наилучшие результаты измерений, часто это нецелесообразно. Мы живем в неидеальном мире, и иногда приходится идти на небольшие компромиссы, Cropico может предложить ряд практичных измерительных решений.


5. Способы четырехконтактных соединений

Зажимы Кельвина
Зажимы Кельвина аналогичны зажимам типа “крокодил” (аллигатор), но каждая челюсть изолирована от другой. Токоведущий провод подключается к одной челюсти, а потенциальный – к другой. Зажимы Кельвина предлагают очень практичное решение для четырехконтактного соединения с проводами, шинами, пластинами и т. д. . Ручной шип состоит из двух подпружиненных шипов, заключенных в ручку. Один всплеск — это текущее соединение, а другой — потенциальное или смысловое соединение.

Соединение выводов в стопку
Иногда единственным практическим решением для подключения к Rx является использование выводов в стопку. Текущий лид помещается позади потенциального лида. Этот метод даст небольшие ошибки, потому что точка измерения будет там, где потенциальный отвод соединяется с текущим отведением. Для измерения труднодоступных образцов это может быть лучшим компромиссным решением.

Кабельные зажимы

При измерении кабелей во время производства и в целях контроля качества необходимо поддерживать согласованные условия измерения. Длина образца кабеля обычно составляет 1 метр, и для обеспечения точного измерения длины 1 метра следует использовать кабельный зажим. Cropico предлагает различные кабельные зажимы, подходящие для кабелей большинства размеров. Измеряемый кабель помещается в зажим, а концы кабеля зажимаются в токовых клеммах. Потенциальные точки соединения обычно представляют собой контакты на острие ножа, которые находятся ровно в 1 метре друг от друга.

Приспособления и приспособления
При измерении других компонентов, таких как резисторы, предохранители, переключающие контакты, заклепки и т.  д., невозможно переоценить важность использования испытательного приспособления для удержания компонента. Это гарантирует, что условия измерения, т. е. положение измерительных проводов, одинаковы для каждого компонента, что приведет к согласованным, надежным и значимым измерениям. Приспособления часто должны быть специально разработаны для применения.


6. Возможные ошибки измерения

Существует несколько возможных источников ошибок измерения, связанных с измерениями низкого сопротивления. Наиболее распространенные из них описаны ниже.

Грязные соединения
Как и при любых измерениях, важно убедиться, что подключаемое устройство чистое и не содержит окислов и грязи. Соединения с высоким сопротивлением вызовут ошибки чтения и могут помешать измерениям. Следует также отметить, что некоторые покрытия и оксиды на материалах являются хорошими изоляторами. Анодирование имеет очень высокое сопротивление и является классическим примером. Обязательно очистите покрытие в местах соединения. В омметры Cropico встроено предупреждение об ошибке проводов, которое укажет, если сопротивление соединений слишком велико.

Сопротивление проводов слишком высокое
Хотя теоретически четырехконтактный метод измерения не зависит от длины проводов, необходимо соблюдать осторожность, чтобы убедиться, что сопротивления проводов не слишком высоки. Потенциальные выводы не имеют решающего значения и обычно могут составлять до 1 кОм, не влияя на точность измерения, но токовые выводы имеют решающее значение. Если токоподводы имеют слишком большое сопротивление , падение напряжения на них приведет к недостаточному напряжению на тестируемом устройстве (тестируемом устройстве) для получения разумных показаний. Омметры Cropico проверяют это соответствие напряжения на ИУ и предотвращают выполнение измерения, если оно становится слишком низким. Также предусмотрен дисплей с предупреждением; предотвращение считывания, гарантируя, что ложные измерения не будут выполнены. Если вам нужно использовать длинные измерительные провода, увеличьте диаметр кабелей, чтобы уменьшить их сопротивление.

Шум измерения
Как и при любом другом измерении низкого напряжения, шум может быть проблемой. Шум создается внутри измерительных выводов, когда они находятся под влиянием магнитного поля, которое изменяется, или провода перемещаются в этом поле. Чтобы свести к минимуму этот эффект, отведения должны быть максимально короткими, неподвижными и идеально экранированными. Компания Cropico понимает, что для достижения этого идеала существует множество практических ограничений, и поэтому разработала схемы своих омметров таким образом, чтобы свести к минимуму и устранить эти эффекты. ТермоЭДС ТермоЭДС в тестируемом устройстве, вероятно, является основной причиной ошибок при измерении малых сопротивлений. Сначала мы должны понять, что мы подразумеваем под термо-ЭДС и как она генерируется. ТермоЭДС – это небольшие напряжения, которые генерируются при соединении двух разнородных металлов, образуя так называемый переход термопары. Термопара будет генерировать ЭДС в зависимости от материалов, используемых в стыке, и разницы температур между горячим и эталонным или холодным спаем.

Этот эффект термопары внесет ошибки в измерения, если не будут предприняты шаги для компенсации и устранения этих термоэдс. Микроомметры и миллиомметры Cropico устраняют этот эффект, предлагая режим автоматического усреднения для измерения, который иногда называют методом переключения постоянного тока или методом усреднения. Измерение выполняется с током, текущим в прямом направлении, затем второе измерение выполняется с током в обратном направлении. Отображаемое значение является средним значением этих двух измерений. Любая термоэдс в измерительной системе будет добавляться к первому измерению и вычитаться из второго; отображаемое среднее значение устраняет или отменяет термоэдс из измерения. Этот метод дает наилучшие результаты для резистивных нагрузок, но не подходит для индуктивных образцов, таких как обмотки двигателя или трансформатора. В этих случаях омметр, скорее всего, изменит направление тока до того, как индуктивность полностью насытится, и правильное измеренное значение не будет достигнуто.

Измерение сопротивления соединения двух сборных шин

Неправильный тестовый ток
Всегда следует учитывать влияние измеряемого тока на ИУ. Устройства с небольшой массой или изготовленные из материалов с высоким температурным коэффициентом, таких как тонкие жилы медной проволоки, необходимо измерять при минимально доступном токе, чтобы избежать нагрева. В этих случаях одиночный импульс тока может вызвать минимальный нагрев. Если тестируемое устройство подвержено влиянию термоэдс, тогда подходит метод коммутируемого тока, описанный ранее. Омметры серии Cropico DO5000 имеют выбираемые токи от 10% до 100% с шагом 1%, а также режим одиночного импульса и, следовательно, могут быть настроены для большинства приложений.

Влияние температуры
Важно помнить, что на сопротивление большинства материалов влияет их температура. В зависимости от требуемой точности измерения может потребоваться контролировать окружающую среду, в которой выполняется измерение, поддерживая, таким образом, постоянную температуру окружающей среды. Это может иметь место при измерении эталонных стандартов сопротивления, которые измеряются в контролируемой лаборатории при температуре 20°C или 23°C. Для измерений, когда контроль температуры окружающей среды невозможен, можно использовать функцию ATC (автоматическая температурная компенсация). Датчик температуры, подключенный к омметру, измеряет температуру окружающей среды, и показания сопротивления корректируются до эталонной температуры 20 °C. Двумя наиболее часто измеряемыми материалами являются медь и алюминий, и их температурные коэффициенты показаны напротив.

Температурный коэффициент меди (близкая к комнатной температуре) составляет +0,393 % на °C. Это означает, что если температура увеличится на 1°C, сопротивление увеличится на 0,393%. Алюминий +0,4100 % на °C.


7. Выбор правильного инструмента

ТАБЛИЦА 2 Разрешение Измерение тока Точность при 20 o C ± 5 o C, 1 год Температурный коэффициент /°C 60 Ом 10 мОм 1 мА ±(0,15 % показаний + 0,05 % полной шкалы) 40 ppm Rdg + 30 ppm FS 6 Ом 1 мОм 10 мА ±(0,15 % показаний + 0,05 % полной шкалы) 40 ppm Rdg + 30 ppm FS 600 мОм 100 мкОм 100 мА ±(0,15 % показаний + 0,05 % полной шкалы) 40 ppm Rdg + 30 ppm FS 60 мОм 10 мкОм 1А ±(0,15 % показаний + 0,05 % полной шкалы) 40 ppm Rdg + 30 ppm FS 6 мОм 1 мкОм 10А ±(0,2 % показаний + 0,01 % полной шкалы) 40 ppm Rdg + 30 ppm FS 600 мкОм 0,1 мкОм 10А ±(0,2 % показаний + 0,01 % полной шкалы) 40 ppm Rdg + 250 ppm полной шкалы

Диапазон:
Максимально возможное показание при этой настройке

Разрешение:
Наименьшее число (цифра), отображаемое для этого диапазона

Измеренный ток:


2 Точность:
Неопределенность измерения в диапазоне температур окружающей среды от 15 до 25°C

Температурный коэффициент:
Дополнительная возможная погрешность при температуре ниже 15°C и выше 25°C

При выборе наилучшего прибора для вашего приложения следует принимать во внимание следующее:

Точность можно лучше описать как неопределенность измерения, которая представляет собой близость соответствия между результатом измеренного значения и истинным значением. Обычно он выражается в двух частях, т. е. в процентах от показаний и в процентах от полной шкалы. Заявление о точности должно включать применимый диапазон температур, а также время, в течение которого точность будет оставаться в указанных пределах. Предупреждение: некоторые производители заявляют об очень высокой точности, но это действительно только в течение короткого периода 30 или 90 дней. Для всех омметров Cropico указана точность в течение всего 1 года.

Разрешение — это наименьшее приращение, отображаемое измерительным прибором. Следует отметить, что для достижения высокой точности измерения необходимо достаточно высокое разрешение, но высокое разрешение само по себе не означает, что измерение имеет высокую точность.

Пример: Для измерения 1 Ом с точностью 0,01 % (± 0,0001) необходимо, чтобы измерение отображалось с минимальным разрешением 100 мкОм (1,0001 Ом).

Измеренное значение также может отображаться с очень высоким разрешением, но низкой точностью, т. е. 1 Ом, измеренный с точностью до 1 %, но разрешение 100 мкОм будет отображаться как 1,0001 Ом. Единственными значащими цифрами будут 1,0100, а последние две цифры показывают только колебания измеренных значений. Эти колебания могут вводить в заблуждение и подчеркивать любую нестабильность ИУ. Необходимо выбрать подходящее разрешение, чтобы обеспечить удобное чтение с дисплея.

Длина измерительной шкалы
Цифровые измерительные приборы отображают измеренное значение на дисплеях с максимальным значением, часто 1999 (иногда обозначаемым цифрой 3 Ом). Это означает, что максимальное значение, которое может быть отображено, – 1 999, а наименьшее разрешение – 1 разряд в 1999 году. При измерении 1 Ом на дисплее будет отображаться 1,000, а разрешение – 0,001 мОм. Если мы хотим измерить 2 Ом, нам нужно будет выбрать более высокий диапазон 19,99 Ом полной шкалы, и значение будет отображаться как 2,00 Ом, разрешение 0,01 Ом. Таким образом, вы можете видеть, что желательно иметь большую длину шкалы, чем традиционная 1999. Омметры Cropico предлагают длину шкалы до 6000 отсчетов, что дает отображаемое значение 2,000 с разрешением 0,001 Ом.

Выбор диапазона
Выбор диапазона может быть как ручным, так и автоматическим. Хотя автоматический выбор диапазона может быть очень полезен, когда значение Rx неизвестно, измерение занимает больше времени, так как прибору необходимо найти правильный диапазон. Для измерений на нескольких похожих образцах диапазон лучше выбирать вручную. В дополнение к этому, различные диапазоны приборов будут измерять разные токи, которые могут не подходить для тестируемого устройства. При измерении индуктивных образцов, таких как двигатели или трансформаторы, измеренное значение увеличивается по мере насыщения индуктивности, пока не будет достигнуто конечное значение. В этих приложениях не следует использовать автоматический выбор диапазона, так как при изменении диапазонов измерительный ток прерывается, а его величина также может быть изменена, и маловероятно, что окончательные устойчивые показания будут достигнуты.

Длина шкалы 1,999  19,99 2.000 20.00 3.000 30.00 4.000 40.000
 Чтение на дисплее
Измеренные значения 1.000  1.000    1.000   1.000   1.000  
2.000  Диапазон до  2,00  2.000   2.000   2.000   
3.000   Диапазон до  3,00  Диапазон до  3,00 3.000    3.000   
4.000  Диапазон до  4,00  Диапазон до  4,00  Диапазон до  4,00 4. 000  

Температурный коэффициент
Температурный коэффициент измерительного прибора важен, поскольку он может значительно повлиять на точность измерения. Измерительные приборы обычно калибруются при температуре окружающей среды 20 или 23°. Температурный коэффициент показывает, как на точность измерения влияют колебания температуры окружающей среды.

Величина тока и режим
Важно выбрать прибор с подходящим измерительным током для приложения. Например, если нужно измерить тонкие провода, то большой измерительный ток нагреет провод и изменит значение его сопротивления. Медный провод имеет температурный коэффициент 4% на °C при температуре окружающей среды, поэтому для провода с сопротивлением 1 Ом повышение температуры на 10 °C увеличит его значение до 10 x 0,004 = 0,04 Ом. Однако в некоторых приложениях лучше использовать более высокие токи.

Режим измерения тока также может быть важен. Опять же, при измерении тонких проводов короткий измерительный импульс тока, а не постоянный ток, сведет к минимуму любой эффект нагрева. Режим измерения коммутируемого постоянного тока также может подойти для устранения ошибок термоэдс, но для измерения обмоток двигателя или трансформаторов импульс тока или коммутируемый постоянный ток не подходят. Непрерывный ток необходим для насыщения индуктивности, что дает правильное измеренное значение. Автоматическая температурная компенсация. При измерении материалов с высоким температурным коэффициентом, таких как медь, значение сопротивления увеличивается с ростом температуры. Измерения, проведенные при температуре окружающей среды 20 °C, будут на 0,4 % ниже, чем измерения при 30 °C. Это может ввести в заблуждение при попытке сравнить значения в целях контроля качества. Чтобы решить эту проблему, некоторые омметры снабжены автоматической температурной компенсацией (ATC). Температура окружающей среды измеряется датчиком температуры, а отображаемое значение сопротивления корректируется с учетом изменений температуры, ориентируясь на 20 °C.

Скорость измерения
Скорость измерения обычно не слишком важна, и большинство омметров будут измерять примерно 1 показание в секунду, но в автоматизированных процессах, таких как выбор компонентов и тестирование производственной линии, высокая скорость измерения, до 50 измерений в секунду. во-вторых, может быть желательным. Конечно, при измерении на этих скоростях омметром необходимо дистанционно управлять с помощью интерфейса компьютера или ПЛК.

Удаленные соединения
Для удаленного подключения может подойти интерфейс IEEE-488, RS232 или ПЛК. Интерфейс IEEE-488 — это параллельный порт для передачи 8 бит (1 байт) информации за раз по 8 проводам. Его скорость передачи выше, чем у RS232, но длина соединительного кабеля ограничена 20 метрами.

Интерфейс RS232 — это последовательный порт для передачи данных в формате последовательных битов. RS232 имеет более низкую скорость передачи, чем IEEE-488, и требует всего 3 линии для передачи данных, приема данных и заземления сигнала.

Интерфейс ПЛК обеспечивает базовое дистанционное управление микроомметром с помощью программируемого логического контроллера или аналогичного устройства.

Окружающая среда

Следует учитывать тип окружающей среды, в которой будет использоваться омметр. Нужен ли переносной блок? Должна ли конструкция быть достаточно прочной, чтобы выдерживать условия строительной площадки? В каком диапазоне температур и влажности он должен работать?

Просмотрите линейки миломметров и микроомметров, чтобы получить дополнительную информацию о нашей продукции.

Скачать полное руководство по PDF, которое содержит все главы:

Нажмите здесь, чтобы загрузить полное руководство

Основы электроники: меры сопротивления

. -2016

Электроника для чайников

Исследовать книгу Купить на Amazon

Сопротивление электронной цепи можно измерить с помощью омметра , который является стандартной функцией большинства мультиметров. Процедура проста: сначала вы отключаете от цепи все источники напряжения; затем вы прикасаетесь двумя щупами омметра к концам цепи и считываете сопротивление (в омах) на измерителе.

Сопротивление измеряется в единицах, называемых Ом, представленных греческой буквой омега (Ом). Стандартное определение один ом простое: это величина сопротивления, необходимая для протекания тока в один ампер при приложении к цепи напряжения в один вольт. Другими словами, если вы подключите резистор в один Ом к клеммам одновольтовой батареи, через резистор будет протекать ток в один ампер.

Один ом (1 Ом) на самом деле является очень небольшим сопротивлением. В электронных схемах обычно требуются сопротивления в сотни, тысячи или даже миллионы Ом.

Вот еще несколько моментов, которые следует учитывать в отношении сопротивления и сопротивления:

  • Сокращения к (для кило ) и М (для мега ) используются для тысяч и миллионов ом. Таким образом, сопротивление 1000 Ом записывается как 1 кОм, а сопротивление 1 000 000 Ом записывается как 1 МОм.

  • Применительно к большинству электронных схем можно предположить, что значение сопротивления обычного провода равно нулю Ом (0 Ом). В действительности, однако, только сверхпроводники имеют сопротивление 0 Ом.

    Даже медный провод имеет определенное сопротивление. Из-за этого сопротивление провода обычно измеряется в омах на километр или на милю. Электронные схемы обычно имеют дело с проводами длиной не более нескольких дюймов или футов, а не километров или миль.

  • Короткие замыкания также имеют практически нулевое сопротивление.

  • Точно так же, как обычные провода и короткие замыкания можно считать имеющими нулевое сопротивление, изоляторы и разомкнутые цепи можно считать имеющими бесконечное сопротивление, а в действительности не существует такой вещи, как полностью бесконечное сопротивление.

    Если вы подсоедините два провода к клеммам батареи и разнесете провода, между концами этих двух проводов будет существовать разность потенциалов, и между ними будет проходить очень небольшой ток — даже по воздуху, потому что воздух не имеет бесконечное сопротивление.

Оставить комментарий