Что такое три фазы в электричестве: Статьи о стабилизаторах напряжения, ИБП и другой продукции ГК «Штиль»

Содержание

Три фазы – как это работает

Три фазы — это основные части многофазной системы электрических цепей. Все мы знаем, что в наши дома электроэнергия поступает по двум проводам — фазе (фазный провод) и нулю (нейтральный провод). Но как правило у большинства людей понимание протекающих процессов ограничивается несколькими базовыми примерами, и часто оно не верное. В данном обзоре мы постараемся разобраться по возможности простыми словами с тремя фазами — особенностью протекания тока в трехфазной системе с нейтральным проводом и без него.

Три фазы — основы

Трехфазная цепь — это совокупность трех электрических цепей, в которых действуют синусоидальные ЭДС, одинаковые по амплитуде и частоте, сдвинутые по фазе одна от другой на угол 120° (2π/3) и создаваемые общим источником энергии. Расшифруем это определение. В нем упоминаются следующие понятия:

  • Общий источник энергии — это трехфазный генератор на электростанции, вырабатывающий напряжение порядка 10000 Вольт. Промежуточное звено между генератором и конечным потребителем — распределительный трансформатор, который условно можно заменить генератором 230 Вольт.
  • Синусоидальные ЭДС сдвинутые по фазе одна от другой на угол 120°. Получение ЭДС (электродвижущей силы) основано на принципе электромагнитной индукции. При этом три фазы обмотки статора генератора повернуты в пространстве друг относительно друга на 1/3 часть окружности, то есть магнитные оси фаз повернуты в пространстве на угол 120°.
  • Синусоидальные ЭДС, одинаковые по амплитуде и частоте. Если рассмотреть последний участок трансформации напряжения, то при привычном действующем напряжении 230 Вольт амплитуда каждой фазы 325 Вольт (230×√2). Частота ЭДС определяется частотой вращения ротора генератора. Частота 50 Гц значит, что ток пятьдесят раз в секунду идет в одну сторону и пятьдесят раз в обратную. При этом сто раз в секунду он достигает амплитудного значения и сто раз становится равным нулю. Смена направления происходит при переходе графика синусоиды через нулевое значение.

Термин «фаза» имеет в электротехнике два значения:

  • Фазой называют аргумент синуса (ωt + Ψ). Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси). Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.
  • Каждая отдельная цепь, входящая в трехфазную цепь принято называть фазой.

Трехфазные цепи имеют широкое распространение за счет следующих преимуществ:

  • Экономичности производства и передачи энергии по сравнению с однофазными цепями.
  • Возможности простого получения кругового вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя.
  • Возможности получения в одной установке двух эксплуатационных напряжений — фазного и линейного.

Основными элементами трехфазной цепи являются:

  • Трехфазный генератор, преобразующий механическую энергию в электрическую.
  • Трансформатор напряжения. Для передачи электроэнергии на большие расстояния напряжения электрического тока с помощью силовых трансформаторов повышают до сотен тысяч вольт. Конечные же потребители используют ток после силового понижающего трансформатора.
  • Линии электропередач — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока (токопроводы, кабельные и воздушные линии).
  • Приемники (потребители), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).

Каждая из трех фаз в цепи имеет стандартное наименование и цветовую маркировку:

  • Первая фаза обозначается латинской буквой A и желтым цветом.
  • Вторая фаза обозначается латинской буквой B и зеленым цветом.
  • Третья фаза обозначается латинской буквой C и красным цветом.

Если идет речь о конкретном элементе цепи, например трехфазном генераторе, трансформаторе, то в данном случае фаза — это одна из трех обмоток генератора (трансформатора), имеющая начало и конец.
Начала обмоток фаз обозначаются латинскими буквами А, В, С, а
концы фаз — X, Y, Z.

Три фазы без нуля

Все дома и квартиры можно условно назвать однофазными приемниками (потребителями), являющимися элементами трехфазной цепи. Но если рассмотреть совокупность однофазных приемников, то по отношению к источнику (распределительному трансформатору) они выступают как одна трехфазная нагрузка. И именно переход от отдельных однофазных потребителей к их общему трехфазному потреблению вызывает много вопросов у многих интересующихся темой электротехники людей. До сих пор в понимании многих электрический ток приходит в дом по фазе и уходит обратно к трансформатору по нулю (нейтральному проводу).

Но как он уходит правильно, об этом к сожалению не многие знают. Постараемся содержательно и предельно понятно раскрыть этот вопрос на примере трех фаз и нагрузок в системе без нуля (нейтрального провода).

Для начала рассмотрим пример электроснабжения условной улицы, дома на которой равномерно подключены к трем фазам, идущим от распределительного трансформатора. Воспользовавшись программой Multisim отобразим это схематически:

Расшифруем трехфазную электрическую цепь:

  1. V1 — трехфазный генератор 230 В. В нашем случае он заменяет понижающий распределительный трансформатор.
  2. Отходящие от него три фазы выделены соответствующими цветами — желтый, зеленый красный. Резисторы RPA1-RPA3, RPB1-RPB3, RPC1-RPC3 — условные сопротивления участков фазных проводов.
  3. Точка соединения концов фазных обмоток заземлена. Сопротивление заземлителя нейтрали трансформатора
    RZN
    = 4 Ом (глухозаземленная нейтраль).
  4. Отходящий от трансформатора нейтральный провод отмечен голубым цветом. Он также имеет определенное сопротивление, складывающееся из сопротивлений RPN1-RPN3.
  5. RA1-RA3, RB1-RB3, RC1-RC3 — нагрузки в домах, подключенных к одной из трех фаз воздушной линии.

Возможно кто-то посчитает схему сложной и непонятной, так как электроснабжение домов от распределительного трансформатора фактически показано с использованием лишь сопротивлений (резисторов). Но на электрических схемах многие их элементы, например лампочки, электродвигатели, соединительные провода, часто отображают в виде сопротивлений. Это вполне допустимо, так как при расчетах и анализе схемы достаточно знать лишь сопротивление R того или иного элемента. Да и самому электроприбору не требуется от генератора (силового распределительного трансформатора) каких либо специальных условий. Подключенному в цепь приемнику (нагрузке) достаточно получить необходимое напряжение (U). А с учетом сопротивления легко просчитывается сила тока в цепи (I = U/R) и мощность, потребляемая приемником (P = UI).

Для понимания рассмотрим любой дом (нагрузку) и разберемся, почему он на схеме отмечен резистором с определенным сопротивлением. Электроприборы, включенные в сеть, потребляют определенную мощность:

В приведенном примере холодильник, тостер, электроплита и стиральная машина в совокупности имеют мощность потребления (P) 40+700+2000+260 = 3000 Вт. Зная напряжение U = 230 В, нетрудно определить общее сопротивление по следующий формуле R = U²/P = 230²/300 ≈ 17,6 Ом. По данной формуле также можно рассчитать сопротивление каждого электроприбора по отдельности, и для получении общего сопротивления воспользоваться правилом параллельного соединения.

Разобравшись, что потребление электроэнергии домом либо иной электроустановкой можно на схеме изобразить в виде сопротивления, перейдем к следующему важному вопросу. Многие неверно представляют путь движения тока в трехфазной электрической цепи. Упрощенно они считают, что ток в розетку приходит по фазе, запитывает электроприборы, а затем уходит по нулю (нейтральному проводу) в распределительный трансформатор. Но на самом деле все намного сложнее. Постараемся доступно рассмотреть особенности трех фаз и значение нейтрального провода.

Для начала в приведенную выше схему добавим четыре амперметра на три фазы и нейтральный провод:

Какой вывод можно сделать, если проанализировать силу тока по трем фазам IA = 49,2 А, IB = 48,8 А, IC = 48,9 А? Из приведенных данных следует, что три фазы нагружены почти равномерно. Теперь проанализируем силу тока, возвращающегося по нейтральному проводу в точку соединения концов обмоток фаз в трансформаторе. Амперметр IN показывает 0,3 А. То есть озвученный выше тезис, что ток приходит по фазе, а затем уходит по нулю (нейтральному проводу) в распределительный трансформатор, в корне не верный. В данном примере токи в трех фазах циркулируют между содой, и лишь незначительная часть, равная геометрической сумме этих токов, возвращается в нулевую точку (нейтраль) трансформатора.

При соединении нагрузок (домов) в звезду линейные токи I и фазные токи Iф равны. А в соответствии с первым законом Кирхгофа ток в нулевом проводе равен геометрической сумме линейных (фазных) токов: IN = IA+IB+IC. При симметричной нагрузке ZA = ZB = ZC ток в нулевом проводе IN = 0 и, следовательно, необходимость в таком проводе отпадает. Естественно, когда в трехфазной цепи нагрузки — это дома или квартиры, добиться идеальной симметрии потребления электроэнергии невозможно. Для примера, симметричными трехфазными приемниками являются трехфазные электродвигатели. Однако, чтобы понять, как ток распространяется в трехфазной цепи, можно допустить симметричную нагрузку домами или квартирами. Что мы и сделаем:

Сразу отметим, раз уж мы сделали допущение о симметричной нагрузке (сопротивление потребителей каждого дома по 15 Ом), то также упростим схему, убрав сопротивления проводов. Что в итоге получилось:

  • Сила тока по трем фазам стала одинаковой IA = IB = IC ≈ 46 А.
  • Сила тока в нейтральном проводе стала равна нулю IN ≈ 0 А.

Соответственно, как и отмечалось выше, при симметричной нагрузке ток в нулевом проводе IN = 0, и необходимость в таком проводе отпадает (что и показано во второй части схемы). К сожалению, не все понимают, что значит убрать из схемы нейтральный (нулевой) провод. В вашей розетке он остается, а убирается он лишь на участке соединения двух нулевых (общих) точек соединения обмоток генератора и соединения приемников (домов) звездой. И если вы посмотрите на вторую часть приведенной выше схемы, оставшийся нейтральный провод, к которому все также подключены дома — это ни что иное, как общая (нулевая при симметричной нагрузке) точка соединения всех домов (приемников, потребителей). При этом отсутствующая связь этой точки с нейтралью трансформатора при симметричной нагрузке никак не сказывается на работу приемников (получение ими необходимого напряжения). А все по тому, что геометрическая сумма токов равна нулю, и все перераспределение энергии происходит между тремя фазами.

Казалось бы все просто, но как показывает практика, обычная трактовка основ электротехники все равно непонятна многим. Поэтому пойдем дальше и постараемся объяснить особенности функционирования трехфазной электрической цепи более подробно и нестандартно. Используем все тот же пример, но трансформируем схему в более простую модель. К каждой фазе у нас подключено по три дома. Сопротивление нагрузки каждого дома мы приняли равным 15 Ом (симметричная нагрузка). Воспользовавшись правилом параллельного соединения сложим сопротивления трех домов для получения общего сопротивления. Если в цепи используются резисторы одного номинала, то формула общего сопротивления имеет вид R = R1 / N (R1 – номинальное сопротивление резистора; N – количество резисторов с одинаковым номинальным сопротивлением). Получаем R = 15/3 = 5 Ом. То есть теперь три дома (резистора) на фазе можно заменить одним резистором с сопротивлением 5 Ом:

Мы упростили схему и показали, что при симметричной нагрузке по трем фазам можно без последствий отказаться от нейтрального провода, соединяющего две нулевые точки. Но даже в таком представлении схема будет не совсем понятна многим. Поэтому без внесения изменений перерисуем схему еще раз: 

Для простоты одинаковые участки на двух схемах дополнительно промаркированы (0 — нулевые точки соединения обмоток трансформатора и приемников, N — нейтральный провод, соединяющий две нулевые точки). Может возникнуть вопрос, почему это — нулевые точки? Потому что при симметричной нагрузке в этих точках нет напряжения (потенциал равен нулю). На последней схеме дополнительно показана разность потенциалов между нулевыми точками UN = 0,01 nV ≈ 0 V. Следующий вопрос, а скорее заблуждение, что нулевой потенциал — это следствие заземления нейтрали. Это не так, и в следующих схемах мы объясним все через потенциалы:

Несмотря на то, что трехфазный генератор был заменен тремя источниками переменного напряжения, схема осталась прежней. Данная замена сделана для наглядности, чтобы можно было показать как начала обмоток (A, B, C), так и концы (X, Y, Z), соединенные звездой в общей точке (нейтрали). К началам обмоток (выводам трансформатора) подключен осциллограф и показаны синусоиды трех фаз, смещенных друг относительно друга на 120°. Синусоиды показывают амплитудное значение напряжения +325 и -325 Вольт на пиках. Простыми словами это значит, что с учетом частоты 50 Гц каждую секунду на выводе каждой фазы напряжение меняется от 0 до 325 до 0 до -325 до 0 Вольт. Такое изменение в совокупности дает привычные нам действующие 230 Вольт (325/√2), но далее мы будем рассматривать только амплитудное значение напряжения.

Вернемся к синусоидам трех фаз и рассмотрим напряжения в отмеченный момент времени, когда напряжение на пике фазы А (желтый график) +325 Вольт. В этот же момент на выводах оставшихся двух фаз (B, C) напряжение в сумме дает -325 Вольт (В ≈ -162,5 Вольт, C ≈ -162,5 Вольт). Все эти значения просчитаны как разность потенциалов начал и концов обмоток генератора (трансформатора) и показаны на осциллографе. Останемся в том же моменте времени, но перейдем от напряжений на осциллографе к конкретным потенциалам: 

Теперь обратим внимание на такой параметр как напряжение. Напряжение показывает, какую работу совершает электрическое поле по перемещению единицы заряда на данном участке цепи. Для того чтобы образовалось электрическое поле в цепи должна быть разность потенциалов, и она в нашем примере есть. Разность потенциалов позволяет носителям электрического заряда (электронам) перемещаться из области с большим потенциалом в область с меньшим потенциалом (ток).

С учетом вышеперечисленного проанализируем схему. Начнем с правой части — начал обмоток (A, B, C). Без углубления в вектора, сложные формулы и комплексные числа попробуем понять путь протекания тока. На выводе A мы имеем потенциал +162,5 Вольт. Количественно это значит, что в данной точке находится избыток носителей электрического заряда. На выводах B и С имеется недостаток зарядов по -81,25 Вольт, что суммарно дает -162,6 Вольт. Получается разность потенциалов, в результате которой заряды от вывода A направляются к общей точке соединения приемников, далее перераспределяются и направляются к выводам B и С. При этом скорость перемещения зарядов на всем пути будет одинакова, но сила тока на трех фазах будет разной. Это обусловлено разным напряжением при одинаковом сопротивлении (симметрии потребления). Постараемся объяснить это простыми словами: 

  • Определенное количество зарядов (x) со скоростью (v) проходит по фазному проводу А, проходит нагрузку R = 5 Ом и попадает в точку соединение трех симметричных нагрузок (приемников).
  • Из общей точки заряды разделяются пополам (x/2) и с той же скоростью (v) проходят нагрузки R = 5 Ом на фазах B и С, далее следуют к выводам этих фаз.

Такая конфигурация с симметричным источником и приемником позволяет всем зарядам от вывода фазы A сбалансированно перераспределится через оставшиеся две фазы B и C. Другими словами в точке соединения трех приемников никогда не бывает избытка или недостатка зарядов, что свидетельствует о нулевом потенциале этой точки. По такому же принципу заряды перераспределяются в левой части схемы, где соединены концы обмоток (X, Y, Z).

Подведем итог. При симметричном трехфазном источнике и симметричных приемниках потребность в четвертом нейтральном проводе отпадает. Достигается это за счет за счет ЭДС, сдвинутых по фазе одна от другой на угол 120°, которые перераспределяют заряды по трем одинаковым путям с одинаковой скоростью. Такая аналогия с путями и скоростью очень важна, и об этом вы узнаете в следующем пункте, описывающем значение нейтрального провода.

Значение нейтрального провода в трехфазной системе

При несимметричной нагрузке и отсутствии нейтрального провода фазные
напряжения приемника уже не связаны жестко с фазными напряжениями
генератора, так как на нагрузку воздействуют только линейные напряжения
генератора. Несимметричная нагрузка в таких условиях вызывает несимметрию ее фазных напряжений (UA, UB, UC) и смещение ее нейтральной точки (0) из центра треугольника напряжений (смещение нейтрали).

Естественно треугольник напряжений (векторы фазных напряжений) и сложные формулы расчетов мы рассматривать не будем. Постараемся, как и в предыдущих пунктах, разобраться с вопросом наглядно и упрощенно:

В приведенной выше схеме наблюдается несимметрия потребления. Фаза A нагружена больше и имеет сопротивление 5 Ом. Фаза B нагружена меньше и имеет сопротивление 10 Ом. Фаза C нагружена еще меньше и имеет сопротивление 15 Ом. С учетом этого произошла несимметрии фазных напряжений (UA ≈ 157 Вольт, UB ≈ 261 Вольт, UC ≈ 287 Вольт). Смещение нейтральной точки соединения приемников (0) привело к появлению разности потенциалов с нейтралью трансформатора UN = 75 Вольт.

Важно — в данной схеме нет нейтрального провода (измеряется всего лишь разность потенциалов).

Перейдем к потенциалам на выводах генератора (трансформатора). Они остались такими же, как и при симметричной нагрузке приемников. В конце предыдущего пункта мы отметили важность сбалансированности и одинаковой скорости движения электронов в цепи (для справки: ток у нас не постоянный, потому движение условное, и фактически — это «топтание на месте»). Как же происходит движение зарядов в данном случае, когда изменились параметры «путепроводов» (различное сопротивление на участках цепи):

  • Определенное количество зарядов (x) со скоростью (v) проходит по фазному проводу А, проходит нагрузку R = 5 Ом и попадает в точку соединение трех несимметричных нагрузок (приемников).
  • Из общей точки заряды уже не разделяются пополам. Виной тому увеличение сопротивления на пути от нейтральной точки приемников к выводам фаз B и C на трансформаторе. Баланс нарушился, и теперь то количество зарядов, пришедших от вывода A попросту не успевают перераспределится в цепи. Образуется избыток в данный момент времени зарядов в точке соединения нагрузок (0). Раз есть избыток (или недостаток в определенный момент периода синусоиды) в этой нулевой точке, то есть и разность потенциалов с нейтралью трансформатора (что и показал вольтметр UN).

Так как в нейтральной точке имеется потенциал, отличный от нуля, то это приводит к несимметрии фазных напряжений. К примеру, если бы потенциал в нейтральной точке был равен 0 Вольт (случай симметричной нагрузки), то фазное напряжение UA можно было бы рассчитать, как +162,5-(-162,5)-0 = 325 Вольт (амплитудное значение). 325/√2 ≈ 230 Вольт (действующее значение). В случае с несимметричным потреблением в нейтральной точке будет всегда какой-то потенциал. Соответственно при расчетах мы получим иное амплитудное и действующее значение напряжения. Из примера просчитанного в программе видно, что действующее напряжение UA ≈ 157 Вольт. Соответственно амплитудное равно 157×√2 ≈ 222 Вольт. Это можно наглядно увидеть на графиках синусоид, приведенных выше. Берем пик синусоиды фазы A с напряжением (потенциалом) +325 Вольт, и от этого потенциала отнимаем потенциал нейтрали (канал D) +103 Вольт в данный момент времени. То же самое можно сделать с остальными фазами. Берем пик синусоиды фазы B с напряжением (потенциалом) +325 Вольт, и от этого потенциала отнимаем потенциал нейтрали (канал D) -36 Вольт в данный момент времени. Получаем +325-(-36) = +361 Вольт (амплитудное значение). 355×√2 ≈ 255 Вольт (действующее значение). Приблизительно это и показывает вольтметр UB ≈ 261 Вольт.

Для того чтобы выравнивать фазные напряжения приемника при несимметричной нагрузке, нужен нейтральный провод соединяющий нулевые точки трансформатора (генератора) и приемников:

При наличии нейтрального провода в общей точке соединения нагрузок уже не может образовываться излишек или недостаток зарядов (потенциал), так как он сразу же будет перенаправляется в общую точку соединения концов фазных обмоток трансформатора (генератора).

Завершая тему трех фаз с нулем и без нуля стоит также отметить, что наличие нейтрального провода в цепи при несимметричной нагрузке, также позволяет подключать однофазные приемники с номинальным напряжением в √3 раз меньше номинального линейного напряжения трехфазной сети (230/400 Вольт).

Отличия трехфазного и однофазного напряжения. Чем напряжение 220 В отличается от 380 Вольт

Напряжение 380B называется линейным, потому как действует между любыми из трех фаз в трёхфазной сети. Напряжение 220B называется фазным, действует между одной из трех фаз и нулём.

От генерирующих электростанций к потребителям электрическая энергия подается при помощи высоковольтных линий, частота которых составляет 50 Гц. Понижение высокого синусоидального напряжения происходит на трансформаторных подстанциях, после чего выполняется его распределение потребителям – на уровне 220B и 380B. Различается однофазная и трехфазная сеть. Однако каковы отличия между ними? Давайте разбираться.

Если при подключении дома или квартиры используются два провода (фазы и нуля), система является однофазной. Коэффициент ее рабочего напряжения составляет 220B. Если же заходят 4 провода (трех фаз и нуля) – это трехфазная система. Ее рабочее напряжение (линейное) составляет 380B.

Специфика подачи напряжения

По типу электрического тока напряжение бывает переменным и постоянным. При разной форме переменного тока изменяется его величина и значение. В то время, как у постоянного тока сохраняется одна и та же полярность знака, а вот величина может изменяться.

Напряжение, присутствующее в современных розетках, имеет переменную синусоидальную форму. Его значение бывает следующих видов:

  • Амплитудным – указывает на размер размаха синусоиды по отношению к нулю в вольтах;
  • Действующим – это значение, которое в √2 или 1,41 раз меньше предыдущего;
  • Мгновенным – значение указывает на интенсивность напряжения в вольтах в определенные моменты времени.

Трехфазные цепи. Как подается напряжение в них

В трехфазной цепи напряжение может быть фазным или линейным. Векторная диаграмма выглядит следующим образом:

На графике присутствуют три вектора напряжений (фаз) – Uа, Ub и Uс. Величина угла между ними равна 120°. Это соблюдается между обмотками в простейшем электрооборудовании. Для того, чтобы знак вектора Ub изменился на противоположный, его нужно отразить таким образом, чтобы векторное начало и конец поменялись местами, при этом первоначальный угол наклона был сохранен. После установки векторного начала Ub в конец Uа полученное расстояние и будет рассматриваться, как вектор линейного напряжения (Uл).

Чем отличаются между собой

Однофазные сети

В таких сетях ток может проходить и по замкнутым цепям. При подключении рекомендуется в первую очередь подвести напряжение к эффективной нагрузке и только после этого вернуть его обратно. Провод, который подводит ток в условиях переменного тока, является фазой. Второй провод является нулевым. Между этими двумя проводами, передающими однофазный ток, величина напряжения составляет 220B.

Двухфазные сети

Этот тип электросетей предусматривает осуществление передачи двух переменных токов, по которым их напряжение сдвигается по фазе на 90°. Для передачи токов используются два фазных и два нулевых провода. Из-за дороговизны такой способ передачи напряжения сейчас не используется.

Трехфазные сети

В таких электросетях одновременно передаются три переменных тока со сдвигом напряжения по фазе на 120°. Источники соединяются по схеме «звезды», что позволяет использовать только три провода – 3-х фазных и одного нулевого. Преимуществом таких сетей признана экономичность и возможность передачи тока на большие расстояния. В любой паре проводов фаз присутствует напряжение в 380B, а в парах одного фазного и нулевого провода – 220B.

Исходя из вышеперечисленного, для электропитания городских квартир и частных домов оборудуются однофазные или трехфазные сети.

Где используется напряжение в 220B, а где в 380B

В большинстве жилых объектов (квартирах, домах, коттеджах и на дачах) установлены и используются однофазные электросети, в которых напряжение составляет стандартные 220B. Это обоснуется тем, что уровень потребления в обычном доме или квартире не превышает, как правило, 10 кВт.

Трехфазная электросеть проводится на объекты, где планируемый уровень потребления мощностей превышает значение в 10 кВт, а также установлены и используются электрические установки, которые требуют именно трехфазную подачу напряжения для обеспечения корректного функционирования. К примеру, если для запуска трехфазного двигателя использовать лишь одну фазу с применением конденсатора, это существенно понизит КПД электроустановки и в то же время увеличит расход электрической энергии.

С другой стороны, если уровень максимально потребляемой мощности в частном домохозяйстве не превышает 9-ти кВт, допускается использование на вводе двужильного медного кабеля с сечением 6мм и установку автомата на 40A.

В случае, когда максимальная нагрузка предположительно равняется 15кВт, для провода одной фазы величина проходящего тока составит 70A. Следовательно, обязательной будет прокладка медного провода с 10-милиметровым сечением и силового автоматического выключателя. Однако стоимость такой сети намного дороже. А потому выходом из ситуации может стать монтаж обычной трехфазной сети и распределение эффективной нагрузки поровну между фазами, то есть – по 5 кВт. На сегодняшний день подобные решения по обеспечению электропитанием используются большинством магазинов, предприятий и офисов.

По каким схемам потребители подключаются к трехфазным электросетям

Для подключения электродвигателей, нагревателей и других трехфазных мощностей используется схема «звезда» или «треугольник». Большинство установок оснащены перемычками, которые в зависимости от положения обмоток формируют вышеуказанные схемы.

Соединение звездой

Схема предусматривает соединение концов обмоток генерирующего устройства в одну точку и подключение к началу этих же обмоток нагрузки. В электродвигателях получается, что линейное напряжение в 380B, при условии соединения обмоток по схеме звезды, прикладывается к двум обмоткам для каждой фазной пары.

Соединение треугольником

В этой схеме предусмотрено прикладывание линейного напряжения к каждой обмотке. Эти элементы, как правило, рассчитаны именно на такие подключения.

Указанные способы подключения имеют и плюсы, и недостатки.

Плюсы подключения однофазной сети 220B

  • Простота монтажа,
  • Экономичность в финансовых вложениях,
  • Безопасность в использовании напряжения.

Минусы использования однофазной сети 220B

  • Ограничения на использование мощностей для конечных потребителей,
  • Исключение возможности функционирования асинхронных двигателей, не оснащенных конденсаторами и ПЧ.

Плюсы подключения трехфазной сети 380B

  • Экономия финансовых средств в условиях трехфазного потребления энергии,
  • Возможность подключения и питания промышленного оборудования,
  • Ограничение мощности только по сечению используемого кабеля,
  • Переключение однофазных нагрузок на другую фазу в случаях ухудшения качества либо отключения электропитания.

Недостатки трехфазной сети 380B

  • Дорогое оборудования,
  • Напряжение, несущее опасность для жизни человека,
  • Наличие ограничений на максимальную мощность при однофазных нагрузках.

Что бы электрическая сеть работала бесперебойно и безопасно, необходимо проводить периодические испытания сертифицированной электролабораторией. Выезд специалиста на Ваш объект – бесплатно!

Что такое трехфазное питание и какие преимущества оно дает

Трехфазное питание переменного тока (AC) обычно используется для подачи электроэнергии в центры обработки данных, а также в коммерческие и промышленные здания, в которых размещается энергоемкое оборудование. Для этого есть веская причина, потому что 3-фазное питание может обеспечить большую мощность с большей эффективностью, в отличие от однофазного питания переменного тока. Однофазный переменный ток — это тип, обычно используемый для большинства бытовых и легких коммерческих приложений, таких как освещение и небольшие бытовые приборы. На этой странице мы объясним, почему это так, и основные различия между однофазными и трехфазными системами электропитания.

 

Зачем нам трехфазное питание

Способность поставлять постоянно увеличивающееся количество энергии особенно важно, поскольку в центрах обработки данных и серверных комнатах по-прежнему наблюдается рост плотности. Более мощные вычислительные системы размещаются в тех же помещениях, где когда-то размещались серверы, потребляющие лишь часть электроэнергии, необходимой для современных компьютеров и сетей.

Не так давно одна ИТ-стойка с 10 серверами потребляла в общей сложности пять киловатт (кВт) энергии. Сегодня в той же стойке могут находиться десятки серверов, потребляющих в совокупности 20 или 30 кВт. На таких уровнях вы, естественно, хотите сделать ставку на эффективность, поскольку даже небольшое процентное улучшение энергопотребления будет означать значительную экономию долларов с течением времени.

Еще одна проблема с проводкой. Рассмотрим стойку на 15 кВт. При использовании однофазной сети переменного тока 120 вольт (VAC) для питания стойки требуется 125 ампер, для чего потребуется провод диаметром почти четверть дюйма (AWG 4) — слишком толстый, чтобы с ним было легко работать, не говоря уже о том, дорогой. Поскольку 3 фазы более эффективны, они могут обеспечивать ту же мощность (и даже больше) при использовании проводки меньшего размера. Для поддержки той же стойки на 15 кВт с использованием трехфазного питания требуются три провода, способные подавать 42 ампера (AWG 10), которые имеют небольшую часть размера — каждый меньше одной десятой дюйма в диаметре.

 

Объяснение однофазного питания переменного тока

Итак, что такое трехфазное питание? И где мы должны его использовать?

Прежде чем углубиться в это обсуждение, полезно начать с понимания однофазного питания переменного тока.

Однофазная сеть переменного тока использует трехпроводную систему подачи, состоящую из одного «горячего» провода, нейтрального провода и заземления. При питании от сети переменный ток или напряжение периодически меняются местами, протекая в одну сторону по горячему проводу, подающему питание на нагрузку, и в другую сторону по нейтральному проводу. Полный цикл питания происходит во время изменения фазы на 360 градусов, и напряжение меняется на противоположное 50 или 60 раз в секунду, в зависимости от системы, используемой в разных частях мира. В Северной Америке это 60 раз или 60 герц (Гц).

Важно отметить, что две токонесущие ветви всегда отстоят друг от друга на 180 градусов. Чтобы визуализировать это, представьте, что мощность движется по волне, технически это синусоида с определенной частотой и амплитудой. В каждом цикле волны на каждом проводе дважды одновременно проходят через нулевую амплитуду (см. рис. 1). В этих случаях мощность на нагрузку не подается.

Рисунок 1

 

Эти очень короткие прерывания не имеют значения для жилых и коммерческих зданий, таких как офисы, но имеют существенное значение для двигателей, приводящих в действие крупное оборудование, а также компьютеры и другие устройства. ИТ-оборудование.

 

Погружение в трехфазное питание

Как следует из названия, трехфазные энергосистемы обеспечивают три отдельных тока, каждый из которых разделен на одну треть времени, необходимого для завершения полного цикла. Но, в отличие от однофазного, где две горячие ветви всегда разнесены на 180 градусов, в трехфазном токи разнесены на 120 градусов.

На Рисунке 2 ниже вы увидите, что, когда какая-либо одна линия имеет пиковый ток, две другие нет. Например, когда фаза 1 находится на своем положительном пике, фазы 2 и 3 имеют значение -0,5. Это означает, что, в отличие от однофазного тока, нет точки, в которой мощность не подается на нагрузку. Фактически, в шести различных положениях каждой фазы одна из линий находится в максимально положительном или отрицательном положении.

Для практических целей это означает, что общее количество энергии, поставляемой всеми тремя токами, остается постоянным; у вас нет циклических пиков и спадов, как с однофазным.

Компьютеры и многие двигатели, используемые в тяжелой технике, разработаны с учетом этого. Они могут получать устойчивый поток постоянной мощности, вместо того, чтобы учитывать колебания, присущие однофазной мощности переменного тока. В результате они потребляют меньше энергии.

В качестве аналогии подумайте об одноцилиндровом и трехцилиндровом двигателе. Оба работают по четырехтактной модели (впуск, сжатие, мощность, выпуск). В одноцилиндровом двигателе вы получаете только один «мощный» цикл на каждые четыре такта цилиндра, что обеспечивает довольно неравномерную подачу мощности. Трехтактный двигатель, напротив, будет обеспечивать мощность в трех чередующихся фазах (опять же, разделенных на 120 градусов), для более плавной, постоянной и эффективной мощности. 9Рисунок 2 Это не в три раза больше мощности, как можно было бы ожидать, потому что на практике вы обычно берете одну горячую линию и подключаете ее к другой горячей линии.

Чтобы понять, как 3-фазное питание обеспечивает большую мощность, нужно посчитать. Формула для однофазной мощности: мощность = напряжение (В) x ток (I) x коэффициент мощности (PF). Если мы предположим, что нагрузка в цепи является только резистивной, коэффициент мощности равен единице (или единице), что сводит формулу к P = V x I. Если мы рассмотрим 120-вольтовую цепь, поддерживающую 20 ампер, мощность будет равна 2400 Вт. .

Формула мощности трехфазной цепи: Мощность = Напряжение (В) x Ток (I) x Коэффициент мощности (PF) x квадратный корень из трех. Если предположить, что нагрузка в цепи является только резистивной, коэффициент мощности равен единице (или единице), что сводит формулу к P = V x I x квадратный корень из трех. Если мы рассмотрим 120-вольтовую трехфазную цепь, и каждая фаза поддерживает 20 ампер, формула работает как 120 вольт x 20 ампер x 1,732 = 4157 Вт. Таким образом, 3-фазные системы могут обеспечивать почти вдвое большую мощность, чем однофазные системы. Это упрощенный пример, но его можно использовать для исследования дополнительной мощности, доступной от цепей, поддерживающих более высокие напряжения (например, 208 или 480 вольт) или токи (например, 30 ампер или выше).

Такая емкость пригодится, когда речь идет о питании стоек с ИТ-оборудованием. В то время как когда-то использование однофазного питания для стойки было нормой, по мере увеличения плотности в ИТ-стойках это становится менее осуществимым и практичным. Все кабели, проводники и розетки становятся больше, дороже и с ними становится все труднее работать.

Подача трехфазного питания непосредственно в серверную стойку позволяет использовать менее дорогие кабели и другие компоненты, обеспечивая при этом большую мощность. Однако это требует внимания к нагрузке на каждую цепь, чтобы убедиться, что они сбалансированы и не превышают пропускную способность цепи.

Чтобы узнать больше о том, как работает трехфазное питание и о его преимуществах, посетите: https://www.vertiv.com/en-us/products-catalog/critical-power/uninterruptible-power-supplies-ups.

3-фазное электричество – как это работает

3-фазное электричество – как это работает. Мы продемонстрируем, как работает трехфазное электричество, сначала объяснив, как оно генерируется и чем оно отличается от однофазного электричества. Мы также расскажем, где трехфазное питание используется в промышленных и коммерческих зданиях.

Чтобы посмотреть БЕСПЛАТНУЮ версию этой презентации на YouTube, прокрутите вниз.

Как производится трехфазное электричество?

Если начать с источника трехфазной выработки электроэнергии, мы должны начать с электростанции, будь то атомная энергия, ископаемое топливо или другой источник. Генераторы переменного тока преобразуют механической энергии в электрической энергии , в то время как двигатель переменного тока делает обратное, он преобразует электрическую энергию в механическую, например, вращение вала двигателя насоса или вентилятора.

3-фазный генератор переменного тока преобразует механическую энергию в электрическую

Генератор переменного тока может представлять собой паровую турбину, работающую от котла, работающего на угле, газе, нефти или другом источнике, таком как ядерная энергия или плотина гидроэлектростанции. Пар или потенциальная энергия вращает генератор, производящий 3 фазы, о которых мы сейчас поговорим. Позже мы покажем вам угольную электростанцию, которая преобразует уголь в электричество.

Майкл Фарадей – Электромагнитная индукция и электромагнетизм

Прежде всего, мы должны воздать должное Майклу Фарадею, английскому ученому, внесшему вклад в изучение электромагнетизма и принципов, лежащих в основе электромагнитной индукции. Генераторы и двигатели переменного тока используют электромагнитную индукцию, как мы сейчас объясним.

Электромагнитная индукция

Магнитное поле может быть создано в проводнике путем пропускания через него электричества, или электрический ток может быть наведен в проводнике путем прохождения магнитного поля мимо проводника. Мы можем добиться этого с помощью трех предметов: проводника, электромагнитов и движения между ними.

Существует множество версий генератора переменного тока, в одной из таких версий используется вращающийся электромагнит для создания магнитного поля, через которое проходят проводники, тем самым создавая электродвижущую силу и индуцируя ток, протекающий в проводниках. В другой версии проводники движутся, а электромагниты неподвижны. Общим является электромагнит, который создает магнитное поле, и проводник, который вводится в это магнитное поле.

3-фазная магнитная индукция

Когда северный полюс электромагнита проходит через обмотки электрического проводника, он индуцирует ток в проводе.

Когда магнит находится под углом 90 градусов к виткам проводника, ток в проводе не течет.

3-фазное электричество Магнитная индукция – ток отсутствует

Поскольку южный полюс электромагнита проходит через обмотки проводника, это заставляет ток течь в направлении, противоположном направлению, вызванному северным полюсом магнита. Это заставляет ток изменяться в направлении, представленном формой волны.

3-фазное электричество, генерируемое электромагнетизмом

Есть три катушки 3-фазного электричества с углом 120 градусов между ними.

3-фазное электричество – частота в герцах

Что такое 3-фазное электричество

Используя то, что мы узнали ранее, теперь мы можем собрать простой 3-фазный генератор, добавив три набора обмоток, по одной на каждую фазу. Предыдущую одиночную обмотку можно считать однофазным генератором. Нужно будет поместить эти обмотки в корпус, чтобы скрепить все вместе.

Вот как может выглядеть простой однофазный генератор.

Однофазное электричество

Теперь, когда электромагнит вращается внутри статора, его магнитное поле прорезает проводники, заставляя ток течь попеременно туда и обратно. Используя только один проводник, мы получаем однофазную систему.

Добавив еще два проводника, мы получаем трехфазное электричество. Магнитное поле электромагнита теперь проникает в три проводника, индуцируя ток, протекающий во всех трех проводниках. Мы получаем три отдельные фазы, отстоящие друг от друга на 120 градусов, что дает нам наиболее эффективную схему использования энергии.

3-фазное электричество с использованием электромагнита

Когда магнитное поле северного полюса магнита достигает ближайшей точки одного из проводников, оно заставит электроны и ток течь в одном направлении. Затем, когда южный полюс электромагнитного поля достигает того же самого проводника, это заставляет электроны или ток течь в обратном направлении. Это движение вперед и назад электронов или тока в трех отдельных обмотках – это то, как создается трехфазная мощность.

В то время как один проводник или обмотка набирает силу, обращенную к северному полюсу магнита, другие находятся на расстоянии 120 и 240 градусов, ожидая своей очереди под воздействием северного полюса магнита. Это происходит 60 раз в секунду, что дает нам 60 герц, или, если вы находитесь в стране, где используется 50 герц, это будет происходить 50 раз в секунду.

Полный оборот всех трех фаз равен одному циклу, а в системе на 60 герц это будет означать 60 циклов или оборотов ротора внутри корпуса статора каждую секунду, для системы на 50 герц – 50 циклов в секунду. Число циклов в секунду называется частотой и составляет 50 или 60 герц. Помните, что двигатели с частотно-регулируемым приводом могут работать очень сильно, и если вы не знакомы с этой концепцией, посмотрите наше видео о частотно-регулируемых приводах с частотно-регулируемым приводом.

Угольная электростанция

Трехфазное электричество вырабатывается здесь с использованием грязного угля. Уголь отправляется в котел, где он сжигается для создания пара, который вращает турбину в генераторе, производящем электричество. Электроэнергия передается по высоковольтным линиям к месту, где она будет потребляться. Электричество высокого напряжения будет преобразовано в более низкое напряжение, пропуская его через трансформатор.

Производство электроэнергии на угле

Эти трансформаторы могут быть расположены на промышленной или коммерческой территории, где напряжение будет снижено до уровня, надлежащего для оборудования, которое они питают.

В зависимости от конфигурации трансформатора его можно настроить как трансформатор типа «треугольник» или «звезда», обеспечивающий все напряжения, необходимые в здании. От этого трехфазного электричества все в здании может быть запитано независимо от того, требуется ли однофазное или трехфазное электричество. Освещение в вашем доме будет использовать 115 вольт или что-то подобное, в то время как коммерческое здание может использовать 277 вольт, однофазное для своих осветительных приборов, поскольку 277 вольт распределяется более эффективно.

Оставить комментарий