Давление в физике это: Давление — урок. Физика, 7 класс.

Содержание

Что такое давление в физике определение. В чем измеряется давление в физике, единицы измерения давления

Представьте себе заполненный воздухом герметичный цилиндр, с установленным сверху поршнем. Если начать давить на поршень, то объем воздуха в цилиндре начнет уменьшаться, молекулы воздуха станут сталкиваться друг с другом и с поршнем все интенсивнее, и давление сжатого воздуха на поршень возрастет.

Если поршень теперь резко отпустить, то сжатый воздух резко вытолкнет его вверх. Это произойдет потому, что при неизменной площади поршня увеличится сила, действующая на поршень со стороны сжатого воздуха. Площадь поршня осталась неизменной, а сила со стороны молекул газа увеличилась, соответственно увеличилось и давление.

Или другой пример. Стоит человек на земле, стоит обеими стопами. В таком положении человеку комфортно, он не испытывает неудобств. Но что случится, если этот человек решит постоять на одной ноге? Он согнет одну из ног в колене, и теперь будет опираться на землю только одной стопой. В таком положении человек ощутит определенный дискомфорт, ведь давление на стопу увеличилось, причем примерно в 2 раза. Почему? Потому что площадь, через которую теперь сила тяжести придавливает человека к земле, уменьшилась в 2 раза. Вот пример того, что такое давление, и как легко его можно обнаружить в обычной жизни.

С точки зрения физики, давлением называют физическую величину, численно равную силе, действующей перпендикулярно поверхности на единицу площади данной поверхности. Поэтому, чтобы определить давление в некоторой точке поверхности, нормальную составляющую силы, приложенной к поверхности, делят на площадь малого элемента поверхности, на который данная сила действует. А для того чтобы определить среднее давление по всей площади, нормальную составляющую действующей на поверхность силы нужно разделить на полную площадь данной поверхности.

Измеряется давление в паскалях (Па). Эта единица измерения давления получила свое название в честь французского математика, физика и литератора Блеза Паскаля, автора основного закона гидростатики – Закона Паскаля, гласящего, что давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях. Впервые единица давления «паскаль» была введена в обращение во Франции в 1961 году, согласно декрету о единицах, спустя три столетия после смерти ученого.

Один паскаль равен давлению, которое вызывает сила в один ньютон, равномерно распределенная, и направленная перпендикулярно к поверхности площадью в один квадратный метр.

В паскалях измеряют не только механическое давление (механическое напряжение), но и модуль упругости, модуль Юнга, объемный модуль упругости, предел текучести, предел пропорциональности, сопротивление разрыву, сопротивление срезу, звуковое давление и осмотическое давление. Традиционно именно в паскалях выражаются важнейшие механические характеристики материалов в сопромате.

Атмосфера техническая (ат), физическая (атм), килограмм-сила на квадратный сантиметр (кгс/см2)

Кроме паскаля для измерения давления применяют и другие (внесистемные) единицы. Одной из таких единиц является «атмосфера» (ат). Давление в одну атмосферу приблизительно равно атмосферному давлению на поверхности Земли на уровне Мирового океана.

На сегодняшний день под «атмосферой» понимают техническую атмосферу (ат).

Техническая атмосфера (ат) – это давление, производимое одной килограмм-силой (кгс), распределенной равномерно по площади в один квадратный сантиметр. А одна килограмм-сила, в свою очередь, равна силе тяжести, действующей на тело массой в один килограмм в условиях ускорения свободного падения, равного 9,80665 м/с2. Одна килограмм-сила равна таким образом 9,80665 ньютон, а 1 атмосфера оказывается равной точно 98066,5 Па. 1 ат = 98066,5 Па.

В атмосферах измеряют, например, давление в автомобильных шинах, например рекомендованное давление в шинах пассажирского автобуса ГАЗ-2217 равно 3 атмосферам.

Есть еще «физическая атмосфера» (атм), определяемая как давление ртутного столба, высотой 760 мм на его основание при том, что плотность ртути равна 13595,04 кг/м3, при температуре 0°C и в условиях ускорения свободного падения равного 9,80665 м/с2. Так выходит, что 1 атм = 1,033233 ат = 101 325 Па.

Что касается килограмм-силы на квадратный сантиметр (кгс/см2), то эта внесистемная единица давления с хорошей точностью равна нормальному атмосферному давлению, что бывает иногда удобно для оценок различных воздействий.

Внесистемная единица «бар» равна приблизительно одной атмосфере, но является более точной – ровно 100000 Па. В системе СГС 1 бар равен 1000000 дин/см2. Раньше название «бар» носила единица, называемая сейчас «бария», и равная 0,1 Па или в системе СГС 1 бария = 1 дин/см2. Слово «бар», «бария» и «барометр» происходят от одного и того же греческого слова «тяжесть».

Часто для измерения атмосферного давления в метеорологии используют единицу мбар (миллибар), равную 0,001 бар. А для измерения давления на планетах где атмосфера очень разряженная – мкбар (микробар), равный 0,000001 бар. На технических манометрах чаще всего шкала имеет градуировку именно в барах.

Миллиметр ртутного столба (мм рт. ст.), миллиметр водяного столба (мм вод. ст.)

Внесистемная единица измерения «миллиметр ртутного столба» равна 101325/760 = 133,3223684 Па. Обозначается «мм рт.ст.», но иногда ее обозначают «торр» – в честь итальянского физика, ученика Галилея, Эванджелисты Торричелли, автора концепции атмосферного давления.

Образовалась единица в связи с удобным способом измерения атмосферного давления барометром, у которого ртутный столб пребывает в равновесии под действием атмосферного давления. Ртуть обладает высокой плотностью около 13600 кг/м3 и отличается низким давлением насыщенного пара в условиях комнатной температуры, поэтому для барометров в свое время и была выбрана именно ртуть.

На уровне моря атмосферное давление равно приблизительно 760 мм рт.ст., именно это значение и принято считать теперь нормальным атмосферным давлением, равным 101325 Па или одной физической атмосфере, 1 атм. То есть 1 миллиметр ртутного столба равен 101325/760 паскаль.

В миллиметрах ртутного столба измеряют давление в медицине, в метеорологии, в авиационной навигации. В медицине кровное давление измеряют в мм рт.ст, в вакуумной технике градуируются в мм рт.

ст, наряду с барами. Иногда даже просто пишут 25 мкм, подразумевая микроны ртутного столба, если речь идет о вакуумировании, а измерения давления осуществляют вакуумметрами.

В некоторых случаях используют миллиметры водяного столба, и тогда 13,59 мм вод.ст = 1мм рт.ст. Иногда это более целесообразно и удобно. Миллиметр водяного столба, как и миллиметр ртутного столба – внесистемная единица, равная в свою очередь гидростатическому давлению 1 мм столба воды, которое этот столб оказывает на плоское основание при температуре воды столба 4°С.

Никому не нравится быть под давлением. И не важно, под каким. Об этом спела еще группа Queen вместе с Дэвидом Боуи в своем знаменитом сингле “Under pressure”. Что такое давление? Как понять давление? В чем оно измеряется, какими приборами и методами, куда направлено и на что давит. Ответы на эти и другие вопросы – в нашей статье про

давление в физике и не только.

Если преподаватель давит на вас, задавая каверзные задачки, мы сделаем так, чтобы вы смогли верно на них ответить. Ведь понимание самой сути вещей – ключ к успеху! Итак, что такое давление в физике?

По определению:

Давление – скалярная физическая величина, равная силе, действующей на единицу площади поверхности.

В международной системе СИ измеряется в Паскалях и обозначается буквой p . Единица измерения давления – 1 Паскаль . Русское обозначение – Па , международное – Pa .

Согласно определению, чтобы найти давление, нужно силу разделить на площадь.

Любая жидкость или газ, помещенный в сосуд, оказывает на стенки сосуда давление. Например, борщ в кастрюле действует на ее дно и стены с некоторым давлением. Формула определения давления жидкости:

где g – ускорение свободного падения в гравитационном поле земли, h – высота столба борща в кастрюле, греческая буква «ро»

– плотность борща.

Наиболее распространенный в быту прибор для определения давления – барометр. Но в чем измеряют давление? Кроме паскаля существуют и другие внесистемные единицы измерения:

  • атмосфера;
  • миллиметр ртутного столба;
  • миллиметр водяного столба;
  • метр водяного столба;
  • килограмм-сила.

В зависимости от контекста применяются разные внесистемные единицы.

Например, когда вы слушаете или читаете прогноз погоды, там и речи не идет о паскалях. Говорят о миллиметрах ртутного столба. Один миллиметр ртутного столба – это 133 Паскаля. Если вы ездите за рулем, то наверное знаете, что нормальное давление в колесах легкового автомобиля – около двух

атмосфер .


Атмосферное давление

Атмосфера – это газ, точнее, смесь газов, которая удерживается у Земли благодаря гравитации. Атмосфера переходит в межпланетное пространство постепенно, а ее высота – примерно 100 километров.

Как понимать выражение «атмосферное давление»? Над каждым квадратным метром земной поверхности находится стокилометровый столб газа. Конечно, воздух прозрачен и приятен, но у него есть масса, которая давит на поверхность земли. Это и есть атмосферное давление.

Нормальное атмосферное давление принято считать равным 101325 Па . Это давление на уровне мирового океана при температуре 0 градусов Цельсия . Такое же давление при этой же температуре оказывает на свое основание столб ртути высотой 766 миллиметров.

Чем больше высота над уровнем моря, тем ниже атмосферное давление. Например, на вершине горы Джомолунгма оно составляет всего одну четвертую от нормального атмосферного давления.


Артериальное давление

Еще один пример, где мы сталкиваемся с давлением в повседневной жизни – это измерение кровяного давления.

Артериальное давление – это кровяное давление, т.е. давление, которое кровь оказывает на стенки сосудов, в данном случае – артерий.

Если вы измерили артериальное давление и оно у вас 120 на 80 , то все хорошо. Если 90 на 50 или 240 на 180 , то вам уже точно будет неинтересно разбираться, в чем это давление измеряется и что это вообще значит.


Тем не менее, возникает вопрос: 120 на 80 чего именно? Паскалей, миллиметров ртутного столба, атмосфер или еще каких-то единиц измерения?

Артериальное давление измеряется в миллиметрах ртутного столба. Оно определяет превышение давления жидкости в кровеносной системе над атмосферным давлением.

Кровь оказывает давление на сосуды и тем самым компенсирует действие атмосферного давления. Будь иначе, нас бы просто раздавило огромной массой воздуха над нами.

Но почему в измерении артериального давления две цифры?

Кстати! Для наших читателей сейчас действует скидка 10% на

Дело в том, что кровь движется в сосудах не равномерно, а толчками. Первая цифра (120) называется систолическим давлением. Это давление на стенки сосудов в момент сокращения сердечной мышцы, его величина – наибольшая. Вторая цифра (80) определяет наименьшее значение и называется диастолическим давлением.

При измерении фиксируются значения систолического и диастолического давлений. Например, для здорового человека типичное значение артериального давления составляет 120 на 80 миллиметров ртутного столба. Это означает, что систолическое давление равно 120 мм. рт. ст., а диастолическое – 80 мм рт. ст. Разница между систолическим и диастолическим давлениями называется пульсовым давлением.

Физический вакуум

Вакуум – это отсутствие давления. Точнее, практически полное его отсутствие. Абсолютный вакуум является приближением, как идеальный газ в термодинамике и материальная точка в механике.

В зависимости от концентрации вещества различают низкий, средний и высокий вакуум. Наилучшее приближение к физическому вакууму – космическое пространство, в котором концентрация молекул и давление минимальны.


Давление – основной термодинамический параметр состояния системы. Определить давление воздуха или другого газа можно не только по приборам, но и пользуясь уравнениями, формулами и законами термодинамики . А если у вас нет времени разбираться, студенческий сервис поможет решить любую задачу на определение давления.

В водолазной практике часто приходится встречаться с вычислением механического, гидростатического и газового давления широкого диапазона величин. В зависимости от значения измеряемого давления применяют различные единицы.

В системах СИ и МКС единицей давления служит паскаль (Па) , в системе МКГСС – кгс/см 2 (техническая атмосфера – ат). В качестве внесистемных единиц давления применяются тор (мм рт. ст.), атм (физическая атмосфера),м вод. ст., а в английских мерах – фунт/дюйм 2 . Соотношения между различными единицами давления приведены в табл, 10.1.

Механическое давление измеряется силой, действующей перпендикулярно на единицу площади поверхности тела:


где р – давление, кгс/см 2 ;
F – сила, кгс;
S – площадь, см 2 .

Пример 10.1. Определить давление, которое водолаз оказывает на палубу судна и на грунт под водой, когда он делает шаг (т. е. стоит на одной ноге). Вес водолаза в снаряжении на воздухе 180 кгс, а под водой 9 кгс. Площадь подошвы водолазной галоши принять 360 см 2 . Решение. 1) Давление, передаваемое водолазной галошей на палубу судна, по (10.1):

Р = 180/360 = 0.5 кгс/см

Или в единицах СИ

Р = 0,5 * 0,98.10 5 = 49000 Па = 49 кПа.

Таблица 10.1. Соотношения между различными единицами давления

2) Давление, передаваемое водолазной галошей на грунт под водой:

или в единицах СИ

Р = 0,025*0,98*10 5 = 2460 Па = 2,46 кПа.

Гидростатическое давление жидкости везде перпендикулярно к поверхности, на которую оно действует, и возрастает с глубиной, но остается постоянным в любой горизонтальной плоскости.

Если поверхность жидкости не испытывает внешнего давления (например, давления воздуха) или его не учитывают, то давление внутри жидкости называют избыточным давлением

где p – давление жидкости, кгс/см 2 ;
р – плотность жидкости, гс» с 4 /см 2 ;
g – ускорение свободного падения, см/с 2 ;
Y – удельный вес жидкости, кг/см 3 , кгс/л;
Н – глубина, м.

Если поверхность жидкости испытывает внешнее давление пп. то давление внутри жидкости

Если на поверхность жидкости действует атмосферное давление воздуха, то давление внутри жидкости называют абсолютным давлением (т. е. давлением, измеряемым от нуля – полного вакуума):
где Б – атмосферное (барометрическое) давление, мм рт. ст.
В практических расчетах для пресной воды принимают
Y = l кгс/л и атмосферное давление p 0 = 1 кгс/см 2 = = 10 м вод. ст., тогда избыточное давление воды в кгс/см 2
а абсолютное давление воды
Пример 10.2. Найти абсолютное давление морской воды действующее на водолаза на глубине 150 м, если барометрическое давление равно 765 мм рт. ст., а удельный вес морской воды 1,024 кгс/л.

Решение. Абсолютное давление волы по (10/4)

приолиженное значение абсолютного давления по (10.6)
В данном примере использование для расчета приближенной формулы (10. 6) вполне оправданно, так как ошибка вычисления не превышает 3%.

Пример 10.3. В полой конструкции, содержащей воздух под атмосферным давлением р a = 1 кгс/см 2 , находящейся под водой, образовалось отверстие, через которое стала поступать вода (рис. 10.1). Какую силу давления будет испытывать водолаз, если он попытается это отверстие закрыть рукой? Площадь «У сечения отверстия равна 10X10 см 2 , высота столба воды Н над отверстием 50 м.


Рис. 9.20. Наблюдательная камера «Галеацци»: 1 – рым; 2 – устройство отдачи троса и среза кабеля; 3 – штуцер для телефонного ввода; 4 – крышка люка; 5 – верхний иллюминатор; 6 – резиновое привальное кольцо; 7 – нижний иллюминатор; 8 – корпус камеры; 9 – баллон кислородный с манометром; 10 – устройство отдачи аварийного балласта; 11 – аварийный балласт; 12 – кабель светильника; 13 – светильник; 14 – электровентилятор; 15-телефон- микрофон; 16 – аккумуляторная батарея; 17 – коробка регенеративная рабочая; 18 – иллюминатор крышки люка

Решение. Избыточное давление воды у отверстия по (10.5)

P = 0,1-50 = 5 кгс/см 2 .

Сила давления на руку водолаза из (10.1)

F = Sp = 10*10*5 = 500 кгс =0,5 тс.

Давление газа, заключенного в сосуд, распределяется равномерно, если не принимать во внимание его весомость, которая при размерах сосудов, применяемых в водолазной практике, оказывает ничтожное влияние. Величина давления неизменной массы газа зависит от объема, который он занимает, и температуры.

Зависимость между давлением газа и его объемом при неизменной температуре устанавливается выражением

P 1 V 1 = p 2 V 2 (10.7)

Где р 1 и р 2 – первоначальное и конечное абсолютное давление, кгс/см 2 ;

V 1 и V 2 – первоначальный и конечный объем газа, л. Зависимость между давлением газа и его температурой при неизменном объеме устанавливается выражением

где t 1 и t 2 – начальная и конечная температура газа, °С.

При неизменном давлении аналогичная зависимость существует между объемом и температурой газа

Зависимость между давлением, объемом и температурой газа устанавливается объединенным законом газового состояния

Пример 10. 4. Емкость баллона 40 л, давление воздуха в нем по манометру 150 кгс/см 2 . Определить объем свободного воздуха в баллоне, т. е. объем, приведенный к 1 кгс/см 2 .

Решение. Начальное абсолютное давление р = 150+1 = 151 кгс/см 2 , конечное р 2 = 1 кгс/см 2 , начальный объем V 1 =40 л. Объем свободного воздуха из (10.7)

Пример 10.5. Манометр на баллоне с кислородом в помещении с температурой 17° С показывал давление 200 кгс/см 2 . Этот баллон перенесли на палубу, где на другой день при температуре -11° С его показания снизились до 180 кгс/см 2 . Возникло подозрение на утечку кислорода. Проверить правильность подозрения.

Решение. Начальное абсолютное давление p 2 =200 + 1 = =201 кгс/см 2 , конечное р 2 = 180 + 1 = 181 кгс/см 2 , начальная температура t 1 = 17°С, конечная t 2 =-11° С. Расчетное конечное давление из (10.8)

Подозрения лишены оснований, так как фактическое и расчетное давления равны.

Пример 10.6. Водолаз под водой расходует 100 л/мин воздуха, сжатого до давления глубины погружения 40 м. Определить расход свободного воздуха (т. е. при давлении 1 кгс/см 2).

Решение. Начальное абсолютное давление на глубине погружения по (10.6)

Р 1 = 0,1*40 =5 кгс/см 2 .

Конечное абсолютное давление Р 2 = 1 кгс/см 2

Начальный расход воздуха Vi = l00 л/мин.

Расход свободного воздуха по (10.7)

>>Давление и сила давления

Отослано читателями из интернет-сайтов

Сборник конспектов уроков по физике, рефераты на тему из школьной программы. Календарно тематическое планирование, физика 7 класс онлайн , книги и учебники по физике. Школьнику подготовиться к уроку.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов

Совершенствование учебников и уроков

исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планыучебные программы методические рекомендации

Hg единица измерения.

В чем измеряется давление в физике, единицы измерения давления

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 техническая атмосфера [ат] = 1,00000000000003 килограмм-сила на кв. сантиметр [кгс/см²]

Исходная величина

Преобразованная величина

паскаль эксапаскаль петапаскаль терапаскаль гигапаскаль мегапаскаль килопаскаль гектопаскаль декапаскаль деципаскаль сантипаскаль миллипаскаль микропаскаль нанопаскаль пикопаскаль фемтопаскаль аттопаскаль ньютон на кв. метр ньютон на кв. сантиметр ньютон на кв. миллиметр килоньютон на кв. метр бар миллибар микробар дина на кв. сантиметр килограмм-сила на кв. метр килограмм-сила на кв. сантиметр килограмм-сила на кв. миллиметр грамм-сила на кв. сантиметр тонна-сила (кор.) на кв. фут тонна-сила (кор.) на кв. дюйм тонна-сила (дл.) на кв. фут тонна-сила (дл.) на кв. дюйм килофунт-сила на кв. дюйм килофунт-сила на кв. дюйм фунт-сила на кв. фут фунт-сила на кв. дюйм psi паундаль на кв. фут торр сантиметр ртутного столба (0°C) миллиметр ртутного столба (0°C) дюйм ртутного столба (32°F) дюйм ртутного столба (60°F) сантиметр вод. столба (4°C) мм вод. столба (4°C) дюйм вод. столба (4°C) фут водяного столба (4°C) дюйм водяного столба (60°F) фут водяного столба (60°F) техническая атмосфера физическая атмосфера децибар стен на квадратный метр пьеза бария (барий) Планковское давление метр морской воды фут морской воды (при 15°С) метр вод. столба (4°C)

Логарифмические единицы

Общие сведения

В физике давление определяется как сила, действующая на единицу площади поверхности. Если две одинаковые силы действуют на одну большую и одну меньшую поверхность, то давление на меньшую поверхность будет больше. Согласитесь, гораздо страшнее, если вам на ногу наступит обладательница шпилек, чем хозяйка кроссовок. Например, если надавить лезвием острого ножа на помидор или морковь, овощ будет разрезан пополам. Площадь поверхности лезвия, соприкасающаяся с овощем, мала, поэтому давление достаточно велико, чтобы разрезать этот овощ. Если же надавить с той же силой на помидор или морковь тупым ножом, то, скорее всего, овощ не разрежется, так как площадь поверхности ножа теперь больше, а значит давление – меньше.

В системе СИ давление измеряется в паскалях, или ньютонах на квадратный метр.

Относительное давление

Иногда давление измеряется как разница абсолютного и атмосферного давления. Такое давление называется относительным или манометрическим и именно его измеряют, например, при проверке давления в автомобильных шинах. Измерительные приборы часто, хотя и не всегда, показывают именно относительное давление.

Атмосферное давление

Атмосферное давление – это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.

Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям. Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма. Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

Первая медицинская помощь в таких случаях оказывается немедленно. Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры. Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни – дорогостоящий процесс.

Скафандры

Пилотам и космонавтам приходится работать в среде с низким давлением, поэтому они работают в скафандрах, позволяющих компенсировать низкое давление окружающей среды. Космические скафандры полностью защищают человека от окружающей среды. Их используют в космосе. Высотно-компенсационные костюмы используют пилоты на больших высотах – они помогают пилоту дышать и противодействуют низкому барометрическому давлению.

Гидростатическое давление

Гидростатическое давление – это давление жидкости, вызванное силой тяжести. Это явление играет огромную роль не только в технике и физике, но также и в медицине. Например, кровяное давление – это гидростатическое давление крови на стенки кровеносных сосудов. Кровяное давление – это давление в артериях. Оно представлено двумя величинами: систолическим, или наибольшим давлением, и диастолическим, или наименьшим давлением во время сердцебиения. Приборы для измерения артериального давления называются сфигмоманометрами или тонометрами. За единицу артериального давления приняты миллиметры ртутного столба.

Кружка Пифагора – занимательный сосуд, использующий гидростатическое давление, а конкретно – принцип сифона. Согласно легенде, Пифагор изобрел эту чашку, чтобы контролировать количество выпитого вина. По другим источникам эта чашка должна была контролировать количество выпитой воды во время засухи. Внутри кружки находится изогнутая П-образная трубка, спрятанная под куполом. Один конец трубки длиннее, и заканчивается отверстием в ножке кружки. Другой, более короткий конец, соединен отверстием с внутренним дном кружки, чтобы вода в чашке наполняла трубку. Принцип работы кружки схож с работой современного туалетного бачка. Если уровень жидкости становится выше уровня трубки, жидкость перетекает во вторую половину трубки и вытекает наружу, благодаря гидростатическому давлению. Если уровень, наоборот, ниже, то кружкой можно спокойно пользоваться.

Давление в геологии

Давление – важное понятие в геологии. Без давления невозможно формирование драгоценных камней, как природных, так и искусственных. Высокое давление и высокая температура необходимы также и для образования нефти из остатков растений и животных. В отличие от драгоценных камней, в основном образующихся в горных породах, нефть формируется на дне рек, озер, или морей. Со временем над этими остатками собирается всё больше и больше песка. Вес воды и песка давит на остатки животных и растительных организмов. Со временем этот органический материал погружается глубже и глубже в землю, достигая нескольких километров под поверхностью земли. Температура увеличивается на 25 °C с погружением на каждый километр под земной поверхностью, поэтому на глубине нескольких километров температура достигает 50–80 °C. В зависимости от температуры и перепада температур в среде формирования, вместо нефти может образоваться природный газ.

Природные драгоценные камни

Образование драгоценных камней не всегда одинаково, но давление – это одна из главных составных частей этого процесса. К примеру, алмазы образуются в мантии Земли, в условиях высокого давления и высокой температуры. Во время вулканических извержений алмазы перемещаются в верхние слои поверхности Земли благодаря магме. Некоторые алмазы попадают на Землю с метеоритов, и ученые считают, что они образовались на планетах, похожих на Землю.

Синтетические драгоценные камни

Производство синтетических драгоценных камней началось в 1950-х годах, и набирает популярность в последнее время. Некоторые покупатели предпочитают природные драгоценные камни, но искусственные камни становятся все более и более популярными, благодаря низкой цене и отсутствию проблем, связанных с добычей натуральных драгоценных камней. Так, многие покупатели выбирают синтетические драгоценные камни потому, что их добыча и продажа не связана с нарушением прав человека, детским трудом и финансированием войн и вооруженных конфликтов.

Одна из технологий выращивания алмазов в лабораторных условиях – метод выращивания кристаллов при высоком давлении и высокой температуре. В специальных устройствах углерод нагревают до 1000 °C и подвергают давлению около 5 гигапаскалей. Обычно в качестве кристалла-затравки используют маленький алмаз, а для углеродной основы применяют графит. Из него и растет новый алмаз. Это самый распространенный метод выращивания алмазов, особенно в качестве драгоценных камней, благодаря низкой себестоимости. Свойства алмазов, выращенных таким способом, такие же или лучше, чем свойства натуральных камней. Качество синтетических алмазов зависит от метода их выращивания. По сравнению с натуральными алмазами, которые чаще всего прозрачны, большинство искусственных алмазов окрашено.

Благодаря их твердости, алмазы широко используются на производстве. Помимо этого ценятся их высокая теплопроводность, оптические свойства и стойкость к щелочам и кислотам. Режущие инструменты часто покрывают алмазной пылью, которую также используют в абразивных веществах и материалах. Большая часть алмазов в производстве – искусственного происхождения из-за низкой цены и потому, что спрос на такие алмазы превышает возможности добывать их в природе.

Некоторые компании предлагают услуги по созданию мемориальных алмазов из праха усопших. Для этого после кремации прах очищается, пока не получится углерод, и затем на его основе выращивают алмаз. Изготовители рекламируют эти алмазы как память об ушедших, и их услуги пользуются популярностью, особенно в странах с большим процентом материально обеспеченных граждан, например в США и Японии.

Метод выращивания кристаллов при высоком давлении и высокой температуре

Метод выращивания кристаллов при высоком давлении и высокой температуре в основном используется для синтеза алмазов, но с недавнего времени этот метод помогает усовершенствовать натуральные алмазы или изменить их цвет. Для искусственного выращивания алмазов используют разные прессы. Самый дорогой в обслуживании и самый сложный из них – это пресс кубического типа. Он используется в основном для улучшения или изменения цвета натуральных алмазов. Алмазы растут в прессе со скоростью примерно 0,5 карата в сутки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Существуют две примерно равные друг другу единицы с таким названием:

  1. Стандартная , нормальная или физическая атмосфера (атм , atm , ата ) – в точности равна 101 325 Па или 760 . Давление, уравновешиваемое столбом ртути высотой 760 мм при 0 °C, плотность ртути 13595,1 кг/м³ и нормальное ускорение свободного падения 9,80665 м/с².
  2. Техническая атмосфера (ат , at , кг*с/см² , ати ) – равна давлению, производимому силой от массы в 1 кг при действии на неё ускорения g (т. е. 1 килограмм-сила , кгс), направленной перпендикулярно и равномерно распределённой по плоской поверхности площадью 1 см² (98 066,5 Па).

Ранее использовались также обозначения ата и ати для абсолютного и избыточного давления соответственно (выраженного в технических атмосферах). Избыточное давление могло быть и отрицательным.

Литература

  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. – Мн. : Высшая школа, 1979. – 416 с. – 30 000 экз.

Ссылки

Единицы давления
Паскаль
(Pa, Па)
Бар
(bar, бар)
Техническая атмосфера
(at, ат)
Физическая атмосфера
(atm, атм)

(мм рт.ст.,mmHg, Torr, торр)
Метр водяного столба
(м вод. ст.,m H 2 O)
Фунт-сила
на кв. дюйм
(psi)
1 Па1 / 2 10 −5 10,197·10 −6 9,8692·10 −67,5006·10 −3 1,0197·10 −4 145,04·10 −6
1 бар 10 5 1·10 6 дин /см 2 1,0197 0,98692 750,06 10,197 14,504
1 ат 98066,5 0,980665 1 кгс /см 2 0,96784 735,56 10 14,223
1 атм 101325 1,01325 1,0331 атм 760 10,33 14,696
1 мм рт. ст. 133,322 1,3332·10 −3 1,3595·10 −3 1,3158·10 −3 1 мм рт.ст. 13,595·10 −3 19,337·10 −3
1 м вод. ст. 9806,65 9,80665·10 −2 0,1 0,096784 73,556 1 м вод. ст. 1,4223
1 psi 6894,76 68,948·10 −3 70,307·10 −3 68,046·10 −3 51,715 0,70307 1 lbf/in 2

Wikimedia Foundation . 2010 .

Смотреть что такое “Атмосфера (единица измерения)” в других словарях:

    У этого термина существуют и другие значения, см. Бар (значения). Бар (греч. βάρος тяжесть) внесистемная единица измерения давления, примерно равная одной атмосфере. Один бар равен 105 Па или 106 дин/см² (в системе СГС). В прошлом… … Википедия

    У этого термина существуют и другие значения, см. Паскаль (значения). Паскаль (обозначение: Па, международное: Pa) единица измерения давления (механического напряжения) в Международной системе единиц (СИ). Паскаль равен давлению… … Википедия

    Манометр, с показаниями в psi (красная шкала) и kPa (чёрная шкала) Psi (lb.p.sq.in.) внесистемная единица измерения давления «фунт сила на квадратный дюйм» (англ. pound force per square inch, lbf/in²). В основном употребляется в США, численно… … Википедия

    – – единица измерения давления напр. в шинах. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь

    В Викисловаре есть статья «атмосфера» Атмосфера (от. греч … Википедия

    – (греч. atmosphaira, от atmos пар, и sphaira шар, сфера). 1) Газообразная оболочка, окружающая землю или другую планету. 2) умственная среда, в которой кто либо вращается. 3) единица, которою измеряется давление, испытываемое или производимое… … Словарь иностранных слов русского языка

    АТМОСФЕРА – Земли (от греч. atmos пар и sphaira шар), газовая оболочка Земли, связанная с ней силой тяжести и принимающая участие в ее суточном и годовом вращении. Атмосфера. Схема строения атмосферы Земли (по Рябчикову). Масса А. ок. 5,15 10 8 кг.… … Экологический словарь

    атмосфера – (неправильно атмосфера; встречается в профессиональной речи в знач. «единица измерения давления») … Словарь трудностей произношения и ударения в современном русском языке

    – (Atmosphere) 1. Воздушная оболочка земного шара, в которой совершается непрерывная смена разнообразных процессов и явлений. 2. Единица измерения давления, равная среднему атмосферному давлению на уровне моря, т. е. давлению ртутного столба… … Морской словарь

    Ы; ж. [греч. atmos дыхание и sphaira шар]. 1. Газообразная оболочка небесных тел, движущаяся с ними как единое целое. А. Земли, Венеры. // Об околоземном воздушном пространстве. Загрязнять атмосферу. Космический корабль вошёл в плотные слои… … Энциклопедический словарь

На дне океана, где давление воды достигает 100 мегапаскаль, обитают глубоководные рыбы. Организм этих живых существ с незапамятных пор адаптирован к экстремальным условиям жизни. Воздействует ли воздух на сушу подобно воде на дно просторов морских? В чем проявляется, как может измеряться его воздействие? А 1 бар сколько атмосфер составляет?

Ртуть, вода, вино…

Земля окружена слоем воздуха, состоящим из смеси газов. Этот воздушный слой именуется атмосферой. Находящиеся на Земле объекты подвержены атмосферному влиянию.

Э. Торичелли (1608 — 1647 гг.) первым придумал метод его измерения.

Спустя 3 года после того, как был сделан ртутный барометр, великий Б. Паскаль сконструировал водяной барометр. Учёный повторил опыт, заменив ртуть водой. Но этого ему показалось мало. Он продолжал опыты с маслом, вином и… кто знает, сколько жидкостей утекло за время исследований!

Есть множество единиц измерения давления:

  • Па – паскаль (и его производные: МПа (мегапаскаль), кПа (килопаскаль)
  • атмосфера
  • миллиметры ртутного столба
  • дюймы ртутного столба
  • миллиметры водного столба
  • дюймы водного столба
  • килограмм cилы на см 2 (кГс/см 2)
  • метры водного столба

Соотношение между разными единицами измерения

Воспользовавшись таблицей, можно сравнить различные значения и выяснить, как 1 бар будет измеряться в атмосферах, либо узнать 1 кгс/см 2 сколько кПа.

Мгновенно перевести единицы измерения давления и выразить атмосферы в мм рт. ст. можно по ссылке .

В перечне указаны наиболее часто встречаемые переходы:

  • бар = 100 кПа
  • бар = 1 техн. атм (at)
  • bar = 750 мм рт. столба
  • bar = 0,1 МПа
  • bar = 1,0197 кГс/см 2

Бар – это одна из величин, которыми может измеряться давление. Ничего общего с баррелем, то есть единицей объема нефти, она не имеет. Разве только три первые звучные буквы их объединяют.

Сопоставим величины:

  • 1 па = 0,00001 бар
  • килопаскаль = 0,01 бар
  • паскаль = 9,869210 -6 атм
  • kpa = 9,869210 -3 atm
  • мегапаскаль = 9,8692 атм
  • килограммсилы/ см 2 = 0,98 бар
  • атм = 101325 Па

Пояснение: at – техническая атмосфера, atm – физическая. Физическая атмосфера характеризуется воздействием газа в 760 мм рт.ст. и температурой 0 0 С. Термин «техническая атмосфера» уместен при нормальных технических условиях, характеризуемых давлением 735,6 мм рт. ст. при t=15 0 C.

Если же нужно перевести бары в атмосферы, смело кликайте сюда – безо всяких заморочек, все предельно ясно.

Подытожим

Нужно сказать несколько слов об «иностранцах» в нашей таблице – измерениях «psi» и «psf».

Pounds scuare feet (psf) – это фунты на квадратный фут; ими, так же как и «psi» (pounds scuare inches) – фунтами на квадратный дюйм, может измеряться давление при описании в англоязычных источниках. Так, к примеру, один кгс/ см2 примерно равен 14 psi.

А на этом видео конкретным примером доступно проиллюстрировано, как перевести одну единицу в иную в рамках системы СИ:

Углубившись в тему, вскоре вы научитесь сами переводить не только МПа в килограмм с/см 2 , но и совершать обратный перевод, т.е. обращать килограмм с/см 2 в МПа.

Воздух, окружающий Землю, имеет массу, и несмотря на то, что масса атмосферы примерно в миллион раз меньше массы Земли (общая масса атмосферы равна 5,2*10 21 г, а 1 м 3 воздуха у земной поверхности весит 1,033 кг), эта масса воздуха оказывает давление на все объекты, находящиеся на земной поверхности. Сила, с которой воздух давит на земную поверхность, называется атмосферным давлением.

На каждого из нас давит столб воздуха в 15 т. Такое давление способно раздавить все живое. Почему же мы его не ощущаем? Объясняется это тем, что давление внутри нашего организма равно атмосферному.

Таким образом, внутреннее и внешнее давление уравновешиваются.

Барометр

Атмосферное давление измеряется в миллиметрах ртутного столба (мм рт. ст.). Для его определения пользуются специальным прибором — барометром (от греч. baros — тяжесть, вес и metreo — измеряю). Существуют ртутные и безжидкостные барометры.

Безжидкостные барометры получили название барометры-анероиды (от греч. а — отрицательная частица, nerys — вода, т. е. действующий без помощи жидкости) (рис. 1).

Рис. 1. Барометр-анероид: 1 — металлическая коробочка; 2 — пружина; 3 — передаточный механизм; 4 — стрелка-указатель; 5 — шкала

Нормальное атмосферное давление

За нормальное атмосферное давление условно принято давление воздуха на уровне моря на широте 45° и при температуре 0 °С. В этом случае атмосфера давит на каждый 1 см 2 земной поверхности с силой 1,033 кг, а масса этого воздуха уравновешивается ртутным столбиком высотой 760 мм.

Опыт Торричелли

Величина 760 мм была впервые получена в 1644 г. Эванджелистом Торричелли (1608-1647) и Винченцо Вивиани (1622-1703) — учениками гениального итальянского ученого Галилео Галилея.

Э. Торричелли запаял с одного конца длинную стеклянную трубку с делениями, наполнил ртутью и опустил в чашку с ртутью (так был изобретен первый ртутный барометр, который получил название трубки Торричелли). Уровень ртути в трубке понизился, так как часть ртути вылилась в чашку и установилась на уровне 760 миллиметров. Над столбиком ртути образовалась пустота, которая получила название Торричеллиевой пустоты (рис. 2).

Э. Торричелли полагал, что давление атмосферы на поверхность ртути в чашке уравновешивается весом столба ртути в трубке. Высота этого столба над уровнем моря — 760 мм рт. ст.

Рис. 2. Опыт Торричелли

1 Па = 10 -5 бар; 1 бар = 0,98 атм.

Повышенное и пониженное атмосферное давление

Давление воздуха на нашей планете может изменяться в широких пределах. Если давление воздуха больше 760 мм рт. ст., то оно считается повышенным, меньше — пониженным.

Так как с подъемом вверх воздух становится все более разреженным, атмосферное давление понижается (в тропосфере в среднем 1 мм на каждые 10,5 м подъема). Поэтому для территорий, расположенных на разной высоте над уровнем моря, средним будет свое значение атмосферного давления. Например, Москва лежит на высоте 120 м над уровнем моря, поэтому среднее атмосферное давление для нее — 748 мм рт. ст.

Атмосферное давление в течение суток дважды повышается (утром и вечером) и дважды понижается (после полудня и после полуночи). Эти изменения связаны с изменением и перемещением воздуха. В течение года на материках максимальное давление наблюдается зимой, когда воздух переохлажден и уплотнен, а минимальное — летом.

Распределение атмосферного давления по земной поверхности носит ярко выраженный зональный характер. Это обусловлено неравномерным нагреванием земной поверхности, а следовательно, и изменением давления.

На земном шаре выделяются три пояса с преобладанием низкого атмосферного давления (минимумы) и четыре пояса с преобладанием высокого (максимумы).

В экваториальных широтах поверхность Земли сильно прогревается. Нагретый воздух расширяется, становится легче и поэтому поднимается вверх. В результате у земной поверхности близ экватора устанавливается низкое атмосферное давление.

У полюсов под воздействием низкой температуры воздух становится более тяжелым и опускается. Поэтому у полюсов атмосферное давление, повышенное по сравнению с широтами на 60-65°.

В высоких слоях атмосферы, наоборот, над жаркими областями давление высокое (хотя и ниже, чем у поверхности Земли), а над холодными — низкое.

Общая схема распределения атмосферного давления такова (рис. 3): вдоль экватора расположен пояс низкого давления; на 30-40° широты обоих полушарий — пояса высокого давления; 60-70° широты — зоны низкого давления; в приполярных районах — области высокого давления.

В результате того, что в умеренных широтах Северного полушария зимой атмосферное давление над материками сильно повышается, пояс низкого давления прерывается. Он сохраняется только над океанами в виде замкнутых областей пониженного давления — Исландского и Алеутского минимумов. Над материками, наоборот, образуются зимние максимумы: Азиатский и Северо-Американский.

Рис. 3. Общая схема распределения атмосферного давления

Летом в умеренных широтах Северного полушария пояс пониженного атмосферного давления восстанавливается. Огромная область пониженного атмосферного давления с центром в тропических широтах — Азиатский минимум — формируется над Азией.

В тропических широтах материки всегда нагреты сильнее, чем океаны, и давление над ними ниже. Таким образом, над океанами в течение всего года существуют максимумы: Северо-Атлантический (Азорский), Северо-Тихоокеанский, Южно-Атлантический, Южно-Тихоокеанский и Южно-Индийский.

Линии, которые на климатической карте соединяют пункты с одинаковым атмосферным давлением, называются изобарами (от греч. isos — равный и baros — тяжесть, вес).

Чем ближе изобары друг к другу, тем быстрее изменяется атмосферное давлении на расстоянии. Величина изменения атмосферного давления на единицу расстояния (100 км) называется барическим градиентом .

На образование поясов атмосферного давления у земной поверхности влияют неравномерное распределение солнечного тепла и вращение Земли. В зависимости от времени года оба полушария Земли нагреваются Солнцем по-разному. Это обусловливает некоторое перемещение поясов атмосферного давления: летом — к северу, зимой — к югу.

Основные физические свойства воздуха: плотность, давление и температура.

Плотность есть отношение массы вещества к его объему. Так, 1 м 3 воды при температуре 4 °С имеет массу 1 т, а 1 м 3 сухого воздуха при 0 °С и нормальном давлении (760 мм рт. ст.) имеет массу 1,293 кг. Следовательно, при указанных условиях плотность воды составляет 1000 кг/м 3 , а плотность воздуха 1,293 кг/м 3 . Таким образом, плотность воздуха при этих условиях примерно в 800 раз меньше плотности воды.

Плотность атмосферы быстро уменьшается с высотой. Половина всей массы атмосферы сосредоточена в слое до высоты 5,5 км. На высоте 300 км плотность её уже в 4-Ю 10 раз меньше, чем на уровне моря. С дальнейшим увеличением высоты разреженность газов продолжает увеличиваться и без четко выраженной верхней границы атмосфера постепенно переходит в межпланетное пространство.

Давление атмосферы это сила, с которой давит на единицу земной поверхности столб воздуха, простирающийся от поверхности земли до верхней границы атмосферы. Атмосферное давление можно измерить по высоте ртутного столба в стеклянной трубке, у которой один конец запаян, а другой погружен в чашку со ртутью. Воздух из трубки удален. Давление атмосферы удерживает столб ртути в трубке на определенной высоте. На уровне моря высота ртутного столба в трубке в среднем составляет 760 мм. Если площадь поперечного сечения трубки равна 1 см 2 , то объем ртути в трубке соответственно равен 76 см 3 . Плотность ртути равна 13,6 г/см 3 . Поэтому масса ртутного столба составит примерно 76-13,6-1,0336 кг. Следовательно, атмосферное давление уравновешивает столб ртути сечением 1 см 2 и массой около 1,033 кг. Это означает, что атмосферное давление на уровне моря обычно составляет около 1,033 кг/см 2 .

Атмосферное давление долгое время выражали в миллиметрах (мм) ртутного столба, т.е. линейной мерой измеряли силу, что было неудобно при решении многих задач. Чтобы измерять давление в единицах силы, в 1930 г. была установлена новая международная единица давления – бар (от древнегреческого барос – тяжесть), равная давлению 1 млн. дин на площадь 1 см 2 , что соответствует 750,1 мм рт. ст. В практике до последнего времени в качестве единицы давления использовалась 1 /1000 доля бара – миллибар.

С 1980 г. в качестве международной единицы для измерения атмосферного давления принят паскаль (Па):

1 Па = 10 дин/см 2 = 10 -5 бар.

Для практических целей используют гектопаскаль (гПа):

1 гПа=100 Па.

Поскольку до сих пор шкала приборов для измерения давления, градуирована в миллиметрах или миллибарах, то надо знать их соотношение:

1 гПа=1 мбар=0,75

В настоящее время для измерения влажности воздуха применяются психрометрический и сорбционный методы.

Психрометрический метод

Название этого метода произошло от греческого слова психрос (охлаждение, холод) и говорит о том, что измерение влажности воздуха основано на охлаждении одного из термометров. По этому методу работают основные приборы для определения влажности воздуха – станционный и аспирационный психрометры.

Станционный психрометр состоит из двух одинаковых психрометрических термометров. Термометр, установленный в психрометрической будке слева, называется «сухим» и показывает температуру воздуха. Термометр, установленный справа, называется «смоченным», так как его резервуар непрерывно смачивается дистиллированной водой. Вода находится в специальном стаканчике и подается к резервуару при помощи полоски батиста, один конец которой оборачивает резервуар смоченного термометра, а другой опущен в стаканчик и тянет воду как фитиль.

Поверхность резервуара смоченного термометра является испаряющей. Чем суше воздух, тем быстрее испаряется вода с резервуара смоченного термометра и тем ниже его температура. Следовательно, чем меньше влажность воздуха, тем больше разность показаний сухого и смоченного термометров.

По температуре воздуха и показаниям смоченного термометра с помощью специальных «Психрометрических таблиц» определяют упругость пара е , относительную влажность f дефицит упругости d и точку росы t d .

Аспирационный психрометр (рис. 1) по принципу действия не отличается от станционного психрометра. Основными его частями также являются два одинаковых термометра (сухой и смоченный), отличающиеся от термометров станционного психрометра меньшими размерами я цилиндрической формой резервуаров. Главная особенность конструкции этого психрометра – наличие аспиратора, обеспечивающего обдувание резервуаров термометров потоком воздуха с постоянной скоростью 2 м/с.

У станционного же психрометра скорость обдувания термометров непостоянна, она зависит от; скорости ветра за пределами будки, что влияет на точность измерения влажности воздуха.

Аспирационный психрометр является одним из наиболее точных метеорологических приборов. Резервуары его термометров надежно защищены от лучей солнца, i испарение со смоченного термометра происходит при постоянной скорости ветра, результаты измерений легко определяются по «Психрометрическим таблицам». Он имеет небольшую массу (600 г.), удобен при переносе и широко применяется при полевых работах.

При измерении температуры и влажности воздуха в посеве аспирационный психрометр устанавливается в нем горизонтально на изучаемом уровне. Отверстия защитных трубок психрометра должны быть ориентированы в сторону от Солнца. Смачивание батиста смоченного термометра необходимо производить только при вертикальном положении психрометра, чтобы вода из пипетки не попала в защитные трубки.

Сорбционный метод

Этот метод основан на использовании свойства гигроскопических тел реагировать на изменение влажности воздуха. На упомянутом свойстве основано действие гигрометров.

Волосной гигрометр служит для измерения относительной влажности воздуха. Действие прибора основано на свойстве обезжиренного человеческого волоса изменять длину в зависимости от относительной влажности. Изменение длины волоса передается на стрелку, указывающую относительную влажность на шкале, градуированной от 0 до 100%.

Чувствительность гигрометра со временем изменяется, поэтому его показания необходимо сверять с относительной влажностью, найденной по психрометру. В зимнее время “наблюдения по психрометру при температуре ниже -10° С не производятся и для измерения влажности воздуха применяется только гигрометр. Поэтому до наступления морозов в течение одного месяца показания гигрометра сравниваются с показаниями психрометра и наносятся на график, который будет служить для перевода показаний гигрометра в показания психрометра. Для этого на специальном бланке ТМ-9 или на миллиметровой бумаге на вертикальной оси откладывают относительную влажность по психрометру, а на горизонтальной оси – показания гигрометра. Значения относительной влажности по психрометру и гигрометру, измеренные одновременно, отмечают на графике точкой, лежащей на пересечении линий, соответствующих этим значениям. Когда все точки нанесены, они образуют (если гигрометр исправлен) сравнительно узкую полосу, расположенную под утлом около 45° к осям координат. Посередине этой полосы проводят линию, по которой и переводят показания гигрометра в значения относительной влажности.

Гигрограф – прибор для непрерывной записи относительной влажности. Приемной частью прибора является пучок обезжиренных человеческих волос. В остальном устройство прибора почти аналогично термографу.

Вес воздуха. Атмосферное давление | 7 класс Онлайн

Конспект по физике для 7 класса «Вес воздуха. Атмосферное давление». ВЫ УЗНАЕТЕ: Как определить плотность и вес воздуха. Что такое атмосферное давление. Что такое атмосфера Земли. Каков состав и строение атмосферы. ВСПОМНИТЕ: 

Конспекты по физике    Учебник физики    Тесты по физике


Воздушная оболочка, окружающая Землю, называется атмосферой (от греч. atmos пар и spharia – шар). Атмосфера –это смесь различных газов, т. е. она состоит из молекул, которые обладают массой. На каждую из них действует сила тяжести, следовательно, атмосфера имеет вес. поэтому она оказывает давление на поверхность Земли и на все тела на Земле. Это давление называют атмосферным давлением.

Молекулы газов, составляющих атмосферу, находятся в непрерывном и беспорядочном движении. При этом на них действует сила тяжести. Именно эти две причины не позволяют молекулам воздуха ни упасть на поверхность Земли, ни улететь в межпланетное пространство.

ОПРЕДЕЛЕНИЕ ВЕСА ВОЗДУХА

Для определения веса воздуха необходимо знать его массу. Рассмотрим опыт, который, во–первых, наглядно продемонстрирует, что воздух обладает массой, во–вторых, поможет её определить.

Для проведения данного опыта необходимы чувствительные весы и колба, из которой при помощи насоса выкачан воздух.

Проведём два взвешивания. При первом определяется вес колбы без воздуха. Второе взвешивание проводится после того, как в колбу впускается воздух. Оказывается, что колба с воздухом весит больше.

Приведённое в таблицах физических величин значение массы воздуха объёмом 1 м3 при температуре 0°С равно 1,29 кг. Это значение получено путем тщательных измерений. Вычислим вес этого воздуха:

Р = mg = 9,8 Н/кг * 1,29 кг ≈ 13 Н.

Зная массу заданного объёма воздуха, можно вычислить и плотность воздуха.

АТМОСФЕРНОЕ ДАВЛЕНИЕ

Как показали наблюдения из космоса, атмосфера простирается на высоту более чем 1500 км от поверхности Земли. Масса всей атмосферы составляет около 5*1018 кг, а это одна миллионная часть массы Земли. Постепенно атмосфера переходит в безвоздушное пространство, но чёткой границы атмосферы не существует.

Под действием силы тяжести верхние слои воздуха атмосферы оказывают давление на её нижние слои. Воздушный слой, прилегающий непосредственно к Земле, согласно закону Паскаля передаст производимое на него давление вышележащих слоёв по всем направлениям. В результате этого земная поверхность и тела, находящиеся на ней, испытывают давление всей толщи воздуха. Значит, чем ближе к поверхности Земли, тем больше атмосферное давление. Из–за быстрого убывания плотности атмосферы почти вся её масса содержится в нижних слоях — тропосфере и стратосфере.

С увеличением высоты изменяется не только атмосферное давление, но и плотность воздуха. По результатам измерений на высоте около 5,5 км плотность воздуха уже в 2 раза меньше, чем у поверхности Земли.

ПОЧЕМУ МЫ НЕ ОЩУЩАЕМ АТМОСФЕРНОГО ДАВЛЕНИЯ?

Для ответа на этот вопрос рассмотрим опыт. Возьмем стеклянную банку и затянем её горлышко тонкой резиновой плёнкой. На плёнку снаружи действует сила, обусловленная атмосферным давлением воздуха, однако плёнка совершенно не прогибается. Дело в том, что давление воздуха внутри банки равно атмосферному, поэтому на внутреннюю поверхность плёнки действует такая же сила, что и на наружную. Силы уравновешены, и плёнка остаётся неизогнутой, как если бы на неё не действовали никакие силы.

Если откачать часть воздуха из банки, уменьшив этим его давление, то плёнка прогибается внутрь банки. Если, наоборот, накачать в банку воздух, то плёнка выгибается наружу. Плёнка прогибается настолько, что возникшие в ней упругие силы вместе с силой давления воздуха в банке уравновешивают силу давления внешнего воздуха.

Ткани, кровеносные сосуды и стенки других полостей тела подвергаются наружному давлению атмосферы, но кровь и другие жидкости и газы, заполняющие эти полости, сжаты до такого же давления. Поэтому большинство тканей в нашем организме, испытывая одинаковое давление изнутри и снаружи, не деформируются и атмосферное давление не ощущается.

ВЛИЯНИЕ АТМОСФЕРНОГО ДАВЛЕНИЯ НА ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

Существование атмосферного давления является причиной многих явлений, которые мы встречаем в жизни.

Рассмотрим такой пример. В сосуд с водой опустим стеклянную трубку с поршнем. Если поднимать поршень, то за ним будет подниматься и вода. Почему это происходит? При подъёме поршня между ним и водой образуется безвоздушное пространство. В это пространство под давлением наружного воздуха и поднимается вслед за поршнем вода.

В результате действия атмосферного давления вода поднимается по соломинке, когда мы с сё помощью пьем воду.

Если стеклянную трубку опустить в воду, а потом её верхний конец закрыть пальцем, то при вытаскивании трубки из воды в ней остается столбик воды. Почему это происходит? При опускании конца трубки в воду часть её заполняется водой по принципу сообщающихся сосудов. Когда мы закрываем открытый конец трубки пальцем и вытаскиваем её из воды, часть воды выливается из трубки. При этом давление воздуха в трубке становится чуть меньше атмосферного (на значение гидростатического давления оставшегося столбика воды). Снизу же на столбик воды действует давление воздуха, равное атмосферному. Именно поэтому вода из трубки не вытекает.


Вы смотрели Конспект по физике для 7 класса «Вес воздуха. Атмосферное давление»: Как определить плотность и вес воздуха. Что такое атмосферное давление. Что такое атмосфера Земли. Каков состав и строение атмосферы.

Вернуться к Списку конспектов по физике (В оглавление).

Пройти онлайн-тест «»

Давление – Гиперучебник по физике

[закрыть]

определение

Давление – отношение силы, приложенной к покрытой площади…

P  =  F
A
90 90 Пакал 30 90 90 Пакал


Па = Н  =  кг м/с 2  =  кг

м 2 м 2 м с 2

Паскаль также является единицей ударения, и темы давления и ударения связаны между собой.

  • Основание из гвоздей (на самом деле не давление, а деформация сдвига, которая имеет те же единицы измерения)
  • Кости пальцев плоские на стороне захвата, что увеличивает площадь контакта и, таким образом, снижает сжимающие напряжения

манометр по сравнению с абсолютным

подпружиненный манометр

Избранное манометрическое давление (черный — положительный, красный — отрицательный)
атм кПа устройство, событие, явление, процесс
200 20 000 дыхательный аппарат под давлением
140 14 000 гомогенизация молока
110 11 000 Прочность на сжатие позвоночных дисков при разрыве
7–14 700–1400 производство воздушных хлопьев
9 900 эспрессо-машина
4–7 400–700 велосипедная шина
>4 >400 отравление кислородом и азотный наркоз при погружениях > 30 м
2,7–4,1 275–415 шампанское при температуре подачи (10 °C)
2,7 275 безалкогольные газированные напитки
2,0–2,5 200–250 автомобильная шина
>4 >400 взрывная волна, 100% летальность
2,3–4,0 230–400 взрывная волна, летальность 50%
1,6–2,3 160–230 взрывная волна, летальность 1%
1,02 103 типичная бытовая скороварка
1 101. 325 одна стандартная атмосфера над окружающей средой
  47 нижняя часть стопы стоя
  20 легкие, экстремальный выдох
  17 длительное давление, разрыв барабанной перепонки
  8 продолжительное давление, барабанная перепонка ощущает боль
  13–19 Артериальное давление, артериальное, систолическое (во время сердцебиения)
  8–12 артериальное давление, артериальное, диастолическое (между ударами сердца)
  7–14 авиационная ударная волна
  8,8 сморкаться
  11 глаз, тяжелая форма глаукомы
  1,6–3,0 глаз, нормальный
  7 теннисный мяч
  4,0 кровяное давление, капилляры, артериальные окончания
  1,3 кровяное давление, капилляры, венозный конец
  15 мочевой пузырь, мочеиспускание, максимум
  3 мочевой пузырь, рефлекс мочеиспускания (нужен позыв)
  2–4 мочевой пузырь, мочеиспускание, поддерживающий
  1,3–2,6 желудочно-кишечный тракт
  0,6–1,6 спинномозговая жидкость
  0,4–0,9 кровяное давление, венозное
  0,6–0,8 интерстициальная жидкость (осмотическое давление)
  2 акустическое давление, разрыв барабанной перепонки (160 дБ)
  0,02 акустическое давление, ощущение боли барабанной перепонкой (120 дБ)
  2 × 10 −8 акустическое давление, порог слышимости (0 дБ)
0 0 давление окружающей среды
  −1,3 легкие в покое
  −1,5 легкие, питье через соломинку 15 см
  −25 легкие, экстремальный вдох
−1 −101,325 на одну стандартную атмосферу ниже температуры окружающей среды, идеальный вакуум в стандартной атмосфере
Выбранные значения абсолютного давления (от наибольшего к наименьшему)
атм Па устройство, событие, явление, процесс
3,4 × 10 11 3,4 × 10 16 центр Солнца
???? ???? центр Юпитера
10 10 10 15 алмазная наковальня, рекордно высокая
3,6 × 10 6 3,6 × 10 11 центр Земли
1080 1,1 × 10 8 Марианская впадина, Тихий океан (−10 924 м)
160 1,6 × 10 7 Озеро Байкал, Азия (−1620 м)
140 1,4 × 10 7 Озеро Танганьика, Африка (−1470 м)
90 9,0 × 10 6 поверхность Венеры
40 4,0 × 10 6 Озеро Верхнее, Северная Америка (−406 м)
???? ???? рекордное погружение человека
26 2,6 × 10 6 гелий замерзает при температуре около 1 К
>3 >300 000 отравление кислородом и азотный наркоз при погружениях > 30 м
  108 380 Атмосфера Земли, рекордно высокая, с поправкой на высоту (Сибирь, 1968)
  106 000 Атмосфера Земли, Мертвое море (−400 м)
1 101 325 Атмосфера Земли, уровень моря, стандартная атмосфера
  90 000 Земная атмосфера на высоте 1000 м, внутренняя часть Concorde
  87 000 Земная атмосфера, рекордно низкая, с поправкой на высоту (наконечник тайфуна, 1979)
  80 000 Земная атмосфера на высоте 2000 м, салон коммерческого реактивного самолета
  65 000 Земная атмосфера, Ла-Пас, Боливия (3650 м)
53 000 Земная атмосфера, самый высокий постоянно населенный пункт (5100 м)
  ~40 000~ Атмосфера Земли, вертикальный предел живучести человека (~7000 м)
~⅓ 31 000 Земная атмосфера, гора Эверест (8848 м)
~⅕ 19 000 Атмосфера Земли, высота коммерческого реактивного самолета (12 000 м)
0,063 6400 Земная атмосфера, предел Армстронга, открытые жидкости тела кипятят (19 000 м)
>0,033 >3300> низкий вакуум (LV)
<0,033 <3300< средний вакуум (МВ)
0,025 2200 Атмосфера Земли, высота полета самолета-разведчика (26000 м)
0,007 700 поверхность Марса
0,002 230 Атмосфера Земли, высота наибольшего прыжка с парашютом (41 422 м)
0,0006 60 Атмосфера Земли, высота наибольшего полета беспилотного аэростата (52 000 м)
~10 −5 ~1 поверхность Плутона, максимум
<10 −6 <0,1 высокий вакуум (ВВ)
<10 −9 <0,0001 очень высокий вакуум (VHV)
<10 −12 <10 −7 сверхвысокий вакуум (СВВ)
~10 −13 ~10 −8 поверхность Луны, дневное время
~10 −15 ~10 −10 поверхность Луны, ночь
<10 −15 <10 −10 сверхвысокий вакуум (XHV)
~10 −17 ~10 −12 Мне сказали, что ниже этого значения все вакуумное оборудование негерметично.

атмосфера

Стандартные атмосферные таблицы

Химический состав атмосферы Источник: Стандартная атмосфера США, 1976 г.
газ формула молекулярная
масса (г/моль)
дробь
азот Н 2 028.0134000 0,780840000
кислород О 2 031.9988000 0,209476000
аргон Ар 039.9480000 0,009340000
двуокись углерода СО 2 044.0099500 0,000314000
неон Не 020.1830000 0,000018180
гелий Он 004.0026000 0,000005240
метан СН 4 016. 0430300 0,000002000
криптон Кр 083.8000000 0,000001140
водород Н 2 002.0159400 0,000000500
ксенон Хе 131.3000000 0,000000087
общий 028,9644253 0,999997147

жидкости

Манометрическое давление в однородной жидкости на определенной глубине прямо пропорционально…

  • плотность жидкости (ρ). Чем плотнее жидкость, тем больше давление.
  • ускорение свободного падения ( g ). Чем сильнее гравитация, тем больше давление.
  • глубина ( ч ). Чем глубже вы идете, тем больше давление.

Сочетание этих факторов дает манометрическое давление ( P g ) на любой глубине…

P г  = ρ gh

Добавление поверхностного давления ( P 0 ) дает абсолютное давление…

P  =  P 0  + ρ gh

Абсолютное давление в однородной или неоднородной жидкости на определенной глубине ( h ), измеренное вдоль вертикальной оси ( z ), определяется как…

h  
P  =  P 0  + 
ρ( z ) g ( z dz
0  

Давление в однородной жидкости — закон Стевина. Саймон Стевин (1548–1620) открыл гидростатический парадокс, согласно которому нисходящее давление жидкости не зависит от формы сосуда и зависит только от его высоты. Стевин, вероятно, был первым, кто работал с концепцией давления, живя полностью до Паскаля или Бернулли. Фламандское слово Стевина для обозначения давления было существительным 9.1054 gheprang от глагола pranghen , давить ( gheprang и prangen в современном написании). Нынешнее голландское слово для давления — druk , а глагол нажимать — drukken .

устройств

барометр

барометр, манометр, аппарат Зайца

Атмосфера как единое целое.

1 атм  = 101 325 Па (по определению)
   = 760 торр (по определению)
   = 763,43… мм рт.ст. (приблизительно)
   = 1,03… кг/см 2 (приблизительно)
   = 10,3… тонн/м 2 (приблизительно)
   = 14,7… фунтов на квадратный дюйм (приблизительно)
   = 1,06… тонн/фут 2 (приблизительно)

физиология

артериальное давление

ушное давление в среднем ухе: барабанная перепонка на конце наружного уха соединена с меньшим овальным окном в начале внутреннего уха. в 15-30 раз большее давление. сочетание разницы диаметров мембран и рычажных эффектов косточек среднего уха.

глазное давление и глаукома

Циркуляционное давление (мм рт. ст., также известное как торр) Источник: Физика тела (платная ссылка)
адрес систолическое диастолический означает
аорта 120 80 100
левый желудочек 120 8
левое предсердие 7 10 4
легочная артерия 15 7 12
правый желудочек 15 2
правое предсердие 4 4 0
клин легочный капилляр 7 10 4

принцип Паскаля

  • Принцип Паскаля : Изменения давления, воздействующие на поверхность замкнутой жидкости, равномерно передаются по всей жидкости.
  • Вода ищет свой уровень. Это одна из реалий жизни.
  • гидравлика
  • Маневр Кеккенштедта – варварский медицинский тест начала 20 века для проверки стеноза позвоночника

Давление – Энергетическое образование

Энергетическое образование

Меню навигации

ИСТОЧНИКИ ЭНЕРГИИ

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

ИНДЕКС

Поиск

Давление — важное понятие в физике, определяемое как величина силы, действующей перпендикулярно поверхности на единицу площади. Единицей давления в СИ является паскаль (Па), определяемый как 1 ньютон на квадратный метр. [1]

[математика]P=\frac{F}{A}[/math], куда

  • Р – давление
  • F — сила, приложенная перпендикулярно (нормально) к поверхности, а
  • А — площадь приложенной силы.

Простой способ понять давление — представить, что вы держите кнопку и слегка нажимаете на нее между указательным и большим пальцами, при этом острый конец на большом пальце, а головка на указательном. Большой палец сразу начнет чувствовать боль, а указательный нет. Прихватка оказывает одинаковое усилие на большой и указательный пальцы, но давление на большой палец намного больше из-за небольшой площади, на которую воздействует сила. [1]

Давление играет важную роль во многих физических приложениях; это ключевое понятие гидромеханики, используемое в законе идеального газа для описания энергии газа и во многих других ситуациях.

Давление жидкости

Рис. 1: Уменьшение площади поперечного сечения увеличивает силу в этих частях, что увеличивает скорость жидкости (v 2 быстрее). [2]

В гидромеханике давление может создавать множество полезных устройств в различных ситуациях. В сантехнике разные площади поперечного сечения труб создают более высокие скорости в разных местах, где меньшие площади приводят к более высоким скоростям (см. Рисунок 1). Это контролирует, как жидкости текут в реках и шлангах.

Давление в жидкостях без чистого движения, таких как океан или атмосфера, во многом определяет то, что происходит с жидкостями. Атмосфера представляет собой сжимаемую жидкость (меняет объем при нажатии), состоящую из множества различных газов, поэтому в зависимости от того, где находится человек на Земле, на него будет действовать давление (давление на уровне моря определяется как 1 атм).

Для несжимаемых жидкостей, таких как вода, соотношение [math]P=\rho gh[/math] дает давление под столбом жидкости, где [math]\rho[/math] — плотность жидкости, [math]h[/math] — высота, а [math]g[/math] — ускорение свободного падения. Такие приборы, как ртутный барометр (см. рис. 2), можно использовать для определения атмосферного давления. [3]

Рис. 2: Ртутный барометр, измеряющий атмосферное давление. [4]

Дополнительную информацию о статическом давлении жидкости см. в гиперфизике.

Давление газа

Рисунок 3: Формирование ветра из-за разницы давлений. [5]

Давление определяется потоком массы из области высокого давления в область низкого давления, и это наиболее заметно для газов.

Например, воздушный шар, наполненный воздухом, расширяется, потому что давление внутри воздушного шара увеличивается до более высокого давления, чем снаружи. Поскольку давление является свойством, которое определяет, в каком направлении движется масса, как только воздушный шар освобождается, воздух перемещается из области высокого давления в область низкого давления, и воздушный шар сдувается. [6]

Эта тенденция давления перетекать из областей высокого давления в области низкого давления является движущей силой ветра на Земле. Из-за неравномерного нагрева Земли разные области находятся под более высоким давлением, чем другие, поэтому это вызывает движение воздуха в атмосфере (показано на рисунке 3). Большинство погодных явлений, от ураганов до торнадо, являются результатом давления и температуры, а также подвержены влиянию вращения Земли (см. Эффект Кориолиса).

См. также абсолютное давление, манометрическое давление и давление в шинах для получения дополнительной информации о связи давления с энергией. Посетите гиперфизику для получения дополнительной информации о давлении.

Моделирование PhET

Моделирование PhET, предоставленное Университетом Колорадо, исследует, как давление изменяется в зависимости от плотности жидкости, глубины, гравитации и атмосферных условий. Перетащите манометр, чтобы измерить давление на разных глубинах и в разных местах.

Для дополнительной информации

  • Абсолютное давление
  • Манометрическое давление
  • Давление в шинах
  • Сила
  • Жидкость
  • Случайная страница

Ссылки

  1. 1.0 1.1 Р. Серуэй и Дж. Джуэтт, «Давление», в Физика для ученых и инженеров , 8-е изд. , Белмонт, Калифорния: Cengage Learning, 2010, ch.14, sec. 1, стр. 403
  2. ↑ A Plus Physics, Continuity for Fluids [онлайн], доступно: http://www.aplusphysics.com/courses/honors/fluids/continuity.html
  3. ↑ Гиперфизика, Mercury Barometer [Online], доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/pman.html#bar
  4. ↑ Гиперфизика, Mercury Barometer [Online], доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/pman.html#c4
  5. ↑ М. Подвирный. (2013, 4 ноября). «Силы, действующие для создания ветра» в «Основы физической географии», 2-е изд. [Онлайн]. Доступно: http://www.physicalgeography.net/fundamentals/7n.html
  6. ↑ UC Davis Chem Wiki, Gas Pressure [Online], доступно: http://chemwiki.ucdavis.edu/Physical_Chemistry/Physical_Properties_of_Matter/Phases_of_Matter/Gases/Gas_Pressure

Давление: значение, расчет и формула

Вы когда-нибудь задумывались, почему острым краем ножа можно легко разрезать фрукт, тогда как тупым лезвием потребовалось бы гораздо больше усилий? Это явление можно объяснить, поняв понятие давления. В этом случае информации о величине силы, действующей на нож, недостаточно, чтобы понять, легко ли резать фрукт или нет. Нам нужна еще одна мера, которая количественно определяет, какая сила воздействует на конкретную область. В конце этой статьи вы узнаете, что такое давление, узнаете, как использовать уравнение давления, и поработаете над несколькими примерами, чтобы понять важность давления в нашей повседневной жизни.

Определение давления

Прежде чем мы введем формулу для давления и рассмотрим некоторые рабочие примеры, давайте сначала определим, что мы подразумеваем под давлением в физике.

Давление определяется как сила, действующая на единицу площади поверхности.

Количество силы, прилагаемой ножом, недостаточно для того, чтобы узнать, сможем ли мы разрезать фрукт. Давление учитывает, насколько сосредоточена сила в определенной области.

Формула давления

Так как же рассчитать концентрацию силы в данной области? Просто мы знаем, что давление есть не что иное, как сила, действующая на единицу площади, что в математическом выражении дает

или словами

Давление выражается в Паскалях (), сила в, а площадь измеряется в штук .

Эти ножи имеют разную площадь контакта с поверхностью, более острый нож оказывает большее давление при заданной величине силы, поскольку сила действует на меньшую площадь поверхности, StudySmarter Originals

Давление может быть определено как сила, действующая на площадь (единицу площади). Приведенная выше формула действительна только тогда, когда сила действует под прямым углом 91 390° к поверхности. Как видно из уравнения. Давление прямо пропорционально приложенной силе и обратно пропорционально площади, на которую она действует. Это означает, что для увеличения давления мы можем либо

Поскольку площадь контакта уменьшается, давление увеличивается при условии, что сила остается неизменной, это позволяет вбить гвоздь в стену, StudySmarter Originals

Единицы давления

Единицей давления в системе СИ является 1 Паскаль =. Для больших величин давления мы можем использовать и. Вы также можете увидеть другие единицы давления, такие как торр ,

Атмосферное давление является широко используемой единицей измерения (). Давление, оказываемое земной атмосферой на поверхность земли, известно как атмосферное давление. Атмосферное давление в паскалях равно. Его также иногда называют стандартным атмосферным давлением.

Типы давления

Мы можем классифицировать типы давления с точки зрения состояний материи, которые оказывают давление. В этом разделе мы рассмотрим каждый из типов давления, а также несколько примеров каждого типа.

Давление могут оказывать твердые тела, жидкости и газы. Твердые тела оказывают давление через свою точку контакта. Жидкости и газы оказывают давление на твердое тело из-за столкновения их частиц с твердым телом.

  • Гвоздь, забитый в стену, является примером давления, действующего от одного твердого тела на другое твердое тело.
  • Мы постоянно сталкиваемся с силой атмосферы на наших телах. что есть не что иное, как давление, оказываемое газами в атмосфере.

Давление, оказываемое жидкостями

Давление, оказываемое жидкостями, в основном обусловлено весом жидкости. Представьте, что вы ныряете в местном бассейне. Допустим, вы ныряете в глубокий конец. Теперь из-за действия гравитации весь вес воды над вами будет прижимать молекулы воды к вашему телу и любому другому объекту, погруженному в воду. Это давление и есть то, что мы подразумеваем под давлением, оказываемым жидкостью. Количество молекул воды, находящихся над вами, будет увеличиваться по мере того, как вы продолжаете спускаться глубже. Вот почему давление, оказываемое жидкостями, увеличивается с увеличением глубины, и вот почему давление, которое вы чувствуете, увеличивается по мере того, как вы погружаетесь глубже в водоем. Еще одним важным фактором является плотность жидкости. Поскольку плотность измеряет массу единицы объема жидкости. Жидкости с более высокой плотностью будут оказывать большее давление на той же глубине из-за их большего веса.

Давление, оказываемое на определенной глубине на базовую зону A, можно рассчитать, учитывая вес столба жидкости непосредственно над A, StudySmarter Originals.

Теперь рассмотрим, как рассчитать давление, оказываемое жидкостью на определенной глубине. Рассмотрим прямоугольный столб воды с площадью основания и высотой.

Мы уже знаем, что формула давления такова:

Вес жидкости, находящейся непосредственно над рассматриваемой базовой площадью, определяется следующим уравнением:

Или прописью

Следующим шагом в нашем расчете считалось рассмотрение плотности жидкости для расчета массы столба воды:

,

или прописью

.

Переставляя по массе получаем:

.

Объем прямоугольного параллелепипеда можно записать как произведение его площади основания и высоты:

,

или прописью:

.

Мы Подставляем формулу веса через массу перед подстановкой формулы массы через плотность и объем. Наконец, подставим формулу объема через площадь основания и высоту в уравнение для давления:

После дальнейшей перестановки приходим к формуле для давления, оказываемого столбом жидкости через плотность жидкости, высоту столба жидкости и площадь основания столба жидкости:

Если давление измеряется в паскалях (), глубина или высота столба в метрах (), а плотность и напряженность гравитационного поля, в.

Далее давайте рассмотрим несколько примеров, где мы используем эти формулы для расчета давления.

Атмосферное давление

Атмосферное давление возникает из-за того, что молекулы воздуха в атмосфере сталкиваются с землей или любым другим объектом, находящимся внутри. Атмосферное давление уменьшается с увеличением высоты, потому что плотность воздуха уменьшается на больших высотах. На больших высотах воздуха меньше, поэтому вес воздуха, давящего на предмет, уменьшается. По этой причине некоторые люди испытывают боль в ушах во время авиаперелетов, которая возникает из-за быстрых изменений атмосферного давления. Атмосферное давление можно рассчитать по той же формуле, что и давление жидкостей.

Атмосферное давление возникает из-за веса молекул воздуха непосредственно над поверхностью Земли, оригиналы StudySmarter

Примеры давления

Жидкость имеет вес, который действует на площадь поверхности. Вычислите давление, действующее на поверхность.

Рассчитать давление, оказываемое на землю человеком, взвешивающим одежду0076

Какие выводы вы можете сделать из результатов?

каблуки против плоской обуви, Nidhish Gokuldas StudySmarter Originals

ОБРАЩЕНИЕ

Давление на земле из -за плоской обуви

Давление на земле. каблуки почти 5 раз больше, чем у туфель на плоской подошве. Это причина того, почему туфли на каблуках неудобно носить в течение длительного времени, поскольку они оказывают большое давление на землю и в равной степени на людей, которые носят ступни обуви.

Рассчитать давление в скважине на глубине . Примите плотность воды равной

. Шаг 1. Перечислите заданные величины

. Шаг 2. Рассчитайте давление с помощью соответствующей формулы

. атмосфера равна

Шаг 1: Перечислите данные количества

Шаг 2: Рассчитайте давление, используя соответствующее уравнение

Давление – основные выводы

  • Давление определяется как сила, прикладываемая к единице площади поверхности.

Оставить комментарий