Для чего нужен большой адронный коллайдер: Кварки, бозоны и звёздный разрушитель. Для чего нужен Большой адронный коллайдер?

Содержание

Зачем нужен новый суперколлайдер — Российская газета

Физики сделали знаменитым на весь мир бозон Хиггса. Про эту частицу Бога и поймавший ее Большой адронный коллайдер (БАК) наслышаны даже домохозяйки. Но он покажется лилипутом рядом с машиной, которую сейчас задумали построить в Европейском центре по ядерным исследованиям (ЦЕРН). Для сравнения: длина БАК 27 километров против 100 км у нового коллайдера, энергия 14 ТэВ против 100 ТэВ, стоимость 12 миллиардов долларов против 24 миллиардов. Новичок уже получил название Циклический коллайдер будущего, но судя по замаху, вполне может называться и циклопический.

Зачем он нужен этот гигант? Особенно если учесть, что недавно БАК остановили на два года, чтобы поднять энергию до максимальных 14 ТэВ. Чем он не устраивает физиков? Дело в том, что открыв Хиггса, этот коллайдер одновременно закрыл последнюю страницу Стандартной модели, которая считается одним из самых главных достижений науки XX века. Физики надеялись выжать из БАКа и другие открытия, однако он больше не “плодоносил”. Если он и дальше будет только подтверждать Стандартную модель, это, по мнению лауреата Нобелевской премии профессора Сэмюэля Тинга, окажется большой неудачей. Словом, ученые считают, что модель себя исчерпала. Она не может объяснить множество фактов, скажем, природу “темной материи”, и “темной энергии”, на которые приходится 95 процентов массы Вселенной, и только 5 процентов на видимую – звезды и планеты. Здесь нужна новая физика.

Многие ученые уже не верят, что даже модернизированный БАК сумеет открыть эту дверь. Сейчас считается, что носителями “темной материи” должны быть очень тяжелые частицы, которые ученые надеются получить на Циклическом ускорителе будущего. Его сооружение пройдет в два этапа. На первом к 2040 году в 100-километровом туннеле будет построен электрон-позитронный коллайдер. Его стоимость около 9 миллиардов долларов. Эта установка будет исследовать W- и Z-бозоны, бозон Хиггса, а также t-кварки – самые массивные частицы в Стандартной модели. На втором этапе в том же туннеле к 2050 году будет создан протон-протонный коллайдер.

Его максимальная энергия около 100 ТэВ. Стоимость проекта оценивается в 15 миллиардов долларов. За время работы коллайдер должен породить около 1010 бозонов Хиггса. Физики надеются, что он сможет подтвердить или опровергнуть существование вимпов – гипотетических частиц темной материи. Также на нем будет исследоваться кварк-глюонная плазма, существовавшая на самых ранних стадиях развития Вселенной.

Чтобы разгадать тайну многих феноменов Вселенной, нужна принципиально новая физика

В работе над концепцией коллайдера будущего участвуют более 1,3 тысячи специалистов из 150 институтов и вузов всего мира. Сумели они найти весомые аргументы, чтобы убедить власть имущих раскошелиться? Доказать, что, чем дальше в глубь природы, тем неохотней она выдает свои тайны, тем они стоят дороже? Если прорыв к новой физике произойдет, то на энтузиастов прольется настоящий дождь новых Нобелей.

как работает, опасность, результаты работы и факты

Большой адронный коллайдер (или БАК)  – на данный момент самый большой и мощный ускоритель частиц в мире. Эта махина была запущена в 2008 году, но долго работала на пониженных мощностях. Разберемся, что это такое и зачем нужен большой адронный коллайдер.

История, мифы и факты

Идея создания коллайдера была озвучена в 1984 году. А сам проект на строительство коллайдера был одобрен и принят аж в 1995 году. Разработка принадлежит Европейскому центру ядерных исследований (CERN). Вообще запуск коллайдера привлек к себе большое внимание не только ученых, но и простых людей со всего мира. Говорили о всевозможных  страхах и ужасах, связанных с запуском коллайдера.

Впрочем, кто-то и сейчас, вполне возможно, ждет апокалипсиса, связанного с работой БАК и тресется от одной мысли о том, что будет, если ч взорвется большой адронный коллайдер. Хотя, в первую очередь все боялись черной дыры, которая, сначала будучи микроскопической, разрастется и благополучно поглотит сначала сам коллайдер, а за ним Швейцарию и весь остальной мир. Также большую панику вызывала аннигиляционная катастрофа. Группа ученых даже подала в суд, пытаясь остановить строительство. В заявлении говорилось, что сгустки антиматерии, которые могут быть получены в коллайдере, начнут аннигилировать с материей, начнется цепная реакция и вся Вселенная будет уничтожена. Как говорил известный персонаж из «Назад в Будущее»:

Вся Вселенная, конечно, в  самом худшем случае. В лучшем – только наша галактика. Доктор Эмет Браун.

Коллайдер уничтожает землю

А теперь попытаемся понять, почему он адронный? Дело в том, что он работает с адронами, точнее разгоняет, ускоряет и сталкивает адроны.

Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Адроны состоят из кварков.

Адроны делятся на барионы и мезоны. Чтобы было проще, скажем, что из барионов состоит почти все известное нам вещество. Упростим еще больше и скажем, что  барионы – это нуклоны (протоны и нейтроны, составляющие атомное ядро).

Столкновение частиц

Как работает большой адронный коллайдер

Масштаб очень впечатляет.

Коллайдер представляет собой кольцевой туннель, залегающий под землей на глубине ста метров. Длина большого адронного коллайдера составялет 26 659 метров.  Протоны, разогнанные до скоростей близких к скорости света, пролетают в подземном круге по территории Франции и Швейцарии. Если говорить точно, то глубина залегания туннеля лежит в пределах от 50 до 175 метров. Для фокусировки и удержания пучков  летящих протонов используются сверхпроводящие магниты, их общая длина составляет около 22 километров, а работают они при температуре -271 градусов по Цельсию.

Детектор на БАК

В составе коллайдера 4 гигантских детектора:  ATLAS, CMS, ALICE и LHCb. Помимо основных больших детекторов, есть еще и вспомогательные. Детекторы предназначены для фиксации результатов столкновений частиц. То есть после того, как на околосветовых скоростях сталкиваются два протона, никто не знает чего ожидать. Чтобы «увидеть», что получилось, куда отскочило и как далеко улетело, и существуют детекторы, напичканные всевозможными датчиками.

Большой адронный коллайдер. Фото расположения

Результаты работы большого адронного коллайдера.

Зачем нужен коллайдер? Ну уж точно не для того, чтобы уничтожить Землю. Казалось бы, какой смысл сталкивать частицы? Дело в том, что вопросов без ответов в современной физике очень много, и изучение мира с помощью разогнанных частиц может в буквальном смысле открыть новый пласт реальности, понять устройство мира, а может быть даже ответить на главный вопрос «смысла жизни, Вселенной и вообще».

Какие открытия уже совершили на БАК? Самое знаменитое – это открытие бозона Хиггса (ему мы посвятим отдельную статью). Помимо того были открыты 5 новых частиц, получены первые данные столкновений на рекордных энергиях

, показано отсутствие асимметрии протонов и антипротонов, обнаружены необычные корреляции протонов. Список можно продолжать долго. А вот микроскопических черных дыр, которые наводили страх на домохозяек, обнаружить не удалось.

Большой адронный коллайдер

И это при том, что коллайдер еще не разогнали до его максимальной мощности. Сейчас максимальная энергия большого адронного коллайдера – 13 ТэВ (тера электрон-Вольт). Однако, после соответствующей подготовки протоны планируют разогнать до 14 ТэВ. Для сравнения, в ускорителях- предшественниках БАК максимально полученные энергии не превышали 1 ТэВ. Так разгонять частицы мог американский ускоритель Тэватрон из штата Иллинойс. Энергия, достигнутая в коллайдере – далеко не самая Большая в мире. Так, энергия космических лучей, зафиксированных на Земле, превышает энергию частицы, разогнанной в коллайдере в миллиард раз! Так что, опасность большого адронного коллайдера минимальна. Вполне вероятно, что после того, как все ответы будут получены с помощью БАК, человечеству придется строить еще один коллайдер по-мощнее.

Друзья, любите науку, и она обязательно полюбит Вас! А помочь Вам полюбить науку легко смогут наши авторы. Обращайтесь за помощью, и пусть учеба приносит радость!

 

«Чем выше энергия, тем ближе мы к началу Вселенной» – Огонек № 35 (5630) от 07.09.2020

Новый коллайдер NICA (Nuclotron-based Ion Collider fAcility) в Дубне в скором времени начнет воспроизводить первые мгновения нашей Вселенной. О том, какие шансы у России во всемирной гонке коллайдеров, дойдут ли физики до торговли антивеществом и каким образом связаны свобода ученых и свобода кварков, «Огоньку» рассказал директор Лаборатории физики высоких энергий им. В.И. Векслера и А.М. Балдина Объединенного института ядерных исследований в Дубне Владимир Кекелидзе.

Беседовала Елена Кудрявцева

— Владимир Димитриевич, строительство 500-метрового кольца коллайдера NICA — по сути, первый российский мегапроект с середины XX века — подходит к концу. Что собой представляет установка?

— Это коллайдер протонов и тяжелых ионов. Он сможет воссоздать в лабораторных условиях особое состояние вещества, которое, возможно, существует только в ядрах нейтронных звезд.

Такие установки называют гигантскими микроскопами, так как они позволяют все глубже проникать в материю и понять структуру вещества. Называют их и телескопами во времени — ведь чем выше энергия в эксперименте, тем ближе мы подходим к началу возникновения Вселенной. Чтобы понять, что же там происходило, нам нужно в минимальной единице объема сосредоточить максимум энергии.

— Для Дубны это далеко не первая стройка мегаустановок мирового класса. Как выбирали место для строительства синхрофазотрона? Известно, что, когда искали площадку для ускорителя в Протвино в 1970-е, объехали 40 площадок в поисках особой скальной породы. Здесь тоже какой-то особенный грунт?

— С одной стороны, скальная порода придает установке стабильность, с другой — она передает все колебания от незначительных землетрясений и даже от вибраций. Поэтому есть другой подход: ускоритель должен находиться на жесткой платформе, но в мягкой породе. Синхрофазотрон, запущенный в Дубне в 1957 году, имел относительно небольшие размеры и был построен на жесткой плите.

На тот момент это был самый мощный ускоритель в мире, сегодня таковым является Большой адронный коллайдер (БАК) в ЦЕРНе, Швейцария. В 1950-е он был спланирован на энергию в 10 гигаэлектронвольт (1 ГэВ — это 1 млрд электронвольт.— «О»). Это знаковый рубеж для человечества, потому что за ним возможно всерьез изучать строение вещества.

— Предстоящие эксперименты на коллайдере NICA не предполагают столь высоких энергий, как на БАКе, где энергию и вовсе измеряют в ТэВах (тераэлектронвольтах — триллионах электронвольт). В чем же тогда их уникальность?

— Дело в том, что в Большом адронном коллайдере изучаются процессы, происходящие при крайне высоких энергиях.

Задача же нашего коллайдера — создать максимальную плотность ядерной материи, если говорить точнее — барионной материи. Барионы — это, прежде всего, протоны и нейтроны, из которых состоит весь окружающий нас мир. Когда-то, в начале Большого взрыва, ее плотность везде была нулевой, а сегодня обычная материя вокруг нас обладает «единичной» (нормальной) плотностью барионов, а в недрах нейтронных звезд эта плотность может быть на порядок выше.

За счет большой гравитации материя так сжимается, что в их ядрах нуклоны (протоны и нейтроны.— «О») проникают друг в друга и в какой-то момент переходят в состояние кварков. Вот этот фазовый переход и будет изучать NICA. По сути, на этом коллайдере будут создаваться максимально возможные для лабораторных условий Земли плотности барионной материи.

— Что значит — максимально возможные?

— Это значит, что в лабораторных условиях невозможно создать состояние, в котором в единице объема будет больше барионов. В таком состоянии материи мы имеем дело уже не с нуклонами (протонами и нейтронами), а с кварками и глюонами. Если говорить упрощенно, то каждый протон или нейтрон содержит по три кварка.

Чтобы вырвать кварки у протона или нейтрона, нужно применить гигантские усилия. Та энергия, которую мы используем в ядерных реакторах и взрывах,— это лишь остаточные силы, связывающие кварки внутри нуклона.

— Как же тогда можно извлечь кварки, чтобы увидеть этот фазовый переход?

— Можно их или столкнуть, или применить способ, основанный на так называемом принципе асимптотической свободы. Это важное явление было открыто в конце прошлого века, в 2004 году за него получили Нобелевскую премию Дэвид Гросс, Дэвид Политцер и Фрэнк Вильчек. Оказалось, что если попытаться вытянуть кварк из нуклона, то нужно, как я сказал, приложить максимально известные человечеству силы. А вот если кварки сблизить, то в какой-то момент они перестают между собой взаимодействовать, становятся свободными, превращаясь в кварковую кашу — кваркглюонную плазму. Частицы в ней начинают свободно перемещаться, а когда все остывает, формируются в совершенно новые нуклоны и другие элементарные частицы.

— Не случайно, видимо, Дэвид Гросс приезжал в Дубну, когда закладывался первый камень в фундамент коллайдера NICA. Хотел посмотреть на место, где кварки выпустят на свободу?

— Да, он приезжал в 2016-м и участвовал в церемонии закладки фундамента.

— Как же вы будете сжимать нуклоны с такой силой без нейтронных звезд?

— Это можно сделать, разгоняя и сталкивая два тяжелых ядра, например, золота и золота. Но если их разогнать очень сильно, как происходит в Большом адронном коллайдере, то хотя и образуется кварковый бульон, плотность барионов в нем будет минимальной. Чтобы достичь нужного нам эффекта, энергия должна быть около 10 ГэВ на каждый нуклон. Именно такие параметры мы заложили в NICA.

В начале начала


Владимир Димитриевич — доктор физико-математических наук, профессор, член-корреспондент РАН

Фото: Евгений Гурко, Коммерсантъ

— Что мы знаем о начале Вселенной, когда возникла плотная барионная материя? Если бы тогда был некий сторонний наблюдатель, он бы действительно увидел большой во всех отношениях взрыв?

— В первое мгновение Большого взрыва большой плотности барионной материи не было. Там была большая плотность энергии. В равных пропорциях находились вещество и антивещество. Все это расширялось в пространстве с колоссальной скоростью, создавая сложные флуктуации, которые в итоге, согласно теориям ведущих российских ученых, стали основой будущих звезд и галактик (подробнее — см. «Огонек», № 11 за 2019 год). Отдельный вопрос: как же появилось вещество? Это одна из интереснейших задач современной физики. В какой-то момент равновесие между частицами и античастицами было нарушено. Это была совсем маленькая разница, из которой получилась вся наша Вселенная.

За возникновение разницы между веществом и антивеществом ответствен ряд процессов, происходящих во Вселенной, невозможных без нарушения некоторых симметрий, одно из которых в науке называют СР-нарушением. За его открытие в 1980 году дали Нобелевскую премию Джеймсу Кронину и Вэлу Фитчу. Само открытие они, кстати, сделали в 1964-м и впервые докладывали о нем у нас в Дубне в том же году.

— Почему именно у вас?

— В Дубне проходила крупнейшая в области физики высоких энергий так называемая Рочестерская конференция — это как Олимпийские игры для физиков, занимающихся высокими энергиями. На ней представляются все самые яркие достижения последних лет.

Но если возвращаться ко Вселенной, то с помощью NICA мы будем пытаться понять, как происходит переход вещества из состояния обычной материи, которую мы видим вокруг, в свободную — кварковую.

Чрезвычайно интересно понять, как кварки высвобождаются, а затем снова попадают в «тюрьму» при условиях, когда они максимально сжаты. NICA будет воспроизводить весь этот процесс: от создания бульона из кварков до формирования новых частиц.

— А можно ли будет каким-то похожим образом изучать антивещество? Часто пишут, что оно будет стоить баснословных денег…

— Антивещество как раз изучают в ЦЕРНе. Там делают очень интересные эксперименты, когда антипротон пытаются удержать в особой ловушке. Вообще же антивещество создается каждый день в экспериментах на ускорителях и даже в результате естественных процессов, таких как молния, но оно быстро исчезает при столкновениях с обычным веществом. По этой же причине вряд ли его когда-нибудь станет возможным создать в ощутимых количествах.

— Интересно, что у вашего коллайдера, рассчитанного под самые фундаментальные задачи, есть прикладной аспект. В чем он заключается?

— Мы предложили три инновационных проекта, которые могут принести ощутимую пользу в ближайшее время. Первый связан с облучением электронных схем, без чего невозможно создание революционной по характеристикам электроники, которая будет стойко работать в условиях высокой радиации и космического излучения. Это нужно для полетов в космос и для других целей. Ведь даже единичное попадание тяжелого иона в электронное устройство может вывести его из строя. С помощью NICA будет нарабатываться статистика отказов, отрабатываться система защиты.

Всю жизнь работает в области экспериментальной физики частиц и пытается проникнуть вглубь ядерной материи

Фото: Евгений Гурко, Коммерсантъ

Второй проект связан с исследованием воздействия тяжелого космического излучения на живые организмы. Сейчас у нас тоже проходят такие работы, но условия для их проведения ограниченны. Тем не менее здесь нашими коллегами из лаборатории радиобиологических исследований уже были получены очень интересные результаты в экспериментах с обезьянами. Оказалось, что после небольшой дозы облучения их когнитивные способности повышались, а вот затем резко падали. Это чрезвычайно важно для будущих полетов человека на Марс, видимо, когнитивные способности и, кстати, зрение в условиях длительных полетов будут страдать сильнее всего. При этом если от заряженных частиц можно спастись каким-то защитным полем, то от нейтральных практически нечем. Вы же не повезете туда огромные бетонные блоки! Поэтому здесь для ученых большое поле деятельности.

Третье направление связано с медицинскими технологиями на основе наших магнитов. Это очень перспективная область, связанная с лечением онкологических заболеваний.

— NICA — не единственный проект, который изучает кварковый бульон?

— Да, у нас есть конкуренты. Например, Брукхейвенская национальная лаборатория в США. Они запустили коллайдер еще в 2000-м и уже сделали много интересных открытий, изучая кваркглюонную плазму. Но барионная плотность вещества у них очень маленькая: изначально проект был рассчитан на энергии в 200 ГэВ на нуклон, а для достижения максимальной барионной плотности, как я говорил, нужно всего 10. Для расширения исследований в области большой барионной плотности они доработали конструкцию коллайдера, чтобы понизить энергию, но при этом он потерял такое важное качество, как светимость,— число взаимодействий на поперечный сантиметр в секунду. А этот параметр в конечном счете влияет на статистику взаимодействий, которая набирается в ходе эксперимента и определяет точность измерений.

Еще у нас есть непосредственный конкурент, который должен заработать в 2025 году,— коллайдер FAIR, строящийся недалеко от города Дармштадт в Германии. Поэтому нам так важно не сдвигать даты запуска.

Коллайдер размером с Землю

— Вы сказали, что самые крупные эксперименты в области физики высоких энергий сегодня проводятся в ЦЕРНе. Какую основную задачу собираются там решить физики и что будет, когда возможности коллайдера исчерпаются?

— Сейчас БАК будет детально изучать бозон Хиггса, а дальше, скорее всего, будет создан еще более крупный ускоритель, в разы превосходящий по энергии существующий. Перспективы такого проекта регулярно обсуждаются на собрании управляющего комитета ЦЕРНа, куда входят представители 23 стран. Каждые семь лет он подготавливает стратегическую программу развития. На этот раз было решено изучать возможности реализации проекта — географию, технологические возможности и стоимость.

— Какой же будет размер этого гиганта?

— Если диаметр работающего сегодня Большого адронного коллайдера примерно 27 километров, то здесь речь идет о 100 километрах.

— Значит, ученые снова столкнутся с протестами местных жителей? Они ведь и в прошлый раз не хотели соседства с такой мощной научной установкой, как БАК.

— Да, причем выявились неожиданные коллизии, в том числе юридические. Нынешний коллайдер проходит, как известно, по территории Франции и Швейцарии. Когда для него копали туннель, оказалось, что на разных землях законы отличаются: где-то владелец имеет право только на почвенный слой, а где-то его права распространяются вглубь, вплоть до центра Земли! Иными словами, вы не можете просто прокопать у него под ногами ветку метро или нечто подобное. Поэтому пришлось проводить сложные согласования.

— У ученых есть какая-то конкретная задача для такой огромной и дорогой установки?

— В том-то и дело, что пока ясной физической цели нет, а без этого двигаться очень сложно. Никто не знает, какая нужна энергия, чтобы обнаружить явления так называемой новой физики (явления за пределами принятой сегодня Стандартной модели.— «О»). БАК строился исходя из представлений о том, при каких энергиях можно открыть бозон Хиггса, поэтому все и получилось. Правда, при этом ожидалось, что, возможно, подтвердится так называемая теория суперсимметрии, а этого пока не произошло. А нам важно понять, существует ли она в природе или только в головах теоретиков. Также было бы интересно разобраться с природой кварка: выяснить, является ли он точечной частицей или у него есть структура.

— А в принципе, есть ли предел развития ускорительной техники? Или коллайдеры вечно будут расти в размерах?

— По большому счету, предел — это размеры Земли, а может, и больше.

Дороги, которые мы выбираем


Под его руководством разработан и создается крупнейший в России мегапроект — ускорительно-экспериментальный комплекс NICA

Фото: Евгений Гурко, Коммерсантъ

— Как сильно пандемия сдвинула сроки сдачи NICA?

— По нашей оценке, примерно на полгода, потому что многие работы за границей пришлось приостановить. Но пока мы не меняем планов запуститься в конце 2022-го.

— Что это за работы и где они проходили?

— В основном в Европе. Сейчас у нас очень напряженный момент, связанный с поставкой из Италии важнейшего компонента детектора MPD на коллайдере — сверхпроводящей катушки большого анализирующего магнита. Это огромная деталь размером, с упаковкой, 8 на 9 метров, которая сама весит более 70 тонн плюс еще половину весит каркас, в котором ее везут. Это очень деликатный груз, который нужно везти со всеми мерами предосторожности, с шоковыми датчиками и т. п. Доставить такую объемную установку можно только по воде. Наш груз должен был доплыть из Генуи, где его сделали, до Санкт-Петербурга, а далее уже на речной барже по Волге прямо сюда, в Дубну. Но так как из-за пандемии весной работать было невозможно, сроки поставки сдвинулись. И теперь нам нужно успеть доставить до того, как на Волге закроется навигация. А оставлять катушку в Италии до весны нельзя, это и задержка проекта, и дополнительные большие расходы. В мире, кстати, вообще не так много компаний, которые могут сделать что-то подобное.

— В чем основная сложность?

— Это большой магнит со сверхпроводящей катушкой, который должен создать высокооднородное магнитное поле в цилиндрическом объеме диаметром 6 метров и длиной 8 метров. Катушка должна работать в условиях, близких к абсолютному нулю (минус 273,15°C.— «О»). Для Большого адронного коллайдера такие установки делали японская «Тошиба» и «АСГ Суперкондакторс» в Италии.

Когда нам потребовался такой магнит, то решили обратиться именно к ним, потому что для строительства наукоемких установок лучше пользоваться услугами компании, которая такие приборы уже делала. В мировой практике есть много отрицательных примеров, когда известная компания без опыта в изготовлении такого сложного оборудования берется за работу и через несколько лет сообщает, что ничего не получилось, и ученые остаются у разбитого корыта. Поэтому мы выбрали итальянцев, работа которых оказалась в полтора раза дешевле, чем японцев. А так как речь идет о десятках миллионов евро, это важно.

— Что самое главное в такой детали?

— Качество магнита определяется качеством магнитного поля, которое он создает. Поле должно быть очень однородным, чтобы в нем можно было с высокой точностью восстанавливать траектории частиц в детекторе. А это определяется как катушкой, так и самим магнитным ярмом — железом, которое нам пришлось делать в другом месте, так как итальянцы не захотели брать это на себя.

— Где вы его взяли?

— Это отдельная и тоже очень интересная история. Для детектора нужно не литое, а кованое железо очень хорошего качества. Речь идет о балках длиной 9 метров и кольцах диаметром 8 метров, и, чтобы их ковать, нужен огромный молот. Считалось, делать такие могут лишь в США и Китае, ни России, ни Европе это не по плечу. Но мы совершенно неожиданно недалеко от Милана нашли маленькую компанию. У них есть огромная рука-манипулятор, которая может взять кусок железа в несколько сот тонн, положить на молот и затем отковать.

При этом заготовки самого железа мы брали в России, предварительно обрабатывали в Новокраматорске на Украине. Оттуда отвезли в Италию, а уже затем — в Чехию для высокоточной обработки и сборки на большом заводе, который специализируется на том, что делает огромные металлические конструкции, в том числе шестерни для переноса барж из одного канала в другой. Затем это все разобрали и на 42 грузовиках привезли сюда. Это лишь один из эпизодов большого проекта.

— Получается, что каждый раз приходится искать буквально штучных специалистов по миру.

— А здесь по-другому нельзя. Если при создании уникального проекта вы где-то понизите планку качества или ответственности, то никогда не сможете достичь требуемых результатов. Вот мы и ищем только тех, кто делает то, что нам требуется, лучше всех в мире.

— А что лучше всех в мире делает Россия?

— Многое, например в Новосибирске в Институте ядерной физики им. Будкера делают лучшие в мире системы электронного охлаждения. Все существующие сегодня ускорители используют их системы.

Нигде не делают лучше, чем у нас, в Дубне, быстроциклирующие сверхпроводящие магниты. За четыре года было создано уникальное в мировом масштабе производство, где собираются, испытываются и сертифицируются сверхпроводящие магниты для NICA и для наших партнеров-конкурентов — FAIR. Это основные элементы нашего коллайдера.

Наука для всех

— Можно сказать, кто придумал NICA? Чьи идеи тут стали ключевыми?

— Идея изучения столкновения ядер при этих энергиях принадлежит Александру Михайловичу Балдину, чье имя носит наша лаборатория. Он был инициатором создания «Нуклотрона», который функционирует с 1993-го и который сейчас — в основе NICA.

А вообще, к началу нашего века идея изучать плотную барионную материю витала в воздухе. В состав ученого совета Объединенного института ядерных исследований входит много ученых со всего мира — в обсуждениях с ними она обрела конкретные черты. И рождение проекта происходило благодаря дискуссиям на ученом совете института, директором которого тогда был Алексей Норайрович Сисакян. Он понимал, что нам нужен именно такой флагманский проект, и сделал все возможное, чтобы инициировать его реализацию.

— Интересно, почему именно физика высоких энергий с самого начала была площадкой для активного международного общения? Даже в 1950-е, в разгар Холодной войны, наши физики ездили в национальные исследовательские лаборатории США…

— Потому что иначе она бы не развивалась. Если вы замкнетесь в рамках одной страны, проект не получится. У вас не хватит ни образования во всех требуемых направлениях, ни технологий, ни знаний, ни ресурсов. Чтобы сделать что-то стоящее, у вас должен быть большой набор различных методов и технологий, широкий спектр образованных специалистов и даже разнообразие менталитета участников проекта. Сегодня нет страны, которая могла бы сказать, что обладает, предположим, 90 процентами технологий в данной сфере. Не случайно, что ОИЯИ, созданный в 1956 году, с самого начала был задуман как международная организация. Изначально в состав института вошли 12 стран-участниц.

— Непонятно, почему в составе нет Китая.

— Изначально он был, но в 1965 году из-за политических разногласий китайское правительство в течение нескольких дней отозвало всех своих сотрудников на родину. С тех пор КНР не входит в состав ОИЯИ. Сегодня в его составе 18 стран и 6 ассоциированных членов. Кстати, еще в 1950-е устав нашего института был зарегистрирован в ООН и хранится в ее Секретариате. В том числе это и помогло нам отстоять статус института в сложные 90-е годы.

— Тогда физика высоких энергий как наука недешевая пострадала особенно сильно. Строительство в Протвино коллайдера УНК пришлось остановить…

—Да, и я считаю это ошибкой. По масштабам он был близок к современному Большому адронному коллайдеру. Туда было вложено очень много ресурсов, метростроевцы полностью построили 20-километровый туннель, были разработаны уникальные криогенные технологии и множество другого.

— Немало российских специалистов из Протвино затем поехали работать в ЦЕРН.

—Да, так и было. Но здесь мы опять же возвращаемся к вопросу международного сотрудничества в науке. Национальные проекты такого масштаба закрывались не только у нас. Примерно в то же время остановили строительство еще более масштабного коллайдера SSC в Техасе. В 1992 году как раз в Техасе проходила Рочестерская конференция. Я помню, как техасский таксист с гордостью рассказывал мне, что у них строится огромный сверхпроводящий суперколлайдер, который перевернет всю мировую науку. Но когда в проект уже вложили несколько миллиардов долларов, его вдруг закрыли из-за разногласий между организациями разного уровня. Это, конечно, оказало большое негативное влияние на всю физику высоких энергий. В этом отношении ЦЕРН более устойчив, так как в его составе более двух десятков стран, и даже если одна из них решит проект покинуть, он все равно будет реализован.

Криптон, и не только


С 2007-го директор Лаборатории физики высоких энергий ОИЯИ

Фото: Евгений Гурко, Коммерсантъ

— Вы пришли в науку в то тяжелое время. Не было желания уехать из страны в 1990-е?

— Нет, так получилось, что в те годы мы вели очень интересный проект в Протвино: на нескольких установках изучали рождение очарованных частиц (кварков с более тяжелой массой.— «О») и искали новые кварковые резонансы.

Кроме того, именно в 90-е годы у нас началось сотрудничество с ЦЕРНом в эксперименте NA-48, где как раз уже с нашим участием было открыто прямое СР-нарушение, о котором я говорил, объясняя разницу между веществом и антивеществом. Разумеется, участие в таком престижном эксперименте — предмет гордости для любого коллектива. Однако попасть туда было непросто. Когда я познакомился с лидерами этого проекта, то нам предложили войти в состав участников эксперимента при условии, что мы поможем создать жидкокриптоновый калориметр. Это уникальный прибор, без которого не было бы открытия. Его основа — гигантский криостат (цистерна), наполненный жидким криптоном. Этот прибор был необходим для регистрации гамма-квантов от распадов нейтральных пионов.

— Боюсь, что многие сегодня знают Криптон только как родную планету Супермена из комиксов DC…

— Это химический элемент с атомным номером 36. Сложность в том, что для эксперимента нужно было найти 23 тонны чистого криптона, а этот объем сравним с объемом мирового производства. Криптон был побочным продуктом сталелитейного производства и применялся в основном для выпуска лампочек. Для наших же целей требовался криптон тщательной очистки. Мы обратились в Научно-исследовательский и конструкторский институт энерготехники Минатома, где владели технологиями очистки газов, с просьбой помочь организовать такое производство. Финансировала завод (а речь шла о миллионах долларов) голландская компания. В итоге в закрытом городе недалеко от Екатеринбурга был запущен завод по очистке сжиженного криптона, качество которого превысило требования эксперимента. Полученный газ мы заправляли в баллоны и на грузовиках везли прямо в Женеву.

Затем на грант Международного научно-технического центра, который финансировал конверсионные программы в СНГ, мы сделали на лучшем космическом предприятии России — НПЦ им. Хруничева — очень хороший криостат из алюминия. И так получили входной билет в проект NA-48, который сегодня в пятерке самых успешных экспериментов ЦЕРНа. Молодых ученых из Дубны, которые в нем участвовали, тут же стали приглашать работать по всему миру. Это стало для них отличным стартом. Кстати, сегодня под наш проект в Дубну тоже приезжает много молодежи: каждый год мы берем на практику примерно 40–50 студентов и конкурс весьма напряженный. В прошлом году было много ребят из Польши, недавно подписали контракт с пятью мексиканскими университетами.

— Можно ли говорить, что в физике высоких энергий сохранилась российская школа?

— Мне трудно ответить на этот вопрос. Развитие российской физики высоких энергий, по большому счету, закончилось, когда закрылся проект УНК в Протвино. С тех пор интересные работы были, но масштаб их не дотягивал до мирового. Поэтому мы с такой надеждой ждем реализации не только проекта NICA, но и других российских мегапроектов. Например, создания синхротрона «СКИФ» в Новосибирске. Дело в том, что большие научные проекты формируют высокопрофессиональную научную среду — большие коллективы ученых, инженеров, специалистов, а если у страны нет своих базовых проектов и мы работаем только на выездных экспериментах, говорить о возрождении науки преждевременно…

«Огонек» в рамках совместного медиапроекта со Сколковским институтом науки и технологий продолжает публикацию цикла интервью с ведущими отечественными физиками. В № 37 за 2018 год была опубликована беседа с Владимиром Захаровым; в № 39 за 2018 год — с Ильдаром Габитовым; в № 45 за 2018 год — с Валерием Рубаковым; в № 2 за 2019 год — с Альбертом Насибулиным, в № 11 за 2019 год — с Алексеем Старобинским, в № 20 — со Львом Зелёным, в № 23 — с Михаилом Фейгельманом, в № 30 — с Александром Белавиным, в № 38 — с Валерием Рязановым в № 47—Юрием Оганесяном, в № 2 за 2020 год — с Алексеи Китаевым, в №11 за 2020 год с — Владимиром Драчевым, с Александром Замолодчиковвым в № 18, со Львом Иоффе в № 24, с Фазоилом Атауллахановым в № 27, с Геннадием Борисовым в №30.

Для чего России большой адронный коллайдер?

Строительство коллайдера началось в 2001 г. и обошлось примерно в 6 млрд долл. Россия финансировала как изготовление всех четырех детекторов – установок для исследований ядерных взаимодействий при сверхвысоких энергиях, так и сооружение самого ускорителя.

Если говорить о детекторах, то российская доля в них составляет около  5% от общего финансирования, в ускорителях – примерно 3%.

В общей сложности на российские предприятия поступило заказов от ЦЕРНа на 120 млн долл. В работах участвовали многие институты Российской академии наук, Росатома, Московский и Санкт-Петербургский  университеты, а также Федеральные ядерные центры, в частности Саров и Снежинск.

Как отметил один из первых руководителей ЦЕРНа Роже Кашмор, “мы не смогли бы сделать БАК без российских ученых”. В то же время участие в проекте благотворно повлияло на российскую промышленность. Он сильно поддержал многие наши предприятия.

10 номинаций или наград дал ЦЕРН российским предприятиям за своевременное и качественное выполнении работ для БАКа.

Всего в проекте участвуют порядка 700 российских ученых. Сегодня  в Швейцарии одновременно находится в командировке около 200 физиков и других специалистов из России.

По мнению ученых коллайдер позволит в деталях изучить, каков мир вокруг нас.

В начале ХХ века в физике появились две основополагающие теории мироустройства. Общая теория относительности Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля – на микроуровне. Проблема в том, что эти теории по ряду позиций несовместимы друг с другом. Например, для адекватного описания происходящего в так называемых черных дырах нужны обе теории, а они вступают здесь в противоречие.

В последней трети ХХ века физикам удалось разработать некую Стандартную модель, которая объединила три из четырех фундаментальных взаимодействий – сильное, слабое и электромагнитное. Однако добавить в нее гравитационное взаимодействие оказалось чрезвычайно трудно.

Один из главных секретов, которые наука надеется раскрыть, – почему элементарные частицы имеют массу. Это ключевой вопрос мироздания, и он, возможно, будет разгадан, если БАК “поймает” так  называемый бозон Хиггса (или “Хиггс”), предсказанный английским физиком Питером Хиггсом в 1960 г. В рамках существующих представлений, эта частица отвечает за массу элементарных частиц. Для обнаружения ее следов предназначены два самых больших детектора БАК – CMS и ATLAS.

Как считают ученые, вся Вселенная заполнена так называемым полем Хиггса. И любая частица, которая движется в этом поле, взаимодействуя с ним, приобретает массу.  В какой-то степени Хиггсовский бозон – “побочный” продукт идеи приобретения масс электрослабыми калибровочными бозонами в результате спонтанного нарушения симметрии хиггсовского поля.

Изучая бозон Хиггса, ученые могут узнать и первоначальные свойства данного поля, во многом определившего  черты нашего мира. Возможно, это натолкнет физиков на новую теорию Вселенной – более глубокую, чем Стандартная модель.

Еще  одним из научных достижений исследований на БАКе может стать доказательство или опровержение “суперсимметрии” – теории, гласящей, что любая субатомная частица имеет более тяжелого партнера, или “суперчастицу”. Нынешний директор ЦЕРНа Роберт Аймар считает, что коллайдер должен помочь ученым найти “нейтралино” – одну из гипотетических частиц, предсказанных теорией суперсимметрии.

Некоторые специалисты полагают, что техника сооружения сверхмощных ускорителей  сегодня “подошла к своему пределу”. Тем не менее, по мнению  российских физиков, следующим и еще более крупным ускорителем должен стать Международный линейный  коллайдер ILC. На его размещение претендует Объединенный институт ядерных исследований в Дубне (Россия).

В ILC будут сталкиваться легкие частицы – электроны и позитроны. В итоге могут появиться предсказанные теорией суперсимметричные частицы. Возможно, это позволит раскрыть не менее заманчивую тайну – природу темной материи и темной энергии. На их долю приходится 96% материи  Вселенной, в то время как на ее видимую часть (звезды, планеты) – только 4%.

Именно такие крупные проекты как LHC и ILC являются тем локомотивом, который тянет за собой науку и промышленность. Примеры тому – атомный и космический проекты. Они дали толчок многим научным направлениям и отраслям промышленности.

Тот же Большой адронный коллайдер стимулировал прорывы во многих строительных,  материаловедческих и информационных технологиях.  Приборы, которыми оснащен БАК, потребовали такой точности изготовления, что их создание было бы невозможным без применения новых прогрессивных технологий.

Мнение автора может не совпадать с позицией редакции

его новое открытие может изменить физику

Группа физиков, работающих на Большом адронном коллайдере, открыли новую частицу. Она считается экзотической и усложняет существующую модель мира. Сам ускоритель не раз становился объектом критики и приносил значимые открытия.

Ученые на Большом адронном коллайдере открыли новый класс тетракварков, сообщил ТАСС. Исследователи из России, работавшие в коллаборации с детектером LHCb, рассказали об обнаружении экзотического очарованного тетракварка Tcc+. Такое открытие говорит о наличии нового класса сверхтяжелых частиц.

Особенность этой частицы заключается в том, что она содержит в себе сразу два очарованных кварка и ни одного очарованного антикварка. Тетракварк поставил рекорд и по продолжительности жизни — он живет в 10–500 раз больше частиц с похожей массой, написал сайт Института ядерной физики СО РАН. Частица также отличается своими большими размерами и низкой плотностью.

Сами кварки представляют собой фундаментальные частицы, которые нельзя наблюдать в свободном состоянии. Они входят в состав протонов и нейтронов, сообщило агентство «Интерфакс». А тетракварк — это экзотическая элементарная частица, или же адрон, в составе которой есть два кварка и антикварка. Экзотической она стала из-за того, что ранее считалось, что адроны могут быть мезонами, то есть состоять либо из пары «кварк — антикварк», либо иметь в составе три кварка. Примеры таких частиц — знакомые всем школьникам протоны и нейтроны.

Открытый тетракварк также обладает очарованием, написал сайт Lenta.ru. Под этим ученые понимают квантовое число, которое характеризует тип кварка. Всего исследователи знают шесть разных видов кварков. В ранее найденных тетракварках очарование было скрытым, это значит, что они состояли из очарованного кварка и очарованного антикварка.

Ученые предположили, что тетракварк может быть своеобразной кварковой молекулой, состоявшей из пары более легких мезонов, или же аналогом атома, ядро которого состоит из тяжелых очарованных кварков.

Значение открытия

Открытие показывает, что устройство мира сложнее, чем кажется. Российский ученый в области ядерной физики, физики элементарных частиц и космических лучей Олег Далькаров объяснил «360», что обнаруженный учеными тетракварк говорит о том, что мир элементарных частиц остаточно сложен.

Открыт богатый спектр частиц, которые требуют понимание. Это одна из тех, которые действительно любопытны с точки зрения понимания природы этих частиц

Олег Далькаров.

Он напомнил, что существуют элементарные частицы, состоящие из пары кварков и антикварков, а состоящие из нескольких кварков частицы — это сложные молекулярноподобные образования.

Исследователь также отметил, что, по всей видимости, существует более простой механизм для образования таких сложных систем. По мнению Далькарова, в будущем возможно открытие многокварковых ядер.

Миссия коллайдера

Большой адронный коллайдер — это ускоритель, который запустился в 2008 году на территории Франции и Швейцарии. Его миссия заключалась в разгоне элементарных частиц, а именно протонов, сообщило РИА «Новости».

После разгона частицы сталкиваются, а ученые наблюдают те процессы, которые нельзя наблюдать в обычных условиях. В итоге исследователям удается понять, как устроена материя и как частицы взаимодействуют.

Его запуск сопровождался критикой со стороны групп ученых. Они утверждали, что коллайдер может вызвать появление черных дыр и опасных форм материи. Однако все подобные сообщения опровергали. Несколько раз на коллайдере происходили аварии и он приостанавливал свою работу.

В 2012 году с помощью БАК подтвердили существование бозона Хиггса — «частицы бога», которая играет не последнюю роль в картине устройства мира. Он отвечает за наличие массы у частиц.

Большой адронный коллайдер: зачем он вообще?

На этой неделе, спустя два года ожиданий, Большой адронный коллайдер — ускоритель заряженных частиц, благодаря которому в 2012 году открыли бозон Хиггса — могут снова запустить.

Гигантский коллайдер (частью которого является подземный туннель на границе Франции и Швейцарии длиною в 27 километров) был отключен в феврале 2013 года, чтобы учёные могли внести изменения в его конструкцию. Теперь же учёные вновь включают его, чтобы при помощи серии экспериментов совершить скачок в изучении физики.

1. Постойте-постойте, а что такое Большой адронный коллайдер?


Туннель Большого адронного коллайдера
БАК был построен в 2008 году организацией CERN (Европейский совет ядерных исследований). Создание самого большого в мире адронного коллайдера обошлось в девять миллиардов долларов. Невероятная длина его подземных туннелей позволяет физикам проводить невероятные эксперименты.

Грубо говоря, чаще всего эксперименты включают в себя разгон заряженных частиц до 99.9999% от скорости света (заставляя их перемещаться по кругу 11000 раз в секунду) и последующее их столкновение при помощи гигантских магнитов. Сложные сенсоры считывают всевозможную информацию, полученную после столкновения этих частиц.

2. Зачем учёным сталкивать частицы?


Информация, полученная одним из сенсоров, в БАК
Огромное количество энергии, которое выделяется после столкновения, заставляет частицы распадаться и в последствии собираться в довольно-таки необычные конструкции. Подобные эксперименты помогают найти недостатки в стандартной модели физики — на данный момент это лучший способ предсказать поведение частиц.

Физикам интересны такие эксперименты потому, что, хоть стандартная модель и считается довольно-таки точной, она всё же неполная. «Она эффективна для предположений, но физики не так уж их любят», — прокомментировал Патрик Коппенбург, ученый, работающий с БАК.

Сильнейший недостаток модели — это то, что она не учитывает силу гравитации (она описывает только три других фундаментальных взаимодействия) и такие понятия, как тёмная материя и тёмная энергия. Она также не очень-то хорошо работает с нынешними теориями о происхождении Вселенной.

Другими словами, стандартная модель физики — это лучшее описание того, как работают вещи вокруг нас. Однако, по словам Коппенбурга, эта теория «точно в каком-то месте ошибочна». Сталкивая частицы в БАК, он и другие учёные пытается найти отклонения от этой модели.

3. Что эти учёные уже обнаружили

Диаграмма 17-ти фундаментальных частиц стандартной модели, включая бозон Хиггса
Наиболее важным событием за всю историю Большого адронного коллайдера стало открытие бозона Хиггса.

Еще с 1960-х годов считалось, что бозон Хиггса — часть поля Хиггса, невидимого поля, проходящего сквозь пространство и влияющего на все частицы. Согласно предположениям физиков, именно благодаря этому полю у частиц есть масса (или же сопротивление при передвижении).
Физик Брайн Грин писал в своей статье:

«Представьте, что шарик для пинг-понга погрузили под воду. Когда вы пытаетесь погрузить его глубже, то он кажется в разы более тяжелым, чем он был вне воды. Его взаимодействие с водой приводит к увеличению его массы. То же случается с частицами, погруженными в поле Хиггса»

В принципе, никого не удивило открытие бозона и поля Хиггса, ведь все законы стандартной модели указывали на их существование. Загвоздка заключалась в том, что не было прямых доказательств. «Когда мы строили БАК, то надеялись либо обнаружить бозон Хиггса, либо доказать, что его не существует», — комментирует Коппенбург.

В 2012 году, спустя три года экспериментов, физики доказали существование бозона Хиггса. Было высчитано, что сразу после столкновения бозон Хиггса разлагался на другие частицы, следуя определенным закономерностям. Данные, собранные после столкновения протонов, помогли понять и предсказать эти закономерности.

Это открытие невероятно важно: поле Хиггса — краеугольный камень стандартной модели. Благодаря ему, все другие уравнения становятся в разы понятней. Мы смогли обнаружить его спустя 50 лет после того, как его существование было предсказано на бумаге, а это значит, что мы на верном пути в изучении устройства нашей вселенной.

4. Почему БАК снова включают?


Туннели Большого адронного коллайдера
Все эксперименты, что проводились в прошлом, были лишь началом. Спустя несколько лет работы над улучшением магнитов (они ускоряют и контролируют движение частиц) и сенсоров, начнется новая эра: теперь серия экспериментов включает в себя разгон и столкновение частиц, заряд которых будет в два раза больше предыдущего.

Новые столкновения частиц позволят учёным открыть новые (и, возможно, даже большие) частицы, а также изучить бозон Хиггса и его поведение в разных условиях.

«Мы надеемся открыть элементы, не предсказанные стандартной моделью. К примеру, частицы настолько тяжелые, что они не были еще открыты, или же другие типы отклонений», — делится надеждами Коппенбург.

Возможно, к примеру, что бозон Хиггса — это лишь одна из нескольких частиц из механизма Хиггса.

Достаточное количество новой информации, по словам Коппенбурга и других учёных, поможет нам открыть новые частицы и улучшить нынешнюю стандартную модель, позволив ей точно взаимодействовать с тёмной материей, рождением вселенной и другими плохо изученными темами.

5. Собираются ли в будущем создавать ускорители частиц еще больших размеров?


Схема международного линейного коллайдера
Да. Физики надеются со временем построить ускорители гораздо больших размеров, которые позволят разгонять частицы с большой энергией, чем БАК. Это, в свою очередь, позволит открыть новые частицы и даст более чёткое понимание тёмной материи. Длина международного линейного коллайдера, к примеру, будет составлять 32 километра. В отличие от БАК, где частицы разгоняются по кругу, в этом проекте они будут сталкиваться друг с другом напрямую. Проект всё еще рассматривается, но учёные надеются, что такой ускоритель получится построить в Японии, и он начнёт свою работу к 2026 году.

Когда-то всем казалось, что гигантский ускоритель частиц построят и в США. В 1989 году Конгресс даже согласился потратить шесть миллиардов долларов на постройку сверхпроводящего супер-коллайдера. Строить его собирались в Ваксахэчи, штат Техас, длина его туннелей должна была достигать 86 километров. Сила, с которой в нём сталкивались бы частицы, была бы в четыре раза сильней, чем у Большого адронного коллайдера. Но к сожалению, в 1993 году стоимость проекта выросла до одиннадцати миллиардов долларов, и Конгресс решил прикрыть его, несмотря на то, что два миллиарда уже были потрачены на строительство 25 километров туннеля.

Оригинал: Vox
Перевел: Kirill Chernyakov для Newочём
Редактировал: Evgeny Uryvaev

Что делает большой адронный коллайдер. Зачем нужен большой адронный коллайдер и где он находится

Многие простые жители планеты задают себе вопрос о том, для чего нужен большой адронный коллайдер. Непонятные большинству научные исследования, на которые потрачено много миллиардов евро, вызывают настороженность и опаску.

Может, это и не исследования вовсе, а прототип машины времени или портал для телепортации инопланетных существ, способной изменить судьбу человечества? Слухи ходят самые фантастичные и страшные. В статье мы попытаемся разобраться, что такое адронный коллайдер и для чего он создавался.

Амбициозный проект человечества

Большой адронный коллайдер на сегодня является мощнейшим на планете ускорителем частиц. Он находится на границе Швейцарии и Франции. Точнее под нею: на глубине 100 метров залегает кольцевой тоннель ускорителя длиной почти 27 километров. Хозяином экспериментального полигона стоимостью, превышающей 10 миллиардов долларов, является Европейский центр ядерных исследований.

Огромное количество ресурсов и тысячи физиков-ядерщиков занимаются тем, что ускоряют протоны и тяжёлые ионы свинца до скорости, близкой к световой, в разных направлениях, после чего сталкивают их друг с другом. Результаты прямых взаимодействий тщательно изучаются.

Предложение создать новый ускоритель частиц поступило ещё в 1984 году. Десять лет велись различные дискуссии насчет того, что будет собой представлять адронный коллайдер, зачем нужен именно такой масштабный исследовательский проект. Только после обсуждения вопросов особенностей технического решения и требуемых параметров установки проект был утверждён. Строительство начали только в 2001 году, выделив для его размещения прежнего ускорителя элементарных частиц – большого электрон-позитронного коллайдера.

Зачем нужен большой адронный коллайдер

Взаимодействие элементарных частиц описывается по-разному. Теория относительности вступает в противоречия с квантовой теорией поля. Недостающим звеном в обретении единого подхода к строению элементарных частиц является невозможность создания теории квантовой гравитации. Вот зачем нужен адронный коллайдер повышенной мощности.

Общая энергия при столкновении частиц составляет 14 тераэлектронвольт, что делает устройство значительно более мощным ускорителем, чем все существующие сегодня в мире. Проведя эксперименты, ранее невозможные по техническим причинам, учёные с большой долей вероятности смогут документально подтвердить или опровергнуть существующие теории микромира.

Изучение кварк-глюонной плазмы, образующейся при столкновении ядер свинца, позволит построить более совершенную теорию сильных взаимодействий, которая сможет кардинально изменить ядерную физику и звёздного пространства.

Бозон Хиггса

В далёком 1960 году физик из Шотландии Питер Хиггс разработал теорию поля Хиггса, согласно которой частицы, попадающие в это поле, подвергаются квантовому воздействию, что в физическом мире можно наблюдать как массу объекта.

Если в ходе экспериментов удастся подтвердить теорию шотландского ядерного физика и найти бозон (квант) Хиггса, то это событие может стать новой отправной точкой для развития жителей Земли.

А открывшиеся управляющего гравитацией, многократно превысят все видимые перспективы развития технического прогресса. Тем более что передовых учёных больше интересует не само наличие бозона Хиггса, а процесс нарушения электрослабой симметрии.

Как он работает

Чтобы экспериментальные частицы достигли немыслимой для поверхности скорости, почти равной в вакууме, их разгоняют постепенно, каждый раз увеличивая энергию.

Сначала линейные ускорители делают инжекцию ионов и протонов свинца, которые после подвергают ступенчатому ускорению. Частицы через бустер попадают в протонный синхротрон, где получают заряд в 28 ГэВ.

На следующем этапе частицы попадают в супер-синхротрон, где энергия их заряда доводится до 450 ГэВ. Достигнув таких показателей, частицы попадают в главное многокилометровое кольцо, где в специально расположенных местах столкновения детекторы подробно фиксируют момент соударения.

Кроме детекторов, способных зафиксировать все процессы при столкновении, для удержания протонных сгустков в ускорителе используют 1625 магнитов, обладающих сверхпроводимостью. Общая их длина превышает 22 километра. Специальная для достижения поддерживает температуру −271 °C. Стоимость каждого такого магнита оценивается в один миллион евро.

Цель оправдывает средства

Для проведения таких амбициозных экспериментов и был построен самый мощный адронный коллайдер. Зачем нужен многомиллиардный научный проект, человечеству рассказывают с нескрываемым восторгом многие учёные. Правда, в случае новых научных открытий, скорее всего, они будут надёжно засекречены.

Даже можно сказать, наверняка. Подтверждением сему является вся история цивилизации. Когда придумали колесо, появились Освоило человечество металлургию – здравствуйте, пушки и ружья!

Все самые современные разработки сегодня становятся достоянием военно-промышленных комплексов развитых стран, но никак не всего человечества. Когда учёные научились расщеплять атом, что появилось первым? Атомные реакторы, дающие электроэнергию, правда, после сотен тысяч смертей в Японии. Жители Хиросимы однозначно были против научного прогресса, который забрал у них и их детей завтрашний день.

Техническое развитие выглядит насмешкой над людьми, потому что человек в нём скоро превратится в самое слабое звено. По теории эволюции, система развивается и крепнет, избавляясь от слабых мест. Может получиться в скором времени так, что нам не останется места в мире совершенствующейся техники. Поэтому вопрос “зачем нужен большой адронный коллайдер именно сейчас” на самом деле – не праздное любопытство, ибо вызван опасением за судьбу всего человечества.

Вопросы, на которые не отвечают

Зачем нам большой адронный коллайдер, если на планете миллионы умирают от голода и неизлечимых, а порой и поддающихся лечению болезней? Разве он поможет побороть это зло? Зачем нужен адронный коллайдер человечеству, которое при всём развитии техники вот уже как сто лет не может научиться успешно бороться с раковыми заболеваниями? А может, просто выгоднее оказывать дорогие медуслуги, чем найти способ исцелить? При существующем миропорядке и этическом развитии лишь горстке представителей человеческой расы весьма необходим большой адронный коллайдер. Зачем он нужен всему населению планеты, ведущему безостановочный бой за право жить в мире, свободном от посягательств на чью-либо жизнь и здоровье? История об этом умалчивает…

Опасения научных коллег

Есть другие представители научной среды, высказывающие серьёзные опасения по поводу безопасности проекта. Велика вероятность того, что научный мир в своих экспериментах, в силу своей ограниченности в знаниях, может утратить контроль над процессами, которые даже толком не изучены.

Такой подход напоминает лабораторные опыты юных химиков – всё смешать и посмотреть, что будет. Последний пример может закончиться взрывом в лаборатории. А если такой «успех» постигнет адронный коллайдер?

Зачем нужен неоправданный риск землянам, тем более что экспериментаторы не могут с полной уверенностью сказать, что процессы столкновений частиц, приводящие к образованию температур, превышающих в 100 тысяч раз температуру нашего светила, не вызовут цепной реакции всего вещества планеты?! Или просто вызовут способную фатально испортить отдых в горах Швейцарии или во французской Ривьере…

Информационная диктатура

Для чего нужен большой адронный коллайдер, когда человечество не может решить менее сложные задачи? Попытка замалчивания альтернативного мнения только подтверждает возможность непредсказуемости хода событий.

Наверное, там, где впервые появился человек, в него и была заложена эта двойственная особенность – делать благо и вредить себе одновременно. Быть может, нам ответ дадут открытия, которые подарит адронный коллайдер? Зачем нужен был этот рискованный эксперимент, будут решать уже наши потомки.

Большой адронный коллайдер (БАК) – это ускоритель заряженных частиц, с помощью которого физики смогут узнать о свойсвтах материи значительно больше, чем было известно раньше. Ускорители используются для получения заряженных элементарных частиц высоких энергий. В основе работы практически любого ускорителя лежит взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле напрямую совершает работу над частицей, то есть увеличивает её энергию, а магнитное поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Коллайдер (англ. collide – “сталкиваться”) – ускоритель на встречных пучках, предназначенный для изучения продуктов их соударений. Позволяет придать элементарным частицам вещества высокую кинетическую энергию, направить их навстречу друг другу, чтобы произвести их столкновение.

Почему “большой адронный”

Большим коллайдер назван, собственно, из-за своих размеров. Длина основного кольца ускорителя составляет 26 659 м; адронным – из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков.

Построен БАК в научно-исследовательском центре Европейского совета ядерных исследований (ЦЕРН), на границе Швейцарии и Франции, недалеко от Женевы. На сегодняшний день БАК является самой крупной экспериментальной установкой в мире. Руководителем этого масштабного проекта является британский физик Лин Эванс, а в строительстве и исследованиях принимали и принимают участие более 10 тыс. учёных и инженеров из более чем 100 стран.

Небольшой экскурс в историю

В конце 60-х годов прошлого века физиками была разработана так называемая Стандартная модель. Она объединяет три из четырёх фундаментальных взаимодействий – сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах общей теориии относительности. То есть, на сегодняшний день фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности и стандартной моделью.

Считается, что стандартная модель должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ(тераэлектронвольт). Главная задача Большого адронного коллайдера – получить хотя бы первые намеки на то, что это за более глубокая теория.

В число основных задач коллайдера входит также открытие и подтверждение Бозона Хиггса. Это открытие подтвердило бы Стандартную Модель возникновения элементарных атомных частиц и стандартной материи. Во время запуска коллайдера на полную мощность целостность Стандартной Модели будет разрушена. Элементарные частицы, свойства которых мы понимаем лишь частично, не будут в состоянии поддерживать свою структурную целостность. У Стандартной Модели есть верхняя граница энергии 1 ТэВ, при увеличении которой частица распадается. При энергии в 7 ТэВ могли бы быть созданы частицы с массами, в десять раз больше чем ныне известные.

Технические характеристики

Предполагается сталкивать в ускорителе протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109 электронвольт) на каждую пару сталкивающихся нуклонов.

Светимость БАК во время первых недель работы пробега была не более 1029 частиц/см²·с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7·1034 частиц/см²·с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle(KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер, под землёй на территории Франции и Швейцарии. Глубина залегания туннеля – от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (−271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Детекторы БАК

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

Первый из них настроен для исследования столкновений тяжёлых ионов. Температура и плотность энергии образованной при этом ядерной материи достаточной для рождения глюонной плазмы. Внутренняя система слежения (ITS) в ALICE состоит из шести цилиндрических слоев кремниевых датчиков, окружающих пункт столкновения и измеряющих свойства и точные положения появляющихся частиц. Таким образом могут быть легко обнаружены частицы, содержащие тяжелый кварк.

Второй предназначен для исследования столкновений между протонами. Длина ATLAS – 44 метра, 25 метров в диаметре и вес приблизительно 7000 тонн. В центре тоннеля сталкиваются лучи протонов, это самый большой и самый сложный из когда либо построенных датчиков такого типа. Датчик фиксирует все, что происходит во время и после столкновения протонов. Целью проекта является обнаружение частиц, до этого не зарегистрированных и не обнаруженных в нашей вселенной.

CMS – один из двух огромных универсальных детекторов элементарных частиц на БАК. Около 3600 ученых из 183 лабораторий и университетов 38 стран, поддерживают работу CMS (На рисунке – устройство CMS).


Самый внутренний слой – основанный на кремнии трекер. Трекер – самый большой в мире кремниевый датчик. У этого есть 205 m2 кремниевых датчиков (приблизительно область теннисного корта), включающих 76 миллионов каналов. Трекер позволяет измерять следы заряженных частиц в электромагнитном поле.

На втором уровне находиться Электромагнитный калориметр. Адронный Калориметр, находящийся на следующем уровне, измеряет энергию отдельных адронов, произведенных в каждом случае.

Следующий слой CMS Большого Адронного Коллайдера – огромный магнит. Большой Соленоидный Магнит составляет 13 метров в длину и имеет 6-метровый диаметр. Состоит он из охлаждаемых катушек, сделанных из ниобия и титана. Этот огромный соленоидный магнит работает на полную силу, чтоб максимизировать время существования частиц соленоидный магнит.

Пятый слой – мюонные детекторы и ярмо возврата. CMS предназначен для исследования различных типов физики, которые могли бы быть обнаружены в энергичных столкновениях LHC. Некоторые из этих исследований заключаются в подтверждении или улучшенных измерениях параметров Стандартной Модели, в то время как многие другие – в поисках новой физики.

О Большом адронном коллайдере можно рассказывать много и долго. Надеемся, что наша статья помогла разобраться в том, что же такое БАК и для чего он необходим учёным.

В этом вопросе (и ему подобных) любопытно появление слов «на самом деле» – как будто есть некая скрытая от непосвящённых суть, охраняемая «жрецами науки» от обывателей, тайна, которую нужно раскрыть. Однако при взгляде изнутри науки тайна исчезает и места этим словам нет – вопрос «зачем нужен адронный коллайдер» ничем принципиально не отличается от вопроса «зачем нужна линейка (или весы, или часы и т.д.)». То, что коллайдер – штука большая, дорогая и по любым меркам сложная – дела не меняет.

Наиболее близкой аналогией, позволяющей понять, «зачем это нужно», является, на мой взгляд, линза. Человечество знакомо со свойствами линз с незапамятных времён, однако только в середине прошлого тысячелетия было понято, что определённые комбинации линз могут быть использованы как приборы, позволяющие рассматривать очень маленькие либо очень далёкие объекты – речь идёт, конечно, о микроскопе и телескопе. Нет никаких сомнений, что вопрос, зачем всё это нужно, неоднократно задавался при появлении этих новых для современников конструкций. Однако он снялся с повестки дня сам собой, по мере того, как ширились области научного и прикладного применения и того, и другого устройства. Заметим, что, вообще говоря, это разные приборы – рассматривать звёзды в перевёрнутый микроскоп не получится. Большой адронный коллайдер же, парадоксальным образом, объединяет их в себе, и может с полным основанием рассматриваться как высшая достигнутая человечеством точка эволюции как микроскопов, так и телескопов за прошедшие века. Это утверждение может показаться странным, и, разумеется, его не следует понимать буквально – в ускорителе нет линз (по крайней мере, оптических). Но по сути дела это именно так. В своей «микроскопной» ипостаси коллайдер позволяет изучать структуру и свойства объектов на уровне 10-19 метров (напомню, что размер атома водорода – примерно 10-10 метра). Ещё интереснее обстоит дело в «телескопной» части. Каждый телескоп – самая настоящая машина времени, так как наблюдаемая в нём картина соответствует тому, каким был объект наблюдения в прошлом, а именно то время назад, которое необходимо электромагнитному излучению, чтобы дойти от этого объекта до наблюдателя. Это время может составлять восемь с небольшим минут в случае наблюдения Солнца с Земли и до миллиардов лет при наблюдении далёких квазаров. Внутри Большого адронного коллайдера создаются условия, которые существовали во Вселенной через ничтожную долю секунды после Большого взрыва. Таким образом, мы получаем возможность заглянуть в прошлое почти на 14 миллиардов лет, к самому началу нашего мира. Обычные земные и орбитальные телескопы (по крайней мере, те, которые регистрируют электромагнитное излучение), обретают «зрение» лишь после эры рекомбинации, когда Вселенная стала оптически прозрачной – это произошло по современным представлениям через 380 тысяч лет после Большого взрыва.

Дальше нам предстоит решать – что делать с этим знанием: как об устройстве материи на малых масштабах, так и об её свойствах при рождении Вселенной, и именно это в конечном итоге вернёт тайну, о которой шла речь в начале, и определит, зачем же коллайдер был нужен «на самом деле». Но это решение человека, коллайдер же, с помощью которого было получено это знание, останется всего лишь прибором – возможно, самой изощрённой системой «линз», которую когда-либо видел мир.


В этом году ученые планируют воспроизвести в ядерной лаборатории те далекие первозданные условия, когда еще не было протонов и нейтронов, а существовала сплошная кварк-глюонная плазма. Иными словами, исследователи надеются увидеть мир элементарных частиц в том виде, каким он был всего через доли микросекунд после Большого взрыва, то есть после образования Вселенной. Программа называется «Как все началось». Кроме того, уже более 30 лет в научном мире выстраиваются теории, объясняющие наличие массы у элементарных частиц. Одна из них предполагает существование бозона Хиггса. Эту элементарную частицу называют еще божественной. Как сказал один из сотрудников ЦЕРН, «поймав следы Хиггс-бозона, я приду к собственной бабушке и скажу: посмотри-ка, пожалуйста, – из-за этой маленькой штучки у тебя столько лишних килограммов». Но экспериментально существование бозона пока не подтверждено: все надежды – на ускоритель LHC.

Большой адронный коллайдер – ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ.

Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она?
Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной. Однако в самом начале XXI века перед нами стоят новые вопросы, ответы на которые ученые надеются получить с помощью ускорителя БАК. И кто знает, развитие каких новых областей человеческих знаний повлекут за собой предстоящие исследования. А пока же наши знания о Вселенной недостаточны.

Комментирует член-корреспондент РАН из Института физики высоких энергий Сергей Денисов:
– В этом коллайдере участвует много российских физиков, которые связывают определенные надежды с открытиями, которые могут там произойти. Основное событие, которое может случиться – это открытие так называемой гипотетической частицы Хиггса (Питер Хиггс — выдающийся шотландский физик.). Роль этой частицы чрезвычайно важна. Она ответственна за образование массы других элементарных частиц. Если такую частицу откроют, то это будет величайшим открытием. Оно подтвердило бы так называемую Стандартную модель, которая сейчас широко используется для описания всех процессов в микромире. Пока эта частица не будет открыта, эту модель нельзя считать полностью обоснованной и подтвержденной. Это, конечно, самое первое, чего ученые ожидают от этого коллайдера (LHC).
Хотя, вообще говоря, никто не считает эту Стандартную модель истиной в последней инстанции. И, скорее всего, по мнению большинства теоретиков, она является приближением или, иногда говорят, «низкоэнергетическим приближением» к более Общей теории, которая описывает мир на расстояниях в миллион раз меньших, чем размер ядер. Это примерно как теория Ньютона является «низкоэнергетическим приближением» к теории Эйнштейна – теории относительности. Вторая важная задача, связанная с коллайдером – это попытаться перейти за пределы этой самой Стандартной модели, то есть совершить переход к новым пространственно-временным интервалам.

Физики смогут понять, в каком направлении надо двигаться, чтобы построить более красивую и более Общую теорию физики, которая будет эквивалентна таким малым пространственно-временным интервалам. Те процессы, которые там изучаются, воспроизводят по сути процесс образования Вселенной, как говорят, «в момент Большого Взрыва». Конечно, это для тех, кто верит в эту теорию о том, что Вселенная создавалась таким образом: взрыв, затем процессы при супервысоких энергиях. Оговариваемое путешествие во времени может оказаться связанным с этим Большим Взрывом.
Как бы там ни было, БАК – это достаточно серьезное продвижение в глубь микромира. Поэтому могут открыться совершенно неожиданные вещи. Скажу одно, что на БАКе могут быть открыты совершенно новые свойства пространства и времени. В каком направлении они будут открыты – сейчас сказать трудно. Главное – прорываться дальше и дальше.

Справка

Европейская организация ядерных исследований (ЦЕРН) — крупнейший в мире научно-исследовательский центр в области физики частиц. К настоящему времени число стран-участниц выросло до 20. Около 7000 ученых, представляющих 500 научных центров и университетов, пользуются экспериментальным оборудованием ЦЕРН. Кстати, в работе над Большим адронным коллайдером принимал непосредственное участие и российский Институт ядерной физики СО РАН. Наши специалисты сейчас заняты монтажом и тестированием оборудования, которое разработано и произведено в России для этого ускорителя. Ожидается, что Большой адронный коллайдер будет запущен в мае 2008 года. Как выразился Лин Эванс, глава проекта, ускорителю не хватает лишь одной детали – большой красной кнопки.

Многие, уже, так или иначе, но слышали термин «Большой адронный коллайдер». Для простого обывателя из этих слов знакомо только слово «большой». Но что же это на самом деле? Да и можно ли простому смертному освоить этот физический термин.

Большой адронный коллайдер (БАК) представляет собой установку для опытов ученых-физиков с элементарными частицами. По формулировке, БАК является ускорителем заряженных частиц на встречных пучках, предназначенный для разгона тяжелых ионов и протонов и изучения продуктов соударений . Иными словами, ученые сталкивают атомы, а потом смотрят, что из этого получилось.

В данное время – это самая крупная экспериментальная установка в мире. Размер этой установки можно сравнить с городом диаметром, почти в 27 километров, который находится на стометровой глубине. Эта установка находится недалеко от Женевы, а на ее строительство ушло 10 миллиардов долларов.

Одной из главных задач установки БАК (по утверждению ученых) является поиск бозона Хиггса. Опять же, простыми словами – это попытка найти частицу, которая отвечает за наличие массы.

Параллельно с этим, на коллайдере проводятся эксперименты по поиску:

— частиц вне «Стандартной модели»,

— магнитных монополей (частиц, обладающих магнитным полем),

— так же, проходит исследование квантовой гравитации и исследование микроскопических дыр.

Вот эти «микроскопические черные дыры» и не дают многим покоя. Причем волнуются не только те, для кого знакомство с физикой закончилось на школьной скамье, но и те, кто продолжает ее изучать на профессиональном уровне.

Что такое черная дыра известно всем и со школьной скамьи и по фантастическим рассказам и фильмам. Многие (в том числе и ученые) переживают, что подобные эксперименты, часть из которых построена для попытки воссоздания «большого взрыва» (после которого, по теории возникла вселенная) приведут к неизбежному краху всей планеты.

Ученые успокаивают, что никакой опасности от этих опытов и экспериментов нет. Но есть еще один факт, которые никогда не учитывают светила науки. Речь идет об оружии.

Каждый нормальный ученый, делая открытие или что-либо, изобретая – делает это с двумя целями. Первая цель помочь миру жить лучше, а вторая менее гуманная, но человеческая – это прославиться.

Но, почему-то все изобретения (без преувеличений), занимают свое место в создании орудий для убийства того же самого человечества и прославленных ученных. Даже такие открытия, которые для нас стали обывательскими (радио, механические двигатели, спутниковое телевидение и т.д.), не говоря уже об атомной энергии, прочно заняли свое место в «оборонке».

В 2016 году, в Подмосковье планируют запустить установку, подобную европейскому БАКу . Но только, российская установка, в отличие от «старшего брата», должна в реальности воссоздать «большой взрыв» в малых масштабах.

И кто даст гарантию, что соседствующая Москва (а с ней и Земля), не станет прародительницей новой «черной дыры» в огромной вселенной?

Что такое большой адронный коллайдер?

Большой адронный коллайдер (LHC) – это чудо современной физики элементарных частиц, которое позволило исследователям проникнуть в глубины реальности. Его истоки уходят корнями в 1977 год, когда сэр Джон Адамс, бывший директор Европейской организации ядерных исследований (ЦЕРН), предложил построить подземный туннель, в котором мог бы разместиться ускоритель элементарных частиц, способный достигать чрезвычайно высоких энергий. Исторический доклад 2015 года физика Томаса Шёрнера-Садениуса.

Проект был официально одобрен двадцатью годами позже, в 1997 году, и началось строительство кольца длиной 16,5 миль (27 километров), которое проходило под французско-швейцарской границей, способного ускорять частицы до 99,99% скорости света и разбивая их вместе. Внутри кольца 9300 магнитов направляют пакеты заряженных частиц в двух противоположных направлениях со скоростью 11 245 раз в секунду, в конечном итоге сводя их вместе для лобового столкновения. Установка способна создавать около 600 миллионов столкновений каждую секунду, извергая невероятное количество энергии и время от времени экзотические и невиданные ранее тяжелые частицы.LHC работает при энергиях в 6,5 раз выше, чем предыдущий рекордный ускоритель частиц, выведенный из эксплуатации Tevatron Fermilab в США

Строительство LHC обошлось в 8 миллиардов долларов, из которых 531 миллион долларов поступил из Соединенных Штатов. Над его экспериментами сотрудничают более 8000 ученых из 60 разных стран. Ускоритель впервые включил свои пучки 10 сентября 2008 года, столкнувшись с частицами с интенсивностью, составляющей лишь десятимиллионную от первоначальной расчетной интенсивности.

До того, как он начал свою работу, некоторые опасались, что новый сокрушитель атомов уничтожит Землю, возможно, создав всепоглощающую черную дыру.Но любой уважаемый физик заявил бы, что подобные опасения необоснованны.

«LHC безопасен, и любое предположение о том, что он может представлять опасность, – чистая выдумка», – сказал LiveScience генеральный директор CERN Роберт Эймар.

Это не значит, что объект не может быть потенциально вредным при неправильном использовании. Если бы вы засунули руку в луч, который фокусирует энергию движущегося авианосца до ширины менее миллиметра, он проделал бы отверстие прямо в нем, и тогда излучение в туннеле убило бы вас.

Новаторские исследования

За последние 10 лет LHC разбил атомы вместе в своих двух основных экспериментах, ATLAS и CMS, которые работают и анализируют свои данные по отдельности. Это делается для того, чтобы ни одно из них не влияло на другое, и чтобы каждый из них проверял свой родственный эксперимент. С помощью этих инструментов было написано более 2000 научных работ по многим областям физики фундаментальных частиц.

4 июля 2012 года научный мир, затаив дыхание, наблюдал за тем, как исследователи на LHC объявили об открытии бозона Хиггса, последнего фрагмента головоломки в теории пятидесятилетней давности, называемой Стандартной моделью физики.Стандартная модель пытается учесть все известные частицы и силы (кроме гравитации) и их взаимодействия. Еще в 1964 году британский физик Питер Хиггс написал статью о частице, которая теперь носит его имя, объясняя, как возникает масса во Вселенной.

Хиггс – это на самом деле поле, которое пронизывает все пространство и затягивает каждую частицу, которая движется через него. Некоторые частицы движутся по полю медленнее, и это соответствует их большей массе. Бозон Хиггса – проявление этого поля, за которым физики гнались на протяжении полувека.БАК был специально построен, чтобы наконец захватить этот неуловимый карьер. В конце концов, обнаружив, что масса Хиггса в 125 раз превышает массу протона, и Питер Хиггс, и бельгийский физик-теоретик Франсуа Энглерт были награждены Нобелевской премией в 2013 году за предсказание его существования.

Это составное изображение Большого адронного коллайдера было создано 3D-художником. Лучевые трубки представлены в виде прозрачных трубок, с противоположно вращающимися протонными пучками, показанными красным и синим цветом. (Изображение предоставлено Даниэлем Домингесом / ЦЕРН)

Даже с Хиггсом в руках физики не могут отдыхать, потому что в Стандартной модели все еще есть некоторые дыры.Во-первых, он не имеет отношения к гравитации, которая в основном охватывается теориями относительности Эйнштейна. Это также не объясняет, почему Вселенная состоит из материи, а не антивещества, которое должно было быть создано примерно в равных количествах в начале времен. И в нем ничего не говорится о темной материи и темной энергии, которые еще не были открыты, когда она была впервые создана.

До включения LHC многие исследователи сказали бы, что следующая великая теория – это суперсимметрия, которая добавляет подобных, но гораздо более массивных партнеров-близнецов ко всем известным частицам.Один или несколько из этих тяжелых партнеров могли быть идеальным кандидатом на роль частиц, составляющих темную материю. И суперсимметрия начинает управлять гравитацией, объясняя, почему она намного слабее трех других фундаментальных сил. До открытия Хиггса некоторые ученые надеялись, что в конечном итоге бозон будет немного отличаться от того, что предсказывала Стандартная модель, намекая на новую физику.

Но когда появился Хиггс, это было невероятно нормально, именно в том диапазоне масс, который, по утверждениям Стандартной модели, будет.Хотя это большое достижение для Стандартной модели, физики остались без каких-либо хороших выводов. Некоторые начали говорить о потерянных десятилетиях в погоне за теориями, которые хорошо звучали на бумаге, но, похоже, не соответствуют реальным наблюдениям. Многие надеются, что следующие прогоны сбора данных с LHC помогут прояснить часть этого беспорядка.

БАК был закрыт в декабре 2018 года, чтобы пройти два года модернизации и ремонта. Когда он вернется в сеть, он сможет разбивать атомы вместе с небольшим увеличением энергии, но с удвоенным числом столкновений в секунду.Что он найдет, остается только гадать. Уже идут разговоры о еще более мощном ускорителе частиц на замену, расположенном в том же районе, но в четыре раза превышающем размер LHC. На строительство огромной замены может потребоваться 20 лет и 27 миллиардов долларов.

Дополнительные ресурсы:

ЦЕРН делает смелые шаги по созданию суперколлайдера

стоимостью 21 миллиард евро

Предлагаемый 100-километровый коллайдер частиц в ЦЕРНе будет сталкивать электроны и позитроны, а позже и протоны (впечатление художника).Предоставлено: Polar Media

.

ЦЕРН сделал важный шаг к созданию 100-километрового кругового суперколлайдера, который расширит границы физики высоких энергий.

Решение было единогласно одобрено Советом ЦЕРН, руководящим органом организации, 19 июня после утверждения плана независимой комиссией в марте. Ведущей европейской организации в области физики элементарных частиц потребуется глобальная помощь для финансирования проекта, который, как ожидается, будет стоить не менее 21 миллиарда евро (24 миллиарда долларов США) и станет продолжением знаменитого Большого адронного коллайдера (LHC) лаборатории.К середине века новая машина будет сталкивать электроны со своими партнерами из антивещества, позитронами. Этот проект, который будет построен в подземном туннеле недалеко от ЦЕРНа недалеко от Женевы, Швейцария, позволит физикам изучить свойства бозона Хиггса, а затем разместить еще более мощную машину, которая будет сталкиваться с протонами и прослужит долго. вторая половина века.

Утверждение еще не окончательное. Но это означает, что ЦЕРН теперь может приложить значительные усилия для разработки коллайдера и исследования его осуществимости, а также предложить альтернативные конструкции для последующих коллайдеров после LHC, таких как линейный электрон-позитронный коллайдер или коллайдер, который ускорял бы мюоны. .«Я думаю, что это исторический день для ЦЕРНа и физики элементарных частиц в Европе и за ее пределами», – заявила совету генеральный директор ЦЕРН Фабиола Джанотти после голосования.

По словам бывшего генерального директора CERN Криса Ллевеллина Смита, это «явная точка разветвления» для лаборатории. До сегодняшнего дня рассматривалось несколько других вариантов коллайдера следующего поколения, но теперь Совет ЦЕРН сделал недвусмысленное и единодушное заявление. «Это важный шаг, чтобы заставить страны Европы сказать:« Да, это то, что мы хотели бы сделать », – говорит Ллевеллин Смит, физик из Оксфордского университета, Великобритания.

Два этапа

Решение содержится в утвержденном сегодня документе – Обновлении Европейской стратегии по физике элементарных частиц 2020 года. Он выделяет два этапа развития. Во-первых, ЦЕРН построит электрон-позитронный коллайдер с энергией столкновения, настроенной так, чтобы максимизировать образование бозонов Хиггса, и подробно изучить их свойства.

Позже в этом веке первая машина будет демонтирована и заменена протон-протонным разрушителем. Это достигнет энергии столкновения в 100 тераэлектронвольт (ТэВ) по сравнению с 14 ТэВ на LHC, который также сталкивает протоны и в настоящее время является самым мощным ускорителем в мире.Его цель будет заключаться в поиске новых частиц или сил природы, а также в расширении или замене текущей стандартной модели физики элементарных частиц. Большая часть технологий, которые потребуются для окончательной машины, еще предстоит разработать, и в ближайшие десятилетия они будут предметом интенсивного изучения.

«Это очень амбициозная стратегия, которая намечает светлое будущее для Европы и ЦЕРН с осторожным, поэтапным подходом», – сказал Джанотти.

«Я думаю, что это правильное направление, – говорит Ифан Ван, возглавляющий Институт физики высоких энергий (IHEP) Китайской академии наук в Пекине.Предложенная ЦЕРН новая машина похожа по концепции на предложение Ванга по созданию китайского электрон-позитронного коллайдера после открытия БАК бозона Хиггса в 2012 году. Как и теперь официальная стратегия ЦЕРН, предложение Вана также включало возможность размещения протонного коллайдера на втором этапе, следуя модели LHC (27-километровое кольцо LHC занимает туннель, в котором в 1990-х годах размещался Большой электрон-позитронный коллайдер ЦЕРНа). Решение CERN «является подтверждением того, что наш выбор был правильным», – говорит Ван.

Полностью одобряя кольцевой коллайдер ЦЕРН, эта стратегия также призывает организацию изучить возможность участия в отдельном Международном линейном коллайдере (ILC), более старой идее, которую поддерживали физики в Японии. Хитоши Ямамото, физик из Университета Тохоку в Сендае, Япония, говорит, что это одобрение обнадеживает. «Я считаю, что условия для перехода ILC к следующему шагу в Японии, а также во всем мире, теперь прочно созданы».

Финансирование

Стратегия ЦЕРН предусматривает 2038 год как дату начала строительства нового 100-километрового туннеля и электрон-позитронного коллайдера.До тех пор лаборатория продолжит работу с модернизированной версией LHC, получившей название High Luminosity LHC, которая в настоящее время находится в стадии строительства.

Но прежде, чем ЦЕРН сможет начать строительство своей новой машины, ему придется искать новое финансирование помимо обычного бюджета, который он получает от государств-членов. Ллевеллин Смит говорит, что странам за пределами Европы, включая США, Китай и Японию, возможно, потребуется присоединиться к ЦЕРН, чтобы сформировать новую глобальную организацию. «Почти наверняка потребуется новая структура», – говорит он.

У дорогостоящего плана есть противники – даже в физическом сообществе. Сабина Хоссенфельдер, физик-теоретик из Франкфуртского института перспективных исследований в Германии, стала критиком стремления к все более высоким энергиям, когда научная окупаемость – помимо измерения свойств известных частиц – далека от гарантии. «Я все еще считаю, что это плохая идея», – говорит Хоссенфельдер. «Речь идет о десятках миллиардов. Я просто думаю, что в проведении такого рода исследований сейчас недостаточно научного потенциала.«

Новый коллайдер будет на неизведанной территории, – говорит Тара Ширс, физик из Ливерпульского университета, Великобритания. У LHC была четкая цель, которую нужно было искать – бозон Хиггса, а также хорошо мотивированные причины теоретиков полагать, что могут появиться новые частицы в диапазоне масс, который он мог бы исследовать, но сейчас ситуация иная, говорит она. «Сейчас у нас нет равноценного и надежного прогноза, поэтому знание того, где и как искать ответы, становится более сложной задачей и повышает риск.

Тем не менее, она говорит: «Мы знаем, что единственный способ найти ответы – это эксперимент, и единственное место, где их можно найти, – это то, где мы еще не могли искать».

Закрывая встречу, на которой большинство членов присутствовало удаленно, президент Совета ЦЕРН Урсула Басслер сказала: «Сейчас перед нами стоит большая задача – претворить эту стратегию в жизнь». Затем она открыла бутылку шампанского, прежде чем закончить телеконференцию.

На Большом адронном коллайдере обнаружена экзотическая четырехкварковая частица

Установка части детектора LHCb, который с тех пор обнаружил многие из новых типов адронов на LHC.Кредит: Жюльен Мариус Ордан / ЦЕРН

Большой адронный коллайдер (LHC) также является крупным открывателем адронов. Уничтожитель атомов недалеко от Женевы, Швейцария, наиболее известен тем, что в 2012 году продемонстрировал существование бозона Хиггса – открытия, которое стало последним краеугольным камнем современной классификации элементарных частиц. Но LHC также собрал десятки неэлементарных частиц, называемых адронами, – тех, которые, как протоны и нейтроны, состоят из кварков.

Последний адрон дебютировал на виртуальной встрече Европейского физического общества 29 июля, когда физик элементарных частиц Иван Поляков из Сиракузского университета в Нью-Йорке представил ранее неизвестный экзотический адрон, состоящий из четырех кварков.Это увеличило количество адронов на LHC до 62 (см. «Открытие частиц»), согласно подсчетам Патрика Коппенбурга, физика элементарных частиц из Nikhef, Голландского национального института субатомной физики в Амстердаме. «Все это первые в мире», – говорит Коппенбург, работающий в CERN, европейской лаборатории физики элементарных частиц, в которой находится LHC.

Установленный пантеон частиц, называемый стандартной моделью, описывает основные строительные блоки материи и фундаментальные силы, которые на них действуют.Он включает шесть разновидностей кварков, их шесть аналогов из антивещества и несколько других элементарных частиц, включая электроны и фотоны. Стандартная модель также включает правила того, как кварки образуют составные частицы, называемые адронами. Кварки удерживаются вместе сильной ядерной силой, одной из четырех фундаментальных сил. Два самых распространенных кварка в природе называются «верхним» и «нижним»; их возможные комбинации включают нейтроны (один вверх и два вниз) и протоны (два вверх и один вниз).

Протоны – единственные адроны, которые, как известно, стабильны изолированно; нейтроны стабильны только тогда, когда они включены в атомные ядра.Все остальные адроны образуются мимолетно, в результате столкновения других частиц, и распадаются за доли секунды. Таким образом, LHC создает новые виды адронов, вызывая лобовые столкновения протонов с высокой энергией.

Кварковый квартет

Большинство новых типов адронов на LHC были обнаружены LHCb, одним из четырех гигантских детекторов в 27-километровом круговом туннеле, в котором находится LHC, и частица, объявленная Поляковым, не стала исключением. Просеивая данные об обломках от столкновений протонов, Поляков и его сотрудник Ваня Беляев из Института теоретической и экспериментальной физики в Москве обнаружили ожидаемую сигнатуру «тетракварка» – четырехкваркового адрона – под названием T cc + .

Тетракварки чрезвычайно необычны: большинство известных адронов состоят из двух или трех кварков. Первый тетракварк был обнаружен в Организации по исследованию ускорителей высоких энергий (KEK) в Цукубе, Япония, в 2003 году, а LHCb видел еще несколько. А вот новый – странность. Предыдущие тетракварки, вероятно, были парами обычных кварковых дублетов, прикрепленных друг к другу, как атомы в молекуле, но физик-теоретик Марек Карлинер считает, что последний из них мог бы быть настоящим, прочно связанным квадруплетом.«Это большое дело. Это новое животное, а не адронная молекула. Это первая в своем роде », – говорит Карлинер, которая из Тель-Авивского университета в Израиле помогла предсказать существование частицы с такими же свойствами, как T cc + в 2017 году. 1 .

В природе тетракварки, вероятно, существовали только в первые моменты существования Вселенной, когда вся материя была сжата в чрезвычайно тесном пространстве, говорит Беляев. Но создание их заново помогает физикам проверить свои теории о том, как частицы взаимодействуют посредством сильного ядерного взаимодействия.

Данные показали свойства новой частицы настолько точно, что Беляев был ошеломлен. «Моя первая реакция была: это моя ошибка», – говорит он. Например, масса частицы, которая примерно в 4 раза больше массы протона, была обнаружена с погрешностью почти в 3000 раз лучше, чем при открытии бозона Хиггса. Беляев добавляет, что T cc + мог быть обнаружен в данных первых лет существования LHC, но он и его коллеги не нашли его до сих пор, потому что у них был длинный список других частиц, которые нужно было искать.

Безграничные возможности

Поиск новых адронов будет продолжен. Десятки комбинаций кварков могут дать начало адронам. Карлинер говорит, что существует 50 возможных двухкварковых адронов, все из которых, кроме одного, наблюдались, и 75 возможных триплетов кварков (и столько же триплетов антикварков), из которых около 50 наблюдались. «Мы уверены, что все остальные существуют, но их сложно создать», – говорит Карлинер.

Более того, для каждой комбинации кварков существует почти безграничное количество возможных более тяжелых «возбужденных состояний», различающихся, например, скоростью их вращения, и каждое из них классифицируется как отдельная частица.Многие из них были обнаружены экспериментально, и на самом деле большинство частиц в каталоге Коппенбурга являются возбужденными состояниями. «Кто знает, сколько других государств просто скрыто у всех на виду, сидя в данных на ноутбуке», – говорит Коппенбург, который, как Поляков и Беляев, является членом коллаборации LHCb.

Но он также задается вопросом, следует ли рассматривать все эти открытия как дискретные частицы. «Я все больше убеждаюсь, что нам нужно более точное определение того, что такое частица», – говорит он.

Неужели Большой адронный коллайдер, наконец, бросил вызов законам физики?

Ричард Уэбб

Эксперимент LHCb ищет новую физику

Брайс, Максимилиан; Ордан, Жюльен Мариус / ЦЕРН

Был ажиотаж вокруг того, что было описано как «дразнящие намеки на новую физику», исходящего от эксперимента LHCb в лаборатории физики элементарных частиц ЦЕРНа, но насколько мы должны быть взволнованы? Короче: немного, но любого, кто задерживает дыхание, ждет неприятное время.

LHCb – один из четырех крупных экспериментов на Большом адронном коллайдере ЦЕРН (LHC) недалеко от Женевы, Швейцария. Как указывает буква «b» в названии, он предназначен для анализа распада частиц, содержащих один из шести известных ароматов кварка, «нижний» или, альтернативно, «красивый» кварк.

Нижние кварки намного тяжелее, чем верхние и нижние кварки, из которых состоят протоны и нейтроны обычного атомного вещества, а это означает, что содержащие их частицы могут распадаться на более легкие частицы разными способами.Частицы, содержащие b-кварк, также необычайно долгоживущие, и вместе эти два свойства делают их очень полезными для физиков, ищущих физику, выходящую за рамки стандартной модели – наше лучшее понимание всех взаимодействий частиц на данный момент.

Физики элементарных частиц отчаянно нуждаются в каких-либо намеках на расширение стандартной модели, которая в высшей степени хорошо протестирована, но также прискорбно отсутствует, ничего не говоря о гравитации, одной из четырех фундаментальных сил или темной материи и темной энергии, которые, кажется, составляют более 95 процентов космоса.

Это довольно важные пробелы, но когда стандартная модель работает, она действительно работает, давая чрезвычайно точные прогнозы. LHCb, похоже, обнаружил отклонение от этих предсказаний в скорости, с которой определенный тип b-кварк-содержащей частицы, B +, распадается на электрон и его более тяжелого кузена, мюон.

Стандартная модель говорит, что электроны и мюоны должны образовываться примерно с одинаковой скоростью в этих распадах, но результат LHCb предполагает, что это не так – и это всего лишь намек на физику, выходящую за рамки стандартной модели, которую исследователи отчаянно пытаются найти. видеть.

Головорез. Однако факт в том, что слухи об этой аномалии ходили уже некоторое время – эту на LHCb в течение большей части десятилетия. Новостные сообщения на этой неделе основаны на опубликованной коллаборацией статье о том, что аномалия прошла уровень статистической значимости «3 сигмы», который физики элементарных частиц обычно считают порогом «интереса».

Результат 3-сигма составляет примерно 1 из 1000, что вы бы увидели подобный шаблон данных, если бы стандартная модель была правильной.Это может показаться довольно убедительным признаком того, что здесь есть что-то новое.

Проблема, однако, в том, что такого рода распады невероятно редки, и при их поиске физикам приходится просеивать весь груз статистических шумов, широко сканируя. Это приводит к, казалось бы, парадоксальному эффекту – чем шире вы смотрите, тем больше вероятность того, что вы увидите что-то, что кажется статистически значимым. Соберите больше данных, и эти аномалии снова исчезнут.

Физика элементарных частиц изобилует эффектами 3-сигма, которые приходили и уходили, поэтому исследователи остановились на гораздо более высоком пороге проверки для открытия – «5-сигма», что соответствует вероятности примерно 1 из 3.5 миллионов считают, что подобная модель данных – статистическая случайность.

Это планка, которую достигли в 2012 году эксперименты ATLAS и CMS с бозоном Хиггса – с дополнительной безопасностью, что два независимых сотрудничества наблюдали одно и то же. LHCb еще многое предстоит сделать. Судя по скорости анализа данных – и тому факту, что LHC был отключен для обновления в течение последних двух лет – пройдет немало времени, прежде чем у них появится что-нибудь более определенное. Выдохнуть.

Вероятно, что эта аномалия исчезнет, ​​как и многие другие до нее.С другой стороны, если есть физика, выходящая за рамки стандартной модели, доступной, например, LHC, наши знания о ней начнутся с такой аномалии.

Подпишитесь на бесплатный ежемесячный информационный бюллетень о странностях реальности «Затерянные в пространстве-времени»

Подробнее по этим темам:

Большой адронный коллайдер – Новости, исследования и анализ – The Conversation – стр. 1

Эксперимент Церна с LHCb обнаружил еще больше свидетельств аномалии в стандартной модели физики.© 2018-2021 ЦЕРН

Джемма Уэр, Разговор и Даниэль Мерино, Разговор

Стенограмма 9-й серии подкаста The Conversation Weekly, включая обновленную информацию о положении беженцев рохинджа в Мьянме, живущих в лагерях в Бангладеш.

Ученые думают, что они, возможно, нашли новый ключ к пониманию субатомного мира вокруг нас.Изображения Ezume через Shutterstock

Джемма Уэр, Разговор и Даниэль Мерино, Разговор

Плюс почему ситуация с мусульманами-рохинджа, живущими в Бангладеш, стала еще хуже. Послушайте 9 выпуск подкаста The Conversation Weekly.

пустой.

Сэм Барон, Австралийский католический университет,

Возможно, была обнаружена долгожданная трещина в Стандартной модели физики элементарных частиц.

Прототип нашего нового плазменного ускорителя частиц. Отчет о концептуальном дизайне EuPRAXIA

Джанлука Сарри, Королевский университет Белфаста,

Компактные ускорители в 100 раз меньше традиционных и легко помещаются в больницах и лабораториях.

Есть кто-нибудь там? Грег Ракози / Unsplash

Робин Смит, Университет Шеффилда Халлама,

От субатомного до космического, не думайте ни на секунду, что мы находимся в конце истории науки.

Иллюстрация возможного расположения кварков в пентакварковой частице. Даниэль Домингес / ЦЕРН

Гарри Клифф, Кембриджский университет

Эксперимент LHCb в ЦЕРНе обнаружил три новых «пентакварковых» частицы, которые создаются в результате столкновений частиц высоких энергий на Большом адронном коллайдере.

Художественный образ электронов, вращающихся вокруг ядра.Роман Сигаев / Shutterstock.com

Алексей А Петров, Wayne State University

Какой формы электрон? Ответ, хотите верьте, хотите нет, имеет значение для нашего понимания всей Вселенной и может показать, есть ли загадочные частицы, которые еще предстоит открыть.

Активность во время столкновения с высокой энергией в диспетчерской CMS Европейской организации ядерных исследований (CERN) в их штаб-квартире за пределами Женевы, Швейцария.Фото AP

Тодд Адамс, Государственный университет Флориды,

За последнее десятилетие Большой адронный коллайдер породил потрясающую науку, в том числе о частице бозона Хиггса. Почему LHC так важен и как физики будут использовать его в ближайшие годы?

Карта всей материи – большей частью невидимой темной материи – между Землей и краем наблюдаемой Вселенной.ЕКА / НАСА / Лаборатория реактивного движения – Калтех

Дэн Хупер, Чикагский университет,

Космологи возвращаются к своим классным доскам, поскольку эксперименты, направленные на выяснение того, что эти неизвестные 84 процента нашей Вселенной на самом деле оказываются пустыми.

ЦЕРН – это не только прорыв в физике, но и открытый доступ к науке.ЦЕРН

Вирджиния Барбур, Технологический университет Квинсленда,

Недостаточно провести новаторское исследование, если результаты скрыты от общественности. Таким образом, ЦЕРН делает свои результаты доступными для всех в открытом доступе, показывая, как должна вестись наука.

Когда частицы сталкиваются. Андрей ВП / www.shutterstock.com

Нильс Мэдсен, Университет Суонси,

Новое исследование впервые сравнило водород и антиводород с точностью до десяти десятичных знаков.

Траектория столкновения. Лос-Аламосская национальная лаборатория / Flickr

Грэм Берт, Ланкастерский университет,

Ускорители элементарных частиц помогают расширить границы теоретической физики, но они также оказали большее влияние на вашу повседневную жизнь, чем вы думаете.

Встряхнул, не размешал… StudioVin

Дерек Вуллинз, Университет Сент-Эндрюс,

Заставить теллур и фосфор образовать молекулу – это глупо сложно и не очень привлекательно. Вот почему это того стоит.

Большой адронный коллайдер играет ключевую роль в обеспечении сбора больших данных.Поставляется

Брюс Мелладо, Университет Витватерсранда,

Большие данные – это обработка больших объемов данных. Это часто связано с множественностью данных. Но возможность генерировать данные превосходит возможность их хранить.

Вы можете почувствовать вес объекта на Земле из-за его массы.Но что такое масса? Flickr / Джереми Брукс

Чаба Балаш, Университет Монаша,

Мы все время говорим о массе, но что на самом деле придает массу объекта? И почему одни вещи имеют массу, а другие не имеют массы вообще?

Нейтрино, мы ищем тебя! Детектор Супер-Камиоканде в Японии. Обсерватория Камиока, ICRR (Институт исследования космических лучей), Токийский университет

Брюс Мелладо, Университет Витватерсранда,

Ожидается, что исследования нейтрино, получившие Нобелевскую премию, раздвинут границы науки и техники.

Как известно, темную материю трудно обнаружить, но новый эксперимент может, наконец, пролить свет на эту загадочную субстанцию. Дирк Даллас / Flickr

Алан Даффи, Технологический университет Суинберна и Элизабетта Барберио, Университет Мельбурна

Мы надеемся, что новый детектор, построенный глубоко под землей в золотом руднике, раскроет тайну темной материи.

ЦЕРН

Последние данные ускорителя частиц, обнаружившего бозон Хиггса, подтвердили еще одну нашу теорию о том, как устроена Вселенная.

Сверхразмерная симметрия. Максимилиан Брис / ЦЕРН

Для работы самого большого в мире ускорителя частиц требуется много энергии, но он может раскрыть секреты Вселенной.

Впечатление художника от столь востребованного магнитного монополя. Хейкка Валя / MoEDAL Сотрудничество

Том Уинти, Лондонский университет королевы Марии,

Возобновление экспериментов на Большом Hardron Collider в ЦЕРНе может означать начало новой эры открытий или большого разочарования.

Миру не нужен новый гигантский коллайдер частиц

Сейчас не время для более крупного ускорителя частиц.Но у CERN, европейского физического центра, базирующегося в Женеве, Швейцария, есть планы – большие планы. Крупнейшая в мире лаборатория физики элементарных частиц, в которой в настоящее время работает самый большой в мире коллайдер элементарных частиц, объявила о своем намерении построить еще более крупную машину, как было объявлено на пресс-конференции и в сегодняшнем выпуске.

Таким образом, ЦЕРН решил, что хочет продолжить первый этап плана будущего кругового коллайдера (FCC), размещенного в кольцевом туннеле длиной 100 километров или чуть более 60 миль по окружности.Эта машина могла в конечном итоге достичь энергии столкновения в 100 тераэлектронвольт, что примерно в шесть раз больше энергии столкновения действующего в настоящее время Большого адронного коллайдера (LHC). Достигнув беспрецедентно высоких энергий, новый коллайдер позволит глубже изучить структуру материи и даст возможность находить новые частицы.

Пока неясно, появится ли полное видение. Но ЦЕРН объявил, что для организации «первоочередной задачей» является сделать первый шаг на пути к FCC: найти подходящее место для туннеля и построить машину для столкновения электронов и позитронов с энергиями, аналогичными энергии LHC. (который, однако, использует протоны на протонах).Решение о том, будет ли ЦЕРН продвигаться вперед к столкновениям между протонами при высоких энергиях, будет принято только после нескольких лет исследований и размышлений.

Этот первый шаг также получил название «фабрика Хиггса», потому что он специально разработан для производства большого количества бозонов Хиггса. Бозон Хиггса, открытый в ЦЕРНе в 2012 году, был последней недостающей частицей в Стандартной модели физики элементарных частиц. С помощью новой машины физики, работающие с частицами, хотят более детально измерить ее свойства и свойства некоторых ранее открытых частиц.(Япония рассматривает возможность создания линейного коллайдера с той же целью, что и фабрика Хиггса в ЦЕРНе, но комитет, работающий над этой идеей, не принял окончательного решения в своем прошлогоднем отчете. Китай рассматривает круговой коллайдер, аналогичный по масштабу и размеру полному плану ЦЕРНа FCC. , но решение ожидается не раньше следующего года.)

Но план ЦЕРН, если он будет полностью выполнен, будет стоить десятки миллиардов долларов. Точные цифры недоступны, потому что смета бюджета, представленная CERN, обычно не включает стоимость эксплуатации.Если исходить из текущих расходов на Большой адронный коллайдер, эти затраты на новый коллайдер, вероятно, составят не менее 1 миллиарда долларов в год. Для объекта, который может проработать 20 лет и более, это сопоставимо со стоимостью строительства.

Это, без сомнения, сногсшибательные цифры. Действительно, коллайдеры частиц в настоящее время являются самыми дорогими физическими экспериментами из существующих. Их цена выше, чем у следующего по стоимости эксперимента – телескопов в спутниковых полетах.

Основная причина такой высокой стоимости заключается в том, что с 1990-х годов технология коллайдеров постоянно улучшалась. Как следствие, единственный способ достичь более высоких энергий сегодня – это создавать машины большего размера. Это просто физический размер – длинные туннели, множество магнитов, необходимых для их заполнения, и все, что нужно для этого, – вот что делает коллайдеры частиц такими дорогими.

Но в то время как стоимость этих коллайдеров резко возросла, их актуальность снизилась.Когда физики начали создавать коллайдеры в 1940-х годах, у них не было полного инвентаря элементарных частиц, и они это знали. Новые измерения породили новые головоломки, и они построили более крупные коллайдеры, пока в 2012 году картина не была полной. Стандартная модель все еще имеет некоторые недостатки, но их экспериментальное тестирование потребует энергии, по крайней мере, в десять миллиардов раз превышающей то, что может проверить даже FCC. Таким образом, научные основания для следующего более крупного коллайдера в настоящее время невелики.

Конечно, возможно, что следующий более крупный коллайдер сделает прорывное открытие. Некоторые физики надеются, например, что это может дать подсказки о природе темной материи или темной энергии.

Да, можно надеяться. Но нет причин, по которым частицы, из которых состоит темная материя или темная энергия, должны появляться в диапазоне энергий нового устройства. И это при условии, что они изначально являются частицами, для которых нет доказательств. Более того, даже если они являются частицами, столкновения с высокой энергией могут быть не лучшим способом их поиска.Например, слабо взаимодействующие частицы с крошечными массами – это не то, что нужно для больших коллайдеров.

И есть совершенно разные типы экспериментов, которые могут привести к прорыву с гораздо меньшими затратами, такие как высокоточные измерения при низких энергиях или увеличение массы объектов в квантовых состояниях. Переход к более высоким энергиям – не единственный способ добиться прогресса в основах физики; это просто самый дорогой.

В этой ситуации физикам элементарных частиц следует сосредоточиться на разработке новых технологий, которые могли бы вернуть коллайдеры в разумный ценовой диапазон и отложить рытье новых туннелей.Самая многообещающая технология на горизонте – это новый тип ускорения «кильватерного поля», который может резко сократить расстояние, необходимое для ускорения частиц, и, следовательно, уменьшить размер коллайдеров. Еще одна революционная технология – это сверхпроводники при комнатной температуре, которые могут сделать сильные магниты, на которые полагаются коллайдеры, более эффективными и доступными.

Изучение этих новых технологий также входит в число приоритетов ЦЕРН. Но, как показывает обновление стратегии, физики элементарных частиц так и не осознали свою новую реальность.Создание более крупных коллайдеров частиц исчерпало себя. Сегодня он малоэффективен для научных исследований и в то же время почти не актуален для общества. Крупные научные проекты, как правило, приносят пользу образованию и инфраструктуре, но это не относится только к коллайдерам частиц. И если эти побочные эффекты – то, что нас действительно интересует, то мы должны, по крайней мере, вкладывать деньги в научные исследования, имеющие значение для общества.

Почему, например, у нас до сих пор нет международного центра климатических прогнозов, который, по текущим оценкам, будет стоить «всего» 1 миллиард долларов за 10 лет? Это мелочь по сравнению с тем, что засасывает физика элементарных частиц, но гораздо важнее.Или почему, возможно, вы недавно задались вопросом, у нас нет центра моделирования эпидемий?

Это потому, что слишком много финансирования науки распределяется по инерции. За прошедшее столетие физика элементарных частиц превратилась в большое, очень влиятельное сообщество с хорошими связями. Они будут продолжать строить более крупные коллайдеры частиц так долго, как только смогут, просто потому, что это то, чем занимаются физики элементарных частиц, независимо от того, имеет это смысл или нет.

Пришло время обществу принять более осознанный подход к финансированию крупных научных проектов, чем продолжать давать деньги тем, кому они ранее давали деньги.У нас есть более серьезные проблемы, чем измерить следующую цифру массы бозона Хиггса.

Европейские физики смело делают маленький шаг к 100-километровому уничтожителю атомов | Наука

Выкопайте, если хотите, туннель. Новый гигантский коллайдер затмил бы существующую машину в физической лаборатории ЦЕРНа в Европе.

© ЦЕРН

Адриан Чо

Это общепризнанная истина, что физическая лаборатория с ведущим в мире научным оборудованием должна иметь план создания еще более совершенной машины, которая могла бы ее заменить. То же самое и с европейской лабораторией физики элементарных частиц, CERN, недалеко от Женевы, где находится крупнейший в мире разрушитель атомов – Большой адронный коллайдер (LHC) длиной 27 километров. Сегодня управляющий совет ЦЕРН объявил, что запустит технико-финансовое обоснование для создания еще более крупного коллайдера длиной от 80 до 100 километров (фактически два из них подряд), который в конечном итоге сможет достичь энергии в семь раз выше, чем LHC.Первая машина будет построена не раньше 2040 года.

«Государства-члены ЦЕРН гордятся тем, что это] ведущая лаборатория физики элементарных частиц, и я думаю, что есть интерес к тому, чтобы ЦЕРН оставался там», – говорит Урсула Басслер, физик и президент совета ЦЕРН. представителей 23 стран, поддерживающих лабораторию. Однако генеральный директор ЦЕРН Фабиола Джанотти подчеркивает, что не было принято никаких обязательств по созданию нового гигантского коллайдера, который может стоить 20 миллиардов долларов.«Рекомендаций по реализации какого-либо проекта нет», – говорит она. «Это произойдет через несколько лет».

Физики обсуждали, какой коллайдер построить дальше, задолго до того, как LHC начал собирать данные в 2010 году. В начале 2000-х годов дискуссии были сосредоточены на 30-километровом прямолинейном линейном коллайдере, который разбивал бы электроны на позитроны. Такая машина могла бы дополнить круговой LHC, который разбивает встречные потоки протонов. У этих двух типов машин разные сильные стороны.Протонный коллайдер обычно может достигать более высоких энергий и открывать более тяжелые новые частицы. Но протоны состоят из других частиц, называемых кварками, поэтому они совершают беспорядочные столкновения. Напротив, электроны и позитроны являются неделимыми элементарными частицами, поэтому они совершают более чистые столкновения. Исторически сложилось так, что физики часто находили новые частицы на протонных коллайдерах и детально изучали их на электрон-позитронных коллайдерах.

Это та игра, в которую сегодня пытаются играть физики-частицы во всем мире.В 2012 году разрушающий протоны LHC взорвал бозон Хиггса, последнюю частицу, предсказанную стандартной моделью физиков, и стержень их объяснения того, как все другие фундаментальные частицы получают свою массу. Многие сейчас хотели бы построить электрон-позитронный коллайдер и запустить его как фабрику Хиггса, чтобы производить частицу в больших количествах и посмотреть, обладает ли она точно предсказанными свойствами. Любое отклонение от прогнозов будет признаком новой физики, выходящей за рамки стандартной модели 40-летней давности, которую физики элементарных частиц отчаянно пытаются найти.Физики Японии хотели бы разместить у себя такой линейный коллайдер.

Однако несколько лет назад некоторые физики предложили другой подход, построив круговой электрон-позитронный коллайдер длиной от 80 до 100 километров для изучения Хиггса. У этой машины был бы серьезный недостаток: поскольку легкие электроны вращаются по кругу, они излучают обильное рентгеновское излучение и теряют энергию, поэтому такая машина неэффективна и ограничена в своем энергетическом диапазоне. Но у него есть большой практический плюс: туннель, который ему нужен, позже можно было бы использовать для размещения протонного коллайдера с более высокой энергией.Это именно то, что ЦЕРН сделал с LHC, который был построен в существующем туннеле, вырытом для Большого электронно-позитронного коллайдера, который работал с 1989 по 2000 год (он подробно изучал частицы, называемые бозонами W и Z, которые были обнаружены ранее. с протон-антипротонным коллайдером в ЦЕРН.)

Теперь физики ЦЕРН видят будущее, в котором около 2040 года они построят огромный круговой электрон-позитронный коллайдер для изучения Хиггса. Затем они последуют за более мощным протонным коллайдером, чтобы достичь нового рубежа высоких энергий.Сегодня совет ЦЕРН сделал шаг в этом направлении, объявив об обновлении своей долгосрочной стратегии, первом с 2013 года.

Однако остается неясным, насколько изменились планы ЦЕРНа. Некоторые физики уже давно работают над собственной разработкой ЦЕРНа для линейного коллайдера. И похоже, что новая долгосрочная стратегия не полностью отбрасывает эту идею на второй план. «Мы также рекомендуем продолжать исследования и разработки ускорителей, чтобы не упустить возможность улучшить нашу технологию ускорителей», – сказала Халина Абрамович, физик из Тель-Авивского университета, которая руководила планированием, во время онлайн-сессии вопросов и ответов.«Я думаю, что важно очень четко передать это сообщение».

Технико-экономическое обоснование для новой большой машины должно быть выполнено к 2026 или 2027 году, когда ЦЕРН в следующий раз обновит свою долгосрочную стратегию. У ЦЕРНа также может быть конкуренция в предполагаемой гонке вооружений на коллайдерах, поскольку у физиков в Китае есть аналогичные планы по созданию больших кольцевых коллайдеров. Конечно, все может зависеть от того, найдет ли LHC, который сейчас модернизируется и должен работать до середины 2030-х годов, что-либо, кроме бозона Хиггса, для изучения.Если этого не произойдет, убедить правительства Европы потратить 20 миллиардов долларов на изучение только Хиггса может оказаться сложной политической задачей.

.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *