Для чего нужен транзистор полевой: для чего он нужен, как его открыть, схемы

Содержание

для чего он нужен, как его открыть, схемы

Для того чтобы быстро изменить силу тока в усилительных схемах, лампочках или электрических двигателях применяют транзисторы. Они умеют ограничивать силу тока плавно и постепенно или специальным методом «импульс-пауза». Второй способ особо часто используется при широтно-импульсной модуляции и управления. Если используется мощный источник тока, то транзистор проводит его через себя и регулирует параметр слабым значением. Если тока маловато, то используют сразу несколько транзисторов, обладающих большей чувствительностью. Соединять в таком случае их нужно каскадным образом. В этой статье будет рассмотрено, как открыть полевой транзистор, какой принцип работы полевого транзистора для чайников и какие обозначения выводов полевой транзистор имеет.

Что это такое

Полевой транзистор — это радиоэлемент полупроводникового типа. Он используется для усиления электросигнала. В любом цифровом приборе схема с полевым транзистором исполняет роль ключа, который управляет переключением логических элементов прибора.

В этом случае использование ПТ является очень выгодным решением проблемы с точки зрения уменьшения размеров устройства и платы. Обусловлено это тем, что цепь управления радиокомпонентами требует не очень большой мощности, а значит, что на одном кристалле могут располагаться тысячи и десятки тысяч транзисторов.

Схема подключения электротранзистора полевого типа

Материалами, из которых делают полупроводниковые элементы и транзисторы в том числе, являются:

  • Фосфид индия;
  • Нитрид галлия;
  • Арсенид галлия;
  • Карбид кремния.
График области насыщения электротранзистора

Важно! Полевые транзисторы также называют униполярными, так как при протекания через них электротока используется только один вид носителей.

Характеристики полевого транзистора

Основными характеристики полевого транзистора являются:

  • Максимально допустимая постоянная рассеиваемая мощность;
  • Максимально допустимая рабочая частота;
  • Напряжение сток-исток;
  • Напряжение затвор-сток;
  • Напряжение затвор-исток;
  • Максимально допустимый ток стока;
  • Ток утечки затвора;
  • Крутизна характеристики;
  • Начальный ток стока;
  • Емкость затвор-исток;
  • Входная ёмкость;
  • Выходная ёмкость;
  • Проходная ёмкость;
  • Выходная мощность;
  • Коэффициент шума;
  • Коэффициент усиления по мощности.
Характеристика напряженности поля заряда

Как он работает

Полевой транзистор включает нескольких составных элементов — истока (источника носителя заряда наподобие эмиттера на биполярном элементе), стока (приемника заряда по аналогии с коллектором) и затвора (управляющего электрода наподобие сетки в лампах или базы). Работа первых двух очевидна и состоит в генерации и приеме носителя электрозаряда, среди которых электроны и дырки. Затвор же нужен в первую очередь для управления электротоком, который протекает через ПТ. То есть, получается классического вида триод с катодом, анодом и электродом управляющего типа.

Когда происходит подача напряжения на затвор, возникает электрополе, которое изменяет ширину определенных переходов и влияет на параметр электротока, протекающего от истока к стоку. Если управляющее напряжение отсутствует, то ничто не будет препятствовать потоку носителей заряда в виде электронов. Когда напряжение управления повышается, то канал, по которому движутся электроны или дырки, наоборот, уменьшается, а при достижении некоего предела закрывается совсем, и полевой транзистор входит в так называемый режим отсечки.

Именно эта характеристика ПТ делает возможным их применение в качестве ключей.

Подключение нагрузки к электротранзистору для его открытия

Свойства усиления электротока этого радиокомпонента обусловлены тем, что сильный электрический ток, который протекает от истока к стоку, повторяет все динамические характеристика напряжения, прикладываемого к затвору. Другим языком, с выхода этого усилителя берется абсолютно такой же по форме сигнал, как и на электроде управления, только более сильный.

Строение ПТ (униполярного транзистора) немного отличается от биполярного. А именно тем, что электричество в нем пере пересекает определенные переходные зоны. Электрозаряды совершают движение по участку регуляции, который называется затвором. Его пропускная способность регулируется параметром напряжения.

Виды электротранзисторов полевого типа с маркировкой

Важно! Пространство зон транзистора под действием электрического поля уменьшается и увеличивается. Исходя из этого изменяется количество носителей зарядов — от их полного отсутствия до переизбытка.

Для чего нужен

ПТ нужны для того, чтобы управлять выходным током с помощью создаваемого электрического поля и изменять его важнейшие параметры. Структуры, созданные на основе полевого транзистора, часто используются в интегральных схемах цифрового и аналогового вида.

n- и p-канальные электротранзисторы

Именно за счет полевого управления, эти транзисторы воздействуют на величину приложенного к их затвору напряжения. Это отличает их от биполярных транзисторов, которые управляются током, который протекает через их базу. ПТ потребляют значительно меньшее количество электроэнергии, что и определило их популярность при использовании в ждущих и следящих устройствах, а также интегральных схемах малого потребления ( при организации спящего режима).

Важно! Одними из наиболее известных устройств, основанных на действии полевых транзисторов, являются пульты управления от телевизора, наручные часы электронного типа. Эти устройства за счет своего строения и применения ПТ могут годами работать от одного крошечного источника питания в виде батарейки.

Схематический вид электротранзистора полевого типа

Как открыть полевой транзистор

Для того чтобы полностью открыть полевой транзистор и запустить его работы в режиме ключа, напряжение базы-эмиттера должно быть больше 0,6-0,7 Вольт. Также сила электротока, текущая через базу должна быть такой, чтобы он мог спокойно протекать через коллектор-эмиттер без каких-либо препятствий. В идеальном случае, сопротивление через коллектор-эмиттер должно быть равным нулю, в реальности же оно будет иметь сотые доли Ома. Такой режим называется «режимом насыщения транзистора».

Режим насыщения элемента через транзистор

Как видно на схеме, коллектор и эмиттер находятся в режиме насыщения и соединены накоротко, что позволяет лампочке гореть «на полную».

Схема (структура)

На схеме ниже можно увидеть примерное строение транзистора полярного типа. Его выводы соединены с металлизированными участками затвора, истока и стока. Схема изображает именно p канальное устройство, затвором которого является n-слой. Он имеет гораздо меньшее удельное сопротивление, чем канальная область p-слоя. Область же перехода n-p в большей степени находится в p-слое.

Схематическое изображение электротранзистора с n-p каналами

Как подключить

Все зависит от того, каким именно образом полевой транзистор будет включаться в усилительный каскад. Таких способа есть три:

  • С общим истоком;
  • С общим стоком;
  • С общим затвором.
Схемы включения полевого электротранзистора в цепи

Их различия заключаются в том, что они используют различные электроды подаются питающим напряжением и к каким электроцепям присоединен источник сигнала и нагрузка для него.

Общий исток наиболее часто используется для достижения максимального усиления сигнала входа. Общий сток используется для устройств согласования, потому что усиление там используется небольшое, но сигналы входа и выхода аналогичны по фазе. Схема с общим затвором применяется чаще всего в усилителях высокой частоты. При таком способе подключения полоса пропускания намного шире, чем в других способах.

Конструкция полевого транзистора с управляющим p-n-переходом и каналом n-типа

Таким образом, полевой транзистор это очень важный полупроводниковый радиоэлемент, который способен управлять сопротивлением канала электротока путем воздействия на него поперечного электрического поля, создаваемого напряжением затвора.

Полевой транзистор

Часть 2. Полевой транзистор с изолированным затвором MOSFET

Полевой транзистор с изолированным затвором – это транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 1017 Ом).

Принцип работы этого типа полевого транзистора, как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.

В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора – MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом. В каждом из типов есть транзисторы с N–каналом и P-каналом.

Устройство МДП-транзистора (MOSFET) с индуцированным каналом.

На основании (подложке) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N+-типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO2. Сквозь диэлектрический слой проходят металлические выводы от областей N+-типа, называемые стоком и истоком. Над диэлектриком находится металлический слой затвора. Иногда от подложки также идет вывод, который закорачивают с истоком

Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.

Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N+ находиться область P, не пропускающая электроны. Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.

Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси. Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.

Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.

Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

Устройство МДП-транзистора (MOSFET) со встроенным каналом.

Физическое устройство МДП-транзистора со встроенным каналом отличается от типа с индуцированным каналом наличием между стоком и истоком проводящего канала.

Работа МДП-транзистора (MOSFET) со встроенным каналом N-типа.

Подключим к транзистору напряжение между стоком и истоком Uси любой полярности. Оставим затвор отключенным (Uзи = 0). В результате через канал пойдет ток Iси, представляющий собой поток электронов.

Далее, подключим к затвору отрицательное напряжение относительно истока. В канале возникнет поперечное электрическое поле, которое начнет выталкивать электроны из зоны канала в сторону подложки. Количество электронов в канале уменьшиться, его сопротивление увеличится, и ток Iси уменьшиться. При повышении отрицательного напряжения на затворе, уменьшается сила тока. Такое состояние работы транзистора называется режимом обеднения.

Если подключить к затвору положительное напряжение, возникшее электрическое поле будет притягивать электроны из областей стока, истока и подложки. Канал расшириться, его проводимость повыситься, и ток Iси увеличиться. Транзистор войдет в режим обогащения.

Как мы видим, МДП-транзистор со встроенным каналом способен работать в двух режимах — в режиме обеднения и в режиме обогащения.

Вольт-амперные характеристики (ВАХ) МДП-транзистора со встроенным каналом.

Преимущества и недостатки полевых транзисторов перед биполярными.

Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)

Главные преимущества полевых транзисторов

  • Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
  • Усиление по току у полевых транзисторов намного выше, чем у биполярных.
  • Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
  • У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

Главные недостатки полевых транзисторов

  • У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
  • Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
  • Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».
  • При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).

    Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.

  • Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.

    Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки

Полевой транзистор основные характеристики.

Полевые транзисторы

Теперь давайте узнаем о том, какие бывают полевые транзисторы. Полевые транзисторы очень распространены как в старой схемотехнике, так и в современной. Сейчас в большей степени используются приборы с изолированным затвором, о типах полевых транзисторов и их особенностях сегодня мы и поговорим. В статье я буду проводить сравнение с биполярными транзисторами, в отдельных местах.

Определение

Полевой транзистор – это полупроводниковый полностью управляемый ключ, управляемый электрическим полем. Это главное отличие с точки зрения практики от биполярных транзисторов, которые управляются током. Электрическое поле создается напряжением, приложенным к затвору относительно истока. Полярность управляющего напряжения зависит от типа канала транзистора. Здесь прослеживается хорошая аналогия с электронными вакуумными лампами.

Другое название полевых транзисторов – униполярные. «УНО» – значит один. В полевых транзисторах в зависимости от типа канала ток осуществляется только одним типом носителей дырками или электронами. В биполярных транзисторах ток формировался из двух типов носителей зарядов – электронов и дырок, независимо от типа приборов. Полевые транзисторы в общем случае можно разделить на:

    транзисторы с управляющим p-n-переходом;

    транзисторы с изолированным затвором.

И те и другие могут быть n-канальными и p-канальными, к затвору первых нужно прикладывать положительное управляющее напряжение для открытия ключа, а для вторых – отрицательное относительно истока.

У всех типов полевых транзисторов есть три вывода (иногда 4, но редко, я встречал только на советских и он был соединен с корпусом).

1. Исток (источник носителей заряда, аналог эмиттера на биполярном).

2. Сток (приемник носителей заряда от истока, аналог коллектора биполярного транзистора).

3. Затвор (управляющий электрод, аналог сетки на лампах и базы на биполярных транзисторах).

Транзистор с управляющим pn-переходом

Транзистор состоит из таких областей:

4. Затвор.

На изображении вы видите схематическую структуру такого транзистора, выводы соединены с металлизированными участками затвора, истока и стока. На конкретной схеме (это p-канальный прибор) затвор – это n-слой, имеет меньше удельное сопротивление, чем область канала (p-слой), а область p-n-перехода в большей степени расположена в p-области по этой причине.

а – полевой транзистор n-типа, б – полевой транзистор p-типа

Чтобы легче было запомнить, вспомните обозначение диода, где стрелка указывает от p-области в n-область. Здесь также.

Первое состояние – приложим внешнее напряжение.

Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Можно провести аналогию с нормально-замкнутым ключом. Этот ток называется Iснач или начальный ток стока при Uзи=0.

Полевой транзистор с управляющим p-n-переходом, без приложенного управляющего напряжения к затвору является максимально открытым.

Напряжение к стоку и истоку прикладывается таким образом:

Через исток вводятся основные носители зарядов!

Это значит, что если транзистор p-канальный, то к истоку подключают положительный вывод источника питания, т.к. основными носителями являются дырки (положительные носители зарядов) – это так называемая дырочная проводимость. Если транзистор n-канальный к истоку подключают отрицательный вывод источника питания, т.к. в нем основными носителями заряда являются электроны (отрицательные носители зарядов).

Исток – источник основных носителей заряда.

Вот результаты моделирования такой ситуации. Слева расположен p-канальный, а справа n-канальный транзистор.

Второе состояние – подаём напряжение на затвор

При подаче положительного напряжения на затвор относительно истока (Uзи) для p-канального и отрицательное для n-канального, он смещается в обратном направлении, область p-n-перехода расширяется в сторону канала. В резльтате чего ширина канала уменьшается, ток снижается. Напряжение затвора, при котором ток через ключ перестает протекать называется, напряжением отсечки.

Достигнуто напряжение отсечки, и ключ полностью закрыт. На картинке с результатами моделирования отображено такое состояние для p-канального (слева) и n-канального (справа) ключа. Кстати на английском языке такой транзистор называется JFET.

Рабочий режим транзистора при напряжение Uзи либо нулевое, либо обратное. За счет обратного напряжения можно «прикрывать транзистор», используется в усилителях класса А и прочих схемах где нужно плавное регулирование.

Режим отсечки наступает, когда Uзи=Uотсечки для каждого транзистора оно своё, но в любом случае прикладывается в обратном направлении.

Характеристики, ВАХ

Выходной характеристикой называют график, на котором изображена зависимость тока стока от Uси (приложенного к выводам стока и истока), при различных напряжениях затвора.

Можно разбить на три области. Вначале (в левой части графика) мы видим омическую область – в этом промежутке транзистор ведет себя как резистор, ток возрастает почти линейно, доходя до определенного уровня, переходит в область насыщения (в центре графика).

В правой части график мы видим, что ток опять начинает расти, это область пробоя, здесь транзистор находиться не должен. Самая верхняя ветвь изображенная на рисунке – это ток при нулевом Uзи, мы видим, что ток здесь самый большой.

Чем больше напряжение Uзи, тем меньше ток стока. Каждая из ветвей отличается на 0.5 вольта на затворе. Что мы подтвердили моделированием.

Здесь изображена стоко-затворная характеристика, т.е. зависимость тока стока от напряжения на затворе при одинаковом напряжении стока-исток (в данном примере 10В), здесь шаг сетки также 0.5В, мы опять видим что чем ближе напряжение Uзи к 0, тем больший ток стока.

В биполярных транзисторах был такой параметр как коэффициент передачи тока или коэффициент усиления, он обозначался как B или h31э или Hfe. В полевых же для отображения способности усиливать напряжение используется крутизна обозначается буквой S

То есть крутизна показывает, насколько миллиАмпер (или Ампер) растёт ток стока при увеличении напряжения затвор-исток на количество Вольт при неизменяемом напряжении сток-исток. Её можно вычислить исходя из стоко-затворной характеристики, на приведенном выше примере крутизна равняется порядка 8 мА/В.

Схемы включения

Как и у биполярных транзисторов есть три типовых схемы включения:

1. С общим истоком (а). Используется чаще всех, даёт усиление по току и мощности.

2. С общим затвором (б). Редко используется, низкое входное сопротивления, усиления нет.

3. С общим стоком (в). Усиление по напряжению близко к 1, большое входное сопротивление, а выходное низкое. Другое название – истоковый повторитель.

Особенности, преимущества, недостатки

    Главное преимущество полевого транзистора высокое входное сопротивление . Входное сопротивление это отношения тока к напряжению затвор-исток. Принцип действия лежит в управлении с помощью электрического поля, а оно образуется при приложении напряжения. То есть полевые транзисторы управляются напряжением .

  • практически не потребляет тока управления, это снижает потери управления, искажения сигнала, перегрузку по току источника сигнала…
  • В среднем частотные характеристики полевых транзисторов лучше, чем у биполярных , это связано с тем, что нужно меньше времени на «рассасывание» носителей заряда в областях биполярного транзистора. Некоторые современные биполярные транзисторы могут и превосходить полевые, это связано с использованием более совершенных технологий, уменьшения ширины базы и прочего.

    Низкий уровень шумов у полевых транзисторов обусловлен отсутствием процесса инжекции зарядов, как у биполярных.

    Стабильность при изменении температуры.

    Малое потребление мощности в проводящем состоянии – больший КПД ваших устройств.

Простейший пример использования высокого входного сопротивление – это приборы согласователи для подключения электроакустических гитар с пьезозвукоснимателями и электрогитар с электромагнитными звукоснимателями к линейным входам с низким входным сопротивлением.

Низкое входное сопротивление может вызвать просадки входного сигнала, исказив его форму в разной степени в зависимости от частоты сигнала. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Вот простейшая схема такого устройства. Подойдет для подключения электрогитар в линейный вход аудио-карты компьютера. С ней звук станет ярче, а тембр богаче.

Главным недостатком является то, что такие транзисторы боятся статики. Вы можете взять наэлектризованными руками элемент, и он тут же выйдет из строя, это и есть следствие управления ключом с помощью поля. С ними рекомендуют работать в диэлектрических перчатках, подключенным через специальный браслет к заземлению, низковольтным паяльником с изолированным жалом, а выводы транзистора можно обвязать проволокой, чтобы закоротить их на время монтажа.

Современные приборы практически не боятся этого, поскольку по входу в них могут быть встроены защитные устройства типа стабилитронов, которые срабатывают при превышении напряжения.

Иногда у начинающих радиолюбителей опасения доходят до абсурда, типа надевания на голову шапочек из фольги. Всё описанное выше хоть и является обязательным к исполнению, но не соблюдение каких либо условий не гарантирует выход из строя прибора.

Полевые транзисторы с изолированным затвором

Этот вид транзисторов активно используется в качестве полупроводниковых управляемых ключей. Причем работают они чаще всего именно в ключевом режиме (два положения «вкл» и «выкл»). У них есть несколько названий:

1. МДП-транзистор (метал-диэлектрик-полупроводник).

2. МОП-транзистор (метал-окисел-полупроводник).

3. MOSFET-транзистор (metal-oxide-semiconductor).

Запомните – это лишь вариации одного названия. Диэлектрик, или как его еще называют окисел, играет роль изолятора для затвора. На схеме ниже изолятор изображен между n-областью около затвора и затвором в виде белой зоны с точками. Он выполнен из диоксида кремния.

Диэлектрик исключает электрический контакт между электродом затвора и подложкой. В отличие от управляющего p-n-перехода он работает не на принципе расширения перехода и перекрытия канала, а на принципе изменения концентрации носителей заряда в полупроводнике под действием внешнего электрического поля. МОП-транзисторы бывают двух типов:

1. Со встроенным каналом.

2. С индуцированным каналом

На схеме вы видите транзистор с встроенным каналом. Из неё уже можно догадаться, что принцип его работы напоминает полевой транзистор с управляющим p-n-переходом, т.е. когда напряжение затвора равно нулю – ток протекает через ключ.

Около истока и стока созданы две области с повышенным содержанием примесных носителей заряда (n+) с повышенной проводимостью. Подложкой называется основание P-типа (в данном случае).

Обратите внимание, что кристалл (подложка) соединена с истоком, на многих условных графических обозначениях он так и рисуется. При повышении напряжения на затворе в канале возникает поперечное электрическое поле, оно отталкивает носители зарядов (электроны) и канал закрывается при достижении порогового Uзи.

При подаче отрицательного напряжения затвор-исток ток стока падает, транзистор начинает закрывать – это называется режим обеднения.

При подаче положительного напряжения на затвор-исток происходит обратный процесс – электроны притягиваются, ток возрастает. Это режим обогащения.

Всё вышесказанное справедливо для МОП-транзисторов со встроенным каналом N-типа. Если канал p-типа все слова «электроны» заменяются на «дырки», полярности напряжения изменяются на противоположные.

Согласно datasheet на этот транзистор пороговое напряжение затвор-исток у нас в районе одного вольта, а типовое его значение – 1.2 В, проверим это.

Ток стал в микроамперах. Если еще немного повысить напряжение, он исчезнет полностью.

Я выбрал транзистор наугад, и мне попался достаточно чувствительный прибор. Попробую изменить полярность напряжения, чтобы на затворе был положительный потенциал, проверим режим обогащения.

При напряжении на затворе 1В ток увеличился в четыре раза, по сравнению с тем, что был при 0В (первая картинка в этом разделе). Отсюда следует, что в отличие от предыдущего типа транзисторов и биполярных транзисторов он без дополнительной обвязки может работать как на повышение тока, так и на понижение. Это заявление весьма грубо, но в первом приближении имеет право на существование.

Здесь всё практически так же как и в транзисторе с управляющим переходом, за исключением наличия режима обогащения в выходной характеристике.

На стоко-затворной характеристике четко видно, что отрицательное напряжение вызывает режим обеднение и закрытие ключа, а положительное напряжение на затворе – обогащение и большее открытие ключа.

МОП-транзисторы с индуцированным каналом не проводят ток при отсутствии напряжения на затворе, вернее ток есть, но он крайне мал, т. к. это обратный ток между подложкой и высоколегированными участками стока и истока.

Полевой транзистор с изолированным затвором и индуцированным каналом аналог нормально-разомкнутого ключа, ток не протекает.

При наличии напряжения затвор-исток, т.к. мы рассматриваем n-тип индуцируемого канала то напряжение положительное, под действием поля притягиваются отрицательные носители зарядов в область затвора.

Так появляется «коридор» для электронов от истока к стоку, таким образом, появляется канал, транзистор открывается, и ток через него начинает протекать. Подложка у нас p-типа, в ней основными являются положительные носители зарядов (дырки), отрицательных носителей крайне мало, но под действием поля они отрываются от своих атомов, и начинается их движение. Отсюда отсутствие проводимости при отсутствии напряжения.

Выходная характеристика в точности повторяет такую же у предыдущих разница заключается лишь в том, что напряжения Uзи становятся положительными.

Стоко-затворная характеристика показывает то же самое, отличия опять-таки в напряжениях на затворе.

При рассмотрении вольтамперных характеристик крайне важно внимательно смотреть на величины, прописанные по осям.

На ключ подали напряжение 12 В, а на затворе у нас 0. Ток через транзистор не протекает.

Это значит, что транзистор полностью открыт, если бы его не было, ток в этой цепи составил бы 12/10=1.2 А. В дальнейшем я изучал как работает этот транзистор, и выяснил, что на 4-х вольтах он начинает открываться.

Добавляя по 0.1В, я заметил, что с каждой десятой вольта ток растёт всё больше и больше, и уже к 4.6 Вольта транзистор практически полностью открыт, разница с напряжением на затворе в 20В в токе стока всего лишь 41 мА, при 1.1 А – это чепуха.

Этот эксперимент отражает то, что транзистор с индуцированным каналом открывается только при достижении порогового напряжения, что позволяет ему отлично работать в качестве ключа в импульсных схемах. Собственно, IRF740 – один из наиболее распространенных .

Результаты измерений тока затвора показали, что действительно полевые транзисторы почти не потребляют управляющего тока. При напряжении в 4.6 вольта ток был, всего лишь, 888 нА (нано!!!).

При напряжении в 20В он составлял 3.55 мкА (микро). У биполярного транзистора он был бы порядка 10 мА, в зависимости от коэффициента усиления, что в десятки тысяч раз больше чем у полевого.

Не все ключи открываются такими напряжениями, это связано с конструкцией и особенностями схемотехники устройств где они применяются.

Разряженная ёмкость в первый момент времени требует большого зарядного тока, да и редкие управляющие устройства (шим-контроллеры и микроконтроллеры) имеют сильные выходы, поэтому используют драйверы для полевых затворов, как в полевых транзисторах, так и в (биполярный с изолированным затвором). Это такой усилитель, который преобразует входной сигнал в выходной такой величины и силы тока, достаточный для включения и выключения транзистора. Ток заряда также ограничивается последовательно соединенным с затвором резистором.

При этом некоторые затворы могут управляться и с порта микроконтроллера через резистор (тот же IRF740). Эту тему мы затрагивали .

Они напоминают полевые транзисторы с управляющим затвором, но отличаются тем, что на УГО, как и в самом транзисторе, затвор отделен от подложки, а стрелка в центре указывает на тип канала, но направлена от подложки к каналу, если это n-канальный mosfet – в сторону затвора и наоборот.

Для ключей с индуцированным каналом:

Может выглядеть так:

Обратите внимание на англоязычные названия выводов, в datasheet’ах и на схемах часто указываются они.

Для ключей со встроенным каналом:

Транзистор (transistor, англ.) – триод, из полупроводниковых материалов, с тремя выходами, основное свойство которого – сравнительно низким входным сигналом управлять значительным током на выходе цепи. В радиодеталях, из которых собирают современные сложные электроприборы, используются полевые транзисторы. Их свойства позволяют решать задачи по выключению или включению тока в электрической цепи печатной платы, или его усилению.

Что такое полевой транзистор

Полевой транзистор – это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

Контакты:

Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током .

Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

Полевые транзисторы, их виды

Полевые транзисторы с п – р переходом делят на классы:

  1. По типу канала проводника: n или р. От канала зависит знак, полярность, сигнала управления. Она должна быть противоположна по знаку n -зоне.
  2. По структуре прибора: диффузные, сплавные по р – n — переходом, с затвором , тонкопленочные.
  3. По числу контактов: 3-х и 4-контактные. В случае 4-контактного прибора, подложка также исполняет роль затвора.
  4. По используемым материалам: германий, кремний, арсенид галлия.

Классы делятся по принципу работы:

  • устройство под управлением р — n перехода;
  • устройство с изолированным затвором или с барьером Шоттки.

Полевой транзистор, принцип работы

По-простому, как работает полевой транзистор с управляющим р-п переходом, можно сказать так: радиодеталь состоит из двух зон: р — перехода и п — перехода. По зоне п течет электрический ток. Зона р – перекрывающая зона своего рода вентиль. Если на нее сильно надавить, она перекрывает зону для прохождения тока и его проходит меньше. Или, если давление снизить пройдет больше. Такое давление осуществляют увеличением напряжения на контакте затвора, находящегося в зоне р.

Прибор с управляющим р — п канальным переходом – это полупроводниковая пластина с электропроводностью одного из этих типов. К торцам пластины подсоединены контакты: сток и исток, в середине – контакт затвора. Действие устройства основано на изменяемости толщины пространства р-п перехода. Поскольку в запирающей области почти нет подвижных носителей заряда, ее проводимость равна нулю . В полупроводниковой пластине, в области не под воздействием запирающего слоя, создается проводящий ток канал. При подаче отрицательного напряжения по отношению к истоку, на затвор создается поток, по которому истекают носители заряда.

В случае изолированного затвора, на нем расположен тонкий слой диэлектрика. Этот вид устройства работает на принципе электрического поля . Чтобы разрушить его достаточно небольшого электричества. Поэтому для защиты от статического напряжения, которое может достигать тысяч вольт, создают специальные корпуса приборов — они позволяют минимизировать воздействие вирусного электричества.

Зачем нужен полевой транзистор

Рассматривая работу сложной электронной техники, как работу полевого транзистора (как одного из компонентов интегральной схемы) сложно представить, что основных направления его работы пять:

  1. Усилители высоких частот.
  2. Усилители низких частот.
  3. Модуляция.
  4. Усилители постоянного тока.
  5. Ключевые устройства (выключатели).

На простом примере работу транзистора, как выключателя, можно представить как компоновку микрофона с лампочкой. Микрофон улавливает звук, от этого появляется электрический ток. Он поступает на запертый полевой транзистор. Своим присутствием ток включает устройство, включает электрическую цепь, к которой подключена лампочка. Лампочка загорается при улавливании звука микрофоном, но горит за счет источника питания, не связанного с микрофоном и более мощного.

Модуляция применяется для управления информационным сигналом. Сигнал управляет частотой колебания. Модуляция применяется для качественного звукового сигнала в радио, для передачи звукового ряда в телевизионных передачах, трансляции цвета и телевизионного сигнала высокого качества. Она применяется везде, где требуется работа с материалом высокого качества.

Как усилитель полевой транзистор упрощенно работает так: графически любой сигнал, в частности, звуковой ряд, можно представить в виде ломаной линии, где ее длина – это время, а высота изломов частота звука. Для усиления звука на радиодеталь подают мощное напряжение, которое приобретает необходимые частоты, но с более большими значениями, за счет подачи слабого сигнала на управляющий контакт. Другими словами, устройство пропорционально перерисовывает изначальную линию, но с более высокими пиковыми значениями.

Применение полевых транзисторов

Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат . Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

В современном мире, устройства применяют во всей электротехнике . Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

На заводах транзисторное оборудование применяется для регуляторов мощности станков . В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

Одна из важнейших областей применения транзисторов – производство процессоров . По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

Плюсы и минусы полевых транзисторов

Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

  • каскад деталей расходует мало энергии;
  • усиление выше, чем у других видов;
  • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
  • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.
  • более низкая температура разрушения, чем у других видов;
  • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
  • чувствительность к статическому электричеству.

Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве . На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.

В транзисторах этого типа затвор отделен от полупроводника слоем диэлектрика, в качестве которого в кремниевых приборах обычно используется двуокись кремния. Эти транзисторы обозначают аббревиатурой МОП (металл-окисел-полупроводник) и МДП (металл-диэлектрик-полупроводник). В англоязычной литературе их обычно обозначают аббревиатурой MOSFET или MISFET (Metal-Oxide (Insulator) -Semiconductor FET).

В свою очередь МДП-транзисторы делят на два типа.

В так называемых транзисторах со встроенным (собственным) каналом (транзистор обедненного типа) и до подачи на затвор имеется канал, соединяющий исток и сток.

В так называемых транзисторах с индуцированным каналом (транзистор обогащенного типа) указанный выше канал отсутствует.

МДП-транзисторы характеризуются очень большим входным сопротивлением. При работе с такими транзисторами надо предпринимать особые меры защиты от статического электричества. Например, при пайке все выводы необходимо закоротить.

МДП-транзистор со встроенным каналом.

Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p -типа. Дадим схематическое изображение структуры транзистора (рис. 1.97), условное графическое обозначение транзистора с каналом p-типа (рис. 1.98, а) и с каналом n-типа (рис. 1.98, б). Стрелка, как обычно, указывает направление от слоя p к слою n.

Рассматриваемый транзистор (см. рис. 1.97) может работать в двух режимах: обеднения и обогащения.

Режиму обеднения соответствует положительное uзи. При увеличении этого концентрация дырок в канале уменьшается (так как потенциал затвора больше потенциала истока), что приводит к уменьшению тока стока.

Приведем схему включения транзистора (рис. 1.99).

На стока влияет не только uзи, но и между подложкой и истоком uпи. Однако управление по затвору всегда предпочтительнее, так как при этом входные токи намного меньше. Кроме того, наличие на подложке уменьшает крутизну.

Подложка образует с истоком, стоком и каналом p-n-переход. При использовании транзистора необходимо следить за тем, чтобы на этом переходе не смещало его в прямом направлении. На практике подложку подключают к истоку (как показано на схеме) или к точке схемы, имеющей потенциал, больший потенциала истока (потенциал стока в приведенной выше схеме меньше потенциала истока).

Изобразим выходные характеристики МДП-транзистора (встроенный p-канал) типа КП201Л (рис. 1.100) и его стокозатворную характеристику (рис. 1.101).

МДП-транзистор с индуцированным (наведенным) каналом.

Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p-типа. Дадим схематическое изображение структуры транзистора (рис. 1.102), условное графическое обозначение транзистора с индуцированным каналом p -типа (рис. 1.103, а) и каналом n-типа (рис. 1.103, б).

При нулевом напряжении uзи канал отсутствует (рис. 1.102) и стока равен нулю. Транзистор может работать только в режиме обогащения, которому соответствует отрицательное uзи. При этом uиз > 0.Если выполняется неравенство uиз>u из порог, где u из порог – так называемое пороговое напряжение, то между истоком и стоком возникает канал p-типа, по которому может протекать ток.

Канал p-типа возникает из-за того, что концентрация дырок под затвором увеличивается, а концентрация электронов уменьшается, в результате чего концентрация дырок оказывается больше концентрации электронов.

Описанное явление изменения типа проводимости называют инверсией типа проводимости, а слой полупроводника, в котором оно имеет место (и который является каналом), – инверсным (инверсионным). Непосредственно под инверсным слоем образуется слой, обедненный подвижными носителями заряда. Инверсный слой значительно тоньше обедненного (толщина инверсного слоя 1 · 10 – 9 …5 · 10 – 9 м, а толщина обедненного слоя больше в 10 и более раз).

Изобразим схему включения транзистора (рис. 1.104), выходные характеристики (рис. 1.105) и стокозатворную характеристику (рис. 1.106) для МДП-транзистора с индуцированным p-каналом КП301Б.

Полезно отметить, что в пакете программ Micro-Cap II для моделирования полевых транзисторов всех типов используется одна и та же математическая модель (но, естественно, с различными параметрами).

Добрый день, друзья!

Недавно мы с вами начали плотнее знакомились с тем, как устроено компьютерное «железо». И познакомились одним из его «кирпичиков» — полупроводниковым диодом. – это сложная система, состоящая из отдельных частей. Разбирая, как работают эти отдельные части (большие и малые), мы приобретаем знание.

Обретая знание, мы получаем шанс помочь своему железному другу-компьютеру, если он вдруг забарахлит . Мы же ведь в ответе за тех, кого приручили, не правда ли?

Сегодня мы продолжим это интересное дело, и попробуем разобраться, как работает самый, пожалуй, главный «кирпичик» электроники – транзистор. Из всех видов транзисторов (их немало) мы ограничимся сейчас рассмотрением работы полевых транзисторов.

Почему транзистор – полевой?

Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.

Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.

Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.

В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.

Канал полевого транзистора может быть открыт только напряжением , без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.

Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.

Где используются полевые транзисторы?

Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!

И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.

Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.

ПТ широко используются в компьютерных и низковольтных импульсных стабилизаторах на м компьютера.

Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.

Как работает полевой транзистор?

ПТ с индуцированным каналом содержит три электрода — исток (source), сток (drain), и затвор (gate).

Принцип работы ПТ наполовину понятен из графического обозначения и названия электродов.

Канал ПТ – это «водяная труба», в которую втекает «вода» (поток заряженных частиц, образующих электрический ток) через «источник» (исток).

«Вода» вытекает из другого конца «трубы» через «слив» (сток). Затвор – это «кран», который открывает или перекрывает поток. Чтобы «вода» пошла по «трубе», надо создать в ней «давление», т.е. приложить напряжение между стоком и истоком.

Если напряжение не приложено («давления в системе нет»), тока в канале не будет.

Если приложено напряжение, то «открыть кран» можно подачей напряжения на затвор относительно истока.

Чем большее подано напряжение, тем сильнее открыт «кран», больше ток в канале «сток-исток» и меньше сопротивление канала.

В источниках питания ПТ используется в ключевом режиме, т.е. канал или полностью открыт, или полностью закрыт.

Честно сказать, принципы действия ПТ гораздо более сложны, он может работать не только в ключевом режиме . Его работа описывается многими заумными формулами, но мы не будем здесь все это описывать, а ограничимся этими простыми аналогиями.

Скажем только, что ПТ могут быть с n-каналом (при этом ток в канале создается отрицательно заряженными частицами) и p-каналом (ток создается положительно заряженными частицами). На графическом изображении у ПТ с n-каналом стрелка направлена внутрь, у ПТ с p-каналом – наружу.

Собственно, «труба» — это кусочек полупроводника (чаще всего – кремния) с примесями химических элементов различного типа, что обуславливает наличие положительных или отрицательных зарядов в канале.

Теперь переходим к практике и поговорим о том,

Как проверить полевой транзистор?

В норме сопротивление между любыми выводами ПТ бесконечно велико.

И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.

Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).

Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.

Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной .

Как проверить диод с помощью цифрового тестера, описано в соответствующей . Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.

Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.

Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.

В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.

В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.

При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.

Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.

Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.

В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.

В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).

Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.

Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.

Кстати, купить полевые транзисторы можно .

Полевой транзистор. Принцип работы и примеры использования.

Давненько не было на сайте статей по электронике и схемотехнике, поэтому сегодня положим начало циклу статей, посвященному устройству и работе полевого транзистора в различных схемах. И целью этой, стартовой статьи является понять что это за транзисторы такие, зачем они нужны и как работают.

Как и биполярный, полевой транзистор имеет три вывода, соответственно, три электрода. И проводимость между двумя из этих электродов зависит от того, какое напряжение приложено к третьему. В этом, по большому счету, и заключается суть работы полевиков 🙂

Полевые транзисторы, опять же как и их биполярные коллеги, бывают разных полярностей — n-типа и p-типа, а точнее n-канальные и p-канальные. Более того, есть еще и другие типы ПТ, но о подробной классификации мы поговорим позднее.

Давайте пока ограничимся рассмотрением, например, n-канального полевика, и для начала посмотрим на его обозначение на принципиальных схемах.

Схема полевого транзистора.

Слева изображен n-канальный полевой транзистор и его электроды, а справа, соответственно, его биполярный n-p-n «аналог». Казалось бы, устройства практически полностью идентичны друг другу — в чем же разница? А вот в чем…

Само название ПТ нам говорит о том, что его работой управляет электрическое поле, которое создается приложенным к затвору напряжением (как вы помните, в БТ выходной ток управлялся током базы). В случае же ПТ через затвор и вовсе не течет никакой ток и в этом то, пожалуй, и заключается главная особенность этого устройства. Давайте разберемся чуть подробнее. Ток затвора отсутствует, следовательно, полное входное сопротивление транзистора невероятно велико (действительно, R = \frac{U}{I}, а I, то есть ток, у нас стремится к нулю). И это свойство полевика имеет огромное значение.

Из всего этого следует, что полевой транзистор нельзя рассматривать как устройство, усиливающее ток, поскольку на входе тока, как мы выяснили, нет совсем. Давайте рассмотрим, как же он все-таки работает.

Итак, напоминаю, что мы остановили свой выбор на рассмотрении n-канального полевого транзистора. Когда это устройство работает в нормальном режиме сток имеет положительный потенциал относительно истока (для p-канального, естественно, все наоборот). Ток же от стока и истоку не будет протекать до тех пор, пока к затвору не будет приложено положительное относительно истока напряжение. То есть как только мы подаем на затвор напряжение, превышающее потенциал истока, от стока к истоку начинает протекать ток. Меняя напряжение U_{зи}(напряжение затвор-исток) мы можем управлять величиной этого тока.

Давайте для лучшего понимания посмотрим на выходные характеристики (зависимость тока стока от напряжения сток-исток):

Видим, что при напряжениях сток-исток выше 1-2 В, ток стока остается практически неизменным. Эта область характеристик ПТ называется областью насыщения. С большой точностью полевой транзистор позволяет получить неизменный ток стока при постоянном значении напряжения затвор-исток. Как видим из графика — чем больше значение U_{зи}, тем больше становится величина тока стока. Кроме того, можно сказать, что ток стока прямо пропорционален квадрату разности напряжений (U_{зи}-U_{п}). Здесь U_{п} — это пороговое напряжение. Что это такое? А это такое напряжение затвора, при котором начинает протекать ток стока. Для данного графика пороговое значение напряжение затвор-исток составляет примерно 1.6 В.

Ключ на полевом транзисторе.

Теперь давайте рассмотрим небольшой пример. Разберемся, как работает схема ключа на полевике:

Схема проста до безобразия, кроме самого ПТ в ней практически ничего нет 🙂

Резистор здесь условно изображает нагрузку, пусть она рассчитана на потребление тока 100 мА и напряжение 5В. При таком положении переключателя, как на рисунке, потенциал затвора равен потенциалу земли и равен потенциалу истока. А это значит, что полевик «выключен» и ток стока отсутствует.

Чтобы «включить» полевой транзистор необходимо, чтобы потенциал затвора превышал потенциал истока, что достигается переключением S1. В этом случае от стока к истоку начинает протекать ток стока, а из-за того, что транзистор имеет сопротивление довольно-таки маленькое по сравнению с нагрузкой, то потенциал стока станет близок к потенциалу земли, а напряжение на нагрузке составит практически 5 вольт. Смотрите сами почему так получается. Сопротивление нагрузки и выходное сопротивление транзистора представляют из себя обычный делитель напряжения, тогда значение напряжения на нагрузке:

U_{H} = \frac{5R_н}{R_н + R_т}

А учитывая, что R_т у нас намного меньше, чем R_н, мы и получаем, что почти все 5 вольт окажутся на нагрузке.

Эта схема очень напоминает ключ на биполярном транзисторе (про него шла речь вот тут — ссылка). Но тут есть очень важный момент. Как вы помните, при проектировании ключа на БТ необходимо заботиться о том, чтобы обеспечить необходимый ток базы, но при этом исключить избыточные затраты энергии. Ключ на ПТ избавляет нас от этих проблем, поскольку через затвор не течет никакого тока. И мы просто подаем на него полное входное напряжение и все 🙂

Думаю, на этом сегодня закончим, а в следующей статье подробно рассмотрим, какие бывают типы полевиков и чем они отличаются друг от друга.

В чем различие между полевыми и биполярными транзисторами

В чем различие между полевыми и биполярными транзисторами

Транзистор — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов.

Ток или поле

Большинству людей, так или иначе сталкивающемуся с электроникой, принципиальное устройство полевых и биполярных транзисторов должно быть известно. По крайней мере, из названия «полевой транзистор», очевидно, что управляется он полем, электрическим полем затвора, в то время как биполярный транзистор управляется током базы.

Ток и поле — различие здесь кардинальное. У биполярных транзисторов управление током коллектора осуществляется путем изменения управляющего тока базы, в то время как для управления током стока полевого транзистора, достаточно изменить приложенное между затвором и истоком напряжение, и не нужен уже никакой управляющий ток как таковой.

Полевые транзисторы быстрее

Какие транзисторы лучше полевые или биполярные? Достоинство полевых транзисторов, по сравнению с биполярными, налицо: полевые транзисторы обладают высоким входным сопротивлением по постоянному току, и даже управление на высокой частоте не приводит к значительным затратам энергии.

Накопление и рассасывание неосновных носителей заряда отсутствует в полевых транзисторах, от того и быстродействие у них очень высокое (что отмечается разработчиками силовой техники). И поскольку за усиление в полевых транзисторах отвечают переносимые основные носители заряда, то верхняя граница эффективного усиления у полевых транзисторов выше чем у биполярных.

Здесь же отметим высокую температурную стабильность, малый уровень помех (в силу отсутствия инжекции неосновных носителей заряда, как то происходит в биполярных), экономичность в плане потребления энергии.

Разная реакция на нагрев

Если биполярный транзистор в процессе работы устройства нагревается, то ток коллектор-эмиттер увеличивается, то есть температурный коэффициент сопротивления у биполярных транзисторов отрицательный.

У полевых же все наоборот — температурный коэффициент сток-исток положительный, то есть с ростом температуры растет и сопротивление канала, то есть ток сток-исток уменьшается. Это обстоятельство дает полевым транзистором еще одно преимущество перед биполярными: полевые транзисторы можно без опаски соединять параллельно, и не потребуются выравнивающие резисторы в цепах их стоков, поскольку в соответствии с ростом нагрузки станет автоматически расти и сопротивление каналов.

Так для достижения высоких показателей коммутационных токов, можно легко набрать составной ключ из нескольких параллельных полевых транзисторов, что и используется много где на практике, например в инверторах.

А вот биполярные транзисторы нельзя просто так параллелить, им нужны обязательно токовыравнивающие резисторы в цепях эмиттеров. Иначе, из-за разбаланса в мощном составном ключе, у одного из биполярных транзисторов рано или поздно случится необратимый тепловой пробой. Полевым составным ключам названная проблема почти не грозит. Эти характерные тепловые особенности связаны со свойствами простого n- и p-канала и p-n перехода, которые кардинально отличаются.

Сферы применения тех и других транзисторов

Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.

Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.

Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.

Полевые побеждают

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где уже с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью.

Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где опять же с успехом заменяют биполярные транзисторы и даже электронные лампы.

В устройствах большой мощности, например в устройствах плавного пуска двигателей, биполярные транзисторы с изолированным затвором (IGBT) – приборы, сочетающие в себе как биполярные, так и полевые транзисторы, уже успешно вытесняют тиристоры.

Ранее ЭлектроВести писали, что дожди могут стать новым источником возобновляемой и предельно дешевой энергии: ученые из Гонконга придумали новый тип электрогенератора с высоким КПД и удельной мощностью в тысячу раз большей, чем у существовавших до сих пор других подобных устройств. Их изобретение позволяет получать из падения одной капли воды с высоты 15 см напряжение свыше 140 вольт, а энергии этого падения хватит для питания 100 небольших светодиодных ламп.

По материалам: electrik.info.

Полевой транзистор – это… Что такое Полевой транзистор?

Полевой транзистор (англ. field-effect transistor, FET) — полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого входным сигналом.

Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).

История создания полевых транзисторов

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 29 мая 2012.

Идея полевого транзистора с изолированным затвором была предложена Лилиенфельдом в 1926—1928 годах. Однако объективные трудности в реализации этой конструкции позволили создать первый работающий прибор этого типа только в 1960 году. В 1953 году Дейки и Росс предложили и реализовали другую конструкцию полевого транзистора — с управляющим p-n-переходом. Наконец, третья конструкция полевых транзисторов — полевых транзисторов с барьером Шоттки — была предложена и реализована Мидом (англ.)русск. в 1966 году. Затем в 1977 году ученый Джеймс МакКаллахем из Bell Labs установил, что использование полевых транзисторов может существенно увеличить производительность существующих вычислительных систем.

Схемы включения полевых транзисторов

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.

Классификация полевых транзисторов

По физической структуре и механизму работы полевые транзисторы условно делят на 2 группы. Первую образуют транзисторы с управляющим р-n переходом, или переходом металл — полупроводник (барьер Шоттки), вторую — транзисторы с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (металл — диэлектрик — полупроводник).

Транзисторы с управляющим p-n переходом

Рис. 1. Устройство полевого транзистора с управляющим p-n переходом

Полевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении.

Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении (см. рис. 1). При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком (Source). Электрод, через который из канала уходят основные носители заряда, называют стоком (Drain). Электрод, служащий для регулирования поперечного сечения канала, называют затвором (Gate).

Электропроводность канала может быть как n-, так и p-типа. Поэтому по электропроводности канала различают полевые транзисторы с n-каналом и р-каналом. Все полярности напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.

Управление током стока, то есть током от внешнего относительно мощного источника питания в цепи нагрузки, происходит при изменении обратного напряжения на p-n переходе затвора (или на двух p-n переходах одновременно). В связи с малостью обратных токов мощность, необходимая для управления током стока и потребляемая от источника сигнала в цепи затвора, оказывается ничтожно малой. Поэтому полевой транзистор может обеспечить усиление электромагнитных колебаний как по мощности, так и по току и напряжению.

Таким образом, полевой транзистор по принципу действия аналогичен вакуумному триоду. Исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. Но при этом полевой транзистор существенно отличается от вакуумного триода. Во-первых, для работы полевого транзистора не требуется подогрева катода. Во-вторых, любую из функций истока и стока может выполнять каждый из этих электродов. В-третьих, полевые транзисторы могут быть сделаны как с n-каналом, так и с p-каналом, что позволяет удачно сочетать эти два типа полевых транзисторов в схемах.

От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора может быть отделён от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в p-n переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов.

Транзисторы с изолированным затвором (МДП-транзисторы)

Рис. 2. Устройство полевого транзистора с изолированным затвором.

Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика.

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).

В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.

Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.

МДП-транзисторы с индуцированным каналом

При напряжении на затворе относительно истока, равном нулю, и при наличии напряжения на стоке, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших UЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.

В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.

Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда — дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счёт энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.

МДП-транзисторы со встроенным каналом
Рис. 3. Выходные статические характеристики (a) и статические характеристики передачи (b) МДП-транзистора со встроенным каналом.  В данной схеме в качестве нелинейного элемента используется МДП транзистор с изолированным затвором и индуцированным каналом.

В связи с наличием встроенного канала в таком МДП-транзисторе при нулевом напряжении на затворе (см. рис. 2, б) поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).

Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки UЗИотс, то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.

Формулы расчёта в зависимости от напряжения UЗИ

1. Транзистор закрыт

Пороговое значение напряжения МДП транзистора

2. Параболический участок.

-удельная крутизна передаточной характеристики транзистора.

3. Дальнейшее увеличение приводит к переходу на пологий уровень.

 — Уравнение Ховстайна.
МДП-структуры специального назначения

В структурах типа металл-нитрид-оксид-полупроводник (МНОП) диэлектрик под затвором выполняется двухслойным: слой оксида SiO2 и толстый слой нитрида Si3N4. Между слоями образуются ловушки электронов, которые при подаче на затвор МНОП-структуры положительного напряжения (28..30 В) захватывают туннелирующие через тонкий слой SiO2 электроны. Образующиеся отрицательно заряженные ионы повышают пороговое напряжение, причём их заряд может храниться до нескольких лет при отсутствии питания, так как слой SiO2 предотвращает утечку заряда. При подаче на затвор большого отрицательного напряжения (28…30 В), накопленный заряд рассасывается, что существенно уменьшает пороговое напряжение.

Структуры типа металл-оксид-полупроводник (МОП) с плавающим затвором и лавинной инжекцией (ЛИЗМОП) имеют затвор, выполненный из поликристаллического кремния, изолированный от других частей структуры. Лавинный пробой p-n-перехода подложки и стока или истока, на которые подаётся высокое напряжение, позволяет электронам проникнуть через слой окисла на затвор, вследствие чего на нём появляется отрицательный заряд. Изолирующие свойства диэлектрика позволяют сохранять этот заряд десятки лет. Удаление электрического заряда с затвора осуществляется с помощью ионизирующего ультрафиолетового облучения кварцевыми лампами, при этом фототок позволяет электронам рекомбинировать с дырками.

В дальнейшем были разработаны структуры запоминающих полевых транзисторов с двойным затвором. Встроенный в диэлектрик затвор используется для хранения заряда, определяющего состояние прибора, а внешний (обычный) затвор, управляемый разнополярными импульсами для ввода или удаления заряда на встроенном (внутреннем) затворе. Так появились ячейки, а затем и микросхемы флэш-памяти, получившие в наши дни большую популярность и составившие заметную конкуренцию жестким дискам в компьютерах.

Для реализации сверхбольших интегральных схем (СБИС) были созданы сверхминиатюрные полевые микротранзисторы. Они делаются с применением нанотехнологий с геометрическим разрешением менее 100 нм. У таких приборов толщина подзатворного диэлектрика доходит до нескольких атомных слоев. Используются различные, в том числе трехзатворные структуры. Приборы работают в микромощном режиме. В современных микропроцессорах корпорации Intel число приборов составляет от десятков миллионов до 2 миллиардов. Новейшие полевые микротранзисторы выполняются на напряженном кремнии, имеют металлический затвор и используют новый запатентованный материал для подзатворного диэлектрика на основе соединений гафния.[1]

В последние четверть века бурное развитие получили мощные полевые транзисторы, в основном МДП-типа. Они состоят из множества маломощных структур или из структур с разветвлённой конфигурацией затвора. Такие ВЧ и СВЧ приборы впервые были созданы в СССР специалистами НИИ «Пульсар» Бачуриным В. В. (кремниевые приборы) и Ваксембургом В. Я. (арсенид-галлиевые приборы) Исследование их импульсных свойств было выполнено научной школой проф. Дьяконова В. П. (Смоленский филиал МЭИ). Это открыло область разработки мощных ключевых (импульсных) полевых транзисторов со специальными структурами, имеющих высокие рабочие напряжения и токи (раздельно до 500—1000 В и 50-100 А). Такие приборы нередко управляются малыми (до 5 В) напряжениями, имеют малое сопротивление в открытом состоянии (до 0,01 Ом) у сильноточных приборов, высокую крутизну и малые (в единицы-десятки нс) времена переключения. У них отсутствует явление накопления носителей в структуре и явление насыщения, присущее биполярным транзисторам. Благодаря этому мощные полевые транзисторы успешно вытесняют мощные биполярные транзисторы в области силовой электроники малой и средней мощности.[2][3]

За рубежом в последние десятилетия стремительно развивается технология транзисторов на высокоподвижных электронах (ТВПЭ), которые широко используются в СВЧ устройствах связи и радионаблюдения. На основе ТВПЭ создаются как гибридные, так и монолитные микроволновые интегральные схемы (англ.)). В основе действия ТВПЭ лежит управление каналом с помощью двумерного электронного газа, область которого создаётся под контактом затвора благодаря применению гетероперехода и очень тонкого диэлектрического слоя — спейсера.[4]

Области применения полевых транзисторов

Значительная часть производимых в настоящий момент полевых транзисторов входит в состав КМОП-структур, которые строятся из полевых транзисторов с каналами разного (p- и n-) типа проводимости и широко используются в цифровых и аналоговых интегральных схемах.

За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные кварцевые часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет, потому что практически не потребляют энергии.

Грандиозными темпами развиваются области применения мощных полевых транзисторов. Их применение в радиопередающих устройствах позволяет получить повышенную чистоту спектра излучаемых радиосигналов, уменьшить уровень помех и повысить надёжность радиопередатчиков. В силовой электронике ключевые мощные полевые транзисторы успешно заменяют и вытесняют мощные биполярные транзисторы. В силовых преобразователях они позволяют на 1-2 порядка повысить частоту преобразования и резко уменьшить габариты и массу энергетических преобразователей. В устройствах большой мощности используются биполярные транзисторы с полевым управлением (IGBT) успешно вытесняющие тиристоры. В усилителях мощности звуковых частот высшего класса HiFi и HiEnd мощные полевые транзисторы успешно заменяют мощные электронные лампы, так как обладают малыми нелинейными и динамическими искажениями.

См. также

Ссылки

Примечания

  1. Дьяконов В. П. Intel. Новейшие информационные технологии. Достижения и люди. М.: СОЛОН-Пресс.- 2004.- 416 с.
  2. Схемотехника устройств на мощных полевых транзисторах: Справочник. В. В. Бачурин, В. Я. Ваксембург, В. П. Дьяконов и др.; Под ред. В. П. Дьяконова.- М.: Радио и связь, 1994.- 280 с.
  3. Энциклопедия устройств на полевых транзисторах. Дьяконов В. П., Максимчук А. А., Ремнев А. М., Смердов В. Ю.; Под ред. проф. В. П. Дьяконова.- М.: СОЛОН-Р, 2002.- 512 с.
  4. Semiconductor Physical Electronics (Second Edition). Sheng S. Li.- Springer, 2006.- 708 p. ISBN 0-387-28893-7 ISBN 978-0387-28893-2

Как работают транзисторы MOSFET | hardware

Мощные транзисторы MOSFET хорошо известны своей исключительной скоростью переключения при весьма малой мощности управления, которую нужно прикладывать к затвору. Основная причина в том, что затвор изолирован, поэтому требуется мощность только на перезаряд емкости затвор-исток, и в статическом режиме цепь затвора практически не потребляет тока. В этом отношении мощные MOSFET по своим характеристикам приближаются к “идеальному переключателю”. Основные недостатки, которые не дают MOSFET стать “идеальным”, это сопротивление открытого канала RDS(on), и значительная величина положительного температурного коэффициента (чем выше температура, тем выше сопротивление открытого канала). В этом апноуте обсуждаются эти и другие основные особенности высоковольтных N-канальных мощных MOSFET, и предоставляется полезная информация по выбору транзисторов и их применению (перевод статьи [1]).

Для того, чтобы было проще понять работу полевого N-канального транзистора MOSFET, его стоит сравнить с широко распространенным биполярным кремниевым транзистором структуры NPN. Электроды у биполярного транзистора называются база, коллектор, эмиттер, а у полевого транзистора затвор, сток, исток.

База выполняет те же функции, что и затвор, коллектор соответствует стоку, а эмиттер соответствует истоку.

Давайте рассмотрим простейшую схему включения транзистора NPN:

Когда входной ключ разомкнут, то через эмиттерный переход транзистора T1 ток не течет, и канал коллектор-эмиттер имеет высокое сопротивление. Говорят, что транзистор закрыт, через его канал коллектор-эмиттер ток практически не течет. Когда замыкается входной ключ, то от батарейки B1 через резистор R1 и эмиттерный переход транзистора течет открывающий ток. Когда транзистор открыт, то его сопротивление канала коллектор-эмиттер уменьшается, и почти все напряжение батареи B2 оказывается приложенным к нагрузке R3. Т. е. когда во входной цепи течет ток (через R1), то в выходной цепи тоже течет ток (через R3), но в выходной цепи ток и напряжение (т. е. действующая мощность) в несколько раз больше. Здесь как раз и проявляются усиливающие свойства транзистора – маленькая мощность на входе позволяет управлять большой мощностью на выходе.

А так будет в этой схеме работать транзистор MOSFET:

На первый взгляд все то же самое – когда на входе есть управляющая мощность, она также появляется и на выходе (обычно усиленная во много раз). В этом смысле биполярный транзистор и MOSFET-транзистор очень похожи. Но есть два самых важных различия:

• Биполярный транзистор управляется током, а полевой транзистор напряжением.

Примечание: отсюда, кстати и пошло название полевого транзистора: его канал управляется не током, а электрическим полем затвор-исток.

Это означает, что входное сопротивление биполярного транзистора мало, а входное сопротивление MOSFET-транзистора очень велико. Обратите внимание на входной ток биполярного транзистора – 0.3 мА, этот ток в основном определяется сопротивлением резистора R1. Причина проста: на входе у биполярного транзистора имеется эмиттерный переход, который по сути обыкновенный диод, смещенный в прямом направлении. Если ток через этот диод есть, то транзистор открывается, если нет, то закрывается. Открытый диод имеет малое сопротивление, и максимальное падение напряжения на нем составляет около 0.7V. Поэтому практически все напряжение B1 (если быть точным, то 3.7 – 0.7 = 3V) оказывается приложенным к резистору R1. Этот резистор играет роль ограничителя входного тока биполярного транзистора.

У полевого транзистора MOSFET в этом отношении все по-другому. Входной ток определяется главным образом сопротивлением резистора R2, поэтому входной ток очень мал. Практически все входное напряжение оказывается приложенным к R2 и к переходу затвор – исток полевого транзистора. Причина проста: затвор и исток изолированы друг от друга слоем оксида кремния, по сути это конденсатор, поэтому ток через затвор практически не течет.

По этой причине на низких частотах, когда входная емкость не шунтирует источник сигнала, полевой транзистор имеет гораздо большее усиление по мощности в сравнении с биполярным транзистором. И действительно, в нашем примере входная мощность у биполярного транзистора составляет 0.3 мА * 3.7V = 1.11 мВт, а у полевого транзистора входная мощность составит всего лишь 0.00366 мА * 3.7V = 0.0135 мВт, т. е. в 82 раза меньше! Это соотношение могло бы быть еще больше не в пользу биполярного транзистора, если увеличить сопротивление резистора R2.

• Падение напряжения на выходном канале у полевого транзистора намного меньше, чем у биполярного.

Для данного примера падение напряжения коллектор-эмиттер биполярного транзистора составит примерно 0.3V, а у полевого 0.1V и даже меньше. Обычно выходное сопротивление у полевого транзистора намного меньше, чем у биполярного.

В исходном состоянии, когда на затворе относительно истока нулевое положительное напряжение, сопротивление канала определяется количеством неосновных носителей в полупроводнике, и очень велико. Когда к затвору прикладывается положительное напряжение относительно истока, то появляется проводящий ток канал сток-исток. Поэтому MOSFET иногда называют полевым транзистором с индуцированным каналом.

[Структура мощного транзистора MOSFET]

На рис. 1 показан срез структуры N-канального транзистора MOSFET компании Advanced Power Technology (APT). (Здесь рассматриваются MOSFET только N-структуры, как самые популярные.) Положительное напряжение, приложенное от вывода истока (source) к выводу затвора (gate), заставляет электроны притянуться ближе к выводу затвора в области подложки. Если напряжение исток-затвор равно или больше определенного порогового напряжения, достаточного для накапливания нужного количества электронов для достижения инверсии слоя n-типа, то сформируется проводящий канал через подложку (говорят, что канал MOSFET расширен). Электроны могут перетекать в любом направлении через канал между стоком и истоком. Положительный (или прямой) ток стока втекает в сток, в то время как электроны перемещаются от истока к стоку. Прямой ток стока будет заблокирован, как только канал будет выключен, и предоставленное напряжение сток-исток будет прикладываться в обратном направлении к p-n переходу подложка-сток. В N-канальных MOSFET только электроны формируют проводимость, здесь нет никаких не основных носителей заряда. Скорость переключения канала ограничена только длительностью перезаряда паразитных емкостей между электродами MOSFET. Поэтому переключение может быть очень быстрым, приводя к низким потерям при переключении. Этот фактор делает мощные MOSFET такими эффективными для работы на высокой частоте переключения.

Рис. 1. Срез рабочей структуры транзистора MOSFET.

RDS(on). Основные составляющие, которые входят в сопротивление открытого канала RDS(on), включают сам канал, JFET (аккумулирующий слой), область дрейфа Rdrift, паразитные сопротивления (металлизация, соединительные провода, выводы корпуса). При напряжениях приблизительно выше 150V в сопротивлении открытого канала доминирует область дрейфа. Эффект RDS(on) относительно невелик на высоковольтных транзисторах MOSFET. Если посмотреть на рис. 2, удвоение тока канала увеличивает RDS(on) только на 6%.

Рис. 2. Зависимость RDS(on) от тока через канал.

Температура, с другой стороны, сильно влияет на RDS(on). Как можно увидеть на рис. 3, сопротивление приблизительно удваивается при возрастании температуры от 25°C до 125°C. Температурный коэффициент RDS(on) определяется наклоном кривой графика рис. 3, и он всегда положителен для большинства поставщиков транзисторов MOSFET. Большой положительный температурный коэффициент RDS(on) определяется потерями на соединении I2R, которые увеличиваются с ростом температуры.

Рис. 3. Зависимость RDS(on) от температуры.

Положительный температурный коэффициент RDS(on) очень полезен, когда нужно параллельно включать транзисторы MOSFET, поскольку это обеспечивает их температурную стабильность и равномерное распределение рассеиваемой мощности между транзисторами. Этим MOSFET выгодно отличаются от традиционных биполярных транзисторов. Но это не гарантирует, что параллельно соединенные транзисторы будут равномерно распределять между собой общий ток. Это широко распространенное заблуждение [2]. То, что действительно делает MOSFET простыми для параллельного включения – это их относительно малый разброс по параметрам между отдельными экземплярами в пределах серии, в частности по параметру RDS(on), в комбинации с более безопасными свойствами канала в контексте перегрузки по току, когда благодаря положительному температурному коэффициенту RDS(on) сопротивление канала растет при повышении температуры.

Для любого заданного размера кристалла RDS(on) также увеличивается с увеличением допустимого напряжения V(BR)DSS, как это показано на рис. 4.

Рис. 4. Зависимость нормализированного RDS(on) от V(BR)DSS.

Кривая нормализированного RDS(on) в зависимости от V(BR)DSS для Power MOS V и Power MOS 7 MOSFET показывает, что RDS(on) растет пропорционально квадрату V(BR)DSS. Эта нелинейная зависимость между RDS(on) и V(BR)DSS является побудительным стимулом для исследования технологий с целью уменьшить потери проводимости мощных транзисторов [3].

[Внутренние и паразитные элементы]

JFET. В структуре MOSFET Вы можете представить себе встроенный JFET, как это показано на рис. 1. JFET оказывает значительное влияние на RDS(on), и является частью нормального функционирования MOSFET.

Внутренний диод на подложке (Intrinsic body diode). Переход p-n между подложкой и стоком формирует внутренний диод, так называемый body diode (см. рис. 1), или паразитный диод. Обратный ток стока не может быть блокирован, потому что подложка замкнута на исток, предоставляя мощный путь для тока через body diode. Расширение канала транзистора (при положительном напряжении на затворе относительно истока) уменьшает потери на прохождение обратного тока стока, потому что электроны проходят через канал в дополнение к электронам и неосновным носителям, проходящим через  body diode.

Наличие внутреннего диода на подложке удобно в схемах, для которых требуется путь для обратного тока стока (часто называемого как ток свободного хода), таких как схемах мостов. Для таких схем предлагаются транзисторы FREDFET, имеющие улучшенные восстановительные характеристики (FREDFET это просто торговое имя компании Advanced Power Technology, используемое для выделения серий MOSFET с дополнительными шагами в производстве, направленными на ускорение восстановления intrinsic body diode). В FREDFET нет отдельного диода; это тот же MOSFET intrinsic body diode. Для управления временем жизни неосновных носителей во внутреннем диоде применяется либо облучение электронами (наиболее часто используемый вариант) или легирование платиной, что значительно уменьшает заряд обратно смещенного перехода и время восстановления.

Побочный эффект от обработки FREDFET – повышенный ток утечки, особенно на высоких температурах. Однако, если учесть, что MOSFET имеет очень малый начальный ток утечки, то добавленный через FREDFET ток утечки остается допустимым до температур перехода ниже 150°C. В зависимости от дозы облучения FREDFET может иметь RDS(on) больше, чем у соответствующего MOSFET. Прямое напряжение для паразитного диода для FREDFET также немного больше. Заряд затвора и скорость переключения у MOSFET и FREDFET идентичны. Поэтому термин MOSFET здесь будет использоваться всегда для обоих типов MOSFET и FREDFET, если специально не оговорено что-то другое.

Скорость восстановления для паразитного диода у MOSFET или даже у FREDFET намного хуже в сравнении со скоростью быстрого дискретного диода. В приложениях, где жесткие рабочие условия с температурой порядка 125°C, потери на включение из-за восстановления из обратного смещения примерно в 5 раз выше, чем у быстрых дискретных диодов. НА это есть 2 причины:

1. Рабочая область паразитного диода совпадает с рабочей областью MOSFET или FREDFET, и рабочая область у дискретного диода для той же функции намного меньше, поэтому у дискретного диода намного меньше заряд восстановления.

2. Паразитный диод MOSFET или даже FREDFET не оптимизирован под обратное восстановление, как это сделано для дискретного диода.

Как и любой стандартный кремниевый диод, у паразитного диода заряд восстановления и время зависит от температуры, di/dt (скорости изменения тока), и величины тока. Прямое напряжение паразитного диода, VSD, уменьшается с ростом температуры по коэффициенту примерно 2.5 mV/°C.

Паразитный биполярный транзистор. Разделенная на слои структура MOSFET также формирует паразитный биполярный транзистор (BJT) структуры NPN, и его включение на является частью нормального функционирования. Если BJT откроется и войдет в насыщение, то это может вызвать самоблокировку, при которой MOSFET не может быть выключен кроме как через внешний разрыв цепи тока стока. Высокая мощность рассеивания (например, при возникновении сквозного тока в плече моста) при самоблокировке может вывести MOSFET из строя.

База паразитного BJT замкнута на исток, чтобы предотвратить самоблокировку, и потому что напряжение пробоя (breakdown voltage) было бы значительно уменьшено (для того же самого значения RDS(on)), если бы база была оставлена плавающей. Существует теоретическая возможность самоблокировки при очень большой скорости dv/dt в момент выключения. Однако для современных стандартных мощных транзисторов очень трудно создать схему, где будет достигнута такое высокое dv/dt.

Есть риск включения паразитного BJT, если внутренний диод проводит, и затем выключается с чрезмерно высоким изменением dv/dt. Мощная коммутация dv/dt вызывает высокую плотность неосновных носителей заряда (положительные носители, или дырки) в подложке, что может создать напряжение на подложке, достаточное для включения паразитного BJT. По этой причине в даташите указано ограничение пиковой коммутации (восстановление встроенного диода) dv/dt. Пиковая коммутация dv/dt для FREDFET выше в сравнении с MOSFET, потому что у FREDFET снижено время жизни неосновных носителей заряда.

[На что влияет температура]

Скорость переключения. Температура практически не влияет на скорость переключения и потери, потому что (паразитные) емкости мало зависят от температуры. Однако ток обратного восстановления в диоде увеличивается с температурой, так что температурные эффекты внешнего диода (это может быть дискретный диод, или внутренний диод в MOSFET или FREDFET) влияют на потери включения мощных схем.

Пороговое напряжение, или напряжение отсечки (Threshold voltage). Напряжение отсечки затвора, обозначаемое как VGS(th), является важным стандартным параметром. Оно говорит, насколько много миллиампер через сток будет течь при пороговом напряжении на затворе, когда транзистор в основном выключен, но находится на пороге включения. У напряжения отсечки есть отрицательный температурный коэффициент; это означает, что напряжение отсечки уменьшается с ростом температуры. Температурный коэффициент влияет на время задержки включения и выключения, и следовательно влияет на выбор “мертвого времени” в мостовых схемах.

Переходная характеристика (Transfer characteristic). На рис. 5 показана переходная характеристика MOSFET-транзистора APT50M75B2LL.

Рис. 5. Пример переходной характеристики MOSFET.

Переходная характеристика зависит как от температуры, так и от тока стока. На рис. 5 при токе ниже 100 A напряжение затвор-исток имеет отрицательный температурный коэффициент (при заданном токе стока уменьшается напряжение затвор-исток при повышении температуры). При токе выше 100 A температурный коэффициент становится положительным. Температурный коэффициент напряжения затвор-исток и ток стока в том месте, где коэффициент меняет знак, важен для проектирования работы схем в линейном режиме [4].

Напряжение пробоя (Breakdown voltage). Напряжение пробоя имеет положительный температурный коэффициент, этот будет обсуждаться в секции Walkthrough.

Устойчивость к перегрузке по току (Short circuit capability). Возможность противостояния коротким замыканиям не всегда встречается в даташите. Причина понятна – MOSFET стандартной мощности не подходят для устойчивой работы в режиме перегрузки по току в сравнению с IGBT или другими транзисторами, работающими с высокой плотностью тока. Само собой разумеется, что MOSFET и FREDFET (в некотором смысле) устойчивы к перегрузке по току.

[Обзор параметров даташита. Максимальные предельные значения]

Назначение даташитов, предоставляемых APT, состоит в предоставлении соответствующей информации, которая полезна и удобна для выбора подходящего устройства в конкретном приложении. Предоставляются графики, чтобы можно было экстраполировать от одного набора рабочих условий к другому. Следует отметить, что графики предоставляют типичную производительность, но не минимумы или максимумы. Производительность также зависит кое в чем от схемы; различные тестовые схемы приведут к отличающимся результатам.

VDSS, напряжение сток-исток. Это оценка максимального напряжения сток-исток не вызывая лавинного пробоя (avalanche breakdown) с затвором, замкнутым на исток при температуре 25°C. В зависимости от температуры напряжение лавинного пробоя могло бы быть фактически меньше, чем параметр VDSS. См. описание V(BR)DSS в разделе “Статические электрические характеристики”.

VGS, напряжение затвор-исток. Это предельное напряжение между выводами затвора и истока. Назначение этого параметра – предотвратить повреждение изолирующего оксидного слоя затвора (например, от статического электричества). Фактическая устойчивость оксидной пленки затвора намного выше, чем заявленный параметр VGS, но он варьируется в зависимости от производственных процессов, так что если укладываться в предел VGS, то это гарантирует надежную работу приложения.

ID, непрерывный ток стока. ID определяет максимальный уровень продолжающегося постоянного тока, когда транзистор выходит из строя при максимальной температуре перехода TJ(max), для случая 25°C, и иногда для более высокой температуры. Он основан на термосопротивлении между корпусом и переходом RӨJC, и для случая температуры TC может быть вычислен по формуле:

Это выражение просто говорит о том, какая максимальная мощность может рассеиваться

при максимальной генерируемой теплоте из-за потерь в соединении I2D X RDS(on)@TJ(max), где RDS(on)@TJ (max) сопротивление открытого канала при максимальной температуре перехода. Отсюда можно вывести ID:

Обратите внимание, что в ID не входят никакие потери на переключение, и случай с температурой 25°C на практике встречается редко. По этой причине в приложениях, где MOSFET часто переключается, фактический коммутируемый ток обычно меньше половины ID @ TC = 25°C; обычно между 1/4 до 1/3.

Зависимость ID от TC. Этот график просто отражает формулу 2 для диапазона температур. Здесь также не учтены потери на переключение. На рис. 6 приведен пример такого графика. Обратите внимание, что в некоторых случаях выводы корпуса транзистора ограничивают максимально допустимый продолжительный ток (переключаемый ток может быть больше): 100 A для корпусов TO-247 и TO-264, 75 A для TO-220 и 220 A для SOT-227.

Рис. 6. Максимальный ток стока в зависимости от температуры.

IDM, импульсный ток стока. Этот параметр показывает, какой импульс тока может выдержать устройство. Этот ток может значительно превышать максимально допустимый постоянный ток. Назначение этого параметра IDM состоит в том, чтобы удержать рабочий омический регион в пределе выходных характеристик. Посмотрите на рис. 7:

Рис. 7. Выходная характеристика MOSFET.

На этом графике есть максимальный ток стока для соответствующего напряжения затвор-исток, когда транзистор MOSFET открыт. Если рабочая точка при данном напряжении затвор-исток переходит выше омического региона “колена” рис. 7, то любое дальнейшее увеличение тока через сток приведет к значительному увеличению напряжения сток-исток (транзистор переходит из режима насыщения в линейный режим) и последующей потере проводимости. Если мощность рассеивания станет слишком велика, и это будет продолжаться довольно долго, то устройство может выйти из строя. Параметр IDM нужен для того, чтобы установить рабочую точку ниже “колена” для типичных применений транзистора в ключевом режиме.

Нужно ограничить плотность тока, чтобы предотвратить опасный нагрев, что иначе может привести к необратимому перегоранию MOSFET.

Чтобы избежать проблем с превышением тока через соединительные провода иногда применяют плавкие предохранители. В случае перегрузки по току выгорят именно они вместо транзистора.

Относительно температурных ограничений на IDM, рост температуры зависит от длительности импульса тока, интервала времени между импульсами, интенсивности рассеивания тепла, сопротивления открытого канала RDS(on), а также и от формы и амплитуды импульса тока. Если просто удержаться в пределах IDM, то это еще не означает, что температура перехода не будет превышена. См. обсуждение переходного теплового сопротивления в разделе “Температурные и механические характеристики”, чтобы узнать способ оценки температуры перехода во время импульса тока.

PD, общая мощность рассеивания. Этот параметр определяет максимальную мощность, которую может рассеивать устройство, и он основан на максимально допустимой температуре перехода и термосопротивлении RӨJC для случая температуры 25°C.

Линейный коэффициент снижения мощности это просто инверсия RӨJC.

TJ, TSTG: рабочий и складской диапазон температур перехода. Этот параметр ограничивает допустимую температуру кристалла устройства во время работы и во время хранения. Установленные пределы гарантируют, что будут соблюдены гарантийные эксплуатационные сроки устройства. Работа в пределах этого диапазона может значительно увеличить срок службы.

EAS, лавинная энергия одиночного импульса. Если импульс напряжения (возникающий обычно из-за утечки и случайной индуктивности) не превышает напряжение пробоя, то не будет лавинного пробоя устройства, так что нет необходимости рассеивать энергию пробоя. Параметр максимальной лавинной энергии оценивает устройство в плане рассеивания мощности режима лавинного пробоя при переходных процессах с повышенным напряжением.

Все устройства, которые оценены по лавинной энергии, имеют параметр EAS. Лавинная энергия связана с параметром разблокированного индуктивного переключения (unclamped inductive switching, UIS). EAS показывает, сколько лавинной энергии устройство может поглотить. Условия для схемы тестирования Вы можете найти в документации по ссылкам, и EAS вычисляется по формуле:

Здесь L величина индуктивности, из которой поступает импульс тока iD, случайно поступающий в на закрытый переход транзистора через сток при тесте. Индуцируемое напряжение превышает напряжение пробоя MOSFET, что вызывает лавинный пробой. Лавинный пробой позволяет импульсу тока от индуктивности течь через MOSFET, даже если он закрыт. Энергия, запасенная в индуктивности, аналогична энергии, сохраненной в утечке и/или случайной индуктивности, и она должна быть рассеяна в MOSFET.

Когда транзисторы MOSFET соединены параллельно, это совершенно не означает, что у них одинаковое напряжение пробоя. Обычно пробьется только один транзистор, и только на него поступит вся энергия тока лавинного пробоя.

EAR, повторная лавинная энергия. Этот параметр стал “промышленным стандартом”, но он не имеет смысла без информации о частоте, других потерях и эффективности охлаждения. Рассеивание тепла (охлаждение) часто ограничивает значение повторной рассеиваемой энергии. Также трудно предсказать, сколько энергии находится в лавинном событии. То, о чем говорит EAR в действительности, означает, что устройство может выдерживать повторяющиеся лавинные пробои без какого-либо ограничения по частоте, если устройство не перегрето, что в принципе верно для любого устройства, которое может испытать лавинный пробой. Во время анализа проекта хорошей практикой является измерение температуры устройства или его радиатора во время работы – чтобы увидеть, что MOSFET не перегрет, особенно если возможны условия лавинного пробоя.

IAR, ток лавинного пробоя. Для некоторых устройств, которые могут выйти из строя во время лавинного пробоя, этот параметр дает лимит на максимальный ток пробоя. Так что это как бы “точный отпечаток” спецификаций лавинной энергии, показывающий реальные возможности устройства.

[Статические электрические характеристики]

V(BR)DSS, Drain-source breakdown voltage, напряжение пробоя сток-исток. Параметр V(BR)DSS (иногда его называют BVDSS) определяет максимальное напряжение сток-исток, при котором через канал сток-исток будет течь ток не больше допустимого при заданной температуре и нулевом напряжении между затвором и истоком. Фактически этот параметр соответствует напряжению лавинного пробоя канала сток-исток закрытого транзистора. 

Как показано на рис. 8, у параметра V(BR)DSS есть положительный температурный коэффициент. Таким образом, MOSFET может выдержать больше напряжение, если он нагрет, по сравнению с холодным состоянием. Фактически в охлажденном состоянии V(BR)DSS будет меньше, чем предельно допустимое напряжение сток-исток VDSS, указанное для температуры 25°C. В примере, показанном на рис. 8 при -50°C, напряжение V(BR)DSS будет составлять 90% от максимально допустимого VDSS, указанного для температуры 25°C. 

Рис. 8. Нормализованная зависимость напряжения пробоя от температуры. 

VGS(th), Gate threshold voltage, напряжение отсечки затвора. Это пороговое напряжение затвор-исток, при превышении которого транзистор начнет открываться. Т. е. при напряжении на затворе выше VGS(th) транзистор MOSFET начинает проводить ток через канал сток-исток. Для параметра VGS(th) также указываются условия проверки (ток стока, напряжение сток-исток и температура кристалла). Все транзисторы MOSFET допускают некоторый разброс порогового напряжения отсечки затвора от устройства к устройству, что вполне нормально. Таким образом, для VGS(th) указывается диапазон (минимум и максимум), в который должны попасть все устройства указанного типа. Как уже обсуждалось ранее в разделе “На что влияет температура”, VGS(th) имеет отрицательный температурный коэффициент. Это значит, что с увеличением нагрева MOSFET откроется при более низком напряжении затвор-исток. 

RDS(on), ON resistance, сопротивление в открытом состоянии. Этот параметр определяет сопротивление открытого канала сток-исток при указанном токе (обычно половина от тока ID), напряжении затвор-исток (обычно 10V) и температуре 25°C, если не указано что-либо другое. 

IDSS, Zero gate voltage drain current, ток утечки канала. Это ток, который может течь через закрытый канал сток-исток, когда напряжение на затвор-исток равно нулю. Поскольку ток утечки увеличивается с температурой, то IDSS указывается для комнатной температуры и для нагретого состояния. Потери мощности из-за тока утечки IDSS через канал сток-исток обычно незначительны. 

IGSS, Gate-source leakage current, ток утечки затвора. Это ток, который может через затвор при указанном напряжении затвор-исток. 

[Динамические характеристики

Рис. 9 показывает месторасположения внутренних емкостей транзистора MOSFET. Величина этих емкостей определяется структурой MOSFET, используемыми материалами и приложенными напряжениями. Эти емкости не зависят от температуры, так что температура не влияет на скорость переключения MOSFET (за исключением незначительного эффекта, связанного с пороговым напряжением, которое зависит от температуры). 

Рис. 9. Паразитные емкости транзистора MOSFET в структуре кристалла. 

Емкости Cgs и Cgd меняются в зависимости от приложенного к ним напряжений, потому что они затрагивают обедненные слои в устройстве [8]. Однако на Cgs намного меньше меняется напряжение в сравнении с Cgd, так что емкость Cgs изменяется меньше. Изменение Cgd при изменении напряжения сток-затвор может быть больше, потому что напряжение может меняться в 100 раз или больше. 

На рис. 10 показаны внутренние емкости MOSFET с точки зрения схемотехники. Емкости затвор-сток и затвор-исток могут повлиять на схему управления, и вызвать нежелательные эффекты при быстрых переключениях в мостовых схемах. 

Рис. 10. Паразитные емкости транзистора MOSFET в рабочей схеме. 

Если кратко, то чем меньше Cgd, тем будет меньше влияние на схему управления при перепаде напряжения при включении транзистора. Также емкости Cgs и Cgd формируют емкостный делитель напряжения, и при большом соотношении Cgs к Cgd желательно защитить схему управления от паразитных помех от перепадов напряжения, возникающих при переключении. Это соотношение, умноженное на пороговое напряжение, определяет качество защиты схемы управления от переключений в выходной цепи, и силовые транзисторы MOSFET компании APT лидируют в индустрии по этому показателю. 

Ciss, Input capacitance, входная емкость. Это емкости, измеренная между выводами затвора истока, когда по переменному напряжению сток замкнут на исток. Ciss состоит из параллельно соединенных емкостей Cgd (емкость затвор-сток) и Cgs (емкость затвор-исток): 

Входная емкость должна быть заряжена до порогового напряжения перед тем, как транзистор начнет открываться, и разряжена до напряжения общего провода перед тем, как транзистор выключится. Таким образом, сопротивление управляющей схемы и емкость Ciss образуют интегрирующую цепь, которая напрямую влияет на задержки включения и выключения. 

Coss — Output capacitance, выходная емкость. Это емкость, измеренная между стоком и истоком, когда затвор замкнут по переменному току на сток. Coss состоит из параллельно соединенных емкостей Cds (емкость сток-исток) и Cgd (емкость затвор-сток):

Для приложений с мягким переключением параметр Coss важен, потому что влияет на резонанс схемы. 

Crss, Reverse transfer capacitance, обратная переходная емкость. Это емкость, измеренная между стоком и затвором, когда исток соединен с землей. Обратная переходная емкость эквивалентна емкости затвор-сток. 

Обратная переходная емкость часто упоминается как емкость Миллера. Это один из главных параметров, влияющих на время нарастания и спада напряжения во время переключения. Он также влияет на эффекты времени задержки выключения. 

На рис. 11 показан пример зависимости типичных значений емкости от напряжения сток-исток. 

Рис. 11. Зависимость емкости от напряжения. 

Емкости уменьшаются при увеличении напряжения сток-исток, особенно это влияет на выходную и обратную переходную емкости.

Qgs, Qgd и Qg, Gate charge, заряд затвора. Значения заряда отражают заряд, сохраненный на внутренних емкостях, описанных ранее. Заряд затвора используется для разработки схемы управления, поскольку нужно учитывать изменения емкости при изменении напряжения на переходах переключения [9, 10].

На рис. 12 показано, что Qgs заряжается от начала координат до первого перегиба и далее заряжается до второго перегиба кривой (этот заряд известен как заряд Миллера), и Qg является зарядом от начала координат до точки, где VGS равно указанному управляющему напряжению затвора. 

Рис. 12. VGS как функция заряда затвора. 

Заряд затвора незначительно изменяется с током стока и напряжением сток-исток, но не зависит от температуры. Для этого параметра указываются условия тестирования. График заряда затвора, обычно приведенный в даташите, показывает кривые заряда затвора для фиксированного тока стока и различных напряжений сток-исток. Напряжение горизонтального участка VGS(pl), “плато”, показанное на рис. 12, незначительно увеличивается с ростом тока (и соответственно уменьшается при снижении тока). Напряжение  также имеет прямо пропорциональную зависимость от порогового напряжения, так что изменения порогового напряжения коррелирует и изменением напряжения плато. 

[Резистивные параметры времени переключения (данные resistive switching)]

Эти параметры имеются в даташите по чисто историческим причинам. 

td(on), Turn-on delay time, время задержки включения. Это время от момента, когда напряжение затвор-исток на 10% превысит напряжение отсечки затвора до момента времени, когда ток стока вырастет больше 10% от указанного выходного тока. Это показывает задержку начала поступления тока в нагрузку.

td(off), Turn-off delay Time, время задержки выключения. Это время от момента, когда напряжение затвор-исток упадет ниже 90% напряжения отсечки затвора до момента, когда ток стока упадет ниже 90% от указанного выходного тока. Это показывает задержку отключения тока в нагрузке.

tr, Rise time, время нарастания. Это время, за которое ток стока вырастет от 10% до 90% (значение тока указывается).

tf, Fall time, время спада. Это время, за которое ток стока спадет от 90% до 10% (значение тока указывается). 

[Энергии переключения в индуктивностях

Из-за того, что данные resistive switching трудно использовать для предсказания потерь на переключение в реальных рабочих условиях мощных преобразователей, компания Advanced Power Technology включает во многие даташиты транзисторов MOSFET и FREDFET данные энергии переключения в индуктивностях. Это предоставляет разработчику ключевых блоков питания удобный способ сравнения быстродействия транзисторов MOSFET или FREDFET с другими транзисторами, даже если они выполнены по другой технологии наподобие IGBT. Поэтому можно использовать для разработки самый подходящий по качеству мощный транзистор. 

На рис. 13 показана схема тестирования переключения транзистора с учетом потерь в индуктивностях. Это импульсный тест, где применяется очень короткий по длительности цикл открытого состояния транзистора, так что энергия, запасенная в индуктивности, успеет рассеяться намного раньше поступления последующих импульсов, и саморазогрев можно не учитывать. Температура транзистора и фиксирующего диода во время теста регулируется принудительно от внешнего термостата. 

Рис. 13. Схема тестирования потерь на индуктивности.

В таблице динамических характеристик указываются следующие условия тестирования: VDD на рис. 13, ток теста, напряжение управления для затвора, сопротивление затвора и температура кристалла. Обратите внимание, то сопротивление затвора может включать сопротивление выхода микросхемы драйвера. Поскольку время переключения и энергии меняются с температурой (главным образом из-за диода в тестовой схеме), то данные предоставляются как для комнатной температуры, так и для разогретого состояния диода и тестируемого транзистора. Также предоставляется график зависимости между временем переключения и энергиями тока стока, и сопротивлением затвора. Определения времени задержки (включения) и времени нарастания и спада тока совпадают с аналогичными временами для данных resistive switching. 

Фактические формы сигнала при переключениях используются в даташите для определения различных измеренных параметров. Рис. 14 показывает форму сигнала включения и определения, связанные с ним. Энергия переключения может быть масштабирована напрямую для изменений между напряжением в приложении и энергией при тестовом напряжении, указанном в даташите. Так что, к примеру, если тесты в даташите были проведены при напряжении 330V, и в приложении применяется напряжение 400, то для масштабирования нужно просто умножить энергию переключения из даташита на коэффициент 400/330. 

Рис. 14. Формы сигналов включения и соответствующие определения. 

Времена переключения и энергии очень зависят от других компонентов и случайных (паразитных) индуктивностей в схеме. Диод сильно влияет на энергию включения. Паразитная индуктивность, включенная последовательно с истоком, является частью пути возвратного управляющего тока, и поэтому значительно влияет на времена переключения и энергии. Таким образом, время переключения и значения энергии, представленные в даташите, могут отличаться от того, что наблюдается в реальном приложении силового узла блока питания или ключа управления мотором. 

Eon, Turn-on switching energy with diode, энергия включения с диодом. Это зафиксированная индуктивная энергия включения, которая включает индуктивный коммутирующий реверсивный ток восстановления диода в тестируемом транзисторе, и она учитывает потери при включении. Обратите внимание, что транзисторы FREDFET в схемах мостов получают жесткие условия переключения, где паразитный диод сложно коммутируется, и энергия включения примерно в 5 раз выше, чем если бы использовался дискретный диод с быстрым восстановлением, наподобие того как показано в схеме рис. 13. 

Энергия включения является интегралом результата от тока стока и напряжения сток-исток на интервале от момента, когда ток стока вырастет больше 5% или 10% от тестового тока, то момента, когда напряжение спадет ниже 5% от тестового напряжения, как это показано на рис. 14. 

Eoff, Turn-off switching energy, энергия выключения. Это параметр, характеризующий фиксацию потерь на индуктивности при выключении. На рис. 13 показана схема тестирования, и рис. 15 показывает форму сигнала и определения. Eoff является интегралом результата от тока стока и напряжением сток-исток на интервале времени от момента, когда напряжение затвор-исток упадет ниже 90% до момента, когда ток стока станет нулевым. Это соответствует измерениям энергии выключения по JEDEC-стандарту 24-1. 

Рис. 15. Формы сигналов выключения и соответствующие определения. 

[Температурные и механические характеристики]

RƟJC, Junction to case thermal resistance, тепловое сопротивления между подложкой и корпусом. Этот параметр характеризует эффективность передачи тепла от кристалла к внешнему корпусу транзистора. Выделяющееся тепло является результатом потерь мощности в самом транзисторе. Обратите внимание, что тесты компании APT показывают температуры пластмассы, совпадающую с металлической частью корпуса дискретного компонента. 

Максимальное значение RƟJC включает допуск, учитывающий погрешности изменения для обычного процесса производства. Из-за улучшений производственного процесса в индустрии есть тенденция сокращения разницы между максимальным значением RƟJC и его реальным значением. 

ZƟJC, Junction to case transient thermal impedance, переходной термический импеданс между подложкой и корпусом. Этот параметр учитывает теплоемкость устройства, так что он может использоваться для оценки мгновенных температур из-за потерь мощности. 

В условиях проведения теста на термоимпеданс на тестируемый транзистор прикладываются импульсы мощности различной длительности, и при этом ждут спада температуры между каждым импульсом. Это дает измерение переходного термосопротивления для “одиночного импульса”. Из этого строится модель резистор-емкость (RC) по кривой изменения температуры. Рис. 16 показывает такую RC-модель переходного термосопротивления. Некоторые даташиты могут показывать конденсаторы и резисторы, включенные параллельно, но это будет ошибкой. Конденсаторы “заземлены”, как это показано на рис 16, и значения компонента остаются такими же. Нет никакого физического значения для промежуточных узлов в модели. Разное количество пар резистор-конденсатор используется просто для того, чтобы создать хорошую подгонку к фактическим измененным данным термосопротивления. 

Рис. 16. RC-модель переходного термосопротивления. 

Чтобы симулировать возрастание температуры с помощью RC-модели, Вы прикладываете источник тока с магнитудой, соответствующей рассеиваемой мощности в MOSFET. Таким образом, Вы можете использовать систему PSPICE или другой программный симулятор электронных схем, чтобы применить ввод произвольных потерь мощности. Из этого Вы можете оценить повышение температуры участка подложка-корпус как напряжение на ступеньках лестницы, установив ZEXT в ноль, как это показано на рис. 16. Вы можете расширить модель, чтобы включить теплоотвод, добавив дополнительные конденсаторы и/или резисторы. 

Переходное термосопротивление в виде семейства кривых, опубликованное в даташите, это просто симуляция прямоугольного импульса, основанная на RC-модели термосопротивления. Рис. 17 показывает пример. Вы можете использовать семейство кривых для оценки пикового нарастания температуры для прямоугольных импульсов мощности, которые являются обычными в источниках питания. Однако из за того, что минимальная длительность импульса 10 мкс, график имеет значение только для частот ниже 100 кГц. На более высоких частотах Вы будете просто использовать термосопротивление RƟJC.

Рис. 17. Семейство кривых термосопротивления.

[Пример анализа даташита]

Предположим, что в реальном приложении ключевого блока питания Вы хотите применить жесткое переключение тока 15A на частоте 200 кГц при напряжении 400V, при средней скважности 35%. Напряжение управления затвора 15V, и сопротивление цепи управления затвора составляет 15Ω для включения и 5Ω для выключения. Также предположим, что Вы хотите позволить максимальную температуру перехода 112°C, с удержанием температуры корпуса транзистора 75°C. С транзистором, рассчитанным на 500V, есть запас только в 100V между напряжением в приложении и VDSS. С учетом скачков напряжения на шине питания 400V узкий запас по напряжению все равно достаточен, потому что у транзистора MOSFET есть эффект лавинного пробоя, который дает “безопасную цепь”. Это конфигурация с продолжительной проводимостью, так что быстро восстанавливающийся диод FREDFET не нужен, MOSFET будет работать достаточно хорошо. Такой транзистор Вам следует выбрать? 

Поскольку это приложение с довольно высокой частотой переключения, то лучшим выбором будет серия Power MOS 7. Посмотрим на транзистор APT50M75B2LL. Его расчетный ток 57A, что больше чем в 3 раза переключаемого тока – хорошая стартовая точка, учитывая высокую частоту и жесткое переключение. Давайте оценим потери проводимости, потери переключения, и посмотрим, будет ли тепло рассеиваться достаточно быстро. Общая мощность, которую можно рассеять: 

При 112°C сопротивление RDS(on) примерно в 1.8 раз больше, чем при комнатной температуре (см. рис. 3). Так что потери на проводимость составят: 

Pconduction = (1.8*0.075Ω * 15A) * 15A = 30.4 Вт 

Для оценки потерь на включение мы можем посмотреть на график зависимости потерь переключения от тока при температуре 125°C, показанный на рис. 18. Даже при том, что наше приложение требует максимальную температуру перехода 112°C, этот график будет достаточно точен, потому что энергия переключения MOSFET не чувствительна к температуре, за исключением изменений температуры, связанных с диодом в схеме. Поэтому не будет больших изменений при переходе от 112°C к 125°C. В любом случае, наша оценка будет консервативной. 

Рис. 18. Индуктивные потери переключения. 

По рис. 18 на токе 15A значение Eon будет около 300 μJ, и Eoff около 100 μJ. Значения были измерены при 330V, а в нашем приложении на шине питания 400V. Так что мы можем просто сделать масштабирование энергий переключения по напряжению:

Данные на рис. 18 были также измерены при сопротивлении затвора 5Ω, и мы будем использовать 15Ω при включении. Поэтому мы можем использовать график зависимости энергии переключения от данных сопротивления затвора, показанный на рис. 19, чтобы снова сделать масштабирование энергии. 

Рис. 19. Зависимость энергии переключения от сопротивления затвора. 

Даже при том, что тестовый ток на рис. 19 больше, чем в нашем приложении, разумно учесть соотношение в изменении энергии переключения между рис. 19 и нашим случаем. От 5Ω до 15Ω значение Eon поменяется с коэффициентом около 1.2 (1500μJ / 1250μJ, см. рис. 19). Применим это с данным, скорректированным по напряжению, которые мы видим на рис. 18, и получим Eon = 1.2*364μJ = 437μJ. 

Потери на переключение составят: 

Pswitch = fswitch – ( Eon + Eoff) = 200kHz – (437μJ +121μJ) = 112 Вт

Pconduction + Pswitch = 142.4 Вт, что дает возможность сохранить температуру перехода ниже 112°C в случае корпуса, охлажденного до 75°C. Так что APT50M70B2LL будет удовлетворять требованиям этого примера применения. Такая же техника может использоваться для менее мощных транзисторов MOSFET. На практике потери часто больше всего бывают на переключении. Чтобы поместить транзистор на радиатор и поддерживать температуру корпуса 75°C вероятно потребуется керамическая прокладка (для электрической изоляции) между корпусом и теплоемким радиатором. Преимущество MOSFET состоит в том, что могут применяться демпферы и/или техники резонанса для уменьшения потерь на переключение, причем с транзисторами MOSFET не нужно беспокоиться о влиянии на переключение эффектов зависимости от напряжения или температуры.

[UPD160207. Figure-of-merit]

Для оценки транзисторов FET применяют так называемый показатель качества, Figure of merit (FOM) [11]. Он учитывает одновременно потери на включенном транзисторе и потери на переключение. Обычно FOM вычисляется как произведение сопротивления канала сток-исток открытого транзистора R(DS)ON на заряд затвора QG. QG это заряд, который надо поместить на затвор транзистора MOSFET, чтобы он полностью открылся. С точки зрения рационального дизайна трудно одновременно снизить оба параметра, так что они хороши для оценки качества разработки ключа на полевом транзисторе.

Конечно, сравнение имеет смысл делать только в неком стандартном наборе условий. Это означает, что не только напряжение между затвором и истоком VGS поставляет заряд, также и напряжение сток-исток VDS влияет на сопротивление R(DS). (Это означает, что не просто канал полностью открыт, а то, что сопротивление R(DS) изменяется вверх и вниз.) Усложненный анализ учитывает, что R(DS)ON немного меняется с током стока, так что при сравнении переключающихся транзисторов рабочий ток стока ID также должен быть определен.

Иногда Вы увидите незначительно отличающийся показатель качества FOM: FOMSW, который будет произведением от which R(DS)ON и Q. Он характеризует заряд переключения, который немного меньше QG.

[Ссылки]

1. Power MOSFET tutorial site:eetimes.com.
2. R. Severns, E. Oxner; “Parallel Operation of Power MOSFETs”, technical article TA 84-5, Siliconix Inc. 
3. J. Dodge; “Latest Technology PT IGBTs vs. Power MOSFETs”, application note, Advanced Power Technology.
4. R. Frey, D. Grafham – APT, T. Mackewicz – TDIDynaload; “New 500V Linear MOSFETs for a 120 kW Active Load”, application note APT0002, Advanced Power Technology.
5. Реле и транзисторы: как они работают в качестве электронных переключателей.
6. JFET site:wikipedia.org.
7. Bipolar junction transistor site:wikipedia.org.
8. N. Mohan, T. Undeland, W. Robbins; “Power Electronics ” Converters Applications, and Design”, text book published by Wiley.
9. K. Dierberger, “Gate Drive Design for Large Die MOSFETs”, application note APT9302, Advanced Power Technology.
10. R. McArthur, “Making Use of Gate Charge Information in MOSFET and IGBT Datasheets”, application note APT0103, Advanced Power Technology.
11. Оценка качества транзисторов MOSFET.

Что такое полевой транзистор? – Блог Fusion 360

Полевой транзистор (FET) – это трехконтактный активный полупроводниковый прибор, в котором выходной ток регулируется электрическим полем, создаваемым входным напряжением. Полевые транзисторы также известны как униполярные транзисторы, потому что, в отличие от биполярных транзисторов, полевые транзисторы имеют либо электроны, либо дырки, работающие в качестве носителей заряда. Полевой транзистор использует напряжение, приложенное к его входной клемме (называемой затвором), для управления током, протекающим от истока к стоку, что делает полевой транзистор устройством, управляемым напряжением.

Полевые транзисторы

широко используются в интегральных схемах (ИС) из-за их компактного размера и значительно более низкого энергопотребления. Кроме того, полевые транзисторы также используются в мощных коммутационных устройствах, в качестве резисторов с переменным напряжением (VVR) в операционных усилителях (ОУ), регуляторов тембра и т. Д. Для работы микшера на FM- и ТВ-приемниках и в логических схемах. .

Психический обзор

Полевой транзистор имеет четыре терминала с именами Источник, Сток, Затвор и Корпус.

  1. Источник : Источник – это терминал, через который большинство носителей заряда вводятся в полевой транзистор.
  2. Дренаж : Дренаж – это терминал, через который большинство носителей заряда выходят из полевого транзистора.
  3. Затвор : Вывод затвора формируется путем диффузии полупроводника N-типа с полупроводником P-типа. Это создает сильно легированную область PN-перехода, которая контролирует поток носителя от истока к стоку.
  4. Корпус : Это основа, на которой построен полевой транзистор.В дискретных приложениях он внутренне привязан к выводу источника, что позволяет полностью игнорировать его эффекты. Однако в интегральных схемах этот вывод обычно подключается к наиболее отрицательному источнику питания в цепи NMOS (наиболее положительному в схеме PMOS), поскольку он используется многими транзисторами. Тщательные соединения и конструкция имеют решающее значение для поддержания производительности полевого транзистора, когда задействовано соединение Body.

Канал : Это область, в которой большинство несущих проходят от терминала истока к терминалу стока.

FET Классификация

Полевые транзисторы

подразделяются на полевые транзисторы (JFET) и полевые транзисторы металл-оксид-полупроводник (MOSFET).

JFET (переходно-полевой транзистор)

Junction Field Effect Transistor (JFET) – это самый ранний тип полевых транзисторов. Ток течет по активному каналу между истоками к клеммам стока. Напряжение, приложенное между затвором и истоком, управляет потоком электрического тока между истоком и стоком полевого транзистора.При приложении напряжения обратного смещения к выводу затвора канал напрягается, поэтому электрический ток полностью отключается. Вот почему полевые транзисторы JFET называют «нормально включенными» устройствами. Транзисторы JFET доступны как в N-канальном, так и в P-канальном исполнении.

N-канальный JFET

В N-канальном JFET канал легирован донорными примесями, что делает его полупроводником N-типа. Следовательно, ток через канал отрицателен в виде электронов.Отсюда и название N-канальный JFET. Две подложки P-типа, легированные с противоположных сторон от его средней части. Таким образом, два PN-перехода образованы этими сильно легированными областями P-типа и каналом N-типа между ними. Вывод затвора (G) подключается внутри к обоим клеммам P-типа, а выводы стока (D) и истока (S) подключаются к любому концу канала N-типа.

Как это работает?

Когда на вывод затвора не подается напряжение, канал становится широко открытым путем для прохождения электронов.Следовательно, максимальный ток течет от истока к выводу стока. Величина протекающего тока определяется разностью потенциалов между выводами истока и стока и внутренним сопротивлением канала.

Но происходит обратное, когда на вывод затвора подается отрицательное напряжение по отношению к выводу истока, что приводит к обратному смещению P-N перехода. В канале создается область истощения, которая сужает канал, увеличивая сопротивление канала между истоком и стоком, и ток становится меньше.

P-канальный JFET

Аналогичным образом, в JFET с P-каналом канал легирован акцепторными примесями, что делает его полупроводником P-типа. Следовательно, ток через канал имеет положительную форму в виде отверстий. Отсюда и название P-channel JFET. Противоположная сторона канала сильно легирована подложками N-типа. Как и в N-канальном JFET, вывод затвора формируется путем соединения областей N-типа с обеих сторон. Клеммы истока и стока взяты с двух других сторон канала.

Принцип работы также аналогичен N-канальному JFET. Единственное отличие состоит в том, что вам необходимо обеспечить положительное напряжение затвора к источнику, чтобы выключить его. Однако N-канальный JFET имеет более высокую проводимость по току из-за более низкого сопротивления канала, чем их эквивалентные типы P-каналов, поскольку электроны имеют более высокую подвижность через проводник по сравнению с дырками. Это делает N-канальный JFET более эффективным, чем их аналоги с P-каналом.

Характеристики

Здесь JFET смещен через источник постоянного тока, который будет управлять VGS JFET.Мы можем контролировать приложенное напряжение на клеммах стока и источника, изменяя VGS. Оттуда мы можем построить кривую ВАХ полевого транзистора.

Выходные характеристики JFET представлены между током стока (ID) и напряжением сток-исток (VDS) при постоянном напряжении затвор-исток (VGS), как показано на следующем рисунке.

  • Область отсечки – это область, в которой JFET выключен, что означает отсутствие тока стока, ID течет от стока к истоку.
  • Омическая область – В этой области JFET начинает показывать некоторое сопротивление току стока, ID, который начинает течь от стока к истоку. Ток, протекающий через полевой транзистор, линейно пропорционален приложенному напряжению.
  • Область насыщения – Когда напряжение сток-исток достигает такого значения, что ток, протекающий через устройство, является постоянным с напряжением сток-исток и изменяется только с напряжением затвор-исток, устройство считается находящимся в состоянии насыщения. область.
  • Область пробоя – Когда напряжение стока в исток, VDS превышает максимальное пороговое значение, что вызывает пробой области истощения, JFET теряет способность сопротивляться току, и ток стока увеличивается до бесконечности.

МОП-транзистор (полевой транзистор металл-оксид-полупроводник)

Металлооксидные полупроводниковые полевые транзисторы, также известные как МОП-транзисторы, имеют большее значение и являются наиболее полезным типом среди всех транзисторов.МОП-транзистор имеет четыре вывода: сток, исток, затвор и корпус или подложку. MOSFET также является транзистором, управляемым напряжением, но основное различие между JFET и MOSFET заключается в том, что он имеет металлооксидный электрод затвора, который электрически изолирован от основного токоведущего канала между стоком и истоком очень тонким слоем. из изоляционного материала, обычно диоксида кремния, широко известного как стекло.

Трек образован с использованием двух сильно легированных зон N-типа, рассеянных в слаболегированной подложке P-типа.Эти две области N-типа известны как сток и исток, а область P-типа называется подложкой. Изоляция управляющего затвора делает входное сопротивление полевого МОП-транзистора чрезвычайно высоким по шкале мегаомов (МОм), тем самым делая его почти бесконечным. Таким образом, ток не может течь в ворота.

Как это работает?

Основной принцип устройства MOSFET заключается в том, чтобы иметь возможность управлять напряжением и током между выводами истока и стока, используя напряжение, приложенное к выводу затвора.Поверхность полупроводника в нижнем оксидном слое, который расположен между выводами истока и стока, может быть инвертирован из p-типа в n-тип путем приложения либо положительного, либо отрицательного напряжения затвора, соответственно. Когда мы прикладываем силу отталкивания к положительному напряжению затвора, то дырки, находящиеся под оксидным слоем, толкаются вниз вместе с подложкой. Область обеднения населена связанными отрицательными зарядами, которые связаны с атомами акцептора. Когда достигаются электроны, развивается канал.Положительное напряжение также притягивает электроны из n + областей истока и стока в канал. Теперь, если между стоком и истоком приложено напряжение, ток свободно течет между истоком и стоком, а напряжение затвора управляет электронами в канале. Если вместо положительного напряжения приложить отрицательное напряжение, под оксидным слоем образуется отверстие.

Типы полевых МОП-транзисторов

Широко используются два полевых МОП-транзистора:

1.Истощение MOSFET:

МОП-транзистор в режиме истощения аналогичен разомкнутому переключателю. В этом режиме для выключения устройства применяется напряжение затвора в источник (VGS). Когда напряжение затвора отрицательное, в канале накапливаются положительные заряды. Это вызывает область истощения в канале и предотвращает протекание тока. Таким образом, поскольку на протекание тока влияет формирование обедненной области, он называется обедненным MOSFET.

2.Расширение MOSFET:

МОП-транзистор расширенного режима аналогичен переключателю включения. В этом режиме для включения устройства применяется напряжение затвор-исток (VGS). Когда отрицательное напряжение подается на вывод затвора полевого МОП-транзистора, отверстия, несущие положительный заряд, накапливаются рядом с оксидным слоем, образуя канал от истока к выводу стока. По мере того, как напряжение становится более отрицательным, ширина канала увеличивается и ток увеличивается; поэтому он называется улучшенным MOSFET.

Кроме того, типы истощения и расширения подразделяются на N-канал и P-канал .

1.N-канальный полевой МОП-транзистор :

N-канальный полевой МОП-транзистор имеет канал N-типа между истоком и стоком. Здесь выводы истока и затвора сильно легированы полупроводником N-типа, а подложка легирована полупроводниковым материалом P-типа. Следовательно, ток между истоком и стоком происходит из-за электронов.А протекание тока регулируется напряжением на затворе.

2.P-канальный полевой МОП-транзистор:

Аналогично, P-канальный MOSFET имеет канал P-типа между истоком и стоком. Здесь выводы истока и затвора сильно легированы полупроводником P-типа, а подложка легирована полупроводниковым материалом N-типа. Следовательно, ток между истоком и стоком происходит из-за дыр. А протекание тока регулируется напряжением на затворе.

Характеристики

В целом, полевой МОП-транзистор работает в основном в трех регионах, а именно:

  1. Область отсечки:
    В области отсечки полевой МОП-транзистор остается выключенным, поскольку в этой области нет тока.Здесь MOSFET ведет себя как разомкнутый переключатель и, таким образом, используется, когда они должны функционировать как электронные переключатели.
  2. Омическая область:
    В омической или линейной области ток между стоком и истоком увеличивается с увеличением напряжения между стоком и истоком. Когда в этой области работают полевые МОП-транзисторы, их можно использовать в качестве усилителей.
  3. Область насыщения:
    В этой области значение тока между стоком и истоком остается постоянным без учета увеличения напряжения между стоком и истоком.Это происходит только один раз, когда напряжение на стоке к выводу истока увеличивается больше, чем напряжение отсечки. В этом случае устройство будет работать как замкнутый переключатель. Поэтому эта рабочая область используется всякий раз, когда требуются полевые МОП-транзисторы для выполнения операций переключения.

Приложения

МОП-транзистор

в качестве переключателя

Полевые МОП-транзисторы

используются во многих различных приложениях. Они широко известны своими коммутационными характеристиками. Как мы видели ранее, N-канальный MOSFET в режиме улучшения имеет очень высокое входное сопротивление и работает от положительного входного напряжения.Это позволяет нам переключать нагрузки с высоким током или высоким напряжением, используя сигнал с относительно низким логическим уровнем. В следующем примере мы будем использовать N-канальный МОП-транзистор в режиме улучшения для включения и выключения простой лампы.

Как видите, в этой схеме мы хотим переключить лампу на 12 В с помощью логического сигнала 5 В. Мы подключили положительную клемму лампы к источнику питания 12 В, а другой конец – к клемме стока полевого МОП-транзистора. Клемма источника подключена к GND. Сопротивление затвора к истоку (RGS) используется для предотвращения любого внешнего шума на выводе затвора.

Когда напряжение не подается, лампа остается выключенной. Если мы подадим положительное входное напряжение (VGS) на вывод затвора полевого МОП-транзистора, лампа включится и останется включенной до тех пор, пока мы не удалим входной сигнал или не подадим отрицательное входное напряжение. Затем лампа погаснет.

Усилитель MOSFET

MOSFET или eMOSFET в режиме расширения требует минимального напряжения затвор-исток, называемого пороговым напряжением (VTH), которое должно быть приложено к затвору, чтобы он начал протекать ток от стока к истоку (VDS).По мере увеличения прямого смещения затвора ток сток-исток (IDS) также будет увеличиваться, что делает eMOSFET идеальным для использования в схемах усилителя MOSFET.

Эта простая конфигурация усилителя MOSFET в режиме расширения с общим истоком использует одиночный источник питания на выводе стока для генерации необходимого напряжения затвора (VG) с помощью резисторного делителя на резисторах R1 и R2. Схема резисторов создает необходимую схему смещения для работы в области насыщения. Нам также понадобятся резисторы стока и истока и емкости связи.Значения R1 и R2 обычно большие, чтобы увеличить входное сопротивление усилителя и уменьшить омические потери мощности. Конденсаторы связи C1 и C2 изолируют напряжение смещения постоянного тока от сигнала переменного тока, который необходимо усилить. На изображении выше небольшой сигнал переменного тока (VGS) подается на затвор полевого МОП-транзистора, что приводит к колебаниям тока стока, синхронному с приложенным входным переменным током.

Драйвер мотора H-моста

Н-мост – это конфигурация схемы, обычно используемая для управления скоростью и направлением щеточного двигателя постоянного тока.Как мы видели ранее, используя полевой МОП-транзистор, мы можем легко контролировать скорость двигателя. Но это работает только в одном направлении. Чтобы сделать его двунаправленным, нам нужно 4 полевых МОП-транзистора, подключенных таким образом, чтобы он мог одновременно переключать как верхнюю, так и низкую стороны.

При активации одной пары (диагонально противоположных) полевых МОП-транзисторов двигатель видит, что ток течет в одном направлении, а когда активируется другая пара, ток через двигатель меняет направление. Срабатывание как нижнего, так и верхнего полевых МОП-транзисторов (но никогда вместе) прерывает ток и останавливает двигатель.

Затворы полевого МОП-транзистора с N-каналом обычно подтягиваются понижающим резистором, а затворы полевого МОП-транзистора с Р-каналом поднимаются высоко. Это приводит к тому, что полевые МОП-транзисторы с каналом P и N отключаются; следовательно, ток не может течь. Когда сигнал ШИМ подается на затворы полевого МОП-транзистора, полевые МОП-транзисторы с каналом N и P попеременно включаются и выключаются, контролируя мощность.

_____

Технология полевых транзисторов может использоваться в различных областях электроники, где биполярные транзисторы не подходят.Полевой транзистор имеет очень высокое входное сопротивление и является устройством, управляемым напряжением; возможно, они являются наиболее широко используемым активным устройством. Поскольку они используются в КМОП и других технологиях интегральных схем, где потребляемая мощность является решающим фактором, полевые МОП-транзисторы обеспечивают работу с очень низким энергопотреблением. МОП-транзистор также можно использовать в качестве переключателя для управления большими нагрузками, такими как лампы или двигатели большой мощности. ШИМ-сигналы от внешнего источника, такого как микроконтроллер, используются для управления проводимостью транзистора. Соответственно, полевой МОП-транзистор включается или выключается, таким образом поддерживая яркость лампы или скорость двигателя.

Вы уже знакомы с электронными возможностями Fusion 360? Fusion 360 предлагает доступ к комплексным средствам проектирования электроники и печатных плат на одной платформе разработки продуктов в облаке. Попробуйте сами сегодня.

подробное руководство по полевым транзисторам.

Я подробно расскажу вам о полевом транзисторе (полевом транзисторе) и расскажу обо всем, что связано с полевым транзистором, включая определение, символ, работу, характеристики, типы и приложения полевого транзистора.

Приступим.

Определение:

Полевой транзистор (полевой транзистор) представляет собой электронное устройство с тремя выводами, используемое для управления потоком тока с помощью напряжения, приложенного к его выводу затвора. Три терминала в этом устройстве называются сток, исток и затвор.

  • Источник: Это терминал, через который носители заряда попадают в канал.
  • Сток: Это терминал, через который носители заряда покидают канал.
  • Gate: Этот терминал контролирует проводимость между терминалами истока и стока.

Полевые транзисторы также известны как униполярные транзисторы в отличие от биполярных транзисторов BJT. В полевых транзисторах для процесса проводимости используются дырки или электроны. Но в процессе проводимости одновременно не участвуют оба носителя заряда. Полевые транзисторы обычно имеют высокое входное сопротивление на низких частотах и ​​отображают мгновенную работу, высокую производительность, надежны и дешевы и используются во многих электрических цепях.Низкое энергопотребление и низкое рассеивание мощности делают это устройство идеальным для интегральных схем.

Символ:

На следующем рисунке показано обозначение транзисторов MOSFET и JFET, которые являются двумя основными типами транзисторов FET.

Рабочий:

Полевой транзистор – это электронное устройство, которое содержит носители заряда, электроны или дырки, которые текут от истока к выводам стока через активный канал.Процесс проводимости контролируется путем подачи входного напряжения на вывод затвора.

Токоведущий путь, который существует между выводами истока и стока, известен как «канал», который может состоять из полупроводникового материала N-типа или P-типа.

Работу N-канального JFET можно описать следующим образом, взяв два разных случая:

Корпус 1:

В случае 1 напряжение на выводе затвора равно нулю, и напряжение Vds приложено между выводом стока и истока, как показано на рисунке ниже.

В этом случае два pn-перехода на сторонах стержня образуют область обеднения. В результате электроны текут от истока к выводу стока через канал, который находится между обедненными слоями. Ширина канала и токопроводимость через стержень определяются размером обедненных слоев.

Корпус 2:

Ширина обедненного слоя увеличивается, когда обратное напряжение прикладывается к клеммам затвора и истока Vgs.Это приводит к уменьшению ширины проводящего канала и увеличению сопротивления стержня n-типа.

Следовательно, ток от истока к клеммам стока уменьшается. Однако, когда напряжение обратного смещения на выводе затвора уменьшается, это также уменьшит ширину обедненного слоя и, как результат, ширина проводящего канала увеличится.

Это работа N-канального JFET, который работает аналогично P-Channel JFET. Единственное отличие – носители заряда.В случае полевого транзистора с N-каналом носителями заряда являются электроны, а в случае полевого транзистора с P-каналом – дырки.

Характеристики:

На следующем рисунке показаны кривые характеристик JFET:

A: омическая область:

В омической области, когда Vgs = 0, JFET будет вести себя как резистор, управляемый напряжением, и несет очень маленький обедненный слой канала.

B: область отсечения:

Область отсечки также называется областью отсечки, где напряжения затвора Vgs достаточно, чтобы заставить JFET вести себя как разомкнутая цепь, поскольку сопротивление канала является максимальным.

C: Область насыщенности:

Область насыщения также называется активной областью, где проводимость устройства очень высока, что контролируется приложенным напряжением на выводах затвора и истока Vgs. В этом состоянии напряжение Vds сток-исток будет иметь небольшое влияние или не будет иметь никакого эффекта.

D: область разбивки:

В этой области напряжение на выводах Vds истока и стока очень велико, что нарушает резистивный канал полевого транзистора и позволяет протекать неконтролируемому максимальному току.

Ток стока Id линейно увеличивается с напряжением на выводах истока и стока Vds. По мере увеличения Id омическое падение напряжения на участке канала и выводе истока будет изменять обратное смещение перехода, и в результате проводимость канала остается постоянной. Напряжение Vds в этом положении известно как напряжение отсечки.

Типы:

Полевые транзисторы делятся на два основных типа:

1: JFET

2: МОП-транзистор

1: JFET

JFET (Junction Field Effect Transistor) представляет собой трехконтактное электронное устройство и представляет собой тип полевого транзистора, который в основном используется для разработки усилителей и используется в качестве переключателей с электрическим управлением.JFET – это устройства, управляемые напряжением, поскольку им не требуется ток смещения для запуска транзистора.

JFET находится во включенном состоянии, когда между выводами истока и затвора нет напряжения. Однако, когда напряжение подается на клеммы истока и затвора, это устройство будет показывать сопротивление при прохождении тока и допускает только ограниченное протекание тока между клеммами истока и стока.

JFET делятся на два типа:

  • N-Channel JFET, где проводимость осуществляется движением электронов.
  • P-Channel JFET, где проводимость осуществляется за счет движения отверстий.

N-канальные JEFT предпочтительнее, чем P-канальные JFET во многих электронных приложениях, потому что подвижность электронов лучше подвижности дырок.

2: МОП-транзистор

MOSFET (Металлооксидный полупроводниковый полевой транзистор) – это полупроводниковое устройство, которое в основном используется для усиления и переключения в электронных устройствах.

MOSFET – это устройство, управляемое напряжением, поскольку входное напряжение на выводе затвора контролирует проводимость между выводами истока и стока.

Полевые МОП-транзисторы

подразделяются на два основных типа:

  • N-канальный полевой МОП-транзистор, в котором проводимость осуществляется за счет движения электронов. Этот транзистор очень эффективен, имеет низкое сопротивление и занимает меньшую площадь.
  • МОП-транзистор с P-каналом, где проводимость осуществляется за счет движения отверстий. Этот транзистор менее эффективен, имеет высокое сопротивление и занимает большую площадь.

Приложения:

Полевые транзисторы используются в следующих приложениях.

  • Аналоговый переключатель
  • Ограничитель тока
  • Каскодный усилитель
  • Измельчитель
  • Генераторы с фазовым сдвигом
  • Мультиплексор
  • Буферный усилитель

Надеюсь, эта статья оказалась для вас полезной. Если у вас есть какие-либо вопросы, вы можете обратиться ко мне в разделе ниже. Я хотел бы помочь вам как можно лучше. Спасибо, что прочитали статью.

Полевой транзистор

– обзор

Входные каскады на полевых транзисторах

Полевые транзисторы (FET) имеют гораздо более высокий входной импеданс, чем биполярные переходные транзисторы (BJT), и поэтому кажутся идеальными устройствами для входных каскадов операционных усилителей.Однако они не могут быть изготовлены на всех процессах биполярных ИС, и когда процесс позволяет их производство, у них часто возникают собственные проблемы.

Полевые транзисторы

обладают высоким входным сопротивлением, низким током смещения и хорошими высокочастотными характеристиками. (В операционном усилителе более низкий g m полевых транзисторов допускает более высокие хвостовые токи, тем самым увеличивая максимальную скорость нарастания напряжения.) Полевые транзисторы также имеют гораздо более низкий токовый шум.

С другой стороны, входное напряжение смещения пар полевых транзисторов с длинными хвостами не так хорошо, как смещение соответствующих BJT, и подстройка для минимального смещения одновременно не минимизирует дрейф.Для дрейфа требуется отдельная подстройка, и в результате смещение и дрейф в операционном усилителе с полевым транзистором с полевыми транзисторами, хотя и хороши, но не так хороши, как у лучших биполярных транзисторов. Упрощенная процедура подстройки для входного каскада операционного усилителя на полевых транзисторах показана на Рисунке 1-26.

Рисунок 1-26. Входной каскад операционного усилителя на полевом транзисторе (JFET) с подстройкой смещения и дрейфа

Операционные усилители на полевых транзисторах с полевым переходом (JFET) можно сделать с очень низким уровнем шума, но задействованные устройства очень большие и имеют довольно высокую входную емкость, которая зависит от входа. напряжение, и поэтому существует компромисс между шумом напряжения и входной емкостью.

Ток смещения операционного усилителя на полевом транзисторе – это ток утечки диффузионного затвора (или утечка защитного диода затвора, который имеет аналогичные характеристики для полевого МОП-транзистора). Такие токи утечки удваиваются при повышении температуры кристалла на каждые 10 ° C, так что ток смещения операционного усилителя на полевом транзисторе в раз в тысячу раз больше при 125 ° C, чем при 25 ° C. Очевидно, это может быть важно при выборе между операционным усилителем с биполярным или полевым транзистором, особенно в высокотемпературных приложениях, где входной ток смещения биполярного операционного усилителя фактически уменьшается.

До сих пор мы говорили в основном обо всех типах полевых транзисторов, то есть о переходах (JFET) и MOS (MOSFETS). На практике операционные усилители с комбинированной биполярной / JFET-технологией (т. Е. BiFET) обеспечивают лучшую производительность, чем операционные усилители, использующие только технологию MOSFET или CMOS. Хотя ADI и другие производят высокопроизводительные операционные усилители с входными каскадами MOS или CMOS, в целом эти операционные усилители имеют худшие смещение и дрейф, шум напряжения и высокочастотные характеристики, чем биполярные аналоги. Потребляемая мощность обычно несколько ниже, чем у биполярных операционных усилителей с сопоставимой или даже лучшей производительностью.

JFET-устройства требуют большего запаса по сравнению с BJT, поскольку их напряжение отсечки обычно больше, чем напряжение BJT-базой-эмиттером. Следовательно, их труднее работать при очень низких напряжениях питания (1-2 В). В этом отношении КМОП имеет то преимущество, что требует меньшего запаса по сравнению с полевыми транзисторами.

Полевой транзистор | Журнал Nuts & Volts


Необходимое устройство для современной ИС

Обычно используемый биполярный транзистор – в котором электроны или дырки проходят через два PN-полупроводниковых перехода – по существу является устройством усиления тока .Хотя напряжение может быть усилено косвенно, если используются конфигурации проводки «общий эмиттер» или «общий коллектор», все же верно, что небольшая величина входного тока всегда должна течь в базовую область транзистора для целей управления.

Другой тип полупроводникового устройства, полевой транзистор , или «полевой транзистор», не так хорошо знаком многим энтузиастам электроники, возможно, потому, что его легко повредить при неправильном использовании. Полевой транзистор усиливает напряжение напрямую, а ток , необходимый для управления, настолько мал, что его невозможно измерить обычными приборами.Этот транзистор был фактически первым типом полупроводникового усилителя, теоретически предсказанным в Bell Labs еще в 1950-х годах, но он не был разработан в практическое устройство до тех пор, пока биполярный тип не стал популярным. Однако сейчас наиболее распространенным типом стали полевые транзисторы, их десятки миллионов находятся в каждой микросхеме микропроцессора.

С таким огромным количеством транзисторов, работающих в одной микросхеме, мы, конечно, не хотим, чтобы для управления каждым из них требовался большой ток – заряд батареи будет быстро израсходован, и потребуется много тепла. удаленный.Кроме того, существует множество других приложений, в которых желателен сверхнизкий входной ток. Очевидный пример – первая ступень точного вольтметра, когда мы не хотим вызывать каких-либо новых падений напряжения путем отвода тока из исследуемой цепи.

Еще одним преимуществом полевого транзистора, вероятно, менее важным, является тот факт, что его входные и выходные характеристики аналогичны характеристикам электронных ламп. Поскольку лампы используются примерно с 1910 года, у нас есть большой опыт работы с ними, и некоторые конструкторы чувствуют себя более комфортно с полевыми транзисторами, чем с биполярными устройствами, особенно в усилителях звука.(Действительно ли это преимущество или нет, зависит не только от научных факторов, но и от эмоциональных факторов. Некоторые читатели могут признать автора настоящей статьи одним из первых сторонников этой активно обсуждаемой проблемы, поэтому мы не будем ее обсуждать. дальше сюда!)

В любом случае полевой транзистор полностью реагирует на напряжение на управляющем электроде, и это можно использовать для регулирования довольно больших значений выходного тока и / или напряжения в двух других проводах.

JFET

Вместо того, чтобы делать транзистор, который проводит через оба PN перехода, когда он включен («биполярный»), один тип полевого транзистора может быть изготовлен только с одним PN переходом («однопереходный»).Поскольку он имеет переход, он называется juncFET или JFET, и упрощенная диаграмма поперечного сечения показана на , рис. 1, .

РИСУНОК 1. Упрощенное поперечное сечение полевого транзистора с рабочей схемой. Это N-канальный режим, режим истощения и обычно включен. Символ находится в правой части рисунка.


Прямоугольники, обведенные жирной линией, представляют собой твердые материалы, включая две области, которые представляют собой кремний P-типа, но не проводят заметного тока.Посередине находится область N-типа, которая может проводить весь ток. В очень простой схеме, показанной на схеме, которую читатель может легко построить, чтобы получить некоторый опыт работы с полевым транзистором, омметр выдает напряжение, а также показывает протекание тока нагрузки. Этот тип полевого транзистора обычно находится во включенном состоянии до подачи какого-либо управляющего напряжения. Если потенциометр 5K настроен так, что на «затворе» нет напряжения (перемещая его стрелку вниз, как показано на схеме), то «положительный» ток нагрузки от омметра переходит в верхний левый угол полевого транзистора, а затем вниз. в самый верхний металл, затем вниз через сплошной кремний N-типа и из транзистора через нижний металл.(Области «Бык» – изоляторы из диоксида кремния.)

Диаграмма построена не в масштабе, а прямоугольники показывают области, размер которых на самом деле составляет всего около микрона. (Более формальное обозначение размера – «микрометр», что составляет миллионную долю метра.) Металл обычно представляет собой тонкую алюминиевую или медную пленку толщиной около микрона, и вся конфигурация иногда бывает более сложной, чем показано на этой упрощенной диаграмме. Кремний P-типа (справа, как показано здесь) в основном является просто механической опорой для небольших активных областей, которые проводят.Его часто называют «субстратом».

Чтобы выключить транзистор, настройку потенциометра 5K можно увеличить, чтобы получить отрицательное управляющее напряжение. Это заряжает область P-типа, но электричество практически не течет, потому что имеется «обратносмещенный» PN переход (отрицательное напряжение на кремнии P-типа и положительное на N). Однако этот заряд сильно отталкивает электроны от очень тонкого проводящего «канала» N-типа в середине. Здесь образуется зона обеднения, содержащая меньше электронов, поэтому кремний внутри овала, изображенного пунктирной линией, становится внутренним (I-тип, как обозначено буквой I в скобках), который является изолирующим, и полевой транзистор перестает проводить.Такой тип поведения называется «режимом истощения». Поскольку управляющее действие осуществляется электрическим полем (а не носителями, текущими в базовую область), все устройство называется полевым транзистором или «полевым транзистором».

Один металлический электрод называется истоком, один – затвором, а третий – стоком, аналогично эмиттеру, базе и коллектору в биполярном транзисторе. Это «N-канальное» устройство, потому что ток проходит через кремний N-типа. Символ отображается справа от поперечного сечения.Другой тип JFET, устройство с «P-каналом», имеет полупроводниковые области P и N противоположного типа, поэтому стрелка в символе направлена ​​в сторону от канала. Этот тип ворот должен быть заряжен положительно, чтобы перекрыть канал, отталкивая дыры. Он не так распространен, как показанный здесь, но он существует и может быть полезен для специальных целей.

Диод постоянного тока

Интересным применением JFET является «диод постоянного тока». Общий эффект от этого аналогичен эффекту биполярного регулятора напряжения, за исключением того, что здесь регулируется ток вместо напряжения.Это может быть очень простая схема, как показано на Рисунок 2 , диаграмма B.

РИСУНОК 2. N-канальный полевой транзистор JFET, подключенный к саморегулирующемуся устройству с постоянным током, с символом, показанным рядом с ним слева. Два других символа справа относятся к источникам постоянного тока, в том числе к источникам питания, например батареям.


Если посмотреть на отрицательный ток, который течет вверх через резистор, некоторая его часть будет направлена ​​на затвор, который частично отключает полевой транзистор.Это отрицательная обратная связь, поэтому, если ток в цепи начинает расти, транзистор отключается еще больше. Таким образом, протекает меньше тока, пока не будет достигнут некоторый постоянный уровень тока. Полевой транзистор и потенциометр находятся внутри изоляционного пластикового «пакета». Все это, а также источник питания, такой как батарея (здесь не показан), символизируется двумя перекрывающимися кругами, Рисунок 2 , диаграмма C. Иногда используется альтернативный символ со стрелкой вверх, особенно в Европе, как показано на диаграмме D.

МОП-транзистор

Другой тип полевого транзистора проиллюстрирован на рис. 3 , металл-оксид-полупроводник или «МОП» устройство.

РИСУНОК 3. Упрощенная диаграмма поперечного сечения полевого МОП-транзистора с рабочей схемой. Это N-канальный режим, режим улучшения и обычно выключен. Справа показаны два альтернативных символа.


В этом транзисторе используется изолирующий диоксид кремния для предотвращения попадания тока затвора в основной полупроводник вместо обратносмещенного перехода, который использовался в полевом транзисторе.Его иногда называют IGFET из-за изолированного затвора. Это обычно выключенное устройство, которое необходимо включить каким-либо действием, поэтому оно называется устройством «улучшенного режима». (IGFET также может быть выполнен в конфигурации режима истощения.)

На рисунке, если горшок повернут до нулевого напряжения, то ток батареи, проходящий через лампочку и транзистор, будет остановлен одним из PN-переходов. На этой диаграмме это верхний, который имеет обратное смещение.(Первоначально пунктирная линия и область N посередине отсутствуют.)

Если стрелка потенциометра поднята, и теперь к затвору приложен положительный потенциал, дыры в кремнии P-типа отталкиваются, в результате чего эта область становится N-типа (на что указывает N в скобках). Теперь нет соединения PN непосредственно на пути между верхней и нижней областями N-типа, потому что все это одна непрерывная область N-типа (нарисованная как вертикальная черта, с пунктирной линией как один край).Этот транзистор также является N-канальным, потому что электричество проходит через кремний N-типа, когда он включен.

Если читатель желает получить некоторый опыт работы с полевым МОП-транзистором, можно установить амперметр, как показано на рис. , рис. 3 , чтобы показать, что в затвор не течет измеримый ток, даже когда горит лампочка. На этой схеме мультиметр был переключен на измерение тока, и он перемещен к выводу затвора. (Эта схема также может быть использована для эксперимента с полевым транзистором. Экспериментатор должен отметить, что меры предосторожности для предотвращения повреждения МОП-устройств описаны в разделе «Чувствительность к электростатическому разряду» ниже.)

Символы для полевого МОП-транзистора показаны справа. Стрелка в данном случае указывает на то, что электрод «истока» внутренне соединен с подложкой, что часто делается, если один из PN-переходов не будет использоваться.

Если бы устройство было P-каналом, исток и сток были бы P-типа, а стрелка была бы направлена ​​в сторону от подложки N-типа.

Характеристические кривые и грузовая марка

В типичных «спецификациях» полевых транзисторов используются форматы, аналогичные форматам электронных ламп.Форма кривых почти такая же, но напряжения обычно намного ниже. На входе – V GS , на выходе – I D . В этом случае MOSFET типа 2N7000 используется в N-канальном режиме расширения.

«Линия нагрузки» показана здесь пунктирной линией. Его наклон представляет собой эффект сопротивления нагрузки (например, лампочка на рис. 4 , ), и он весьма полезен как способ показать величину тока в любой ситуации.

РИСУНОК 4. Характеристические кривые для полевого МОП-транзистора 2N7000 с линией нагрузки.


В случае, показанном здесь, сопротивление нагрузки составляет 1000 Ом, а V DS составляет 20 вольт. Пунктирная линия нагрузки проведена от максимально возможного напряжения (показано здесь как B) до максимально возможного тока с этой конкретной нагрузкой, который составляет 20 В / 1 кВт = 20 мА (показано как A). Если транзистор частично включен (V GS = 3 вольта), ток стока будет около 11 мА, как показано пересечением (кружок под буквой C).

КМОП

Два МОП-транзистора противоположного типа могут быть подключены, как на рис. 5 , , в комплементарной конфигурации МОП («КМОП») .

РИСУНОК 5. Пара КМОП транзисторов. При отсутствии входного сигнала ток очень низкий.


Когда на вход не подается сигнал, один из транзисторов всегда «выключен», поэтому практически нулевой ток может проходить от источника питания вниз через резистор, а затем через пару транзисторов.Когда сигнал поступает на вход, ток нагрузки может поступать с выходной клеммы либо с высоким (V +), либо с низким (заземление) напряжением, в зависимости от полярности входного напряжения. Однако в ситуациях, когда нет входа, общий ток практически равен нулю.

В современных интегральных схемах миллионы транзисторов подключены параллельно, поэтому, если бы только микроампер «тока утечки» протекал через каждый из неиспользуемых транзисторов, ампер или более все равно потреблялись бы от источника питания или батареи.Это будет генерировать много тепла, а также слишком быстро разряжать батареи для портативных устройств. Поэтому почти все современные калькуляторы, портативные компьютеры, сотовые телефоны и т. Д. По возможности используют схемы CMOS.

Чувствительность к электростатическому разряду

МОП-транзистор особенно чувствителен к повреждению статическим электричеством, которое возникает, когда человек идет по ковру в сухую погоду. Искра, которую создает человек при прикосновении к металлической лицевой панели переключателя света, называется электростатическим разрядом , или «ESD», но полевой МОП-транзистор может быть поврежден, даже если статического электричества недостаточно, чтобы образовалась видимая искра.

Статическое электричество может разрушить очень тонкий оксид кремния, изолирующий затвор. Некоторые МОП-транзисторы защищены стабилитронами, подключенными параллельно им внутри корпусов, но большинство из них не защищены. Чтобы предотвратить повреждение, люди, работающие с IGFET, всегда должны соблюдать эти две меры предосторожности:

  1. Касайтесь только пластиковой изоляции руками, а не металлическими проводами;
  2. Используйте заземленный браслет.

Последний представляет собой пластиковую ленту (обычно черного или розового цвета), которая проводит электричество и прикрепляется к длинному проводу.Его следует закрепить вокруг запястья, касаясь кожи человека, а затем другой конец провода подсоединить к надежному заземлению, например к водопроводу. NV


Список деталей

JFET N-канал
Потенциометр 5000 Ом
МОП-транзистор питания N-канал
Колба лампы Вольфрам, 12 В, 40 мА
Аккумулятор Девять вольт
Мультиметр
Антистатический браслет

Полевые транзисторы

– обзор

8.17.3.3.1 Полевые транзисторы

До сих пор полевые транзисторы являются наиболее распространенными электронными устройствами. В настоящее время производится около 10 19 полевых транзисторов в год, большинство из них (∼99%) на монокристаллических кремниевых пластинах в качестве строительных блоков интегральных схем для микропроцессоров, твердотельной памяти или мобильных телефонов. 248 В результате непрерывного горизонтального и вертикального масштабирования современные кремниевые полевые транзисторы представляют собой наноэлектронные устройства; однако миниатюризация обходится дорого.Поэтому альтернативные полупроводники, совместимые с платформами кремниевых технологий, но обеспечивающие более высокую подвижность носителей по сравнению с кремнием, представляют большой интерес, особенно когда они естественным образом вписываются в архитектуру полевых транзисторов нанометрового масштаба. Важной вехой в этом направлении стало изготовление первого полевого транзистора на основе УНТ в 1998 году Че и его сотрудниками. 13 Поскольку УНТ характеризуются очень большой подвижностью и почти баллистическим переносом, они открывают большие перспективы для следующего поколения наноэлектроники.

УНТ – полевых транзисторов. 248,249 Подход к разделению в основном основан на нековалентной химической функционализации с помощью различных типов полимеров, способных селективно оборачивать полупроводниковые ОСНТ, в первую очередь ДНК и полифлуорены. 250,251 Более того, самосортирующиеся полупроводниковые сети ОСНТ были успешно получены путем центрифугирования УНТ из раствора на должным образом функционализированных подложках Si / SiO 2 . 252 Принцип этого метода основан на селективном связывании полупроводниковых УНТ концевыми аминогруппами силанового слоя на кремнеземе. 253 Эффективные химические методы удаления металлических УНТ в ансамблях УНТ включают сочетание бензолдиазониевых солей ( Рисунок 27, ) 254 и травление метановой плазмой. 255 В последнем процессе металлические УНТ в пленке предпочтительно функционализируются, в то время как полупроводниковые УНТ с диаметром больше 1,4 нм остаются в основном неизменными. Соответственно, функционализированные металлические УНТ могут быть окончательно удалены посредством термического отжига. 248

Рис. 27. Схема изготовления полевого транзистора на основе образца, содержащего как металлические, так и полупроводниковые УНТ.

Адаптировано с разрешения Баласубраманяна, К.; Burghard, M. Small 2005 , 1 , 180. 25

Предпочтительное разрушение металлических УНТ также осуществлялось путем селективного фотоокисления с использованием лазерного излучения подходящей длины волны. 256 Совсем недавно Чжан с соавторами 257 продемонстрировали, что облучение длинной дугой Xe-лампой в условиях окружающей среды также может способствовать более быстрому разрушению металлических поверх полупроводниковых УНТ. Замещающий легирование УНТ – еще один многообещающий подход.В качестве первого шага в этом направлении группа Сюя 258 из Стэнфордского университета недавно сообщила о синтезе ОСНТ, содопированных бором и азотом. В соответствии с теорией, предсказывая ширину запрещенной зоны порядка 0,5 эВ для 10% содержания каждого бора и азота, было обнаружено, что совместно легированные B / N ОСНТ (BCN-ОСНТ) полностью полупроводниковые и очень подходят в качестве полевых транзисторов. каналы. Полевые транзисторы, изготовленные из обогащенных полупроводниковых ансамблей ОСНТ, могут легко достигать больших отношений включения / выключения, превышающих 10 5 , что достаточно для множества практических приложений. 248 250 252

Значительное улучшение было также достигнуто в разработке полевых транзисторов, включающих высокоупорядоченные массивы SWNT, полученные посредством ориентированного выращивания методом CVD на кварцевых подложках. 248 После переноса массивов на полимерную подложку и избирательного электрического пробоя металлических УНТ устройства демонстрируют очень хорошие характеристики, в том числе подвижность носителей 1000 см 2 V -1 с -1 , масштаб крутизна до 3000 См · м −1 , токовые выходы до 1 А. 259 Совсем недавно Форзани с соавторами 260 сообщили о методе функционализации ОСНТ в устройстве на полевых транзисторах для селективного обнаружения ионов тяжелых металлов в 2006 году. В их методе полимеры с пептидными функциональными группами были электрохимически осаждены на ОСНТ и селективное обнаружение ионов металлов проводили с использованием соответствующих пептидных последовательностей. Механизм передачи сигнала функционализированными пептидами SWNT FET также был изучен. Было замечено, что при воздействии ионов Ni 2+ наблюдался очевидный сдвиг в сторону отрицательного направления потенциала затвора, что, вероятно, связано с ослаблением взаимодействий между олигопептидами и ОСНТ. 2

5.1: Общие сведения о соединительных полевых транзисторах (JFET)

Транзистор – это линейное полупроводниковое устройство, которое регулирует ток с помощью электрического сигнала меньшей мощности. Транзисторы можно условно разделить на два основных подразделения: биполярные и полевые . В предыдущей главе мы изучали биполярные транзисторы, которые используют небольшой ток для управления большим током. В этой главе мы познакомимся с общей концепцией полевого транзистора – устройства, использующего небольшое напряжение для управления током – а затем сосредоточимся на одном конкретном типе: полевом транзисторе junction .В следующей главе мы рассмотрим еще один тип полевого транзистора – вариант с изолированным затвором .

Все полевые транзисторы являются униполярными , а не биполярными устройствами . То есть основной ток через них состоит либо из электронов через полупроводник N-типа, либо из дырок через полупроводник P-типа. Это становится более очевидным при просмотре физической схемы устройства:

В соединительном полевом транзисторе или JFET управляемый ток проходит от истока к стоку или от стока к истоку, в зависимости от обстоятельств.Управляющее напряжение прикладывается между затвором и истоком. Обратите внимание, что ток не должен проходить через PN-переход на своем пути между истоком и стоком: путь (называемый каналом ) представляет собой непрерывный блок из полупроводникового материала. На только что показанном изображении этот канал представляет собой полупроводник N-типа. Также выпускаются полевые транзисторы с каналом P-типа:

Как правило, полевые транзисторы с N-каналом используются чаще, чем с P-каналом. Причины этого связаны с малоизвестными деталями теории полупроводников, которые я не хотел бы обсуждать в этой главе.Как и в случае с биполярными транзисторами, я считаю, что лучший способ ввести использование полевых транзисторов – это избегать теории, когда это возможно, и вместо этого сосредоточиться на рабочих характеристиках. Единственное практическое различие между полевыми транзисторами с N- и P-каналом, о которых вам нужно позаботиться сейчас, – это смещение PN-перехода, образованного между материалом затвора и каналом.

Без приложения напряжения между затвором и истоком, канал представляет собой широко открытый путь для прохождения электронов. Однако, если между затвором и истоком подается напряжение такой полярности, что оно смещает в обратном направлении PN-переход, поток между соединениями истока и стока становится ограниченным или регулируемым, как это было для биполярных транзисторов с заданной величиной базового тока.Максимальное напряжение затвор-исток «отсекает» весь ток, протекающий через исток и сток, тем самым вынуждая полевой транзистор перейти в режим отсечки. Такое поведение происходит из-за того, что область обеднения PN-перехода расширяется под действием напряжения обратного смещения, в конечном итоге занимая всю ширину канала, если напряжение достаточно велико. Это действие можно сравнить с уменьшением потока жидкости через гибкий шланг путем его сжатия: при достаточной силе шланг будет сужен настолько, чтобы полностью перекрыть поток.

Обратите внимание на то, что это рабочее поведение прямо противоположно биполярному переходному транзистору. Биполярные транзисторы – это нормально выключенные устройства : нет тока через базу, нет тока через коллектор или эмиттер. С другой стороны, полевые транзисторы представляют собой обычные устройства : отсутствие напряжения, приложенного к затвору, обеспечивает максимальный ток через исток и сток. Также обратите внимание, что величина тока, допустимого через JFET, определяется сигналом напряжения , а не сигналом тока , как в случае биполярных транзисторов.Фактически, при обратном смещении PN-перехода затвор-исток должен быть почти нулевой ток через соединение затвора. По этой причине мы классифицируем полевой транзистор JFET как устройство с управляемым напряжением, а биполярный транзистор – как устройство с управлением по току.

Если PN-переход затвор-исток смещен в прямом направлении с небольшим напряжением, канал JFET «откроется» немного больше, чтобы пропустить большие токи. Однако PN-переход JFET не предназначен для обработки какого-либо значительного тока, поэтому не рекомендуется смещать переход в прямом направлении ни при каких обстоятельствах.

Это очень сжатый обзор работы JFET. В следующем разделе мы рассмотрим использование JFET в качестве переключающего устройства.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Оставить комментарий