Трансформатор (катушка) тесла принцип работы, схема, применение
Содержание:
Трансформатор (катушка) Тесла (Tesla Coil, TC) — это повышающий высокочастотный резонансный трансформатор — два колебательных контура, настроенных на одинаковую резонансную частоту. В сети можно найти множество примеров ярких реализаций этого необычного устройства.
Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей.
С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первичной обмотки на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.
Как работает трансформатор тесла
Катушка Тесла названа так в честь ее изобретателя Николы Тесла (около 1891 года). История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году.
Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты.
Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.
Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают как работает трансформатор Тесла.
Принцип действия трансформатора Тесла похож на работу обычного трансформатора. Трансформатор Тела состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную.
Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.
Тесла обладает тремя основными характеристиками:
- резонансной частотой вторичного контура,
- коэффициентом связи первичной и вторичной обмоток,
- добротностью вторичного контура.
Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.
Основные детали и конструкции трансформатора Тесла
Конструкция трансформатора теслаТороид
Тороид – выполняет три функции.
Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.
Вторая – накопление энергии перед образованием стримера.
Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.
Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.
От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.
Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий,
Вторичная обмотка – основная деталь Теслы
Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1.
Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков.
ВНИМАНИЕ!
Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.
Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.
Мотают вторичную обмотку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах.
Защитное кольцо
Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичная обмотка трансформатора тесла). Защитное кольцо заземляется на общее заземление отдельным проводом.
Первичная обмотка
Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.
Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.
Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.
Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.
первичные обмотки трансформатора теслаЗаземление
Заземление – как не странно, тоже очень важная деталь теслы. Очень часто задаются вопросом – куда же бьют стримеры? — стримеры бьют в землю!
Стримеры замыкают ток, показанный на картинке синим цветомТаким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух.
Поэтому задавая вопрос обязательно ли заземлять теслу?
Заземление для теслы – обязательно.
Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).
Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).
Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.
Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:
- SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.
- VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.
- SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.
- DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники.
ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.
Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).
Виды эффектов от катушки Тесла
- Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности. - Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
- Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны.
Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.
Практическое применение трансформатор тесла
Величина напряжения на выходе трансформатора Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.
Катушка Тесла нашла практическое применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.
Трансформатор Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.
Иногда на практике такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.
Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх.
В настоящее время катушка Тесла не нашла широкого применения на практике в быту.
Новое в трансформаторах тесла
В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей.
схема трансформатора тесла на транзисторе
Схема трансформатора тесла выглядит невероятно просто и состоит из:
- первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
- вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
- разрядника;
- конденсатора;
- излучателя искрового свечения.
Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:
- Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
- Генератор колебания на лампах.
- На транзисторах.
Устройство и принцип работы резонансного трансформатора
Эфир. Трансформатор Тесла. Описание работы
Читайте так же:
- Как сделать катушку тесла своими руками в домашних условиях.
Катушка тесла | это… Что такое Катушка тесла?
Разряды с провода на терминале
Трансформа́тор Те́сла — единственное из изобретений Николы Тесла, носящих его имя сегодня. Это классический резонансный трансформатор, производящий высокое напряжение при высокой частоте. Оно использовалось Теслой в нескольких размерах и вариациях для его экспериментов. «Трансформатор Тесла» также известен под названием «катушка Теслы» (англ. Tesla coil). В России часто используют следующие сокращения: ТС (от Tesla coil), КТ (катушка Тесла), просто тесла и даже ласкательно — катька. Прибор был заявлен патентом № 568176 от 22 сентября 1896 года, как «Аппарат для производства электрических токов высокой частоты и потенциала».
Содержание
|
Описание конструкции
Схема простейшего трансформатора Теслы
В элементарной форме трансформатор Теслы состоит из двух катушек, первичной и вторичной, и обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как «выход»).
Первичная катушка построена из 5—30 (для VTTC — катушки Теслы на лампе — число витков может достигать 60) витков провода большого диаметра или медной трубки, а вторичная из многих витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от многих других трансформаторов, здесь нет никакого ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферромагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика.
Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов (иногда с радиаторами), что сделано для большей износостойкости при протекании больших токов через электрическую дугу между ними.
Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Теслы сильно влияет на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.
Функционирование
Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний.
Заряд
Заряд конденсатора производится внешним источником высокого напряжения, защищённым дросселями и построенным обычно на базе повышающего низкочастотного трансформатора. Так как часть электрической энергии, накопленной в конденсаторе, уйдёт на генерацию высокочастотных колебаний, то ёмкость и максимальное напряжение на конденсаторе пытаются максимизировать. Напряжение заряда ограничено напряжением пробоя разрядника, которое (в случае воздушного разрядника) можно регулировать, изменяя расстояние между электродами или их форму. Типовое максимальное напряжение заряда конденсатора — 2-20 киловольт. Знак напряжения для заряда обычно не важен, так как в высокочастотных колебательных контурах электролитические конденсаторы не применяются. Более того, во многих конструкциях знак заряда меняется с частотой бытовой сети электроснабжения (50 или 60 Гц).
Генерация
После достижения между электродами разрядника напряжения пробоя в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда. Практически, цепь колебательного контура первичной катушки остаётся замкнутой через разрядник, до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Колебания постепенно затухают, в основном из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высоковольтного высокочастотного напряжения!
Модификации
Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника. Например, RSG (от англ. Rotary Spark Gap, можно перевести как роторный/вращающийся искровой промежуток) или статический искровой промежуток с дополнительными дугогасительными устройствами. В конструкции роторного искрового промежутка используется двигатель (обычно это электродвигатель), вращающий диск с электродами, которые приближаются (или просто замыкают) к ответным электродам для замыкания первичного контура. Скорость вращения вала и расположение контактов выбираются исходя из необходимой частоты следования пачек колебаний. Различают синхронные и асинхронные роторные искровые промежутки в зависимости от управления двигателем. Также использование вращающегося искрового промежутка сильно снижает вероятность возникновения паразитной дуги между электродами. Иногда обычный статический разрядник заменяют многоступенчатым статическим разрядником. Для охлаждения разрядников их иногда помещают в жидкие или газообразные диэлектрики (например, в масло). Типовой прием для гашения дуги в статическом разряднике — это продувка электродов мощной струей воздуха. Иногда классическую конструкцию дополняют вторым, защитным разрядником. Его задача — защита питающей (низковольтной части) от высоковольтных выбросов.
В качестве генератора ВЧ напряжения, в современных трансформаторах Теслы используют ламповые (VTTC — Vacuum Tube Tesla Coil) и транзисторные (SSTC — Solid State Tesla Coil, DRSSTC — Dual Resonance SSTC) генераторы. Это даёт возможность уменьшить габариты установки, повысить управляемость, снизить уровень шума и избавиться от искрового промежутка. Также существует разновидность трансформаторов Теслы, питаемая постоянным током. В аббревиатурах названий таких катушек присутствуют буквы DC, например DCDRSSTC. В отдельную категорию также относят магниферные катушки Теслы.
Многие разработчики в качестве прерывателя (разрядника) используют управляемые электронные компоненты, такие как транзисторы, модули на MOSFET транзисторах, электронные лампы, тиристоры.
Использование трансформатора Теслы
Разряд трансформатора Теслы
Разряд с конца провода
Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.
Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Теслы также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи не причиняют вреда внутренним органам (см. Скин-эффект), оказывая при этом тонизирующее и оздоравливающее влияние.[1] Последние исследования механизма воздействия мощных ВЧ токов на живой организм показали негативность их влияния.[2]
В наши дни трансформатор Теслы не имеет широкого практического применения. Он изготовляется многими любителями высоковольтной техники и сопровождающих её работу эффектов. Также он иногда используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.
- ↑ Однако необходимо знать, какие напряжения и диапазоны частот безвредны для организма
- ↑ Появление злокачественных опухолей (рака)
Трансформатор Теслы используется военными для быстрого уничтожения всей электроники в здании,танке,корабле. Создается на доли секунды мощный электромагнитный импульс в радиусе нескольких десятков метров.В результате перегорают все микросхемы и транзисторы,полупроводниковая электроника.Данное устройство работает совершенно бесшумно.В прессе появилось сообщение, что частота тока при этом достигает 1 Терагерц.
Эффекты, наблюдаемые при работе трансформатора Теслы
Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:
- Стримеры (от англ. Streamer) — тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю.
Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
- Спарк (от англ. Spark) — это искровой разряд. Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет. Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок — искровых каналов. Также имеет место быть особый вид искрового разряда — скользящий искровой разряд.
- Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.
- Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние).
Особенно это свойственно ламповым катушкам Теслы. Если катушка недостаточно мощна и надёжна, то спровоцированный дуговой разряд может повредить её компоненты.
Часто можно наблюдать (особенно вблизи мощных катушек), как разряды идут не только от самой катушки (её терминала и т. д.), но и в её сторону от заземлённых предметов. Также на таких предметах может возникать и коронный разряд. Редко можно наблюдать также тлеющий разряд. Интересно заметить, что разные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, натрий меняет обычный окрас спарка на оранжевый, а бром — на зелёный.
Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.
Неизвестные эффекты трансформатора Теслы
На крупных купюрах сербских динаров с портретом Теслы на реверсе изображён трансформатор Теслы. 1992 и 1993 |
Многие люди считают, что катушки Теслы — это особенные артефакты с исключительными свойствами. Существует мнение, что трансформатор Теслы может быть генератором свободной энергии и является вечным двигателем, исходя из того, что сам Тесла считал, что его генератор берёт энергию из эфира (особой невидимой материи в которой распространяются электромагнитные волны) через искровой промежуток. Иногда можно услышать, что с помощью «Катушки Теслы» можно создать антигравитацию и эффективно передавать электроэнергию на большие расстояния без проводов. Данные свойства пока никак не проверены и не подтверждены наукой. Однако, сам Тесла говорил о том, что такие способности скоро будут доступны человечеству с помощью его изобретений. Но впоследствии посчитал, что люди не готовы к этому.
Также очень распространён тезис о том, что разряды, испускаемые трансформаторами Теслы, полностью безопасны, и их можно трогать руками. Это не совсем так. В медицине также используют «катушки Теслы» для оздоровления кожи. Это лечение имеет положительные плоды и благотворно действует на кожу, но конструкция медицинских трансформаторов сильно разнится с конструкцией обычных. Лечебные генераторы отличает очень высокая частота выходного тока, при которой толщина скин-слоя (см. Скин-эффект) безопасно мала, и крайне малая мощность. А толщина скин-слоя для среднестатистической катушки Теслы составляет от 1 мм до 5 мм и её мощности хватит для того, чтобы разогреть этот слой кожи, нарушить естественные химические процессы. При долгом воздействии подобных токов могут развиться серьёзные хронические заболевания, злокачественные опухоли и другие негативные последствия. Кроме того, надо отметить, что нахождение в ВЧ ВВ поле катушки (даже без непосредственного контакта с током) может негативно влиять на здоровье. Важно отметить, что нервная система человека не воспринимает высокочастотный ток и боль не чувствуется, но тем не менее это может положить начало губительным для человека процессам. Также существует опасность отравления газами, образующимися во время работы трансформатора в закрытом помещении без притока свежего воздуха. Плюс ко всему, можно обжечься, так как температуры разряда обычно достаточно для небольшого ожога (а иногда и для большого), и если человек всё же захочет «поймать» разряд, то это следует делать через какой-нибудь проводник (например, металлический прут). В этом случае непосредственного контакта горячего разряда с кожей не будет, и ток сначала потечет через проводник и только потом через тело.
Трансформатор Теслы в культуре
В фильме Джима Джармуша «Кофе и сигареты» один из эпизодов строится на демонстрации трансформатора Теслы. По сюжету, Джек Уайт, гитарист и вокалист группы «The White Stripes» рассказывает Мег Уайт, барабанщице группы о том, что земля является проводником акустического резонанса (теория электромагнитного резонанса — идея, которая занимала ум Теслы многие годы), а затем «Джек демонстрирует Мэг машину Теслы».
В игре Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом, которая поражает противника мощными электрическими разрядами. Еще в игре присутствуют танки и пехотинцы, использующие эту технологию. Tesla coil (в одном из переводов — башня Тесла) является в игре исключительно точным, мощным и дальнобойным оружием, однако потребляет относительно высокое количество энергии. Для увеличения мощности и дальности поражения можно “заряжать” башни. Для этого отдайте приказ Воину Тесла (это пехотинец) подойти и постоять рядом с башней. Когда воин дойдет до места, он начнет зарядку башни. При этом анимация будет как при атаке, но молнии из его рук будут желтого цвета.
Также в игре
В игре Return to Castle Wolfenstein есть оружие, именуемое «Тесла», поражающее противника электрическим разрядом на большом расстоянии.
В игре Tomb Raider: Legend на одном из уровней есть статичные «Установки Тесла» их можно использовать для притягивания и поднятия тяжелых объектов (почти также, как в Half-Life 2). А также с помощью одной из них можно умертвить огромного монстра-босса.
В первой редакции игры
Ссылки
- Tesla Downunder — Интересные любительские реализации трансформатора Теслы.
- Видеоролики экспериментов и фокусов с трансформатором Тесла
- flyback.org.ru — Российский форум Общества любителей высоких напряжений и экспериментов, связанных с высокими напряжениями, энергиями, мощными разрядами и различными экспериментами с ними в домашних условиях.
- www.tb3.com/tesla/index.html — сайт Терри Блэйка, видного американского тесластроителя.
- www.hot-streamer.com — англоязычный сайт о трансформаторах Теслы.
- Симфония катушки Теслы
- Простая реализация трансформатора Теслы.
См. также
- Закон Пашена
- Лампа чёрного света
- Плазменная лампа.
Что такое катушка Тесла?
Катушка Теслы используется для создания фантастических
дисплеи высокого напряжения с длительным искрением. Он принимает вывод из
120 В переменного тока на трансформатор в несколько киловольт и схему драйвера
и повышает его до чрезвычайно высокого напряжения. Напряжения могут получить
быть значительно выше 1 000 000 вольт и разряжаются в виде
электрических дуг. Катушки Тесла уникальны тем, что они
создают чрезвычайно мощные электрические поля. Большие катушки имеют
Известно, что беспроводным способом зажигаются флуоресцентные лампы на расстоянии до 50 футов.
далеко, и из-за того, что это электрическое поле, которое
идет прямо на свет и не использует электроды, даже
перегоревшие люминесцентные лампы будут светиться. Чтобы узнать больше о Тесле
Катушки проверить ресурсы в наших ссылках
страница.
Наша катушка Тесла
UCSC по работе с катушками Тесла использует систему катушек Тесла модели S-5, которая представляет собой высокоэффективную катушку Тесла, способную создавать электрические дуги длиной более 5 футов (1,5 метра). Модель S-5 уникальна тем, что ей требуется менее 2,4 кВт входной мощности при максимальной выходной мощности. Катушка Теслы, которая у нас есть, была построена студентом Калифорнийского университета в Южной Калифорнии, который начал собирать ее в возрасте 12 лет.
Катушка Теслы UCSC может быть доставлена к вам школа эффектного высоковольтного показа с другими классные образовательные демонстрации!
Как и в случае с большинством высоковольтного электрооборудования, меры предосторожности
должны быть приняты для обеспечения безопасного использования этого устройства. Все пользователи
этого аппарата должен быть знаком с высоковольтными электрическими
безопасность. Обязательно прочитайте всю информацию о безопасности
если вы планируете провести демонстрацию катушки Тесла в вашей школе.
Эта информация предназначена для дополнения ваших собственных предварительных знаний. электробезопасности высокого напряжения и сама по себе не содержит
всю информацию, необходимую для обеспечения безопасной работы.
Несмотря на устрашающий внешний вид дуг, испускаемых моделью S-5, во многих отношениях они на самом деле представляют собой самую безопасную форму электричества, связанную с системой катушки Теслы. При правильном подключении основной выход катушек Теслы меньшего размера представляет небольшую опасность для здорового человека. Если дуга попадает прямо на кожу, она вызывает несколько болезненный шок, а также небольшой ожог, но представляет очень небольшой риск необратимой травмы. Есть ряд возможных демонстраций, которые проведут сотрудники UCSC.
Если у вас есть вопросы по безопасности проблемы, планирование демонстрации или любые другие темы относительно катушки Тесла UCSC, пожалуйста, свяжитесь нас.
Часто задаваемые вопросы о катушке Теслы
Катушка Тесла — это устройство, в котором используются резонансные цепи и переменный ток для получения чрезвычайно высокого напряжения. Первоначально изобретенные Николой Теслой в конце 1800-х годов, катушки Тесла прошли путь от схем с искровым разрядником до конструкций с использованием современных твердотельных переключающих устройств, таких как полевые МОП-транзисторы и IGBT. Хотя существует много типов катушек Тесла, все они имеют общее — индукционные катушки с воздушным сердечником. Использование катушки Тесла — лучший способ создать непрерывный высоковольтный стример.
Некоторые катушки Теслы можно модулировать для воспроизведения музыки с помощью молнии, которую они производят. Поначалу может быть трудно поверить, что звук исходит от самих стримеров, но это правда, к поющей катушке Теслы нет динамика!
Примечание: Катушка Тесла — это не то же самое, что генератор Ван де Граафа, хотя их иногда путают, поскольку оба они являются популярными методами получения высокого напряжения. Генератор Ван де Граафа использует вращающийся ремень для разделения зарядов между землей и металлической клеммой. Катушка Тесла не накапливает статический заряд и представляет собой электричество переменного, а не постоянного тока.
Катушки Теслы на самом деле не имеют никакого практического применения, кроме потрясающего внешнего вида и звучания! Некоторые твердотельные катушки Теслы можно модулировать для воспроизведения музыки, и некоторые музыканты использовали катушки Теслы в своих выступлениях.
Демонстрации того, что вы можете делать с катушкой Тесла, включают:
- Беспроводное возбуждение люминесцентных ламп
- Дистанционное включение светодиода
- Покажите, насколько электропроводна плазма, позволив дуге катушки прыгнуть через пламя
- Продемонстрируйте скин-эффект, показав, как металлическая клетка защищает люминесцентную лампу внутри нее
- Медленно увеличивайте частоту повторения на поющей катушке, чтобы объяснить понятия звука и частоты
- Играйте в свои любимые песни на MIDI-клавиатуре и слушайте, как их произносит молния!
Катушки Тесла делятся на две категории: катушки с искровым разрядником и твердотельные катушки. Каждая катушка Тесла состоит из первичной LC-цепи, которая возбуждает вторичную цепь. Твердотельные катушки и катушки с искровым разрядником различаются по тому, как они управляют первичными сторонами катушки. Твердотельные катушки также имеют ряд общих подвидов.
Катушка Тесла с искровым разрядником (SGTC)
Катушки с искровым разрядником используют воздушный зазор для управления первичным током. С помощью трансформатора (часто трансформатора неоновых вывесок или «NST») первичный конденсатор заряжается до высокого напряжения. Когда напряжение становится достаточно высоким, искровой разрядник пробивается, ионизируя воздух между клеммами и образуя короткое замыкание. Это позволяет току течь между первичным конденсатором и первичной индуктивностью, замыкая первичную цепь. Мощность теряется на рассеяние в катушках из-за их сопротивления, и искровой разрядник вскоре гаснет. Затем первичный медленно перезаряжается, и цикл начинается снова.
Твердотельные катушки Тесла
Твердотельные катушки Тесла (SSTC) охватывают все катушки Тесла, в которых используется полупроводниковое устройство (устройства) для генерирования ВЧ-мощности для вторичной обмотки. Они состоят из нескольких типов:
Однорезонансные катушки
Однорезонансные катушки передают высокочастотную мощность (обычно с размахом в несколько сотен вольт) во вторичную обмотку через одну катушку. Эти катушки наиболее известны своими густыми, тихими искрами и высокой непрерывной радиочастотной мощностью. Однако показатель отношения длины искры к энергоэффективности у них плохой (для 8-дюймовых искр обычно требуется тысяча ватт или более).
Твердотельные катушки Тесла с прерываниями (ISSTC): Предшественники DRSSTC, они прерывают сигнал привода на SSTC, чтобы снизить энергопотребление при сохранении длины искры. Как правило, это предпочтительный способ создания SSTC, если только вам не нужен грубый, бесшумный внешний вид (или высококачественное воспроизведение звука), поскольку с ним гораздо легче справиться с температурой, чем с непрерывным SSTC, и он менее темпераментен, чем DRSSTC.
Катушки Теслы класса E: В них используется инвертор класса E и вторичная обмотка, работающая на частоте несколько МГц. Более высокие частоты (обеспечиваемые чрезвычайно эффективной топологией класса E) обеспечивают стабильную бесшумную искру, которая, следовательно, может использоваться для воспроизведения полнодиапазонного звука. Однако типичные варианты используют низкое (~100 В) напряжение на шине и, следовательно, имеют очень плохие искровые характеристики по сравнению с другими типами катушек (в лучшем случае 2-3 дюйма), в то время как автономные варианты требуют тщательной настройки и высокой мощности для получения 4-5 искры. Несмотря на эти недостатки, этот тип катушки не имеет себе равных по качеству звука.
Двухрезонансная твердотельная катушка Теслы (DRSSTC)
DRSSTC производит самые длинные искры среди твердотельных катушек; Фактически, DRSSTC приближаются к характеристикам катушек с большим искровым разрядником, предлагая значительно более компактный драйвер и полностью электронное управление. Первичный контур DRSSTC настроен на ту же частоту, что и его вторичный. Таким образом, он может достичь очень высокого напряжения на первичной обмотке и передать много энергии вторичной обмотке.
Трудно поверить, что можно создавать музыку с помощью молнии, но звук действительно исходит от искры!
Звук — это волна давления, которая в обычном громкоговорителе создается вибрацией конуса динамика. Диапазон человеческого слуха составляет примерно от 20 Гц до 20 000 Гц, поэтому динамик, вибрирующий выше 20 000 Гц, не может быть услышан, потому что он находится выше слышимого диапазона. С тем же успехом звук может создаваться пульсацией плазменного стримера. Одиночный стример звучит как громкий щелчок — как одиночный рывок диффузора громкоговорителя. Если вы будете повторять эти щелчки достаточно быстро, они будут звучать все выше и выше по высоте. Щелчки в катушке Теслы повторяются так быстро, что они выше уровня человеческого слуха. Для создания слышимого тона интенсивность искр, вылетающих на высокой частоте, модулируется на частоте тона. Таким образом, при воспроизведении среднего C интенсивность искр пульсирует примерно на уровне 262 Гц. Прерыватель – это устройство, отвечающее за пульсацию искры таким образом, чтобы воспроизводить музыкальные тона.
Полифония — это одновременное воспроизведение нескольких нот, в отличие от монофонии, когда одновременно воспроизводится только одна нота. Большая часть музыки полифонична. Один из методов создания полифонической музыки на катушках Теслы заключается в одновременном использовании нескольких катушек, каждая из которых воспроизводит одну ноту, чтобы вместе создать многотональную дорожку. Другой метод состоит в том, чтобы чередовать импульсы, которые контролируют время включения катушки Тесла, и соответствующие звуковые частоты, тем самым создавая две ноты одновременно.
Обычно музыкальные катушки Теслы управляются по протоколу, который называется MIDI. MIDI-файлы сохраняют отдельные ноты и имеют индикаторы того, какие тона должны быть у этих нот. Например, если у вас есть пьеса с фортепиано и скрипкой, ноты фортепиано будут сохранены на одной дорожке, а скрипка — на другой. То, как на самом деле будет звучать произведение, зависит от того, что вы используете для воспроизведения трека, потому что не все пианино и скрипки, созданные на компьютере, звучат одинаково.
DRSSTC имеют фундаментальные ограничения на рабочий цикл и ширину импульса, которые могут быть запущены. По мере того как воспроизводится все больше и больше нот, ширина импульса становится все длиннее и длиннее. Аппаратное обеспечение необходимо для усечения ширины импульсов, когда они становятся слишком длинными, чтобы избежать повреждения силовой электроники, что приводит к серьезной потере качества. По этой причине большинство DRSSTC предпочитают запускать одну или две заметки одновременно.
Сборка катушки Тесла научит вас универсальным навыкам. Катушка Тесла может дать вам четкое представление о том, как работают высокочастотные цепи; Разработка хорошего резонатора катушки Тесла включает в себя ключевые концепции радиочастот, такие как резонансные контуры резервуара и добротность. Использование высокого напряжения важно в ряде областей, таких как ускорители частиц и лазеры. Драйверы катушек Теслы работают с несколькими основными силовыми электронными структурами, такими как твердотельный инвертор с нулевым током, и его создание научит вас поведению силовых транзисторов и неидеальности. Монтаж печатной платы и намотка первичной обмотки катушки Теслы потребуют от вас некоторой механической ловкости и способности думать о том, как все сочетается друг с другом. Наконец, современные твердотельные катушки Тесла представляют собой довольно сложные системы, и, успешно сконструировав одну из них, вы научитесь эффективно отлаживать схемы.
Катушка Теслы представляет множество опасностей, поэтому абсолютно необходимо соблюдать меры предосторожности. Опасности можно уменьшить, если работать осторожно, не загромождать рабочее место, носить защитные очки, когда плата находится под напряжением, убедиться, что конденсаторы разряжены, прежде чем пытаться работать с платой, держать чувствительную электронику и легковоспламеняющиеся предметы вдали от катушки. когда он работает, и, как правило, хорошо осведомлен о работе и опасностях катушки Тесла.
ЗАПРЕЩАЕТСЯ использовать катушку Тесла рядом с людьми с медицинскими имплантатами, такими как кардиостимуляторы.
ЗАПРЕЩАЕТСЯ использовать катушку Тесла рядом с любыми чувствительными электронными устройствами.