Итак, величина эдс индукции в контуре равна скорости изменения магнитного потока через площадь, ограниченную этим контуром.
Зависит только от скорости изменения потока магнитной индукции
Как выглядит закон Ленца для тока в контуре?
Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока.
Что такое потокосцепление, чему равна эдс катушки, если каждый ее виток сцеплен с одинаковым магнитным потоком?
Потокосцепле́ние (полный магнитный поток) — физическая величина, представляющая собой суммарный магнитный поток, сцепляющийся со всеми витками катушки индуктивности.
Если каждый виток сцеплен с одинаковым магнитным потоком, то ЭДС катушки составит
,
а её потокосцепление
.
Поток через контур, созданный током самого этого контура, образует потокосцепление, называемое потокосцеплением самоиндукции. При изменении этого потока в контуре индуцируется ЭДС самоиндукции,
,
где Lк – коэффициент самоиндукции или собственная индуктивность k-го контура,
Что такое вихревые токи, возникают ли они при постоянном и переменном магнитном потоке?
Вихревыми токами (также токами Фуко) называются электрические токи, возникающие вследствие электромагнитной индукции в проводящей среде (обычно в металле) при изменении пронизывающего ее магнитного потока.
Токи Фуко могут иметь место при воздействии на проводникпеременного магнитного поля, либо при перемещении проводника в статическом магнитном поле.
Что такое потокосцепление самоиндукции?
Потокосцепление самоиндукции – потокосцепление элемента электрической цепи, обусловленное электрическим током в этом элементе
Что такое индуктивность?
Индуктивность
– это способность извлекать энергию из
источника электрического тока и сохранять
ее в виде магнитного поля.
Что такое эдс самоиндукции и как она связана с индуктивностью?
Изменяющийся по величине ток всегда создает изменяющееся магнитное поле, которое, в свою очередь, всегда индуктирует ЭДС. При всяком изменении тока в катушке (или вообще в проводнике) в ней самой индуктируется ЭДС самоиндукции.
Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока(переменного)
.
Почему при подключении цепи с сопротивлением и индуктивностью к источнику постоянной эдс ток не сразу достигает максимального значения, как выглядит закон Кирхгофа для этого случая и графики изменения тока и эдс самоиндукции катушки?
Рассмотрим
переходные процессы в цепи, содержащей
последовательно соединенные резистор R и
индуктивность L . Уравнение Кирхгофа для такой цепи
,
где u = u(t) – напряжение на входе цепи. Найдем решение этого уравнения для свободной составляющей тока, т.е. при
.
Выражение Lp + R=0 представляет собой характеристическое уравнение, которое могло быть получено без подстановки общего выражения для свободной составляющей формальной заменой в однородном дифференциальном уравнении производных тока на pk, где k – порядок производной.
Таким образом, общее решение для тока при переходном процессе в R-L цепи можно представить в виде
(1) |
где =
1/|p| = L/R –
постоянная времени переходного
процесса; I –
постоянная интегрирования, определяемая
по начальным значениям; i –
установившийся ток в цепи, определяемый
по параметрам R и L и
напряжению на входеu.
Длительность переходного процесса в цепи, определяемая значением , возрастает с увеличением L и уменьшением R.
Рассмотрим подключение R–L цепи к источнику постоянной ЭДС E (рис. 1 а)).
Установившийся ток в этой цепи будет определяться только ЭДС
Полный ток в переходном процессе из выражения (1)
.
Для определения постоянной I найдем начальное тока. До замыкания ключа ток очевидно был нулевым, а т.к. подключаемая цепь содержит индуктивность, ток в которой не может измениться скачкообразно, то в первый момент после коммутации ток останется нулевым. Отсюда
.
Подставляя найденное значение постоянной I в выражение для тока, получим
. | (2) |
Из этого выражения можно определить падения напряжения на резисторе uR и индуктивности uL
(3) |
Из выражений (1)-(3) следует, что ток в цепи нарастает по экспоненте с постоянной времени = L
Подставляя выражения (3) в уравнение Кирхгофа для цепи после коммутации, можно убедиться в его справедливости в любой момент времени
.
Что такое электромагнитная индукция.

История
Около 1830 г. Майкл Фарадей установили, что химические реакции на каждой из двух поверхностей раздела электрод-электролит обеспечивают «место действия ЭДС» для гальванического элемента. То есть эти реакции приводят в движение ток, а не являются бесконечным источником энергии, как предполагалось изначально. [11] В случае разомкнутой цепи разделение зарядов продолжается до тех пор, пока электрическое поле разделенных зарядов не станет достаточным для остановки реакций. Годами ранее, Алессандро Вольта, который измерял контактную разность потенциалов на границе металл – металл (электрод – электрод) своих ячеек, ошибочно полагал, что только контакт (без учета химической реакции) является источником ЭДС.
Явление электромагнитной индукции
Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.
Явление электромагнитной индукции было открыто М. Фарадеем.
Опыты Фарадея
- На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
- Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
- Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.
Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.
Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.
Объяснения возникновения индукционного тока
Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.
Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.
Свойства вихревого электрического поля:
- источник – переменное магнитное поле;
- обнаруживается по действию на заряд;
- не является потенциальным;
- линии поля замкнутые.
Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.
Магнитный поток
Магнитным потоком через площадь ( S ) контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ( B ), площади поверхности ( S ), пронизываемой данным потоком, и косинуса угла ( alpha ) между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):
Обозначение – ( Phi ), единица измерения в СИ – вебер (Вб).
Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:
Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.
В зависимости от угла ( alpha ) магнитный поток может быть положительным (( alpha ) < 90°) или отрицательным (( alpha ) > 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.
Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).
В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.
Закон электромагнитной индукции
Закон электромагнитной индукции (закон Фарадея) звучит так:
ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.
Математически его можно описать формулой:
Закон Фарадея Ɛi — ЭДС индукции [В] ΔФ/Δt — скорость изменения магнитного потока [Вб/с] |
Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.
Если контур состоит из N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.
Закон Фарадея для контура из N витков Ɛi — ЭДС индукции [В] ΔФ/Δt — скорость изменения магнитного потока [Вб/с] N — количество витков [-] |
Сила индукционного тока в замкнутом проводящем контуре с сопротивлением R:
Закон Ома для проводящего контура Ɛi — ЭДС индукции [В] I — сила индукционного тока [А] R — сопротивление контура [Ом] |
Если проводник длиной l будет двигаться со скоростью v в постоянном однородном магнитном поле с индукцией B ЭДС электромагнитной индукции равна:
ЭДС индукции для движущегося проводника Ɛi — ЭДС индукции [В] B — магнитная индукция [Тл] v — скорость проводника [м/с] l — длина проводника [м] |
Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.
Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:
- вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
- вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея
Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:
- в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
- в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
Правило Ленца
Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.
Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.
Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.
Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.
Закон электромагнитной индукции Фарадея
Явление электромагнитной индукции описывается законом Фарадея, первооткрывателя и исследователя этого явления.
Представьте себе простейший контур с подвижной стороной, помещенный в магнитное поле так, чтобы поверхность контура была перпендикулярна линиям магнитного поля (рис. 2.).
Рис. Контур с подвижной стороной (перекладиной)
Мы перемещаем контур со скоростью v вправо. Это изменяет поток магнитной индукции, пронизывающий поверхность, охватываемую контуром, обозначенным на рисунке более темным цветом.
Вспоминая определение магнитного потока индукции, мы можем понять, почему изменяется поток ФB (рис.) – потому что, значение площади S поверхности увеличивается .
Вследствие изменения потока магнитной индукции в рассматриваемой цепи возникнет электродвижущая сила индукции и, следовательно, потечет электрический ток.
Рис. Внешняя сила Fz уравновешивает электродинамическую силу Fed , действующую на контур, движущийся с постоянной скоростью v
В рассматриваемом нами случае легко вычислить работу внешней силы, предполагая постоянную скорость движения контура. Внешняя сила Fz действует в соответствии со смещением контура (и вектором скорости) и в любой момент уравновешивает электродинамическую силу (силу Ампера) Fed, действующую в противоположном направлении (рис. 3.). Согласно определению работы Az = F * Δx где Δx – смещение контура во времени Δt.
Величина силы Fz равна величине электродинамической силы (силе Ампера) Fed, действующей на контур. Поэтому Az = I * L * B * Δx, где – I сила индукционного тока, протекающего в цепи (и в контуре), L – длина контура (той части, где протекает электрический ток), B – величина магнитной индукции. Давайте введем наше выражение в определение ЭДС индукции. Зная, что q = I * Δt, получаем:
| εинд | = Az / q = I * L * B * Δx / I * Δt = B * L * Δx / Δt = B * ΔS / Δt = dФB / dt.
Мы получили интересный результат. Абсолютное значение ЭДС индукции равно скорости изменения потока магнитной индукции.
В рассматриваемом здесь случае поток магнитной индукции изменяется равномерно во времени. В общем случае это совсем не обязательно. Вот почему мы пишем: εинд = ΔФB / Δt , где Δt → 0, который в сокращенном виде записывается как dФB / dt . Это производная магнитного потока по времени.
Хотя наш вывод формулы относится к одному примеру, оказывается, что выведенное отношение является общим. Необходимо сделать лишь небольшую поправку. Это знак минус, который связан с определенной условностью и принципом сохранения энергии.
Таким образом, закон электромагнитной индукции Фарадея записывается следующим образом: εинд = – dФB / dt и формулируется так:
Для любого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур, взятой со знаком минус.
Знак “минус” означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт отражён в правиле Ленца.
Этот закон верен независимо от того, как изменяется поток магнитного поля; когда изменение вызвано относительным движением источника магнитного поля и контура, или когда движения вообще нет, но значение магнитной индукции меняется.
Закон Фарадея – это универсальный, всеобъемлющий и полный математический отчет о явлении электромагнитной индукции.
Вернемся на мгновение к нашему примеру и отметим, что скорость изменения потока, а значит и абсолютное значение ЭДС индукции, в данном случае равна произведению B*L*v. Это следует из ранее написанных соотношений, а именно:
| εинд | = Az / q = I * L * B * Δx / I * Δt = B * L * Δx / Δt = B * L * ( Δx / Δt ) = B * L * v .
Правило Ленца.
Правило Ленца позволяет быстро и легко определить направление индукционного тока. Это действительно одна из форм принципа сохранения энергии. Правило гласит, что индукционный ток, наведенный в проводнике под действием переменного потока магнитной индукции, всегда имеет такое направление, что магнитное поле, создаваемое этим индукционным током, противодействует причине (т.е. изменению потока магнитного поля), которая его вызвала.
Обозначение и единицы измерения
Вектор магнитной индукции: формула
ЭДС в формулах обозначают вектором Е. Подразумевается напряженность, которую создают сторонние силы. Соответствующим образом эту величину можно оценивать по разнице потенциалов. По действующим международным стандартам (СИ), единица измерения – один вольт. Большие и малые значения указывают с применением кратных приставок: «микро», «кило» и др.
Движение провода в магнитном поле
Значение индуктированной ЭДС определяется в зависимости от длины проводника, пересекаемого силовыми линиями поля. При большем количестве силовых линий возрастает величина индуктируемой ЭДС. При увеличении магнитного поля и индукции, большее значение ЭДС возникает в проводнике. Таким образом, значение ЭДС индукции в движущемся в магнитном поле проводнике находится в прямой зависимости от индукции магнитного поля, длины проводника и скорости его движения.
Данная зависимость отражена в формуле Е = Blv, где Е — ЭДС индукции; В — значение магнитной индукции; I — длина проводника; v —скорость его перемещения.
Отметим, что в проводнике, который движется в магнитном поле, ЭДС индукции появляется, только когда он пересекает силовые линии магнитного поля. Если проводник движется по силовым линиям, тогда ЭДС не индуктируется. По этой причине формула применяется только в случаях, когда движением проводника направлено перпендикулярно силовым линиям.
Направление индуктированной ЭДС и электротока в проводнике определяется направлением движения самого проводника. Для выявления направления разработано правило правой руки. Если держать ладонь правой руки таким образом, чтобы в ее направлении входили силовые линии поля, а большой палец указывает направление движения проводника, тогда остальные четыре пальца показывают направление индуктированной ЭДС и направление электротока в проводнике.
Вращающаяся катушка
Функционирование генератора электротока основывается на вращении катушки в магнитном потоке, где имеется определенное количество витков. ЭДС индуцируется в электрической цепи всегда при пересечении ее магнитным потоком, на основании формулы магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на площадь поверхности, через которую проходит магнитный поток, и косинус угла, сформированный вектором направления и перпендикулярной плоскости линии).
Согласно формуле, на Ф воздействуют изменения в ситуациях:
- при изменении магнитного потока меняется вектор направления;
- изменяется площадь, заключенная в контур;
- меняется угол.
Допускается индуцирование ЭДС при неподвижном магните или неизменном токе, а просто при вращении катушки вокруг своей оси в пределах магнитного поля. В данном случае магнитный поток изменяется при смене значения угла. Катушка в процессе вращения пересекает силовые линии магнитного потока, в итоге появляется ЭДС. При равномерном вращении возникает периодическое изменение магнитного потока. Также число силовых линий, которые пересекаются ежесекундно, становится равным значениям через равные временные промежутки.
На практике в генераторах переменного электротока катушка остается в неподвижном состоянии, а электромагнит выполняет вращения вокруг нее.
ЭДС самоиндукции
При прохождении через катушку переменного электротока генерируется переменное магнитное поле, которое характеризуется меняющимся магнитным потоком, индуцирующим ЭДС. Данное явление называется самоиндукцией.
В силу того, что магнитный поток пропорционален интенсивности электротока, тогда формула ЭДС самоиндукции выглядит таким образом:
Ф = L x I, где L – индуктивность, которая измеряется в Гн. Ее величина определяется числом витков на единицу длины и величиной их поперечного сечения.
Где используются разные виды ЭДС
Перемещение проводника в магнитном поле применяют для генерации электроэнергии. Вращение ротора обеспечивают за счет разницы уровней жидкости (ГЭС), энергией ветра, приливами, топливными двигателями.
Различное количество витков (взаимоиндукцию) применяют для изменения нужным образом напряжения во вторичной обмотке трансформатора. В таких конструкциях взаимную связь увеличивают с помощью ферромагнитного сердечника. Магнитную индукцию применяют для возникновения мощной отталкивающей силы при создании ультрасовременных транспортных магистралей. Созданная левитация позволяет исключить силу трения, значительно увеличить скорость передвижения поезда.
Взаимодействие магнита с контуром
Итак, приближение или удаление магнита приводит к появлению в контуре индукционного тока, направление которого определяется правилом Ленца. Но ведь магнитное поле действует на ток! Появится сила Ампера, действующая на контур со стороны поля магнита. Куда будет направлена эта сила?
Если вы хотите хорошо разобраться в правиле Ленца и в определении направления силы Ампера, попробуйте ответить на данный вопрос самостоятельно. Это не очень простое упражнение и отличная задача для С1 на ЕГЭ. Рассмотрите четыре возможных случая.
1. Магнит приближаем к контуру, северный полюс направлен на контур.
2. Магнит удаляем от контура, северный полюс направлен на контур.
3. Магнит приближаем к контуру, южный полюс направлен на контур.
4. Магнит удаляем от контура, южный полюс направлен на контур.
Не забывайте, что поле магнита не однородно: линии поля расходятся от северного полюса и сходятся к южному. Это очень существенно для определения результирующей силы Ампера. Результат получается следующий.
Если приближать магнит, то контур отталкивается от магнита. Если удалять магнит, то контур притягивается к магниту. Таким образом, если контур подвешен на нити, то он всегда будет отклоняться в сторону движения магнита, словно следуя за ним. Расположение полюсов магнита при этом роли не играет .
Уж во всяком случае вы должны запомнить этот факт — вдруг такой вопрос попадётся в части А1
Результат этот можно объяснить и из совершенно общих соображений — при помощи закона сохранения энергии.
Допустим, мы приближаем магнит к контуру. В контуре появляется индукционный ток. Но для создания тока надо совершить работу! Кто её совершает? В конечном счёте — мы, перемещая магнит. Мы совершаем положительную механическую работу, которая преобразуется в положительную работу возникающих в контуре сторонних сил, создающих индукционный ток.
Итак, наша работа по перемещению магнита должна быть положительна . Это значит, что мы, приближая магнит, должны преодолевать силу взаимодействия магнита с контуром, которая, стало быть, является силой отталкивания .
Теперь удаляем магнит. Повторите, пожалуйста, эти рассуждения и убедитесь, что между магнитом и контуром должна возникнуть сила притяжения.
Вихревое электрическое поле
Рассмотрим неподвижный контур, находящийся в переменном магнитном поле. Каков же механизм возникновения индукционного тока в контуре? А именно, какие силы вызывают движение свободных зарядов, какова природа этих сторонних сил?
Пытаясь ответить на эти вопросы, великий английский физик Максвелл открыл фундаментальное свойство природы: меняющееся во времени магнитное поле порождает поле электрическое . Именно это электрическое поле и действует на свободные заряды, вызывая индукционный ток.
Линии возникающего электрического поля оказываются замкнутыми, в связи с чем оно было названо вихревым электрическим полем . Линии вихревого электрического поля идут вокруг линий магнитного поля и направлены следующим образом.
Пусть магнитное поле увеличивается. Если в нём находится проводящий контур, то индукционный ток потечёт в соответствии с правилом Ленца — по часовой стрелке, если смотреть с конца вектора. Значит, туда же направлена и сила, действующая со стороны вихревого электрического поля на положительные свободные заряды контура; значит, именно туда направлен вектор напряжённости вихревого электрического поля.
Итак, линии напряжённости вихревого электрического поля направлены в данном случае по часовой стрелке (смотрим с конца вектора.
Рис. Вихревое электрическое поле при увеличении магнитного поля
Наоборот, если магнитное поле убывает, то линии напряжённости вихревого электрического поля направлены против часовой стрелки (рис).
Рис. Вихревое электрическое поле при уменьшении магнитного поля
Теперь мы можем глубже понять явление электромагнитной индукции. Суть его состоит именно в том, что переменное магнитное поле порождает вихревое электрическое поле. Данный эффект не зависит от того, присутствует ли в магнитном поле замкнутый проводящий контур или нет; с помощью контура мы лишь обнаруживаем это явление, наблюдая индукционный ток.
Вихревое электрическое поле по некоторым свойствам отличается от уже известных нам электрических полей: электростатического поля и стационарного поля зарядов, образующих постоянный ток.
1. Линии вихревого поля замкнуты, тогда как линии электростатического и стационарного полей начинаются на положительных зарядах и оканчиваются на отрицательных.
2. Вихревое поле непотенциально: его работа перемещению заряда по замкнутому контуру не равна нулю. Иначе вихревое поле не могло бы создавать электрический ток! В то же время, как мы знаем, электростатическое и стационарное поля являются потенциальными.
Итак, ЭДС индукции в неподвижном контуре — это работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура .
Пример задачи
Дано:
Контур в форме квадрата со стороной d = 0,5 м “втягивается” с постоянной скоростью v = 4 м/с в область однородного магнитного поля, величина индукции которого B = 1 Тл (см. рис. 4). Электрическое сопротивление цепи равно R = 2 Ом.
Рис. . Пример задачи по электростатической индукции
Нам нужно найти ответы на следующие вопросы:
a) Когда (в какой момент/моменты) в рамке будет протекать электрический ток?
б) Определите направление этого электрического тока.
(в) Вычислите значение силы, действующей на рамку при ее перемещении в соответствии с направлением вектора скорости. Предположите отсутствие механического сопротивления движению.
Решение.
(a) Индукционный ток протекает при изменении потока магнитной индукции через поверхность, охваченную контуром. В ситуации, показанной на рисунке 4, магнитный поток равен нулю и будет оставаться таковым до тех пор, пока правый край контура не коснется границы области магнитного поля. Затем, по мере движения контура, он будет все больше и больше заполняться магнитным полем – магнитный поток будет увеличиваться. Поэтому выполняется условие электромагнитной индукции, т.е. начинает протекать индукционный ток. Как долго? Это легко вычислить, поскольку движение рамы равномерно:
t = d / v = 0,5 / 2 = 0,25 секунд
Ток будет течь до тех пор, пока весь квадрат не войдет в магнитное поле. Тогда поток будет ненулевым, но больше не будет меняться.
б) Воспользуемся правилом Ленца. Мы уже заметили, что поток магнитной индукции при “втягивании” контура в магнитное поле увеличивается. Поэтому индукционный ток будет протекать в таком направлении, чтобы противодействовать увеличению потока.
Магнитное поле, создаваемое индукционным током с вектором индукции Bинд, будет противоположно вектору B.
Таким образом, вектор Bинд направлен в нашу сторону. Если расположить таким образом большой палец правой руки, остальные согнутые пальцы покажут направление индукционного тока. Ток будет течь против часовой стрелки.
(в) Снова воспользуемся равномерностью движения рамы. Обратите внимание, что сила, которая действует на рамку при ее перемещении по вектору скорости (например, сила моей руки), не может быть единственной силой, действующей на квадрат. Если бы это было так, он бы двигался с ускорением. Поскольку движение равномерное, это означает, что в каждый момент времени существует сила, которая уравновешивает силу моей руки. Это и есть электродинамическая сила. Ведь теперь в рамке течет ток, и часть его протекает в магнитном поле (см. рис. 5).
Рис.
Красная стрелка показывает направление электрического тока. Электродинамическая сила (сила Ампера) действует слева (я определил ее с помощью правила трех пальцев). На верхнюю часть рамки и нижнюю часть также действуют электродинамические силы, но они аннулируют друг друга.
Подведем итог: электродинамическая сила уравновешивает силу моей руки. Таким образом, я могу сравнить значения обеих сил, то есть F = Fed = B * I * d, где I – сила индукционного тока. Теперь достаточно рассчитать значение силы этого тока. Мы будем использовать закон Фарадея и закон Ома для участка цепи. Давайте начнем с последнего: поскольку нас интересует только значение I, мы напишем
I = εинд / R .
| εинд | = ΔФB / Δt = Δx * d * B / Δt = ( Δx / Δt ) * d * B = v * d * B .
После подстановки в I получаем: I = εинд / R = v * d * B / R .
В конечном итоге искомое значение силы будет выражено через: Fed = B * I * d = ( B * d * v * d * B ) / R = ( B2 * d2 * v ) / R .
Подставляя численные значения получим: Fed = F = ( 12 * 0,52 * 4 ) / 2 = 0,5 Н .
Что мы узнали?
Кратко и понятно явление электромагнитной индукции можно описать, как возникновение электрического тока в проводящем контуре при изменении магнитного потока, проходящего через этот контур. При этом возникающий ток направлен так, чтобы противодействовать причине, его создавшей.
Источники
- https://wikibgu.ru/wiki/Electromotive_Force
- https://fizi4ka.ru/egje-2018-po-fizike/jelektromagnitnaja-indukcija.html
- https://skysmart.ru/articles/physics/zakon-elektromagnitnoj-indukcii
- https://www.asutpp.ru/elektromagnitnaya-induktsiya.html
- https://amperof.ru/teoriya/formula-eds-indukcii.html
- https://odinelectric.ru/knowledgebase/chto-takoe-eds-induktsii-i-kogda-voznikaet
- https://ege-study.ru/ru/ege/materialy/fizika/elektromagnitnaya-indukciya/
- https://obrazovaka.ru/fizika/elektromagnitnaya-indukciya-formula.html
Как вам статья?
Павел
Бакалавр “210400 Радиотехника” – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать
Пишите свои рекомендации и задавайте вопросы
electromagnetism – Какую область следует выбрать для нахождения ЭДС, возникающей при изменении только магнитного поля $B$?
$\begingroup$ Предположим, у меня есть область с однородным магнитным полем, которое меняется со временем.
Но что, если нам нужно найти ЭДС, индуцированную через изолированный проводник, такой как стержень.
ПРИМЕЧАНИЕ. Стержень находится в состоянии покоя
Пока что я получил-
если мы попытаемся выяснить причину ЭДС индуцированной, есть индуцированное круговое (неконсервативное) электрическое поле в области изменяющегося магнитного поля. Так он ускоряет электроны в проводнике. На эти движущиеся заряды (электроны) действует магнитная сила, которая индуцирует ЭДС. Но как связать это с магнитным потоком?
- электромагнетизм
- магнитные поля
- электромагнитная индукция
Как только мы подключаем вольтметр для измерения напряжения, мы образуем петлю. Напряжение, которое мы считываем, будет для контура в целом, а показания вольтметра будут положительными или отрицательными в зависимости от того, расположен ли он слева или справа от стержня.
Но, спросите вы, предположим, что мы ничего не присоединяем к стержню: приобретет ли один конец стержня положительный заряд, а другой отрицательный (как клеммы батареи)? Да, в самом деле. Мы можем вычислить результирующую разность потенциалов следующим образом…
Обозначим центр круглого пятна (в котором магнитное поле изменяется со скоростью $\dot B$) ‘O’. Назовите концы стержня «P» и «Q», а его середину «M». Напишите PQ$=l$, OM$=h$. Тогда ЭДС индукции вокруг треугольника OPQ будет: $$\mathscr E = \text{площадь треугольника OPQ}\times \dot B= \tfrac 12 lh\dot B.$$ Однако есть нет

Итак, рассчитанная нами ЭДС будет индуцироваться вдоль PQ. ЭДС заставит заряды двигаться в стержне до тех пор, пока pd из-за зарядов не сравняется по величине с ЭДС (так что в стержне нет результирующего электрического поля). Так… $$\text{pd между концами стержня} =\tfrac 12 lh\dot B.$$
Примечание : рассмотрение стержня как части треугольника OPQ сделано только для удобства расчета. Не обязательно выбирать OPQ с замкнутым контуром, да и вообще любой замкнутый контур. Более физически прямой метод состоит в использовании результата (полученного из $\vec \nabla \times \vec E=-\frac{d\vec B}{dt}$, теоремы Стокса и симметрии), что на расстоянии $r$ от O электрическое поле касается окружности с центром в точке O и имеет величину $E=\tfrac 12 r\dot B$. Легко показать, что составляющая этого поля, параллельная PQ, равна $E_\text{PQ}=\tfrac 12 h\dot B$ на всем протяжении PQ, что дает то же значение ЭДС, индуцированной в PQ, что и вычисленное ранее!
$\endgroup$ 3Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google Зарегистрироваться через Facebook Зарегистрируйтесь, используя электронную почту и парольОпубликовать как гость
Электронная почтаТребуется, но не отображается
Опубликовать как гость
Электронная почтаТребуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания и подтверждаете, что прочитали и поняли нашу политику конфиденциальности и кодекс поведения.
электромагнетизм – Можно ли индуцировать ЭДС, уменьшая радиус петли?
спросил
Изменено 4 года, 4 месяца назад
Просмотрено 2к раз
$\begingroup$Закон Фарадея говорит нам, что ЭДС индукции в проводящей петле равна изменению магнитного потока в секунду через площадь, окруженную петлей.
Если уменьшить радиус контура, не приближая его и не удаляя от источника магнитного поля, поток через контур также должен уменьшаться, вызывая ЭДС. Это верно?
- электромагнетизм
- электромагнитно-индукционный
Вы правы.
Есть несколько способов взглянуть на ситуацию.
Предположим, что в экран действует магнитное поле $\vec B$ и вся окружность петли движется внутрь со скоростью $\vec v$.
Направление индуцированного тока можно вывести из правила захвата правой руки, зная, что закон Ленца предсказывает, что магнитное поле, создаваемое индуцированным током, будет иметь такое направление, чтобы уменьшить производящее его изменение, т. е. уменьшение магнитный поток через контур.
Наведенное магнитное поле находится в экране, а наведенный ток направлен по часовой стрелке.
На заряд $q$ внутри петли, движущийся внутрь со скоростью $\vec v$, действует сила Лоренца $q \vec v \times \vec B$ в направлении, показанном на диаграмме.
Это приводит к тому, что направление индуцированного (обычного – как если бы подвижные носители заряда были положительными) тока было по часовой стрелке.
Теперь у вас есть проводник с индуцированным током, движущийся внутрь со скоростью $v$ в магнитном поле $\vec B$.