Эдс источник это: Источник ЭДС – это… Что такое Источник ЭДС?

Содержание

Источник ЭДС – это… Что такое Источник ЭДС?

Рисунок 1 — Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа)

Источник ЭДС (идеальный источник напряжения) — двухполюсник, напряжение на зажимах которого постоянно (не зависит от тока в цепи). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.

В простейшем случае напряжение определено как константа, то есть напряжение источника ЭДС постоянно.

Реальные источники напряжения

Рисунок 2 Рисунок 3 — Нагрузочная характеристика

Идеальный источник напряжения (источник ЭДС) является физической абстракцией, то есть подобное устройство не может существовать. Если допустить существование такого устройства, то ток I, протекающий через него, стремился бы к бесконечности при подключении нагрузки, сопротивление RH которой стремится к нулю. Но при этом получается, что мощность источника ЭДС также стремится к бесконечности, так как .

Но это невозможно, по той причине, что мощность любого источника энергии конечна.

В реальности, любой источник напряжения обладает внутренним сопротивлением r, которое имеет обратную зависимость от мощности источника. То есть, чем больше мощность, тем меньше сопротивление (при заданном неизменном напряжении источника) и наоборот. Наличие внутреннего сопротивления отличает реальный источник напряжения от идеального. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника энергии. Эквивалентная схема реального источника напряжения представляет собой последовательное включение источника ЭДС — Е (идеального источника напряжения) и внутреннего сопротивления —

r.

На рисунке 3 приведены нагрузочные характеристики идеального источника напряжения (источника ЭДС) (синяя линия) и реального источника напряжения (красная линия).

где

 — падение напряжения на внутреннем сопротивлении;
 — падение напряжения на нагрузке.

При коротком замыкании () , то есть вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток будет максимальным для данного источника ЭДС. Зная напряжение холостого хода и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:

См. также

Литература

  • Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3

Электродвижущая сила (ЭДС) источника энергии

  

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока).

Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС), которая создает и длительное время поддерживает разность потенциалов между концами проводника. Иногда говорят, что ЭДС создает электрический ток в цепи. Нужно помнить об условности такого определения, так как выше мы уже установили, что причина возникновения и существования электрического тока — электрическое поле.

Источник электрической энергии производит определенную работу, перемещая электрические заряды по всей замкнутой цепи..

Определение:

 Работа, совершаемая источником электрической энергии при переносе единицы положительного заряда по всей замкнутой цепи, называется ЭДС источника

За единицу измерения электродвижущей силы принят вольт (сокращенно вольт обозначается буквой В или V — «вэ» латинское).

ЭДС источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой, цепи источник электрической энергии совершает работу, равную одному джоулю:

В практике для измерения ЭДС используются как более крупные, так и более мелкие единицы, а именно:

1 киловольт (кВ, kV), равный 1000 В;

1 милливольт (мВ, mV), равный одной тысячной доле вольта (10-3 В),

1 микровольт (мкВ, μV), равный одной миллионной доле вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ= 1000 мкВ.

В настоящее, время существует несколько видов источников электрической энергии. Впервые в качестве источника электрической энергии была использована гальваническая батарея, состоящая из нескольких цинковых и медных кружков, между которыми была проложена кожа, смоченная в подкисленной воде. В гальванической батарее химическая энергия превращалась в электрическую (подробнее об этом будет рассказано в главе XVI). Свое название гальваническая батарея получила по имени итальянского физиолога Луиджи Гальвани (1737—1798), одного из основателей учения об электричестве.

Многочисленные опыты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. Еще в начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для ряда блестящих опытов.

Источники электрической энергии, работающие по принципу преобразования химической энергии в электрическую, называются химическими источниками электрической энергии.

Другим основным источником электрической энергий, получившим широкое применение в электротехнике и радиотехнике, является генератор. В генераторах механическая энергия преобразуется в электрическую.

На электрических схемах источники электрической энергии и генераторы обозначаются так, как это показано на рис. 1.

Рисунок 1. Условные обозначения источников электрической энергии: а — источник ЭДС, общее обозначение, б – источник тока, общее обозначение; в – химический источник электрической энергии; г — батарея химических источников; д – источник потоянного напряжения; е – источник переменного нарияжения; ж –  генератор.

 

У химических источников электрической энергии и у генераторов электродвижущая сила проявляется одинаково, создавая на зажимах источника разность потенциалов и поддерживая ее длительное время. Эти зажимы называются полюсами источника электрической энергии. Один полюс источника электрической энергии имеет положительный потенциал (недостаток электронов), обозначается знаком плюс ( + ) и называется положительным полюсом. Другой полюс имеет отрицательный потенциал (избыток электронов), обозначается знаком минус (—) и называется отрицательным полюсом.

От источников электрической энергии электрическая энергия передается по проводам к ее потребителям (электрические лампы, электродвигатели, электрические дуги, электронагревательные приборы и т. д.).

Определение: Совокупность источника электрической энергии, ее потребителя и соединительных проводов называется электрической цепью.

Простейшая электрическая цепь показана на рис. 2.

Рисунок 2. Простейшая электрическая цепь: Б — источник электрической энергии; SA — выключатель; EL — потребитель электрической энергии (лампа).

Для того чтобы по цепи проходил электрический ток, она должна быть замкнутой. По замкнутой электрической цепи непрерывно проходит ток, так как между полюсами источника электрической энергии существует некоторая разность потенциалов.

Эта разность потенциалов называется напряжением источника и обозначается буквой U. Единицей измерения напряжения служит вольт. Так же как и ЭДС, напряжение может измеряться в киловольтах, милливольтах и микровольтах.

Для измерения величины ЭДС и напряжения применяется прибор, называемый вольтметром. Если вольтметр подключить непосредственно к полюсам источника электрической энергии, то при разомкнутой электрической цепи он покажет ЭДС источника электрической энергии, а при замкнутой — напряжение на его зажимах: (рис. 3).

Рисунок 3. Измерение ЭДС и напряжения источника электрической энергии: а— измерение ЭДС источника электрической энергии; б — измерение напряжения на зажимах источника электрической энергии..

Заметим, что напряжение на зажимах источника электрической энергии всегда меньше его ЭДС.  

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Электродвижущая сила.

| Объединение учителей Санкт-Петербурга
Электродвижущая сила.

Роль источника тока: разделить заряды за счет совершения работы сторонними силами.

 Любые силы, действующие на заряд, за исключением потенциальных сил электростатического происхождения (т. е. кулоновских) называютсторонними силами.

(Сторонние силы объясняются электромагнитным взаимодействием между электронами и ядрами)

ЭДС — энергетическая  характеристика источника. Это физическая величина, равная отношению работы, совершенной сторонни­ми силами при перемещении электрического заряда по замкнутой цепи, к этому заряду:

Измеряется в вольтах (В).

Еще одна характеристика источника – внутреннее сопротивление источника тока: r.

 

Закон Ома для полной цепи.

Энергетические преобразования в цепи:

– закон сохранения энергии

(А – работа сторонних сил; Авнеш.– работа тока на внешнем участке цепи сопротивлением RАвнутр.– работа тока на внутреннем сопротивлении источникаr.)

Закон ОмаСила тока в цепи постоянного тока прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению электрической цепи.

Следствия:

 

1. Если R>>r, то ε=U. Измеряют e высокоомным вольтметром при разомкнутой внешней цепи.

2.Если R<<r, то ток   – максимальный ток для данной цепи (ток короткого замыкания).  Опасно, т.к.  – возрастает

e= U1+U2

3. На внутреннем участке цепи:   Aвнутр=U1q , на внешнем участке цепи: Aвнеш=U2q.

A=Aвнутр+ Aвнеш. Тогда: εq=U1q+U2q. Следовательно: ε= U1+U2

ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем   участках цепи.

 

4.   Если R растет, то I уменьшается.  – при уменьшении силы тока в цепи напряжение увеличивается!

 

5. Мощность: а) Полная..

б) Полезная. .

в) Теряемая. .

г) КПД   .

 

Соединение источников тока.

1. Последовательное соединение источников:  полная ЭДС цепи равнаалгебраической сумме ЭДС отдельных источников, полное внутреннее сопротивление равно сумме внутренних сопротивлений всех источников тока. Если все источники одинаковы и включены в одном направлении, то 

Тогда з-н Ома запишется в виде:

2. Параллельное соединение источников: один из источников (с наибольшейЭДС) работает как источник, остальные – как потребители (на этом принципе основана зарядка аккумулятора). Расчет по правилам Кирхгофа (см.).

Если все источники одинаковы , то закон Ома запишется в виде:.

Закон Ома для  неоднородного участка цепи .

–  знаки “+” или “-“ выбираются в зависимости от того, в одну или в противоположные стороны направлены токи создаваемые источником ЭДС и электрическим полем.

Правила Кирхгофа.

1. Алгебраическая сумма сил токов в каждом узле (точке разветвления) равна 0.    – следствие закона сохранения электрического заряда.

2. В любом замкнутом контуре цепи алгебраическая сумма произведений сил токов в отдельных участках на их сопротивления равна алгебраической сумме ЭДС источников в этих контурах.    – следствие закона Ома для неоднородного участка цепи.

Направление токов выбирают произвольно. Если после вычислений значение силы тока отрицательно, то направление противоположно.

Замкнутый контур обходят в одном направлении. Если направление обхода совпадает с направлением тока, то IR>0. Если при обходе приходят к “+” источника, то его ЭДС отрицательна.

В полученную систему уравнений должны входить все ЭДС и все сопротивления. Т.о. система должна состоять из одного уравнения для токов и  k-1 – го уравнения для ЭДС (k – количество замкнутых контуров).

 

Идеальный источник эдс это — sm-shop.ru

Идеальный источник ЭДС имеет неизменные ЭДС и напряжение на зажимах при всех токах нагрузки. У реального источника ЭДС и напряжение на зажимах изменяются при изменении нагрузки, например вследствие падения напряжения в обмотках генератора постоянного тока. Поэтому реальные источники ЭДС изображается с помощью двух последовательно включенных элементов – идеального источника ЭДС и сопротивления, которое учитывает внутреннее сопротивление реального источника (рисунок 2.3 а). Свойства реального источника ЭДС отражает вольт-амперная характеристика (ВАХ) или внешняя характеристика – зависимость напряжения между его выводами от тока источника (рисунок 2.3 б). Уравнение внешней характеристики реального источника ЭДС:

.

Рисунок 2.3. Схема замещения (а) и внешняя характеристика(б) реального источника ЭДС

Уменьшение напряжения источника электрической энергии при увеличении тока объясняется увеличением падения напряжения на его внутреннем сопротивлении. В большинстве случаев внутреннее сопротивление источника ЭДС относительно мало и напряжение на его зажимах мало изменяется с нагрузкой.

Идеальный источник токаобеспечивает протекание неизменного тока в приемниках при изменении их сопротивления. У реального источника ток во внешней цепи изменяется при изменении сопротивления. Поэтому реальный источник тока изображается на схемах как идеальный источник тока с параллельно включенным сопротивлением, величина которого определяется из характеристики элемента (рисунок 2.4 а). Внешняя характеристика источника тока приведена на рисунке 2.4 б.

Рисунок 2.4 Схема замещения (а) и внешняя характеристика (б) реального источника тока

Различают несколько режимов работы источников энергии. В режиме холостого хода приемники электрической энергии отключены и ток источника равен нулю. Напряжение на зажимах источника равно его ЭДС, так как отсутствует падение напряжения на внутреннем сопротивлении. Короткое замыкание является аварийным режимом, когда зажимы источника энергии замкнуты накоротко. При этом ток в цепи определяется только внутренним сопротивлением источника, которое обычно достаточно мало, поэтому токи короткого замыкания достигают недопустимо больших значений. В номинальном режиме источник энергии может работать неопределенно длительное время без перегрева или других недопустимых последствий. Согласованный режим работы осуществляется, когда источник отдает в нагрузку максимальную мощность. Условие передачи максимальной мощности может быть получено из уравнения внешней характеристики источника:

,

если выразить из этого уравнения ток нагрузки:

,

получим закон Ома для замкнутой цепи с последовательной схемой замещения источника. Мощность, отдаваемая источником ЭДС (с последовательной схемой замещения) в нагрузку:

.

Для источника тока (с параллельной схемой замещения) мощность, отдаваемая в нагрузку:

.

Мощность, отдаваемая источником в нагрузку будет максимальна, при максимальном значении соотношения

. Максимум этого соотношения можно определить, взяв первую производную дроби по

и приравняв ее к нулю. Максимум будет при

. Следовательно, мощность, отдаваемая источником во внешнюю цепь будет максимальна, когда сопротивление внешней цепи

равно внутреннему сопротивлению источника

.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10084 –

| 7527 –

или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Идеальный источник ЭДС – это электрический элемент, напряжение между зажимами которого не зависит от величины протекающего через него тока, отдаваемого во внешнюю цепь. Внутреннее сопротивление идеального источника ЭДС всегда равно нулю.

Электродвижущая сила или сокращенно ЭДС – это энергия, которую получает электрический заряд в источнике под действием сторонних сил. ЭДС численно равна разности потенциалов на зажимах источника.

ЭДС – это векторная величина, направленная по направлению протекающего тока.

идеальный источник напряжения — Источник электрической энергии, электрическое напряжение на выводах которого не зависит от электрического тока в нем. [ГОСТ Р 52002 2003] Тематики источники и системы электропитанияэлектротехника, основные понятия Синонимы идеальный источник… … Справочник технического переводчика

идеальный источник тока — Источник электрической энергии, электрический ток которого не зависит от напряжения на его выводах. [ГОСТ Р 52002 2003] Тематики источники и системы электропитанияэлектротехника, основные понятия Синонимы идеальный источник электрического тока … Справочник технического переводчика

Источник напряжения — Рисунок 1 Обозначение источника ЭДС схемах Источник ЭДС (точнее, идеальный источник ЭДС) источник питания, напряжение на зажимах которого постоянно (не зависит от тока). Напряжение может быть задано как константа, как функция времени, либо как… … Википедия

идеальный источник (электрического) напряжения — 123 идеальный источник (электрического) напряжения Источник электрической энергии, электрическое напряжение на выводах которого не зависит от электрического тока в нем Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных… … Словарь-справочник терминов нормативно-технической документации

идеальный источник (электрического) тока — 125 идеальный источник (электрического) тока Источник электрической энергии, электрический ток которого не зависит от напряжения на его выводах Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал докуме … Словарь-справочник терминов нормативно-технической документации

Идеальный источник (электрического) напряжения — 1. Источник электрической энергии, электрическое напряжение на выводах которого не зависит от электрического тока в нем Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий … Телекоммуникационный словарь

Идеальный источник (электрического) тока — 1. Источник электрической энергии, электрический ток которого не зависит от напряжения на его выводах Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий … Телекоммуникационный словарь

Источник ЭДС — Рисунок 1 Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа) Источник ЭДС (идеальный источник напряжения) двухполюсник, нап … Википедия

Источник опорного напряжения — Источник, или генератор, опорного напряжения (ИОН) базовый электронный узел, поддерживающий на своём выходе высокостабильное постоянное электрическое напряжение. ИОН применяются для задания величины выходного напряжения стабилизированных… … Википедия

Источник электрического напряжения идеальный — источник электрической энергии, электрическое напряжение на выводах которого не зависит от электрического тока в нем. Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от… … Официальная терминология

Источник

Источник Э.Д.С. и источник тока

Источник ЭДС

Рисунок 1 — Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа)

Источник ЭДС (идеальный источник напряжения) — двухполюсникнапряжение на зажимах которого постоянно (не зависит от тока в цепи). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.

В простейшем случае напряжение определено как константа, то есть напряжение источника ЭДС постоянно.

Реальные источники напряжения

Рисунок 2

Рисунок 3 — Нагрузочная характеристика

Идеальный источник напряжения (источник ЭДС) является физической абстракцией, то есть подобное устройство не может существовать. Если допустить существование такого устройства, то электрический ток I, протекающий через него, стремился бы к бесконечности при подключении нагрузки,сопротивление RH которой стремится к нулю. Но при этом получается, что мощность источника ЭДС также стремится к бесконечности, так как . Но это невозможно, по той причине, что мощность любого источника энергии конечна.

В реальности, любой источник напряжения обладает внутренним сопротивлением r, которое имеет обратную зависимость от мощности источника. То есть, чем больше мощность, тем меньше сопротивление (при заданном неизменном напряжении источника) и наоборот. Наличие внутреннего сопротивления отличает реальный источник напряжения от идеального. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника энергии. Эквивалентная схема реального источника напряжения представляет собой последовательное включение источника ЭДС — Е(идеального источника напряжения) и внутреннего сопротивления — r.

На рисунке 3 приведены нагрузочные характеристики идеального источника напряжения (источника ЭДС) (синяя линия) и реального источника напряжения (красная линия).

где

 — падение напряжения на внутреннем сопротивлении;

 — падение напряжения на нагрузке.

При коротком замыкании () , то есть вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток  будет максимальным для данного источника ЭДС. Зная напряжение холостого хода и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:

Рисунок 1 — схема с условным обозначением источника тока[1]

Рисунок 2.1 — Обозначение на схемах источника тока

Рисунок 3 — Генератор тока типа токовое зеркало, собранный на биполярных транзисторах

Исто́чник то́ка (также генератор тока) — двухполюсник, который создаёт ток , не зависящий от сопротивления нагрузки, к которой он присоединён. В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе кисточнику ЭДС, чем к источнику тока.

На рисунке 1 представлена схема замещения биполярного транзистора, содержащая источник тока (с указанием S·Uбэ; стрелка в кружке указывает положительное направление тока источника тока), генерирующий ток S·Uбэ, т. е. ток, зависящий от напряжения на другом участке схемы.

Идеальный источник тока

Напряжение на клеммах идеального источника тока зависит только от сопротивления внешней цепи:

Мощность, отдаваемая источником тока в сеть, равна:

Так как для источника тока , напряжение и мощность, выделяемая им, неограниченно растут при росте сопротивления..

Реальный источник тока

Реальный источник тока, так же как и источник ЭДС, в линейном приближении может быть описан таким параметром, как внутреннее сопротивление . Отличие состоит в том, что чем больше внутреннее сопротивление, тем ближе источник тока к идеальному (источник ЭДС, наоборот, чем ближе к идеальному, тем меньше его внутреннее сопротивление). Реальный источник тока с внутренним сопротивлением  эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление  и ЭДС .

Напряжение на клеммах реального источника тока равно:

Сила тока в цепи равна:

Мощность, отдаваемая реальным источником тока в сеть, равна:

Примеры

Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени () после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) ведёт кпробою зазора .

Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник тока, только не постоянного, а переменного. Поэтому размыкание вторичной цепи трансформатора тока недопустимо; вместо этого при необходимости перекоммутации в цепи вторичной обмотки без отключения линии эту обмотку предварительно шунтируют.

Применение

Реальные генераторы тока имеют различные ограничения (например по напряжению на его выходе), а также нелинейные зависимости от внешних условий. Например, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частностиоперационных усилителей.

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (сокращенно ИТУН)

  • Источник тока, управляемый током (сокращенно ИТУТ)

Что такое ЭДС (электродвижущая сила)

Электродвижущая сила, в народе ЭДС, также как и напряжение измеряется в вольтах, но носит совсем иной характер.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

 

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд.  Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к  заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что  такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

ЭДС электрического тока

Как вы помните из прошлых статей, молекулы воды – это “электроны”. Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне – это напряжение, а люди, которые тратят воду для своих нужд – это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток – это не что иное, как сила тока.

Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?

Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА!  Можно назвать ее сокращенно ЭДС – Электро Движущая Сила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E.

Значит, в наших батарейках тоже есть такой “насос”? Есть, и правильней было бы его назвать “насос подачи электронов”). Но, конечно, так никто не говорит.  Говорят просто  – ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится “уровень воды” в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как “насос” не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.

Реальный источник ЭДС

Источник электрической энергии  – это источник ЭДС с внутренним сопротивлением Rвн. Это могут быть какие-либо химические элементы питания, наподобие  батареек и аккумуляторов

Их внутреннее строение с точки зрения ЭДС выглядит примерно вот так:

Где E – это ЭДС, а Rвн  – это внутреннее сопротивление батарейки

Итак, какие выводы можно сделать из этого?

Если к батарейке не цепляется никакая нагрузка, типа лампы накаливания и тд, то в результате сила тока в такой цепи будет равняться нулю. Упрощенная схема будет такой:

Но если мы все-таки присоединим к нашей батарейке лампочку накаливания, то у нас цепь станет замкнутой и в цепи будет течь ток:

В результате у нас в цепи побежит электрический ток, а на внутреннем сопротивлении упадет какое-то напряжение, так как в результате у нас получился делитель напряжения, так как нить лампы накаливания также имеет какое-то свое сопротивление. По закону Ома, чем больше сила тока в цепи, тем больше будет падение напряжения на внутреннем сопротивлении Rвн. Более подробно об этом эффекте можно прочитать в статье закон Ома для полной цепи, а также про входное и выходное сопротивление.

Если начертить график зависимости силы в цепи тока от напряжения на батарейке, то он будет выглядеть вот так:

Какой напрашивается вывод? Для того, чтобы замерить ЭДС батарейки, нам достаточно просто взять хороший мультиметр с высоким входным сопротивлением и замерять напряжение на клеммах батарейки.

То есть мы увидим, чем больше сила тока в цепи, то тем меньше напряжение на клеммах батарейки. Об этом более подробно я говорил в статье закон Ома для полной цепи.

Идеальный источник ЭДС

Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что Rвн=0.

Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:

В результате мы получили просто источник ЭДС.  Следовательно, источник ЭДС – это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он  все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:

На практике идеального источника ЭДС не существует.

Типы ЭДС

электрохимическая  (ЭДС батареек и аккумуляторов)

фотоэффекта (получение электрического тока от солнечной энергии)

индукции (генераторы, использующие принцип электромагнитной индукции)

Эффект Зеебека или термоЭДС (возникновение электрического тока в замкнутой цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах)

пьезоЭДС (получение ЭДС от пьезоэлектриков)

Вольт амперная характеристика идеального источника тока

Идеальным источником тока) называется активный элемент с двумя выводами (активный двухполюсник) величина тока, через который не зависит от величины приложенного к выводам напряжения. Графическое изображение источника постоянного тока показано на рис. 10 а, а изображение источника переменного тока показано на рис. 10 б. Вольтамперная характеристика (ВАХ) идеального источника тока показана на рис. 10 в.

Такая вольтамперная характеристика возможна только в том случае, если сопротивление внутренней структуры источника равно бесконечности.

На практике идеальных источников не существует. Это объясняется теми же причинами, что и в случае источником ЭДС (см. § 2.1.1).

Источник тока в котором учтено внутреннее сопротивление, называется реальным источником тока.

Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.

Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:

механической энергии вращения роторов генераторов;

протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;

теплоты в терморегуляторах;

магнитных полей в магнитогидродинамических генераторах;

световой энергии в фотоэлементах.

Все они обладают различными характеристиками. Чтобы классифицировать и описать их параметры принято условное теоретическое разделение на источники:

Электрический ток в металлическом проводнике

Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.

На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.

В действительности источниками напряжения работают различные химические и гальванические элементы, аккумуляторные батареи, электрические сети. Их разделяют на источники:

постоянного и переменного напряжения;

управляемые напряжением или током.

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

Схемы обозначения и вольт-амперная характеристика источника тока

Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.

Реальный источник тока отличается от идеального значением внутреннего сопротивления.

Примерами источника тока могут служить:

Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.

Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.

Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.

В различной литературе источники тока и напряжения могут обозначаться неодинаково.

Виды обозначений источников тока и напряжения на схемах

Величина, обратная сопротивлению, называется проводимостью (обозначается буквой g, имеет размерность Ом – 1 или См, Сименс).

В линейных цепях сопротивление ветвей постоянно, определяется лишь физическими свойствами материала проводников и не зависит от источников, токов и напряжений в ветвях.

Если источники в цепи создают на своих выводах напряжения и токи, которые не изменяются во времени, цепь называется электрической цепью постоянного тока. В цепи постоянного тока сопротивление индуктивностей равно нулю, сопротивление конденсаторов бесконечно велико.

Далее будут рассмотрены линейные цепи постоянного тока.

2. ИСТОЧНИКИ ЭДС И ИСТОЧНИКИ ТОКА

ЭДС – это максимальное напряжение, которое могут создать сторонние силы на выводах источника при отсутствии в цепи тока. В качестве сторонних сил могут выступать, например, химические реакции в гальванической батарее или момент на валу электрической машины, работающей в режиме генератора.

Для удобства анализа источники электрической энергии представляют либо с помощью идеального источника ЭДС, либо с помощью идеального источника тока. Идеальный источник ЭДС и идеальный источник тока называют также источниками бесконечно большой мощности.

На Рис. 2.1 а показана вольт-амперная характеристика идеального источника ЭДС. Этот источник отличается тем, что напряжение на его выводах равно значению ЭДС независимо от тока нагрузки. На Рис. 2.1 б показана вольт-амперная характеристика идеального источника тока. Он сохраняет постоянство тока вне зависимости от напряжения на своих выводах.

Если к данным вольт-амперным характеристикам применить закон Ома (см. формулу (1.1))

,

можно сделать вывод, что сопротивление идеального источника ЭДС равно нулю, а сопротивление идеального источника тока равно бесконечности.

Реальный источник электрической энергии обладает конечным внутренним сопротивлением, его вольт-амперная характеристика показана на Рис. 2.2 и может быть описана выражением:

(2.1)

где – внутреннее сопротивление источника;

– напряжение холостого хода источника.

Когда источник отключен от нагрузки, на его зажимах существует напряжение холостого хода , равное ЭДС источника. Если соединить накоротко зажимы источника, напряжение на зажимах будет равно нулю, а ток между зажимами будет равен току короткого замыкания .

Сравнивая вольт-амперные характеристики идеальных источников и реального источника, можно заключить, что реальный источник можно смоделировать либо с помощью эквивалентного идеального источника ЭДС и последовательно включенного внутреннего сопротивления, либо с помощью эквивалентного идеального источника тока и параллельно включенного внутреннего сопротивления (Рис. 2.3).

Внутреннее сопротивление реального источника вычисляется как

.

ЭДС эквивалентного источника ЭДС равна напряжению холостого хода реального источника.

Ток эквивалентного источника тока равен току короткого замыкания реального источника.

ЭДС эквивалентного источника ЭДС и ток эквивалентного источника тока связаны соотношением:

(2. 2)

Это соотношение говорит о том, что любой источник ЭДС с последовательно включенным сопротивлением может быть заменен источником тока с параллельно включенным таким же сопротивлением и наоборот.

Какой из двух эквивалентных замен воспользоваться, совершенно безразлично, и определяется лишь удобством расчета в каждом конкретном случае.

Заметим, что ЭДС идеального источника ЭДС всегда направлена от меньшего потенциала к большему, а ток идеального источника тока всегда направлен в ту же сторону, что и ток реального источника.

3. ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ ЭЛЕМЕНТОВ ЦЕПИ

Для упрощения расчетов электрическую цепь можно преобразовывать, уменьшая количество ветвей и узлов. При этом необходимо помнить, что после расчета преобразованной цепи следует выполнить обратное преобразование, чтобы вернуться к исходной цепи.

Любые преобразования цепей должны быть эквивалентными, то есть преобразование какого-либо участка цепи не должно изменять токораспределения в непреобразованной части схемы. А это возможно лишь тогда, когда в процессе преобразования потенциалы узлов в непреобразованной части схемы и токи, подтекающие извне к преобразованному участку, сохраняются неизменными.

Простейшими преобразованиями электрической цепи являются свертки последовательно-параллельных соединений элементов цепи.

При последовательном соединении элементов конец предыдущего соединяется с началом последующего (Рис. 3.1). Главный признак последовательного соединения – один и тот же ток в каждом из элементов.

Если к последовательному соединению элементов применить закон Ома (1.1), можно заключить, что напряжения на элементах распределяются прямо пропорционально сопротивлениям, а общее сопротивление последовательного соединения равно сумме сопротивлений элементов:

(3.1)

Итак, если на участке цепи несколько элементов соединены последовательно, они могут быть заменены одним эквивалентным элементом, сопротивление которого равно сумме сопротивлений отдельных элементов. ПРИ ПОСЛЕДОВАТЕЛЬНОМ СОЕДИНЕНИИ СОПРОТИВЛЕНИЯ СКЛАДЫВАЮТСЯ!

При параллельном соединении элементов начала всех элементов соединены в один узел, а концы всех элементов соединены в другой узел (Рис. 3.2).

Главный признак параллельного соединения – одно и то же напряжение на каждом из элементов.

Если на участке цепи несколько элементов соединены параллельно, они могут быть заменены одним эквивалентным элементом, проводимость которого равна сумме проводимостей отдельных элементов. ПРИ ПАРАЛЛЕЛЬНОМ СОЕДИНЕНИИ СКЛАДЫВАЮТСЯ ПРОВОДИ­МОСТИ!

(3.2)

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Электромагнитные поля и рак – Национальный институт рака

  • Международное агентство по изучению рака. Неионизирующее излучение, Часть 2: Радиочастотные электромагнитные поля. Лион, Франция: МАИР; 2013. Монографии МАИР по оценке канцерогенных рисков для человека, Том 102.

  • Альбом А., Грин А., Хейфец Л. и др. Эпидемиология воздействия радиочастотного излучения на здоровье. Перспективы гигиены окружающей среды 2004; 112 (17): 1741–1754.

    [Аннотация PubMed]
  • Международная комиссия по защите от неионизирующего излучения. Рекомендации по ограничению воздействия изменяющихся во времени электрических и магнитных полей (от 1 Гц до 100 кГц). Health Physics 2010; 99 (6): 818-36. DOI: 10.1097 / HP.0b013e3181f06c86.

  • Schüz J, Mann S. Обсуждение показателей потенциального воздействия для использования в эпидемиологических исследованиях воздействия радиоволн от базовых станций мобильных телефонов на человека. Журнал анализа воздействия и эпидемиологии окружающей среды 2000; 10 (6 Пт 1): 600-5.

    [Аннотация PubMed]
  • Viel JF, Clerc S, Barrera C, et al. Воздействие радиочастотных полей базовых станций мобильных телефонов и радиопередатчиков в жилых помещениях: обследование населения с использованием персонального счетчика. Медицина труда и окружающей среды 2009; 66 (8): 550-6.

    [Аннотация PubMed]
  • Фостер KR, Moulder JE.Wi-Fi и здоровье: обзор текущего состояния исследований. Health Physics 2013; 105 (6): 561-75.

    [Аннотация PubMed]
  • АГНИР. 2012. Воздействие радиочастотных электромагнитных полей на здоровье. Отчет Независимой консультативной группы по неионизирующему излучению. В документах Агентства по охране здоровья R, химические и экологические опасности. RCE 20, Агентство по охране здоровья, Великобритания (ред.).

  • Фостер К. Р., Телль РА.Воздействие радиочастотной энергии от интеллектуального счетчика Trilliant. Health Physics 2013; 105 (2): 177-86.

    [Аннотация PubMed]
  • Lagroye I, Percherancier Y, Juutilainen J, De Gannes FP, Veyret B. ELF магнитные поля: исследования на животных, механизмы действия. Прогресс в биофизике и молекулярной биологии 2011; 107 (3): 369-373.

    [Аннотация PubMed]
  • Бурман Г.А., Маккормик Д.Л., Финдли Дж.С. и др.Оценка хронической токсичности / онкогенности магнитных полей 60 Гц (промышленной частоты) у крыс F344 / N. Токсикологическая патология 1999; 27 (3): 267-78.

    [Аннотация PubMed]
  • Маккормик Д.Л., Бурман Г.А., Финдли Дж. К. и др. Оценка хронической токсичности / онкогенности магнитных полей 60 Гц (промышленной частоты) у мышей B6C3F1. Токсикологическая патология 1999; 2 7 (3): 279-85.

    [Аннотация PubMed]
  • Всемирная организация здравоохранения, Международное агентство по изучению рака.Неионизирующее излучение, Часть 1: Статические и крайне низкочастотные (СНЧ) электрические и магнитные поля. Монографии МАИР по оценке канцерогенных рисков для человека 2002; 80: 1-395.

  • Ahlbom IC, Cardis E, Green A, et al. Обзор эпидемиологической литературы по ЭМП и здоровью. Перспективы гигиены окружающей среды 2001; 109 Приложение 6: 911-933.

    [Аннотация PubMed]
  • Schüz J.Воздействие чрезвычайно низкочастотных магнитных полей и риск рака у детей: обновление эпидемиологических данных. Прогресс в биофизике и молекулярной биологии 2011; 107 (3): 339-342.

    [Аннотация PubMed]
  • Вертхаймер Н., Липер Э. Конфигурации электропроводки и детский рак. Американский журнал эпидемиологии 1979; 109 (3): 273-284.

    [Аннотация PubMed]
  • Кляйнерман Р.А., Кауне В.Т., Хэтч Е.Е. и др.Подвержены ли дети, живущие вблизи высоковольтных линий электропередач, повышенному риску острого лимфобластного лейкоза? Американский журнал эпидемиологии 2000; 151 (5): 512-515.

    [Аннотация PubMed]
  • Kroll ME, Swanson J, Vincent TJ, Draper GJ. Детский рак и магнитные поля от высоковольтных линий электропередач в Англии и Уэльсе: исследование случай – контроль. Британский журнал рака 2010; 103 (7): 1122-1127.

    [Аннотация PubMed]
  • Wünsch-Filho V, Pelissari DM, Barbieri FE, et al.Воздействие магнитных полей и острый лимфолейкоз у детей в Сан-Паулу, Бразилия. Эпидемиология рака 2011; 35 (6): 534-539.

    [Аннотация PubMed]
  • Sermage-Faure C, Demoury C, Rudant J, et al. Детский лейкоз вблизи высоковольтных линий электропередачи – исследование Geocap, 2002-2007 гг. Британский журнал рака 2013; 108 (9): 1899-1906.

    [Аннотация PubMed]
  • Кабуто М., Нитта Х., Ямамото С. и др.Детская лейкемия и магнитные поля в Японии: исследование случай-контроль детской лейкемии и магнитных полей промышленной частоты в Японии. Международный журнал рака 2006; 119 (3): 643-650.

    [Аннотация PubMed]
  • Linet MS, Hatch EE, Kleinerman RA и др. Воздействие магнитных полей в жилых помещениях и острый лимфобластный лейкоз у детей. Медицинский журнал Новой Англии 1997; 337 (1): 1-7.

    [Аннотация PubMed]
  • Хейфец Л., Альбом А., Креспи С.М. и др.Объединенный анализ крайне низкочастотных магнитных полей и опухолей головного мозга у детей. Американский эпидемиологический журнал 2010; 172 (7): 752-761.

    [Аннотация PubMed]
  • Mezei G, Gadallah M, Kheifets L. Воздействие магнитного поля в жилых помещениях и рак мозга у детей: метаанализ. Эпидемиология 2008; 19 (3): 424-430.

    [Аннотация PubMed]
  • Does M, Scélo G, Metayer C и др.Воздействие электрических контактных токов и риск лейкемии у детей. Радиационные исследования 2011; 175 (3): 390-396.

    [Аннотация PubMed]
  • Ahlbom A, Day N, Feychting M и др. Объединенный анализ магнитных полей и детской лейкемии. Британский журнал рака 2000; 83 (5): 692-698.

    [Аннотация PubMed]
  • Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh MA.Объединенный анализ магнитных полей, кодов проводов и детской лейкемии. Группа изучения детской лейкемии-ЭМП. Эпидемиология 2000; 11 (6): 624-634.

    [Аннотация PubMed]
  • Хейфец Л. , Альбом А., Креспи С.М. и др. Объединенный анализ недавних исследований магнитных полей и детской лейкемии. Британский журнал рака 2010; 103 (7): 1128-1135.

    [Аннотация PubMed]
  • Hatch EE, Linet MS, Kleinerman RA, et al.Связь между острым лимфобластным лейкозом у детей и использованием электроприборов во время беременности и детства. Эпидемиология 1998; 9 (3): 234-245.

    [Аннотация PubMed]
  • Финдли Р.П., Димбилов П.Дж. SAR в воксельном фантоме ребенка от воздействия беспроводных компьютерных сетей (Wi-Fi). Физика в медицине и биологии 2010; 55 (15): N405-11.

    [Аннотация PubMed]
  • Пейман А., Халид М., Кальдерон С. и др.Оценка воздействия электромагнитных полей от беспроводных компьютерных сетей (Wi-Fi) в школах; результаты лабораторных измерений. Health Physics 2011; 100 (6): 594-612.

    [Аннотация PubMed]
  • Общественное здравоохранение Англии. Беспроводные сети (wi-fi): радиоволны и здоровье. Руководство. Опубликовано 1 ноября 2013 г. Доступно по адресу https://www.gov.uk/government/publications/wireless-networks-wi-fi-radio-waves-and-health/wi-fi-radio-waves-and-health.(по состоянию на 4 марта 2016 г.)

  • Ха М., Им Х, Ли М. и др. Воздействие радиочастотного излучения от AM-радиопередатчиков и детская лейкемия и рак мозга. Американский журнал эпидемиологии 2007; 166 (3): 270-9.

    [Аннотация PubMed]
  • Merzenich H, Schmiedel S, Bennack S, et al. Детский лейкоз в связи с воздействием радиочастотных электромагнитных полей в непосредственной близости от передатчиков теле- и радиовещания. Американский эпидемиологический журнал 2008; 168 (10): 1169-78.

    [Аннотация PubMed]
  • Эллиотт П. , Толедано М.Б., Беннетт Дж. И др. Базовые станции мобильной связи и онкологические заболевания в раннем детстве: исследование случай-контроль. Британский медицинский журнал 2010; 340: c3077. DOI: 10.1136 / bmj.c3077.

    [Аннотация PubMed]
  • Infante-Rivard C, Deadman JE. Профессиональное воздействие на мать магнитных полей крайне низкой частоты во время беременности и детской лейкемии. Эпидемиология 2003; 14 (4): 437-441.

    [Аннотация PubMed]
  • Hug K, Grize L, Seidler A, Kaatsch P, Schüz J. Профессиональное воздействие чрезвычайно низкочастотных магнитных полей и детский рак: немецкое исследование методом случай-контроль. Американский эпидемиологический журнал 2010; 171 (1): 27-35.

    [Аннотация PubMed]
  • Свендсен А.Л., Вейкопф Т., Каач П., Шуз Дж. Воздействие магнитных полей и выживаемость после диагностики детской лейкемии: когортное исследование в Германии. Эпидемиология, биомаркеры и профилактика рака 2007; 16 (6): 1167-1171.

    [Аннотация PubMed]
  • Foliart DE, Pollock BH, Mezei G, et al. Воздействие магнитного поля и долгосрочное выживание среди детей с лейкемией. Британский журнал рака 2006; 94 (1): 161-164.

    [Аннотация PubMed]
  • Foliart DE, Mezei G, Iriye R, et al. Воздействие магнитного поля и прогностические факторы при лейкемии у детей. Bioelectromagnetics 2007; 28 (1): 69-71.

    [Аннотация PubMed]
  • Schüz J, Grell K, Kinsey S, et al. Чрезвычайно низкочастотные магнитные поля и выживаемость после острого лимфобластного лейкоза у детей: международное последующее исследование. Журнал рака крови 2012; 2: e98.

    [Аннотация PubMed]
  • Schoenfeld ER, O’Leary ES, Henderson K, et al. Электромагнитные поля и рак груди на Лонг-Айленде: исследование случай – контроль. Американский журнал эпидемиологии 2003; 158 (1): 47-58.

    [Аннотация PubMed]
  • London SJ, Pogoda JM, Hwang KL, et al. Воздействие магнитного поля в жилых помещениях и риск рака груди: вложенное исследование случай-контроль, проведенное в многоэтнической когорте в округе Лос-Анджелес, Калифорния. Американский журнал эпидемиологии 2003; 158 (10): 969-980.

    [Аннотация PubMed]
  • Дэвис С., Мирик Д.К., Стивенс Р.Г.Магнитные поля в жилых помещениях и риск рака груди. Американский журнал эпидемиологии 2002; 155 (5): 446-454.

    [Аннотация PubMed]
  • Kabat GC, O’Leary ES, Schoenfeld ER, et al. Использование электрических одеял и рак груди на Лонг-Айленде. Эпидемиология 2003; 14 (5): 514-520.

    [Аннотация PubMed]
  • Клюкиене Дж., Тайнс Т., Андерсен А. Бытовое и профессиональное воздействие магнитных полей с частотой 50 Гц и рак груди у женщин: популяционное исследование. Американский журнал эпидемиологии 2004; 159 (9): 852-861.

    [Аннотация PubMed]
  • Тайнес Т., Хальдорсен Т. Бытовое и профессиональное воздействие магнитных полей 50 Гц и гематологические раковые заболевания в Норвегии. Причины рака и борьба с ними 2003; 14 (8): 715-720.

    [Аннотация PubMed]
  • Лабреш Ф., Голдберг М.С., Валуа М.Ф. и др. Профессиональное воздействие магнитных полей крайне низкой частоты и рак груди в постменопаузе. Американский журнал промышленной медицины 2003; 44 (6): 643-652.

    [Аннотация PubMed]
  • Willett EV, McKinney PA, Fear NT, Cartwright RA, Roman E. Профессиональное воздействие электромагнитных полей и острый лейкоз: анализ исследования случай-контроль. Медицина труда и окружающей среды 2003; 60 (8): 577-583.

    [Аннотация PubMed]
  • Coble JB, Dosemeci M, Stewart PA и др.Профессиональное воздействие магнитных полей и риск опухолей головного мозга. Нейроонкология 2009; 11 (3): 242-249.

    [Аннотация PubMed]
  • Li W, Ray RM, Thomas DB и др. Профессиональное воздействие магнитных полей и рака груди среди текстильных женщин в Шанхае, Китай. Американский эпидемиологический журнал 2013; 178 (7): 1038-1045.

    [Аннотация PubMed]
  • Groves FD, Page WF, Gridley G и др.Рак у техников корейского военно-морского флота: исследование смертности через 40 лет. Американский журнал эпидемиологии 2002; 155 (9): 810-8.

    [Аннотация PubMed]
  • Грейсон Дж. Радиационное воздействие, социально-экономический статус и риск опухолей головного мозга в ВВС США: вложенное исследование случай-контроль. Американский журнал эпидемиологии 1996; 143 (5): 480-486.

    [Аннотация PubMed]
  • Thomas TL, Stolley PD, Stemhagen A, et al.Риск смертности от опухоли головного мозга среди мужчин, работающих в области электрики и электроники: исследование случай-контроль. Журнал Национального института рака 1987; 79 (2): 233-238.

    [Аннотация PubMed]
  • Армстронг Б., Терио Г., Генель П. и др. Связь между воздействием импульсных электромагнитных полей и раком у электриков в Квебеке, Канаде и Франции. Американский журнал эпидемиологии 1994; 140 (9): 805-820.

    [Аннотация PubMed]
  • Морган Р.В., Келш М.А., Чжао К. и др.Радиочастотное облучение и смертность от рака головного мозга и лимфатической / кроветворной систем. Эпидемиология 2000: 11 (12): 118-127.

    [Аннотация PubMed]
  • Гао Х., Аресу М., Верно А.С. и др. Использование радио в личных целях и риск рака среди 48 518 британских полицейских и сотрудников из исследования Airwave Health Monitoring Study. Британский журнал рака 2018; Впервые опубликовано в Интернете: 26 декабря 2018 г.

    [Аннотация PubMed]
  • SCENIHR.2015. Научный комитет по возникающим и недавно выявленным рискам для здоровья: потенциальные последствия воздействия электромагнитных полей (ЭМП) на здоровье: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_041.pdf, по состоянию на 15 августа, 2015.

  • Излучение: электромагнитные поля

    Стандарты

    установлены для защиты нашего здоровья и хорошо известны для многих пищевых добавок, концентраций химических веществ в воде или загрязнителях воздуха.Точно так же существуют полевые стандарты, ограничивающие чрезмерное воздействие уровней электромагнитного поля, присутствующего в нашей окружающей среде.

    Кто определяет руководящие принципы?

    Страны устанавливают свои собственные национальные стандарты воздействия электромагнитных полей. Однако большинство этих национальных стандартов основаны на рекомендациях Международной комиссии по защите от неионизирующего излучения (ICNIRP). Эта неправительственная организация, официально признанная ВОЗ, оценивает научные результаты со всего мира.Основываясь на подробном обзоре литературы, ICNIRP выпускает руководящие принципы, рекомендующие пределы воздействия. Эти правила периодически пересматриваются и при необходимости обновляются.

    Уровни электромагнитного поля изменяются сложным образом в зависимости от частоты. Было бы трудно понять перечисление каждого значения в каждом стандарте и на каждой частоте. Приведенная ниже таблица представляет собой краткое изложение рекомендаций по воздействию на три области, которые стали предметом общественного беспокойства: электричество в доме, базовые станции мобильной связи и микроволновые печи.Эти рекомендации последний раз обновлялись в апреле 1998 года.

    Краткое изложение рекомендаций ICNIRP

    0 Пределы профессионального воздействия

    Европейская частота сети

    Частота базовой станции мобильного телефона

    Частота микроволновой печи

    Частота

    50 Гц

    50 Гц

    900 МГц

    1,8 ГГц

    2.45 ГГц

    Электрическое поле (В / м)

    Магнитное поле (мкТл)

    Плотность мощности (Вт / м2)

    Плотность мощности (Вт / м2)

    Плотность мощности (Вт / м2)

    Пределы воздействия на общественное население

    5000

    100

    4,5

    9

    10 000

    500

    22.5

    45

    ICNIRP, Рекомендации по электромагнитному излучению, Health Physics 74, 494-522 (1998)

    Нормы воздействия могут отличаться более чем в 100 раз между некоторыми бывшими советскими странами и западными странами. страны. В связи с глобализацией торговли и быстрым внедрением телекоммуникаций во всем мире возникла необходимость в универсальных стандартах. Поскольку многие страны бывшего Советского Союза сейчас рассматривают новые стандарты, ВОЗ недавно выступила с инициативой по гармонизации руководящих принципов воздействия во всем мире.Будущие стандарты будут основаны на результатах Международного проекта ВОЗ по электромагнитному полю.

    На чем основаны руководящие принципы?

    Важно отметить, что нормативный предел не является точным разграничением между безопасностью и опасностью. Не существует единого уровня, выше которого воздействие становится опасным для здоровья; вместо этого потенциальный риск для здоровья человека постепенно увеличивается с увеличением уровня воздействия. Руководящие принципы указывают, что согласно научным данным воздействие электромагнитного поля ниже заданного порогового значения является безопасным.Однако из этого автоматически не следует, что воздействие выше указанного предела является вредным.

    Тем не менее, чтобы установить пределы воздействия, научные исследования должны определить пороговый уровень, при котором проявляются первые последствия для здоровья. Поскольку людей нельзя использовать для экспериментов, руководящие принципы критически полагаются на исследования на животных. Незначительные изменения в поведении животных на низких уровнях часто предшествуют более резким изменениям здоровья на более высоких уровнях. Аномальное поведение является очень чувствительным индикатором биологической реакции и было выбрано как наименьшее наблюдаемое неблагоприятное воздействие на здоровье.Руководящие принципы рекомендуют предотвращать уровни воздействия электромагнитного поля, при которых изменения поведения становятся заметными.

    Этот пороговый уровень поведения не равен нормативному пределу. ICNIRP применяет коэффициент безопасности 10 для получения пределов профессионального воздействия и коэффициент 50 для получения нормативного значения для населения. Поэтому, например, в радиочастотном и микроволновом диапазонах частот максимальные уровни, которые вы можете испытывать в окружающей среде или в вашем доме, по крайней мере в 50 раз ниже порогового уровня, при котором становятся очевидными первые изменения в поведении животных.

    Почему коэффициент безопасности для руководств по профессиональному облучению ниже, чем для населения?

    Население, подвергающееся профессиональному облучению, состоит из взрослых, которые обычно находятся в известных условиях электромагнитного поля. Эти рабочие обучены осознавать потенциальный риск и принимать соответствующие меры предосторожности. Напротив, широкая общественность состоит из людей всех возрастов и разного состояния здоровья. Во многих случаях они не знают о своем воздействии ЭМП. Более того, нельзя ожидать, что отдельные представители общественности примут меры для сведения к минимуму или предотвращения воздействия.Это основные соображения для более строгих ограничений воздействия для населения в целом, чем для населения, подвергающегося профессиональному облучению.

    Как мы видели ранее, низкочастотные электромагнитные поля индуцируют токи в человеческом теле (см. Что происходит, когда вы подвергаетесь воздействию электромагнитных полей?). Но различные биохимические реакции внутри самого тела также генерируют токи. Клетки или ткани не смогут обнаружить какие-либо наведенные токи ниже этого фонового уровня.Следовательно, при низких частотах нормы воздействия гарантируют, что уровень токов, индуцируемых электромагнитными полями, ниже, чем у естественных токов тела.

    Основным эффектом радиочастотной энергии является нагрев тканей. Следовательно, нормы воздействия радиочастотных полей и микроволн установлены для предотвращения последствий для здоровья, вызванных локальным нагревом или нагреванием всего тела (см. Что происходит, когда вы подвергаетесь воздействию электромагнитных полей?). Соблюдение указаний гарантирует, что тепловое воздействие достаточно мало, чтобы не причинить вреда.

    Какие руководящие принципы не могут учесть

    В настоящее время предположения о потенциальных долгосрочных последствиях для здоровья не могут служить основой для выпуска руководств или стандартов. Суммируя результаты всех научных исследований, общий вес доказательств не указывает на то, что электромагнитные поля вызывают долгосрочные последствия для здоровья, такие как рак. Национальные и международные органы устанавливают и обновляют стандарты на основе последних научных знаний для защиты от известных последствий для здоровья.

    Руководящие принципы установлены для среднего населения и не могут напрямую отвечать требованиям меньшинства потенциально более чувствительных людей. Например, директивы по загрязнению воздуха не основаны на особых потребностях астматиков. Точно так же правила электромагнитного поля не предназначены для защиты людей от вмешательства в имплантированные медицинские электронные устройства, такие как кардиостимуляторы. Вместо этого следует посоветоваться с производителями и клиницистом, имплантирующим устройство, по поводу ситуаций облучения, которых следует избегать.

    Каковы типичные максимальные уровни воздействия дома и в окружающей среде?

    Некоторая практическая информация поможет вам соотноситься с международными нормативными значениями, указанными выше. В следующей таблице вы найдете наиболее распространенные источники электромагнитных полей. Все значения являются максимальными уровнями публичного воздействия – ваша собственная подверженность, вероятно, будет намного ниже. Для более детального изучения уровней поля вокруг отдельных электроприборов см. Раздел Типичные уровни воздействия в домашних условиях и в окружающей среде.

    )

    Источник

    Типичное максимальное воздействие на людей

    Электрическое поле (В / м)

    Плотность магнитного потока (мкТл)

    70 (магнитное поле Земли)

    Электропитание от сети

    (в домах не вблизи линий электропередач)

    100

    0,2

    Электроснабжение

    (под большими линиями электропередачи

    10 000

    20

    Электропоезда и трамваи

    300

    50

    Экраны телевизоров и компьютеров

    (на месте оператора)

    0.7

    Типичное максимальное облучение населения (Вт / м2)

    Теле- и радиопередатчики

    0,1

    Базовые станции мобильной связи

    0,1 9000

    0,2

    Микроволновые печи

    0,5

    Источник: Европейское региональное бюро ВОЗ

    Как рекомендации претворяются в жизнь и кто их проверяет?

    Ответственность за исследование полей вокруг линий электропередач, базовых станций мобильных телефонов или любых других источников, доступных для широкой публики, лежит на государственных учреждениях и местных органах власти.Они должны обеспечить соблюдение правил.

    В случае электронных устройств производитель несет ответственность за соблюдение стандартных ограничений. Однако, как мы видели выше, природа большинства устройств гарантирует, что излучаемые поля значительно ниже пороговых значений. Кроме того, многие ассоциации потребителей регулярно проводят тесты. В случае возникновения какой-либо особой озабоченности или беспокойства свяжитесь напрямую с производителем или обратитесь в местный орган здравоохранения.

    Вредны ли воздействия, превышающие нормы?

    Совершенно безопасно съесть банку с клубничным вареньем до истечения срока годности, но если вы потребляете варенье позже, производитель не может гарантировать хорошее качество еды. Тем не менее, даже через несколько недель или месяцев после истечения срока годности варенье, как правило, безопасно есть. Точно так же директивы по электромагнитному полю гарантируют, что в пределах заданного предела воздействия не произойдет никаких известных неблагоприятных последствий для здоровья. Большой коэффициент безопасности применяется к уровню, который, как известно, вызывает последствия для здоровья.Следовательно, даже если вы испытаете напряженность поля в несколько раз выше заданного предельного значения, ваше воздействие все равно будет в пределах этого запаса прочности.

    В повседневных ситуациях большинство людей не испытывают электромагнитных полей, превышающих нормативные пределы. Типичные экспозиции намного ниже этих значений. Однако бывают случаи, когда воздействие на человека на короткий период может приближаться к нормативам или даже превышать их. Согласно ICNIRP, радиочастотное и микроволновое воздействие следует усреднять по времени для устранения кумулятивных эффектов.В рекомендациях указан период усреднения по времени в шесть минут, и допустимы краткосрочные воздействия сверх установленных пределов.

    Напротив, воздействие низкочастотных электрических и магнитных полей в руководствах не усредняется по времени. Чтобы еще больше усложнить ситуацию, в игру вступает еще один фактор, называемый связью. Связь относится к взаимодействию между электрическим и магнитным полями и обнаженным телом. Это зависит от размера и формы тела, типа ткани и ориентации тела относительно поля.Рекомендации должны быть консервативными: ICNIRP всегда предполагает максимальную связь поля с экспонируемым человеком. Таким образом, рекомендуемые пределы обеспечивают максимальную защиту. Например, даже несмотря на то, что значения магнитного поля для фенов и электробритв превышают рекомендуемые значения, чрезвычайно слабая связь между полем и головкой предотвращает индукцию электрических токов, которые могут превышать рекомендуемые пределы.

    Ключевые моменты

    • ICNIRP издает руководящие принципы на основе современных научных знаний.Большинство стран используют эти международные руководящие принципы для разработки своих национальных стандартов.
    • Стандарты для низкочастотных электромагнитных полей гарантируют, что наведенные электрические токи ниже нормального уровня фоновых токов внутри тела. Стандарты для радиочастоты и микроволн предотвращают воздействие на здоровье, вызванное локальным нагреванием или нагреванием всего тела.
    • Рекомендации не защищают от возможных помех электромедицинским устройствам.
    • Максимальные уровни воздействия в повседневной жизни обычно намного ниже рекомендуемых пределов.
    • Из-за большого коэффициента безопасности воздействие, превышающее нормативные пределы, не обязательно вредно для здоровья. Кроме того, усреднение по времени для высокочастотных полей и предположение о максимальной связи для низкочастотных полей вносят дополнительный запас прочности.

    Электрические и магнитные поля

    Электрические и магнитные поля (ЭМП) – это невидимые области энергии, часто называемые излучением, которые связаны с использованием электроэнергии и различных форм естественного и искусственного освещения.ЭМП обычно делятся на две категории по частоте:

    • Неионизирующий : низкоуровневое излучение, которое обычно считается безвредным для человека
    • Ионизирующая : излучение высокого уровня, которое может привести к повреждению клеток и ДНК

    ← Вернуться на страницу

    Тип излучения Определение Формы излучения Примеры источников
    Неионизирующий Низко- и среднечастотное излучение, которое обычно считается безвредным из-за недостаточной активности.
    • Чрезвычайно низкая частота (ELF)
    • Радиочастота (RF)
    • Микроволны
    • Визуальный свет
    • Микроволновые печи
    • Компьютеры
    • Умные счетчики электроэнергии для дома
    • Беспроводные сети (Wi-Fi)
    • сотовые телефоны
    • устройства Bluetooth
    • Линии электропередач
    • МРТ
    Ионизирующий Средне- и высокочастотное излучение, которое при определенных обстоятельствах может привести к повреждению клеток или ДНК при длительном воздействии.
    • Ультрафиолет (УФ)
    • Рентген
    • Гамма
    • Солнечный свет
    • Рентгеновские снимки
    • Некоторые гамма-лучи
    Могут ли ЭМП быть вредными для моего здоровья?

    В течение 1990-х годов большинство исследований ЭМП было сосредоточено на чрезвычайно низкочастотном воздействии, исходящем от обычных источников энергии, таких как линии электропередач, электрические подстанции или бытовые приборы. Хотя некоторые из этих исследований показали возможную связь между напряженностью поля ЭМП и повышенным риском лейкемии у детей, их результаты показали, что такая связь была слабой.Несколько исследований, проведенных на взрослых, не показывают никаких доказательств связи между воздействием ЭМП и раком взрослых, таким как лейкемия, рак мозга и рак груди.

    Сейчас, в эпоху сотовых телефонов, беспроводных маршрутизаторов и Интернета вещей, которые все используют ЭМП, сохраняются опасения по поводу возможных связей между ЭМП и неблагоприятными последствиями для здоровья. Эти воздействия активно изучаются. NIEHS рекомендует продолжить обучение практическим способам снижения воздействия ЭМП.

    Излучает ли мой сотовый телефон электромагнитное излучение?

    Сотовые телефоны излучают форму радиочастотного излучения в нижней части спектра неионизирующего излучения. В настоящее время научные данные не позволяют однозначно связать использование сотового телефона с какими-либо неблагоприятными проблемами для здоровья человека, хотя ученые признают, что необходимы дополнительные исследования.

    Национальная токсикологическая программа (NTP) со штаб-квартирой в NIEHS только что завершила крупнейшее на сегодняшний день исследование на животных по радиочастотному воздействию сотовых телефонов.Для краткого обзора результатов посетите наш пресс-релиз и веб-страницу NTP «Радиочастотное излучение сотовых телефонов».

    Что делать, если я живу рядом с линией электропередачи?
    EMF: Электрические и магнитные поля, связанные с использованием электроэнергии Буклет

    Важно помнить, что сила магнитного поля резко уменьшается с увеличением расстояния от источника. Это означает, что сила поля, достигающего дома или строения, будет значительно слабее, чем в исходной точке.

    Например, по данным Всемирной организации здравоохранения в 2010 году, магнитное поле величиной 57,5 ​​миллигаусс непосредственно рядом с линией электропередачи на 230 киловольт составляет всего 7,1 миллигаусс на расстоянии 100 футов и 1,8 миллигаусс на расстоянии 200 футов.

    Для получения дополнительной информации см. Учебный буклет NIEHS «ЭМП: электрические и магнитные поля, связанные с использованием электроэнергии». Этот буклет, подготовленный в 2002 году, содержит самые последние исследования NIEHS в области здравоохранения и электрических и магнитных полей в линиях электропередач.

    Как я могу узнать, не подвержен ли я воздействию электромагнитных полей?

    Если вас беспокоят ЭМП, излучаемые линией электропередачи или подстанцией в вашем районе, вы можете связаться с местной энергетической компанией, чтобы запланировать чтение на месте. Вы также можете измерить ЭМП самостоятельно с помощью гауссметра, который можно приобрести в Интернете через ряд розничных продавцов.

    ЭМП на рабочем месте (96-129) | NIOSH

    1996
    DHHS (NIOSH) Номер публикации 96-129

    Каждый человек в нашем современном обществе подвержен воздействию электрических и магнитных полей (ЭМП), окружающих все электрические устройства.В последнее время научные исследования подняли вопросы о возможных последствиях электромагнитных полей для здоровья. Этот информационный бюллетень отвечает на часто задаваемые вопросы о ЭМП на рабочем месте. Вы можете использовать эту информацию, чтобы определить источники ЭМП на работе и предпринять простые шаги по снижению воздействия. Однако вы не можете использовать эту информацию для оценки безопасности вашего облучения, поскольку научные данные еще не показывают, является ли воздействие ЭМП опасным.

    Что такое ЭМП?


    (Статическое магнитное поле вокруг стержневого магнита.)

    ЭМП – это невидимые силовые линии, возникающие всякий раз, когда генерируется или используется электричество. ЭМП вырабатываются линиями электропередач, электропроводкой, электрооборудованием и приборами. Частота ЭДС измеряется в герцах (Гц или циклах в секунду). Люди подвергаются воздействию как электрических, так и магнитных полей, но ученых больше всего беспокоят магнитные поля. В этом информационном бюллетене рассматриваются только магнитные поля, частота которых близка к частоте 60 Гц от частоты электроэнергии в Северной Америке.

    Что мы знаем о воздействии электромагнитных полей на рабочем месте?

    Рабочие могут подвергаться воздействию сильных магнитных полей, если они работают рядом с электрическими системами, которые потребляют большое количество электроэнергии (например, с большими электродвигателями, генераторами или источниками питания или электрическими кабелями здания). Сильные магнитные поля также обнаруживаются возле мотопил, дрелей, копировальных машин, точилок для карандашей и других небольших электроприборов. Сила магнитного поля зависит от конструкции оборудования и протекания тока, а не от размера, сложности или напряжения оборудования.Хотя некоторое электрическое оборудование производит ЭМП других частот, в большинстве медицинских исследований рассматривались только частоты около 60 Гц.


    Эти электрические нагреватели для металлических деталей подвергают рабочих воздействию магнитных полей, которые в 10 000 раз превышают средние магнитные поля, обнаруживаемые за пределами рабочего места.

    Каковы некоторые типичные воздействия ЭМП на работе?

    Воздействие ЭМП для многих работ не измерялось, но в следующей таблице показаны средние воздействия магнитных полей на обычных рабочих, использующих электрическое оборудование.Воздействие во время рабочей смены зависит от силы магнитного поля, расстояния рабочего от источника ЭМП и времени, проведенного работником в поле. Для сравнения в таблице также указаны воздействия на рабочих вне работы.

    Средняя экспозиция магнитного поля для различных категорий рабочих (в миллигауссах) *

    * Магнитные поля часто измеряются в гауссах или миллигауссах (одна тысячная гаусса = 1 миллигаусс).
    ** Медиана является средним показателем: половина работников имеет среднесуточное воздействие выше этой точки, а половина – ниже.

    Вызывают ли ЭМП рак или другие последствия для здоровья?

    Исследования показали, что у некоторых рабочих, подвергающихся воздействию сильных магнитных полей, повышается уровень заболеваемости раком. Но такие ассоциации не обязательно показывают, что воздействие ЭМП вызывает рак (точно так же, как весенняя ассоциация малиновок и нарциссов показывает, что одно вызывает другое). Ученые внимательно изучили все свидетельства ЭМП, но они расходятся во мнениях относительно воздействия ЭМП на здоровье, за исключением того, что говорят о том, что необходима более подробная информация.

    Что показывают исследования о воздействии ЭМП на здоровье рабочих?

    Многие исследования сообщают о небольшом увеличении заболеваемости лейкемией или раком мозга в группах людей, живущих или работающих в сильных магнитных полях. Другие исследования не обнаружили такого увеличения. Наиболее важные данные получены из шести недавних исследований рабочих, использующих ЭМП мониторы для измерения магнитных полей. Все исследования, кроме одного, обнаружили значительно более высокие показатели заболеваемости раком у мужчин со средним уровнем воздействия в течение рабочего дня выше 4 миллигаусс.Однако результаты этих исследований расходятся во мнениях по важным аспектам, таким как тип рака, связанный с воздействием ЭМП. Поэтому ученые не могут быть уверены, вызваны ли повышенные риски ЭМП или другими факторами. Несколько предварительных исследований также связали ЭМП на рабочем месте с раком груди, а одно исследование показало возможную связь между воздействием ЭМП на рабочем месте и болезнью Альцгеймера.

    Данные всех этих исследований слишком ограничены, чтобы ученые могли делать выводы.Однако в настоящее время проводятся национальные исследования, и через несколько лет ожидается получение дополнительных результатов.


    В целом по исследованиям сварщиков не было зарегистрировано случаев увеличения лейкемии, однако они относятся к профессиям с наиболее высоким уровнем воздействия ЭМП.

    Установлены ли ограничения на воздействие ЭМП на рабочих?

    Из-за научной неопределенности в США не рекомендовалось и не устанавливалось никаких федеральных ограничений на воздействие ЭМП на рабочих. Две частные организации разработали руководящие принципы для защиты работников от известных последствий чрезвычайно высоких воздействий (то есть таких, которые более чем в 1000 раз превышают воздействия, обычно встречающиеся в профессиональной среде).Однако в этих рекомендациях не рассматриваются возможные последствия для здоровья низких воздействий ЭМП, которые обычно встречаются на работе.

    Должны ли работники и работодатели снижать воздействие электромагнитных полей?

    Национальный институт охраны труда и здоровья (NIOSH) и другие правительственные учреждения не считают ЭМП доказанной опасностью для здоровья. Поскольку некоторые исследования связывают воздействие сильного магнитного поля с повышенным риском рака, правительство продолжит изучение ЭМП. Пока исследования продолжаются, заинтересованные работники и работодатели могут рассмотреть следующие простые и недорогие меры по снижению воздействия ЭМП:

    • Информируйте работников и работодателей о возможных опасностях, связанных с магнитными полями.
    • Увеличьте расстояние рабочего от источника ЭМП. Поскольку магнитные поля часто резко падают в пределах 3 футов от источника, рабочие могут стоять в стороне от электрического оборудования, а рабочие места могут быть перемещены за пределы 3-футового диапазона более сильных источников ЭМП.
    • По возможности используйте конструкции с низким ЭДС (например, для размещения офисных источников питания).
    • Уменьшите время воздействия ЭМП. Не следует предпринимать никаких действий для уменьшения воздействия ЭМП, если оно увеличивает риск известной опасности для безопасности или здоровья, такой как поражение электрическим током.


    Воздействие ЭМП зависит от расстояния рабочего от источника.

    Что NIOSH делает в отношении воздействия ЭМП?

    NIOSH оценивает возможное воздействие электромагнитных полей на здоровье с 1991 года. Ученые NIOSH измерили поля на рабочих местах, где сотрудники обеспокоены воздействием электромагнитных полей; они также изучают биологические эффекты ЭМП. Кроме того, ученые NIOSH сотрудничают с исследователями в университетах и ​​других федеральных агентствах, чтобы поделиться результатами своих исследований.Эти совместные усилия недавно активизировались в рамках Национальной программы исследований ЭМП и распространения общественной информации (RAPID).

    Как узнать больше об ЭМП на рабочем месте.

    • Чтобы предоставить более подробную информацию, NIOSH совместно с Министерством энергетики и Национальный институт наук об окружающей среде.Эту брошюру также можно получить в издании NIOSH Publications Dissemination.
    • Для получения дополнительной информации посетите страницу темы EMF.

    ЭДС (электрическое и магнитное поля) | NIOSH

    Исследование NIOSH по защите работников от доказанных и возможных рисков для здоровья, связанных с электромагнитным излучением, сосредоточено на:

    • RF (радиочастоты) – включая радиовещательные антенны, индукционные нагреватели и сотовые телефоны
    • ELF (чрезвычайно низкие частоты) – включая электрические терминалы переменного тока и видеодисплейные терминалы (VDT)
    • Статические магнитные поля, включая электричество постоянного тока.

    Публикации CDC / NIOSH по EMF

    Руководство по измерению воздействия электрического и магнитного поля на рабочем месте
    Публикация NIOSH № 98-154 (1998)
    Этот технический документ представляет собой справочное руководство для промышленных гигиенистов и исследователей, которые измеряют воздействие статического электричества и ЭМП КНЧ на рабочем месте.

    Публикация NIOSH о видеодисплейных терминалах
    Публикация NIOSH № 99-135 (3-е изд., 1999 г.)
    Эта публикация представляет собой сборник исследований и заявлений NIOSH по всем видам воздействия на здоровье при работе с VDT, включая исследования, которые не нашли ссылки между их выбросами ЭМП и репродуктивными эффектами.

    РФ Поля

    OSHA: Внешний значок радиочастотного / микроволнового излучения
    Информация о распознавании, оценке и контроле радиочастотного / микроволнового излучения.

    Федеральная комиссия по связи (FCC): Радиочастотная безопасность, внешний значок
    Информация и стандарты здравоохранения для потребителей и вещателей по беспроводной связи, включая сотовые телефоны и любительские радиоприемники.

    Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA): испускающие излучение продукты для дома, бизнеса и развлечений внешний значок
    Информация для потребителей и производителей о микроволновых печах, видеотерминалах, сотовых телефонах и т. Д.

    Международное агентство по изучению рака (IARC): Неионизирующее излучение, Часть 2: Радиочастотное электромагнитное полевнешний значок.
    Монографии МАИР, том 102 (2013). Эта уважаемая международная программа оценивала канцерогенность радиочастотных полей, особенно сотовых телефонов, в рамках своей программы по оценке всех потенциальных канцерогенов.

    FDA / FCC: Consumer Update on Mobile Phoneвнешний значок
    Сайт FDA с ответами на часто задаваемые вопросы о потенциальных рисках для здоровья от использования мобильных телефонов и исследованиях по этому вопросу.

    NIEHS: сотовый телефонвнешний значок
    Исследование NIEHS о возможных рисках для здоровья от сотовых телефонов, особенно текущее исследование рака животных, проводимое Национальной токсикологической программой (NTP).

    Национальный совет по радиационной защите Великобритании: сводка последних отчетов о мобильных телефонах и здоровье (2000-2004 гг.) External icon
    NRPB-W65 (2005)
    В этом британском отчете рассматриваются исследования рака мозга и неврологических эффектов от использования клеток. здоровья телефонов и подчеркивает любые общие черты или различия во мнениях.

    Национальный совет по радиационной защите в Великобритании: Влияние радиочастотных электромагнитных полей на здоровье: отчет независимой консультативной группы по неионизирующему излучению Внешний значок
    Документы NRPB, том 14, № 2 (2003 г.)
    В этом отчете исследуются возможные последствия воздействия на здоровье Радиочастотные области, с акцентом на исследования, проведенные со времени выхода отчета «Мобильные телефоны и медицинское обслуживание», подготовленного Председателем Независимой экспертной группы по мобильным телефонам сэром Уильямом Стюартом (2000 г.).Отчет Стюарта был одним из первых правительственных обзоров возможного воздействия сотовых телефонов на здоровье. Он рекомендовал меры предосторожности для защиты здоровья населения.

    ELF и статическая ЭДС

    Оценка рисков и управление рисками С 1999 г. были опубликованы пять основных оценок доказательств рисков для здоровья от воздействия КНЧ-ЭМП на рабочем месте и в жилых помещениях. Четыре из них сопровождались заявлениями об управлении воздействием ЭМП и направлениями будущих исследований.

    • «Электромагнитные поля снч и риск рака» Консультативной группы по неионизирующему излучению Национального совета по радиологической защите Внешний значок
      (теперь называется Отделом радиационной защиты Агентства по охране здоровья)
      NRPB Documents Volume 12, No. 1 (2001)
      В этой британской оценке рисков рассматриваются данные о рисках рака в результате воздействия КНЧ-ЭМП в жилых и профессиональных помещениях и даются рекомендации по политике и дальнейшим исследованиям. Правление NRPB выпустило значок Responseexternal с указанием его значения для будущих исследований и пределов воздействия ЭМП.
    • Неионизирующее излучение, Часть I: Статические и крайне низкочастотные электрические и магнитные поляpdf iconeexternal icon
      Монография Международного агентства по изучению рака Монографии IARC, том 80 (2002)
      Эта оценка риска является частью авторитетной международной программа для оценки всех канцерогенов. Полная монография доступна в виде файла PDF.
    • Оценка возможных рисков, связанных с электрическими и магнитными полями (ЭМП) от линий электропередач, внутренней проводки, электрооборудования и внешних устройств значок (Отчет Калифорнийской программы ЭМП (2002)
      В этом отчете Министерства здравоохранения Калифорнии оцениваются доказательства для риски всех заболеваний от воздействия КНЧ-ЭМП в жилых и профессиональных помещениях, с уделением особого внимания более поздним исследованиям.Он использует новый метод оценки риска, основанный на байесовской философии науки. Общественные комментарии и критика этого отчета публикуются на том же веб-сайте. Калифорнийская программа ЭМП также опубликовала варианты политики перед лицом возможного риска, вызванного электрическими и магнитными полями (ЭМП), значок в формате pdf [PDF – 76 КБ] внешний значок, в котором анализируются возможные действия правительства в соответствии с различными принципами регулирования, включая анализ затрат и выгод для модификаций ЛЭП.
    • Чрезвычайно низкочастотные поля – критерии гигиены окружающей среды 238 Монография Всемирной организации здравоохранения (2007 г.) external icon
      В этой всеобъемлющей монографии рассматриваются все аспекты рисков для здоровья, исследований и управления опасностями КНЧ-ЭМП.Он также дает рекомендации по политике в области гигиены труда, включая меры предосторожности, направленные на устранение возможных онкологических рисков.

    OSHA: Экстремально низкочастотное излучение (ELF) Внешний значок
    Информация о распознавании, оценке и контроле ELF-излучения.

    OSHA: компьютерная рабочая станциявнешний значок
    На этой странице вкратце рассматриваются потенциальные опасности и меры вмешательства, которые работодатели могут использовать для предотвращения или уменьшения потенциальных вредных последствий работы с компьютерами.

    Информационный бюллетень NIOSH: ЭМП на рабочем месте
    Публикация NIOSH № 96-129 (1996)
    En Español
    Этот информационный бюллетень отвечает на часто задаваемые вопросы о чрезвычайно низкочастотных ЭМП на рабочем месте. Эта публикация может помочь определить источники ЭМП на работе и предлагает простые шаги по снижению воздействия.

    Вопросы и ответы по ЭМП: электрические и магнитные поля, связанные с использованием электроэнергииpdf iconeexternal icon
    Публикация Национального института гигиены окружающей среды (2002 г.) дома, рабочие места и транспорт.В нем также описывается, что исследователи узнали о воздействии электромагнитных полей на здоровье, и определяются некоторые методы управления воздействием.

    Документы NIOSH по исследованию ELF-EMF

    Руководство по измерению воздействия электрического и магнитного поля на рабочем месте
    Публикация NIOSH № 98-154 (1998)
    Этот технический документ представляет собой справочное руководство для промышленных гигиенистов и исследователей, которые измеряют воздействие статического электричества и ЭМП КНЧ на рабочем месте.

    Публикация NIOSH о видеодисплейных терминалах
    Публикация NIOSH №99-135 (3-е изд., 1999)
    Эта публикация представляет собой сборник исследований и заявлений NIOSH по всем видам воздействия на здоровье при работе с ВДТ, включая исследования, которые не обнаружили связи между их эмиссией ЭМП и репродуктивными эффектами.

    Базы данных EMF

    Матрица воздействия на работу (JEM) для магнитных полей промышленной частоты
    Этот сайт содержит таблицы Excel®, разработанные NIOSH для оценки воздействия магнитных полей СНЧ по профессиональным категориям. Используя Стандартные профессиональные классификации (SOC) 1980 г. или U.S. Категории переписи, этот JEM может быть связан с базами данных о смертности и заболеваемости для эпидемиологических исследований (Bowman et al., 2006).

    Программа EMF RAPID: База данных по измерениям ЭМПexternal icon
    Этот сайт содержит шесть баз данных измерений ЭМП, выполненных в домах и на рабочих местах. Данные тщательно аннотированы и могут быть загружены в различных формах.

    Программа уведомления рабочих

    Через Программу уведомления работников NIOSH, NIOSH уведомляет работников и другие заинтересованные стороны о результатах прошлых исследований, касающихся широкого спектра воздействий.По ссылкам ниже представлены архивные материалы, отправленные участникам исследований, связанных с ЭМП, с видеотерминалов.

    Ссылки на другие сайты EMF

    OSHA: Экстремально низкочастотное излучение (СНЧ) внешний значок
    Информация о распознавании, оценке и контроле излучения СНЧ.

    OSHA: Внешний значок радиочастотного / микроволнового излучения
    Информация о распознавании, оценке и контроле радиочастотного / микроволнового излучения.

    OSHA: компьютерная рабочая станциявнешний значок
    На этой странице вкратце рассматриваются потенциальные опасности и меры вмешательства, которые работодатели могут использовать для предотвращения или уменьшения потенциальных вредных последствий работы с компьютерами.

    Федеральная комиссия по связи (FCC): Радиочастотная безопасность, внешний значок
    Информация и стандарты здравоохранения для потребителей и вещателей по беспроводной связи, включая сотовые телефоны и любительские радиоприемники.

    Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA): продукты, излучающие радиацию для дома, бизнеса и развлечений внешний значок
    Информация для потребителей и производителей о микроволновых печах, видеотерминалах и т. Д.

    FDA / FCC: Consumer Update on Mobile Phoneвнешний значок
    Сайт FDA с информацией о потенциальных рисках для здоровья от использования мобильных телефонов и исследованиями по этому вопросу.

    FDA: Внешний значок МРТ (магнитно-резонансная томография)
    Информация для потребителей и профессионалов о преимуществах, рисках и мерах безопасности при использовании МРТ.

    Национальный институт наук о здоровье окружающей среды. Внешний значок:
    Электрические и магнитные поля. Информация о возможных рисках для здоровья от ЭМП КНЧ и ссылки на публикации NIEHS.

    NIEHS: сотовый телефонвнешний значок
    Исследование NIEHS о возможных рисках для здоровья от сотовых телефонов, особенно текущее исследование рака животных, проводимое Национальной токсикологической программой (NTP).

    Агентство по охране здоровья в Великобритании: электромагнитное поле внешний значок
    Информация, исследовательские публикации и стандарты здравоохранения Соединенного Королевства по многим источникам электромагнитных полей РЧ и СНЧ: беспроводные телефоны, сотовые телефоны, беспроводные локальные сети (WLAN), сети Wi-Fi, электрические подстанции, линии электропередач и любительские радиоприемники.

    Всемирная организация здравоохранения (ВОЗ): International EMF Projectexternal icon
    Предоставляет сборник информационных бюллетеней и других ресурсов, касающихся воздействия на здоровье электромагнитных полей RF и ELF.

    Портал | Источники ЭМП

    EMF-Portal | Источники ЭМП ×

    Прочтите о наиболее важных свойствах технологических источников электромагнитных полей, встречающихся в повседневной жизни, и используйте эту информацию для сравнения различных источников поля.

    • Частотные диапазоны: 10 Гц – 20 кГц, 58–134 кГц, 4.9 МГц, …

    • Частотные диапазоны: 0 Гц, 30 Гц – 20 кГц, 2,4–2,5 ГГц

    • Частотные диапазоны: 50–60 Гц

    • Частотные диапазоны: 50–60 Гц

    • Частотные диапазоны: 2 Гц – 3 кГц

    • Частотные диапазоны: 50–60 Гц

    • Частотные диапазоны: 0 Гц, 50–60 Гц

    • Частотные диапазоны: 50–60 Гц

    • Частотные диапазоны: 2 Гц – 3 кГц

    • Частотные диапазоны: 50–60 Гц

    • Частотные диапазоны: 50–60 Гц

    • Частотные диапазоны: 50–60 Гц

    • Частотные диапазоны: 1 Гц – 2 кГц, 50–60 Гц

    • Частотные диапазоны: 2 Гц – 3 кГц

    • Частотные диапазоны: 10 Гц – 20 кГц

    • Частотные диапазоны: 10 Гц – 20 кГц, 58–134 кГц, 4.9 МГц, …

    • Частотные диапазоны: 50–60 Гц, 45–60 кГц

    • Частотные диапазоны: 50–60 Гц, 45–60 кГц

    • Частотные диапазоны: 0 Гц, 30 Гц – 20 кГц

    • Частотные диапазоны: 50–60 Гц

    • Частотные диапазоны: 880–915 МГц, 925–960 МГц

    • Частотные диапазоны: 880–915 МГц, 925–960 МГц

    • Частотные диапазоны: 50–60 Гц

    • Частотные диапазоны: 50–60 Гц

    Этот веб-сайт использует файлы cookie, чтобы обеспечить вам лучший опыт просмотра.Продолжая использовать этот веб-сайт, вы соглашаетесь с использованием файлов cookie.

    Безопасность и ЭМП – Great River Energy

    Безопасность линий электропередач

    Great River Energy строит и обслуживает линии электропередачи, чтобы соответствовать или превосходить требования безопасности, изложенные в Национальном кодексе электробезопасности и стандартах Североамериканской корпорации по надежности электроснабжения.

    Чтобы узнать, как безопасно жить, работать и играть вблизи линий электропередач, посетите секцию безопасности вокруг линий электропередач:

    Безопасны ли линии электропередач в суровую погоду?

    Мы прилагаем все усилия для обеспечения безопасности при строительстве, эксплуатации и обслуживании наших линий электропередачи.Линии электропередачи рассчитаны на экстремальные погодные условия.

    Как вы следите за безопасностью линии?

    Great River Energy соблюдает строгие стандарты обслуживания линий электропередачи. Мы проверяем линии шесть раз в год по воздуху и один раз по земле:

    • Высокорослые деревья в зоне сервитута
    • Оборудование, требующее ремонта или замены
    • Посягательства на легкость, опасные для безопасности и надежности
    • Все, что может поставить под угрозу безопасную и надежную работу линии

    Нам может потребоваться посетить зону сервитута для этих проверок, но посещения будут минимальными, и перед проверками или техническим обслуживанием свяжутся с землевладельцами.Однако в экстренных случаях мы не сможем сначала связаться с вами.

    Электрические и магнитные поля (ЭМП)

    Для Great River Energy важно получать информацию об исследованиях ЭМП из объективных сторонних источников. Мы понимаем, что люди, которые живут или работают вблизи линий электропередач, могут иметь вопросы о ЭМП, и у нас есть сотрудники, которые ежедневно работают возле линий электропередач и подстанций.

    Что такое ЭДС?

    Электрические и магнитные поля (ЭМП) создаются всем, что проводит электричество, включая линии электропередачи, бытовые приборы и бизнес-оборудование.Эти поля наиболее сильны и находятся ближе всего к их источнику; чем дальше вы находитесь от источника, тем меньше ЭДС. По данным Всемирной организации здравоохранения, научные данные не подтверждают существование каких-либо последствий для здоровья от воздействия электромагнитных полей низкого уровня, таких как от линий электропередачи.

    Дополнительная информация:

    Информация об EMF Комиссии по коммунальным услугам штата Висконсин

    Национальный институт наук об окружающей среде и здоровье EMF info

    Информация по ЭМП Всемирной организации здравоохранения

    Информация о низкочастотном излучении Американского онкологического общества

    .

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *