Эдс тока: ЭДС. Закон Ома для полной цепи.

Содержание

Урок 31. закон ома для полной цепи – Физика – 10 класс

Физика, 10 класс

Урок 31. Закон Ома для полной цепи

Перечень вопросов, рассматриваемых на уроке:

1) закон Ома для полной цепи;

2) связь ЭДС с внутренним сопротивлением;

3) короткое замыкание;

4) различие между ЭДС, напряжением и разностью потенциалов.

Глоссарий по теме

Электрическая цепь – набор устройств, которые соединены проводниками, предназначенный для протекания тока.

Электродвижущая сила – это отношение работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда.

Закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению:

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Сотский Н.Н. Физика. 10 класс. Учебник для общеобразовательных организаций М. : Просвещение, 2017. С. 348 – 354.

2.Рымкевич А. П. Сборник задач по физике. 10-11 класс. – М.: Дрофа, 2009. С. 106-108.

Теоретический материал для самостоятельного изучения

Любые силы, которые действуют на электрически заряженные частицы, кроме сил электростатического происхождения (т.е. кулоновских), называют сторонними силами. Сторонние силы приводят в движение заряженные частицы внутри всех источников тока.

Действие сторонних сил характеризуется важной физической величиной электродвижущей силой (ЭДС). Электродвижущая сила в замкнутом контуре – отношение работы сторонних сил при перемещении заряда вдоль контура к заряду.

В источнике тока из-за действием сторонних сил происходит разделение зарядов. Так как они движутся, они взаимодействуют с ионами кристаллов и электролитов и отдают им часть своей энергии. Это приводит к уменьшению силы тока, таким образом, источник тока обладает сопротивлением, которое называют внутренним r.

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи:

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению

Короткое замыкание

При коротком замыкании, когда внешнее сопротивление стремится к нулю , сила тока в цепи определяется именно внутренним сопротивлением и может оказаться очень большой . И тогда провода могут расплавиться, что может привести к опасным последствиям.

Примеры и разбор решения заданий:

1. К каждой позиции первого столбца подберите соответствующую позицию второго:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ

Электродвижущая сила

Сила тока

Сопротивление

Разность потенциалов

Решение.

Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов.

ЭДС определяется по формуле:

Сила тока определяется по формуле:

Сопротивление определяется по формуле:

Разность потенциалов определяется по формуле:

Правильный ответ:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ

Электродвижущая сила

Сила тока

Сопротивление

Разность потенциалов

2. ЭДС батарейки карманного фонарика – 3,7 В, внутреннее сопротивление 1,5 Ом. Батарейка замкнута на сопротивление 11,7 Ом. Каково напряжение на зажимах батарейки?

Решение:

Напряжение рассчитывается по формуле:

Чтобы найти силу тока применим закон Ома для полной цепи:

Делаем расчёт:

Ответ: U = 3,28 В.

Лекция 6. Направление эдс, тока, напряжения. Второй закон Кирхгофа.Электрические цепи переменного тока. Характеристики переменного тока

Для однозначного описания процессов в электрической цепи необходимо знать не только значение величин, но и направление этих величин.

За направление тока принято движение положительных зарядов от большего потенциала к меньшему (φАВ).

Направление напряжения в элементе электрической цепи совпадает с направлением тока в данном элементе (рис. 6.1).

Рис. 6.1. Направление тока и напряжения

Рис.6.2. Направление ЭДС внутри источника

Направление ЭДС внутри источника – в сторону большего потенциала (рис. 6. 2).

ЭДС самоиндукции направлена внутри катушки в сторону большего потенциала (рис. 6.3).

Рис. 6.3 – Направление ЭДС внутри катушки

При указанном направлении ЭДС самоиндукции правило Ленца уже учтено.

. (6.1)

Единица измерения ЭДС: [e] = 1 В.

Второй закон Кирхгофа

Алгебраическая сумма падений напряжений в любом замкнутом контуре численно равна алгебраической сумме ЭДС, действующих в этом контуре:

, (6.2)

где – падение напряжения на i-том элементе электрической цепи;n, m – соответственно число элементов и источников замкнутого участка электрической цепи;– ЭДСk-того источника.

Алгебраическая сумма означает, что токи, напряжения, ЭДС (I,U,e) могут браться со знаком «+» или со знаком «–».

Направления обхода контура и токов в ветвях цепи выбирается произвольно.ЭДС и паде­ния напряжения, совпадающие по направлению с направлением обхода, берутся со знаком «+», иначе – со знаком «–».

Рассмотрим замкнутый участок электрической цепи, который представляет часть более сложной электрической схемы (рис. 6.3).

Рис. 6.3. Замкнутый участок электрической цепи

Согласно выражению (6.2) для рис. (6.3) уравнение имеет вид:

. (6.4)

Электрические цепи переменного тока. Характеристики переменного тока

Электрическая энергия в большинстве случаев производится, распределяется, потребляется в виде электроэнергии переменного тока. В первую очередь это обусловлено тем, что переменный ток легко передавать с одного места в другое.

В цепях переменного тока значение тока, напряжения, ЭДС периодически меняются по гармоническому закону, а сами изменения величин называются гармоническими колебаниями

;, (6.5)

где х– переменная функция, роль которой могут игратьi,u,e, и т.д.;

А – амплитуда колебаний, т.е. максимальное значение колеблющейся величины;

– полная фаза колебаний;

– циклическая частота собственных гармонических колебаний.

Значение А удовлетворяет следующим условиям:

1);

2) так как , то.

Амплитуда определяется первоначальным толчком энергии, который выводит колеблющуюся (энергию) систему из положения равновесия.

Пусть , тогда при, т.е.– фаза колебания в начальный момент времени. Она называется начальной фазой колебания и определяется выбором начала отсчета времени.

Периодом Т называется промежуток времени, за который фаза колебаний изменяется на 2π, размерность периода .

Рассмотрим два момента времени t1мt2:

; (6.7)

; (6.8)

. (6.9)

Согласно определению периода

или , (6.10)

Единица циклической частоты: .

Частота ν– число полных колебаний за 1 секунду.

. (6.11)

Единица частоты:.

1 Гц – это частота таких колебаний, при которых за 1 секунду совершается одно полное колебание.

, (6.12)

Таким образом, – физическая величина, численно равная числу полных колебаний за время.

Рис. 6.4. График гармонических колебаний

Целесообразность использования гармонических законов по сравнению с негармоническими обусловлена следующими факторами:

  • большими значениями КПД генераторов, двигателей, трансформаторов;

1.3. Источники ЭДС и тока

К активным элементам электрических цепей относятся источники ЭДС и источники тока.

Электродвижущая сила (ЭДС) – это количество энергии, затраченное сторонними силами на перенос единичного положительного заряда от меньшего потенциала к большему

За положительное направление э.д.с. принимается направление возрастания потенциала (рис. 1.6).

 

Таким образом, положительные направления  ЭДС и напряжения всегда противоположны.

Численно ЭДС равна разности потенциалов между выводами источника при разомкнутой цепи.

Если внутри источника  ЭДС не содержится пассивных элементов, то его внутреннее сопротивление r0 равно нулю.

Такой источник  является идеальным.

На практике обычно приходится иметь дело с реальными источниками  ЭДС, обладающими некоторым внутренним сопротивлением (рис. 1.7).

В таких источниках напряжение на зажимах зависит от тока в нагрузке.

Напряжение на зажимах реального источника в работающей цепи определяется соотношением

Это выражение называют внешней характеристикой источника  ЭДС.

Анализируя внешнюю характеристику источника, можно сделать вывод, что напряжение на зажимах источника в режиме нагрузки всегда меньше  ЭДС на величину падения напряжения на внутреннем сопротивлении источника. Зависимость напряжения от тока нагрузки показана на рис. 1.8 пунктирной линией. В свою очередь величина тока нагрузки зависит от сопротивления внешней цепи, поэтому можно считать, что напряжение на зажимах реального источника зависит от сопротивления внешней цепи.

В случае идеального источника внутренне сопротивление равно нулю. Напряжение на зажимах такого источника не зависит от тока нагрузки и равно  ЭДС источника U = E.  Зависимость напряжения от тока в идеальном источнике показана на рис. 1.8 сплошной линией.

 Источники тока

Идеализированный источник тока – это активный элемент, ток которого не зависит от напряжения на его зажимах.

Считается, что внутреннее сопротивление идеального источника бесконечно велико, поэтому параметры внешней цепи не будут оказывать влияния на ток в источнике тока. На электрических схемах источник тока обозначается так, как показано на рис. 1.9.


 Реальный источник тока обладает конечным внутренним сопротивлением или отличной от нуля проводимостью. Схема реального источника представлена на рис. 1.10. Ток реального источника определяется разностью тока идеального источника 

J и внутреннего тока I0:

где U – напряжение, приложенное к зажимам источника. Полученное выражение называют внешней характеристикой источника тока.

Зависимость тока источника от напряжения на его зажимах показано на рис. 1.11. В случае идеального источника внутренняя проводимость равна нулю и, исходя из уравнения внешней характеристики, можно заключить, что ток, идущий от источника равен току короткого замыкания источника. Эта зависимость показана на рис. 1.11 сплошной линией.

В случае реального источника   g≠ 0 и часть тока будет ответвляться через внутреннюю проводимость. Чем больше напряжение, приложенное к источнику, тем больший ток ответвляется и тем меньший ток поступает в нагрузку. Вольт-амперная характеристика реального источника показана на рис. 1.11 пунктирной линией. Источник тока – это теоретическое понятие, но оно часто применяется для расчета электрических цепей. Примером источника тока может служить пентод.

Эквивалентное   преобразование   источников   конечной    мощности

Преобразование какого-либо участка цепи по отношению к внешним зажимам называют эквивалентным, если напряжение и ток i на внешних зажимах при этом не изменяются.

 Рассмотрим условие эквивалентности реальных источников напряжения и тока, представленных на рис. 1.12, а,б.  Воспользуемся уравнением внешней характеристики источника  ЭДС

Поделим почленно это уравнение на r0


Здесь I – ток, протекающий через нагрузку;

Jкз = E/r0 – ток короткого замыкания источника  ЭДС; 

I0 = U/r0  – ток, протекающий через внутреннее сопротивление.

Отсюда  можно заключить, что  I0 = Jкз – I   или I = Jкз – I0, то есть получили внешнюю характеристику источника тока.

Следовательно, схему источника  ЭДС можно заменить схемой источника тока при условии, что ток короткого замыкания источника и внутренняя проводимость определятся выражениями:

В свою очередь, схему источника тока можно заменить схемой источника  ЭДС при условии, что внутреннее сопротивление и э.д.с. источника определятся выражениями:

Мощность источника ЭДС определяется произведением электродвижущей силы источника и тока в нагрузке

Мощность источника тока определяется произведением тока короткого замыкания и напряжения на зажимах источника:

Важнейший вклад в объяснение работы электрических цепей внёс Ом. Результаты ряда экспериментов привели его к построению теории электропроводности. Он ввёл величину «напряжение» и определил её как разность потенциалов на контактах. Подобно Фурье, который в своей теории различал количество тепла и температуру в теплопередаче, Ом создал модель по аналогии, связывающую количество перемещаемого заряда, напряжение и электропроводность. Закон Ома не противоречил накопленным знаниям об электростатическом электричестве.

Затем, благодаря Максвеллу и Фарадею, пояснительные модели тока получили новую теорию поля. Это позволило разработать связанную с полем концепцию энергии как для статических потенциалов, так и для электродвижущей силы. Основные даты эволюции понятия ЭДС:

  • 1800 г. — создание Вольтой гальванической батареи;
  • 1826 г. — Ом формулирует свой закон для полной цепи;
  • 1831 г. — обнаружение электромагнитной индукции Фарадеем.

Определение и физический смысл

Приложение некоторой разности потенциалов между двумя концами проводника создаст перетекание электронов от одного конца к другому. Но этого недостаточно для поддержания потока зарядов в проводнике. Дрейф электронов приводит к уменьшению потенциала до момента его уравновешивания (прекращение тока). Таким образом, для создания постоянного тока необходимы механизмы, непрерывно возвращающие описанную систему в первоначальную конфигурацию, то есть, препятствующие агрегации зарядов в результате их движения. Для этой цели используются специальные устройства, называемые источники питания.

В качестве иллюстрации их работы удобно рассматривать замкнутый контур из сопротивления и гальванического источника питания (батареи). Если предположить, что внутри батареи тока нет, то описанная проблема объединения зарядов остаётся неразрешённой. Но в цепи с реальным источником питания электроны перемещаются постоянно. Это происходит благодаря тому, что поток ионов протекает и внутри батареи от отрицательного электрода к положительному. Источник энергии, перемещающий эти заряды в батарее — химические реакции. Такая энергия называется электродвижущей силой.

ЭДС является характеристикой любого источника энергии, способного управлять движением электрических зарядов в цепи. В аналогии с замкнутым гидравлическим контуром работа источника э. д. с. соответствует работе насоса для создания давления воды. Поэтому значок, обозначающий эти устройства, неотличим на гидравлических и электрических схемах.

Несмотря на название, электродвижущая сила на самом деле не является силой и измеряется в вольтах. Её численное значение равно работе по перемещению заряда по замкнутой цепи. ЭДС источника выражается формулой E=A/q, в которой:

  • E — электродвижущая сила в вольтах;
  • A — работа сторонних сил по перемещению заряда в джоулях;
  • q — перемещённый заряд в кулонах.

Из этой формулы ЭДС следует, что электродвижущая сила не является свойством цепи или нагрузки, а есть способность генератора электроэнергии к разделению зарядов.

Сравнение с разностью потенциалов

Электродвижущая сила и разность потенциалов в цепи очень похожие физические величины, так как оба измеряются в вольтах и определяются работой по перемещению заряда. Одно из основных смысловых различий заключается в том, что э. д. с. (E) вызывается путём преобразования какой-либо энергии в электрическую, тогда как разность потенциалов (U) реализует электрическую энергию в другие виды. Другие различия выглядят так:

  • E передаёт энергию всей цепи. U является мерой энергии между двумя точками на схеме.
  • Е является причиной U, но не наоборот.
  • Е индуцируется в электрическом, магнитном и гравитационном поле.
  • Концепция э. д. с. применима только к электрическому полю, в то время как разность потенциалов применима к магнитным, гравитационным и электрическим полям.

Напряжение на клеммах источника питания, как правило, отличается от ЭДС источника. Это происходит из-за наличия внутреннего сопротивления источника (электролита и электродов, обмоток генератора). Связывающая разность потенциалов и ЭДС источника тока формула выглядит как U=E-Ir. В этом выражении:

  • U — напряжение на клеммах источника;
  • r — внутреннее сопротивление источника;
  • I — ток в цепи.

Из этой формулы электродвижущей силы следует, что э. д. с. равна напряжению когда ток в цепи не течёт. Идеальный источник ЭДС создаёт разность потенциалов независимо от нагрузки (протекающего тока) и не обладает внутренним сопротивлением.

В природе не может существовать источника с бесконечной мощностью при замыкании на клеммах, как и материала с бесконечной проводимостью. Идеальный источник используется как абстрактная математическая модель.

Источники электродвижущей силы

Суть источника ЭДС заключается в преобразовании других видов энергии в электрическую с помощью сторонних сил. С точки зрения физики обеспечения э. д. с различают следующие два основных вида источников:

  • гальванические;
  • электромагнитные.

Первые представляют собой электрохимические источники, основанные на вовлечение в химическую реакцию процесса переноса электронов. В обычных условиях химические взаимодействия сопровождаются выделением или поглощением тепла, но существует немало реакций, в результате которых генерируется электрическая энергия.

Электрохимические процессы в большинстве случаев обратимы, поскольку энергия электрического тока может быть использована, чтобы заставить реагировать вещества между собой. Эта возможность позволяет создавать возобновляемые гальванические источники — аккумуляторы.

В генераторах тока э. д. с. создаётся другим способом. Разделение зарядов происходит с помощью явления электромагнитной индукции, которое заключается в том, что изменение величины или направления магнитного поля создаёт ЭДС. Согласно закону Фарадея, нахождение э. д. с. индукции возможно из выражения E=—dФ/dt. В этой формуле:

  • Ф — магнитный поток;
  • t — время.

ЭДС индукции измеряется также в вольтах. В зависимости от того, каким способом вызываются изменения магнитного потока, различают:

  • Динамически индуцированную. Когда в стационарном магнитном поле перемещается проводник. Характерен для генераторов.
  • Статически индуцированную. Когда изменения потока возникают из-за изменений магнитного поля вокруг неподвижного проводника. Так работают трансформаторы.

Существуют также источники э. д. с, не основанные на электрохимии или магнитной индукции. К таким устройствам можно отнести полупроводниковые фотоэлементы, контактные потенциалы и пьезокристаллы. Понятие ЭДС имеет практическое применение прежде всего как параметр выбора источников питания для тех или иных целей. Чтобы получить максимальный эффект от работы устройств в цепи, нужно согласовывать их возможности и характеристики. Прежде всего внутреннее сопротивление источника ЭДС силы с характеристиками подключаемой нагрузки.

Физика – Электродвижущая сила – Бирмингемский университет

Электродвижущая сила (ЭДС) равна разности потенциалов на клеммах при отсутствии тока. ЭДС и разность потенциалов на клеммах ( В, ) измеряются в вольтах, но это не одно и то же. ЭДС ( ϵ ) – это количество энергии ( E ), обеспечиваемое батареей на каждый кулон заряда ( Q ), проходящий через нее.

Как рассчитать ЭДС?

ЭДС можно записать через внутреннее сопротивление батареи ( r ) где: ϵ = I (r + R )

Что из закона Ома, мы можем изменить это в терминах оконечного сопротивления: ϵ = В + Ir

ЭДС ячейки может быть определена путем измерения напряжения на ячейке с помощью вольтметра и тока в цепи с помощью амперметра для различных сопротивлений.Затем мы можем настроить схему для определения ЭДС, как показано ниже.

ЭДС и внутреннее сопротивление электрических элементов и батарей

Исследование ЭМП

Как закон Фарадея соотносится с ЭМП?

Закон Фарадея гласит, что любое изменение магнитного поля катушки будет индуцировать в катушке ЭДС (а следовательно, и ток). Он пропорционален минус скорости изменения магнитного потока ( ϕ ) (примечание N – количество витков в катушке).

Используя закон Фарадея, общество извлекло выгоду из таких важных технологий, как трансформаторы, которые используются для передачи электроэнергии в национальной энергосистеме Великобритании, которая теперь является необходимостью в наших домах. Также он используется в электрических генераторах и двигателях, таких как плотины гидроэлектростанций, которые производят электричество, которое сейчас является неотъемлемой частью наших современных технологических потребностей. Текущий исследовательский проект MAG-DRIVE в Бирмингеме направлен на поиск способов разработки и улучшения материалов с постоянными магнитами, которые могут быть использованы в электромобилях следующего поколения.ЭМП также генерируется солнечными батареями, поэтому они важны для исследований в области возобновляемых источников энергии.

Лабораторные признания

Исследователи подкаста In the Laboratory Confessions рассказывают о своем лабораторном опыте в контексте практических экзаменов A Level. Эпизоды, посвященные правильному использованию цифровых инструментов (простое гармоническое движение), правильному построению принципиальных схем (удельное сопротивление в проводе) и использованию источников питания постоянного тока (конденсаторов), имеют отношение к эксперименту по ЭДС, ниже вы можете услышать удельное сопротивление. в проводном подкасте.

Как мы интерпретируем наши данные?

По мере увеличения сопротивления переменного резистора величина тока будет уменьшаться. График зависимости напряжения от тока должен давать линейную зависимость, где градиент линии дает отрицательное внутреннее сопротивление ячейки ( -r ), а точка пересечения дает ЭДС (напряжение, при котором ток равен 0).

Выполнение нескольких измерений при разных значениях сопротивления даст больше точек на графике V-I, что сделает подбор более надежным.Также рекомендуется повторить измерения, так как ячейка будет постепенно стекать, что повлияет на показания. Во избежание разряда элемента / батареи ее следует отключать между измерениями. В качестве альтернативы в схему можно включить выключатель. Также не рекомендуется использовать аккумуляторные батареи, так как они имеют низкое внутреннее сопротивление.

Несмотря на то, что этот эксперимент довольно прост, он поможет вам отличить конечную разницу от ЭДС, что может быть сложной концепцией для понимания учащимися.Поскольку люди становятся все более зависимыми от электричества, исследования, связанные с ЭМП, важны для развития и технического прогресса электричества.

Следующие шаги

Эти ссылки предоставляются только для удобства и в информационных целях; они не означают одобрения или одобрения Бирмингемским университетом какой-либо информации, содержащейся на внешнем веб-сайте. Бирмингемский университет не несет ответственности за точность, законность или содержание внешнего сайта или последующих ссылок.Пожалуйста, свяжитесь с внешним сайтом для получения ответов на вопросы относительно его содержания.

9B: Электрический ток, ЭДС и закон Ома

Теперь мы приступим к изучению электрических цепей. Цепь – это замкнутый проводящий путь, по которому течет заряд. В схемах заряд идет петлями. Скорость потока заряда называется электрическим током. Схема состоит из элементов схемы, соединенных между собой проводами. Конденсатор – это пример элемента схемы, с которым вы уже знакомы.В этой главе мы представим еще несколько схемных элементов. При анализе схем мы рассматриваем провода как идеальные проводники, а элементы схемы как идеальные элементы схемы. Сложность схем очень разнообразна. Компьютер – сложная схема. Фонарик представляет собой простую схему.

Элементы схемы, с которыми вы будете иметь дело в этом курсе, – это двухконтактные элементы схемы. Существует несколько различных типов двухконтактных схемных элементов, но все они имеют некоторые общие черты.Двухконтактный элемент схемы – это устройство с двумя концами, каждый из которых является проводником. Два проводника называются клеммами. Терминалы могут иметь разные формы. Некоторые из них – провода, некоторые – металлические пластины, некоторые – металлические кнопки, а некоторые – металлические столбы. К клеммам подключаются провода, чтобы сделать элемент схемы частью схемы.

Важным двухконтактным элементом схемы является место расположения ЭДС. Вы можете думать о сиденье EMF как об идеальном аккумуляторе или как об идеальном источнике питания. Он поддерживает постоянную разность потенциалов (a.к.а. постоянное напряжение) между его выводами. Для представления разности потенциалов используется либо имя константы \ (\ varepsilon \) (сценарий \ (E \)), либо имя константы \ (V \).

Чтобы достичь разности потенциалов \ (E \) между своими выводами, очаг ЭДС, когда он впервые возникает, должен перемещать некоторый заряд (мы рассматриваем движение заряда как движение положительного заряда) от одного вывода к другой. «Один вывод» остается с чистым отрицательным зарядом, а «другой» приобретает чистый положительный заряд.Место ЭДС перемещает заряд до тех пор, пока положительный вывод не будет иметь потенциал \ (E \) выше, чем отрицательный вывод. Обратите внимание, что место ЭДС не производит заряда; он просто выталкивает существующий заряд. Если вы подключите изолированный провод к положительному выводу, то он будет иметь тот же потенциал, что и положительный вывод, и, поскольку заряд на положительном выводе будет распространяться по проводу, гнездо ЭДС будет иметь такой же потенциал, как и положительный вывод. переместить еще немного заряда с клеммы с более низким потенциалом для поддержания разности потенциалов.{-12} С \)). Кроме того, накопление заряда происходит почти мгновенно, поэтому к тому времени, когда вы заканчиваете подключать провод к клемме, этот провод уже имеет заряд, о котором мы говорим. В общем, мы не знаем, сколько заряда находится на положительной клемме и какой провод к ней может быть подключен, и нам все равно. Это ничтожно мало. Но этого достаточно, чтобы разность потенциалов между выводами была номинальным напряжением места возникновения ЭДС.

Как вы помните, электрический потенциал – это то, что используется для характеристики электрического поля.Вызывая разность потенциалов между его выводами и между любой парой проводов, которые могут быть подключены к его выводам, место действия ЭДС создает электрическое поле. Электрическое поле зависит от расположения проводов, которые подключаются к клеммам гнезда ЭДС. Электрическое поле – еще одна величина, которую мы редко обсуждаем при анализе цепей. Обычно мы можем выяснить, что нам нужно узнать, по значению разности потенциалов E, которое место ЭДС поддерживает между своими терминалами.Но электрическое поле действительно существует, и в цепях электрическое поле заряда на проводах, подключенных к месту возникновения ЭДС, – это то, что заставляет заряд течь в цепи, а поток заряда в цепи – огромная часть того, что схема – это все о.

Используем символ

для представления места расположения ЭДС на принципиальной схеме (также известной как схематическая диаграмма цепи), где два коллинеарных отрезка линии представляют выводы места расположения ЭДС, причем тот, который подключен к более короткому из параллельных отрезков прямой, является отрицательным, низковольтный, терминальный; а также; тот, который подключен к более длинному из параллельных сегментов линии, является положительным выводом с более высоким потенциалом.

Другой элемент схемы, который я хочу представить в этой главе, – это резистор. Резистор – плохой проводник. Сопротивление резистора является мерой того, насколько плохой проводник является резистор. Чем больше значение сопротивления, тем хуже элемент схемы пропускает заряд через себя. Резисторы бывают разных форм. Нить накала лампочки – это резистор. Элемент тостера (часть, которая светится красным, когда тостер включен) – это резистор. Люди изготавливают небольшие керамические цилиндры (с углеродным покрытием и проволокой, торчащей на каждом конце), чтобы иметь определенные значения сопротивления.У каждого из них есть значение сопротивления, указанное на самом резисторе. Символ

используется для обозначения резистора на принципиальной схеме. Символ R обычно используется для обозначения сопротивления резистора.

Теперь мы готовы рассмотреть следующую простую схему:

Вот и снова без стольких этикеток:

Верхний провод (проводник) имеет одно значение электрического потенциала (назовите его \ (\ varphi_ {HI} \)), а нижний провод имеет другое значение электрического потенциала (назовите его \ (\ varphi_ {LOW} \)), например что разница \ (\ space \ varphi_ {HI} – \ varphi_ {LOW} \ space \) равна \ (\ space \ varepsilon \).

\ [\ varphi_ {HI} – \ varphi_ {LOW} = \ varepsilon \]

Чтобы поддерживать разность потенциалов \ (\ varepsilon \) между двумя проводниками, место расположения ЭДС вызывает появление небольшого количества положительного заряда на верхнем проводе и такое же количество отрицательного заряда на нижнем проводе. Это разделение зарядов вызывает электрическое поле в резисторе.

(Мы проводим этот аргумент в модели положительного носителя заряда. Хотя это не имеет значения для схемы, на самом деле это отрицательно заряженные частицы, движущиеся в противоположном направлении.Эффект тот же.)

Важно понимать, что каждая часть цепи переполнена обоими видами заряда. Провод, резистор, все невероятно забито как положительным, так и отрицательным зарядом. Один вид заряда может двигаться на фоне другого. Теперь электрическое поле в резисторе толкает положительный заряд в резисторе в направлении от вывода с более высоким потенциалом к ​​выводу с более низким потенциалом.

Направление положительного заряда на провод с более низким потенциалом приведет к увеличению потенциала провода с более низким потенциалом и оставит верхний конец резистора с отрицательным зарядом.Я говорю «был бы», потому что любая тенденция к изменению относительного потенциала двух проводов немедленно компенсируется местом расположения ЭДС. Помните, что это то, что делает сиденье ЭДС, оно поддерживает постоянную разность потенциалов между проводами. Для этого в рассматриваемом случае гнездо ЭДС должно вытягивать положительные заряды из провода с более низким потенциалом и подталкивать их к проводу с более высоким потенциалом. Кроме того, любая тенденция верхнего конца резистора становиться отрицательным сразу же приводит к силе притяжения на положительный заряд в проводе с более высоким потенциалом.Это заставляет этот положительный заряд перемещаться вниз в резистор вместо заряда, который только что перемещался вдоль резистора к проводу с более низким потенциалом. Чистый эффект – это непрерывное движение заряда по часовой стрелке по петле, как мы видим на диаграмме, при этом чистое количество заряда в любом коротком участке цепи никогда не меняется. Выберите место в любом месте трассы. Так же быстро, как положительный заряд покидает это место, больше положительного заряда из соседнего места перемещается внутрь. У нас есть вся скопившаяся масса носителей положительного заряда, движущихся по петле по часовой стрелке, все из-за электрического поля в резисторе, и «настойчивость» ЭДС в поддержании постоянной разности потенциалов между проводами.

Теперь нарисуйте пунктирную линию поперек контура в любой точке контура, как показано ниже.

Скорость, с которой заряд пересекает эту линию, является скоростью потока заряда в этой точке (точке, в которой вы нарисовали пунктирную линию) в цепи. Скорость потока заряда, сколько кулонов заряда в секунду пересекает эту линию, называется электрическим током в этой точке. В данном случае, поскольку вся схема состоит из одной петли, ток одинаков в каждой точке схемы – не имеет значения, где вы «рисуете линию».”Символ, который обычно используется для представления значения тока, – это \ (I \).

При анализе схемы, если текущая переменная еще не определена для вас, вы должны определить ее
, нарисовав стрелку на схеме и пометив ее \ (I \) или \ (I \) нижним индексом.

Единицы измерения тока – кулоны в секунду (\ (C / s \)). Этой комбинации единиц дано имя: ампер, сокращенно \ (A \).

\ [1A = 1 \ frac {C} {s} \]

Теперь об этом резисторе: в нашей модели носителя положительного заряда заряженные частицы, которые могут свободно перемещаться в резисторе, испытывают силу, действующую на них электрическим полем в направлении электрического поля.В результате они испытывают ускорение. Но фоновый материал, составляющий вещество, частью которого являются носители заряда, оказывает на носители заряда замедляющую силу, зависящую от скорости. Чем быстрее они движутся, тем больше тормозящая сила. После завершения цепи (создания последнего соединения провод-клемма) носители заряда в резисторе почти мгновенно достигают конечной скорости, при которой тормозящая сила на данном носителе заряда так же велика, как и сила, действующая на него. электрическое поле на этом носителе заряда.Значение конечной скорости вместе с количеством носителей заряда на объем в резисторе и площадью поперечного сечения плохо проводящего материала, составляющего резистор, определяют скорость потока заряда, ток , в резисторе. В рассматриваемой простой схеме расход заряда в резисторе – это расход заряда во всей цепи.

Само значение конечной скорости зависит от силы электрического поля и природы тормозящей силы.Характер тормозящей силы зависит от материала, из которого изготовлен резистор. Один вид материала приведет к большей конечной скорости для того же электрического поля, что и другой вид материала. Даже с одним типом материала возникает вопрос, как тормозящая сила зависит от скорости. Он пропорционален квадрату скорости, логарифму скорости или чему-то еще? Эксперимент показывает, что в важном подмножестве материалов в определенных диапазонах конечной скорости тормозящая сила пропорциональна самой скорости.Такие материалы подчиняются закону Ома и называются омическими материалами.

Рассмотрим резистор в простой схеме, с которой мы имели дело.

Если вы удвоите напряжение на резисторе (используя гнездо ЭДС, которое поддерживает вдвое большую разность потенциалов между его выводами, как исходное гнездо ЭДС), то вы удвоите электрическое поле в резисторе. Это удваивает силу, действующую на каждый носитель заряда. Это означает, что при предельной скорости любого носителя заряда тормозящая сила должна быть вдвое больше.(Поскольку после подключения этой последней цепи скорость носителей заряда увеличивается до тех пор, пока тормозящая сила на каждом носителе заряда не станет равной по величине приложенной силе.) В омическом материале, если тормозящая сила вдвое больше, то скорость вдвое больше. Если скорость вдвое больше, то расход заряда, электрический ток, вдвое больше. Таким образом, удвоение напряжения на резисторе увеличивает вдвое ток. Действительно, для резистора, подчиняющегося закону Ома, ток в резисторе прямо пропорционален напряжению на резисторе.

Подведение итогов: когда вы подаете напряжение на резистор, в этом резисторе есть ток. Отношение напряжения к току называется сопротивлением резистора.

\ [R = \ frac {V} {I} \]

Это определение сопротивления согласуется с нашим пониманием того, что сопротивление резистора является мерой того, насколько он плохой проводник. Проверить это. Если для данного напряжения на резисторе вы получаете крошечный небольшой ток (это означает, что резистор является очень плохим проводником), значение сопротивления \ (R = \ frac {V} {I} \) с этим маленьким значением ток в знаменателе очень велик.Если, с другой стороны, при том же напряжении вы получаете большой ток (что означает, что резистор является хорошим проводником), тогда значение сопротивления \ (R = \ frac {V} {I} \) мало.

Если материал, из которого изготовлен резистор, подчиняется закону Ома, то сопротивление \ (R \) является постоянным, что означает, что его значение одинаково для разных напряжений. Отношение \ (R = \ frac {V} {I} \) обычно записывается в форме \ (V = IR \).

Закон Ома:

Сопротивление \ (R \) в выражении \ (V = IR \) является постоянной величиной.

Закон

Ома подходит для резисторов, изготовленных из определенных материалов (называемых омическими материалами) в ограниченном диапазоне напряжений.

Единиц сопротивления

Учитывая, что сопротивление резистора определяется как отношение напряжения на этом резисторе к результирующему току на этом резисторе,

\ [R = \ frac {V} {I} \]

очевидно, что единицей сопротивления является вольт на ампер, \ (\ frac {V} {A} \). Этому комбинированному блоку присвоено имя. Мы называем это ом, сокращенно \ (\ Omega \), греческая буква в верхнем регистре омега.

\ [1 \ Omega = 1 \ frac {\ mbox {volt}} {\ mbox {ampere}} \]

Авторы и авторство

10.2: Электродвижущая сила – Physics LibreTexts

Цели обучения

К концу раздела вы сможете:

  • Опишите электродвижущую силу (ЭДС) и внутреннее сопротивление батареи
  • Объясните основную работу аккумулятора

Если вы забыли выключить автомобильные фары, они постепенно тускнеют по мере разрядки аккумулятора.Почему они не мигают внезапно, когда разрядился аккумулятор? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разряда батареи. Причина снижения выходного напряжения для разряженных батарей заключается в том, что все источники напряжения состоят из двух основных частей – источника электрической энергии и внутреннего сопротивления. В этом разделе мы исследуем источник энергии и внутреннее сопротивление.

Введение в электродвижущую силу

Voltage имеет множество источников, некоторые из которых показаны на рисунке \ (\ PageIndex {2} \).Все такие устройства создают разность потенциалов и могут подавать ток, если подключены к цепи. Особый тип разности потенциалов известен как электродвижущая сила (ЭДС) . ЭДС – это вовсе не сила, но термин «электродвижущая сила» используется по историческим причинам. Он был изобретен Алессандро Вольта в 1800-х годах, когда он изобрел первую батарею, также известную как вольтовую батарею . Поскольку электродвижущая сила не является силой, принято называть эти источники просто источниками ЭДС (произносимыми буквами «ee-em-eff»), а не источниками электродвижущей силы.

Рисунок \ (\ PageIndex {1} \): различные источники напряжения. а) ветряная электростанция Бразос в Флуванна, штат Техас; (б) Красноярская плотина в России; (c) солнечная ферма; (d) группа никель-металлогидридных батарей. Выходное напряжение каждого устройства зависит от его конструкции и нагрузки. Выходное напряжение равно ЭДС только при отсутствии нагрузки. (кредит a: модификация работы «Leaflet» / Wikimedia Commons; кредит b: модификация работы Алекса Полежаева; кредит c: модификация работы Министерства энергетики США; кредит d: модификация работы Тиаа Монто)

Если Электродвижущая сила – это вообще не сила, тогда что такое ЭДС и что является источником ЭДС? Чтобы ответить на эти вопросы, рассмотрим простую схему лампы 12 В, подключенной к батарее 12 В, как показано на рисунке \ (\ PageIndex {2} \).Батарея , может быть смоделирована как устройство с двумя выводами, которое поддерживает один вывод с более высоким электрическим потенциалом, чем второй вывод. Более высокий электрический потенциал иногда называют положительной клеммой и обозначают знаком плюс. Клемму с более низким потенциалом иногда называют отрицательной клеммой и обозначают знаком минус. Это источник ЭДС.

Рисунок \ (\ PageIndex {2} \): Источник ЭДС поддерживает на одном выводе более высокий электрический потенциал, чем на другом выводе, действуя как источник тока в цепи.

Когда источник ЭДС не подключен к лампе, нет чистого потока заряда внутри источника ЭДС. Как только батарея подключена к лампе, заряды текут от одной клеммы батареи через лампу (в результате чего лампа загорается) и обратно к другой клемме батареи. Если мы рассмотрим протекание положительного (обычного) тока, положительные заряды покидают положительный вывод, проходят через лампу и попадают в отрицательный вывод.

Положительный ток используется для большей части анализа схем в этой главе, но в металлических проводах и резисторах наибольший вклад в ток вносят электроны, протекающие в направлении, противоположном положительному потоку тока.Поэтому более реалистично рассматривать движение электронов для анализа схемы на рисунке \ (\ PageIndex {2} \). Электроны покидают отрицательную клемму, проходят через лампу и возвращаются к положительной клемме. Чтобы источник ЭДС поддерживал разность потенциалов между двумя выводами, отрицательные заряды (электроны) должны перемещаться с положительного вывода на отрицательный. Источник ЭДС действует как накачка заряда, перемещая отрицательные заряды от положительного вывода к отрицательному для поддержания разности потенциалов.Это увеличивает потенциальную энергию зарядов и, следовательно, электрический потенциал зарядов.

Сила, действующая на отрицательный заряд электрического поля, действует в направлении, противоположном электрическому полю, как показано на рисунке \ (\ PageIndex {2} \). Чтобы отрицательные заряды переместились на отрицательный вывод, необходимо провести работу с отрицательными зарядами. Для этого требуется энергия, которая возникает в результате химических реакций в батарее. Потенциал поддерживается высоким на положительной клемме и низким на отрицательной клемме, чтобы поддерживать разность потенциалов между двумя клеммами.ЭДС равна работе, выполняемой над зарядом на единицу заряда \ (\ left (\ epsilon = \ frac {dW} {dq} \ right) \) при отсутствии тока. Поскольку единицей работы является джоуль, а единицей заряда – кулон, единицей измерения ЭДС является вольт \ ((1 \, V = 1 \, J / C) \).

Напряжение на клеммах \ (V_ {клемма} \) батареи – это напряжение, измеренное на клеммах батареи, когда к клемме не подключена нагрузка. Идеальная батарея – это источник ЭДС, который поддерживает постоянное напряжение на клеммах, независимо от тока между двумя клеммами.Идеальная батарея не имеет внутреннего сопротивления, а напряжение на клеммах равно ЭДС батареи. В следующем разделе мы покажем, что у реальной батареи есть внутреннее сопротивление, а напряжение на клеммах всегда меньше, чем ЭДС батареи.

Источник потенциала батареи

ЭДС батареи определяется сочетанием химических веществ и составом выводов батареи. Свинцово-кислотный аккумулятор , используемый в автомобилях и других транспортных средствах, является одним из наиболее распространенных сочетаний химических веществ.На рисунке \ (\ PageIndex {3} \) показана одна ячейка (одна из шести) этой батареи. Катодная (положительная) клемма ячейки соединена с пластиной из оксида свинца, а анодная (отрицательная) клемма подключена к свинцовой пластине. Обе пластины погружены в серную кислоту, электролит для системы.

Рисунок \ (\ PageIndex {3} \): Химические реакции в свинцово-кислотном элементе разделяют заряд, отправляя отрицательный заряд на анод, который соединен со свинцовыми пластинами. Пластины из оксида свинца подключаются к положительному или катодному выводу ячейки.Серная кислота проводит заряд, а также участвует в химической реакции.

Небольшое знание того, как взаимодействуют химические вещества в свинцово-кислотной батарее, помогает понять потенциал, создаваемый батареей. На рисунке \ (\ PageIndex {4} \) показан результат одной химической реакции. Два электрона помещаются на анод , что делает его отрицательным, при условии, что катод подает два электрона. Это оставляет катод положительно заряженным, потому что он потерял два электрона.Короче говоря, разделение заряда было вызвано химической реакцией.

Обратите внимание, что реакция не происходит, если нет замкнутой цепи, позволяющей подавать два электрона на катод. Во многих случаях эти электроны выходят из анода, проходят через сопротивление и возвращаются на катод. Отметим также, что, поскольку в химических реакциях участвуют вещества, обладающие сопротивлением, невозможно создать ЭДС без внутреннего сопротивления.

Рисунок \ (\ PageIndex {4} \): В свинцово-кислотной батарее два электрона прижимаются к аноду элемента, а два электрона удаляются с катода элемента.В результате химической реакции в свинцово-кислотной батарее два электрона помещаются на анод и два электрона удаляются с катода. Для работы требуется замкнутая цепь, так как два электрона должны быть доставлены на катод.

Внутреннее сопротивление и напряжение на клеммах

Величина сопротивления току внутри источника напряжения называется внутренним сопротивлением . Внутреннее сопротивление батареи r может вести себя сложным образом. Обычно она увеличивается по мере разряда батареи из-за окисления пластин или снижения кислотности электролита.Однако внутреннее сопротивление также может зависеть от величины и направления тока через источник напряжения, его температуры и даже его предыстории. Например, внутреннее сопротивление перезаряжаемых никель-кадмиевых элементов зависит от того, сколько раз и насколько глубоко они были разряжены. Простая модель батареи состоит из идеализированного источника ЭДС \ (\ epsilon \) и внутреннего сопротивления r (рисунок \ (\ PageIndex {5} \)).

Рисунок \ (\ PageIndex {5} \): Батарею можно смоделировать как идеализированную ЭДС \ ((\ epsilon) \) с внутренним сопротивлением ( r ).Напряжение на клеммах аккумулятора равно \ (V_ {terminal} = \ epsilon – Ir \).

Предположим, что внешний резистор, известный как сопротивление нагрузки R , подключен к источнику напряжения, например батарее, как показано на рисунке \ (\ PageIndex {6} \). На рисунке показана модель батареи с ЭДС ε, внутренним сопротивлением R и нагрузочным резистором R , подключенным к ее клеммам. При обычном протекании тока положительные заряды покидают положительную клемму батареи, проходят через резистор и возвращаются к отрицательной клемме батареи.Напряжение на клеммах аккумулятора зависит от ЭДС, внутреннего сопротивления и силы тока и равно

.

Примечание

\ [V_ {терминал} = \ epsilon – Ir \]

При заданной ЭДС и внутреннем сопротивлении напряжение на клеммах уменьшается по мере увеличения тока из-за падения потенциала Ir внутреннего сопротивления.

Рисунок \ (\ PageIndex {6} \): Схема источника напряжения и его нагрузочного резистора R . Поскольку внутреннее сопротивление r последовательно с нагрузкой, оно может существенно повлиять на напряжение на клеммах и ток, подаваемый на нагрузку.

График разности потенциалов на каждом элементе цепи показан на рисунке \ (\ PageIndex {7} \). По цепи проходит ток I , а падение потенциала на внутреннем резисторе равно Ir . Напряжение на клеммах равно \ (\ epsilon – Ir \), что равно падению потенциала на нагрузочном резисторе \ (IR = \ epsilon – Ir \). Как и в случае с потенциальной энергией, важно изменение напряжения. Когда используется термин «напряжение», мы предполагаем, что это на самом деле изменение потенциала, или \ (\ Delta V \).Однако \ (\ Delta \) часто для удобства опускается.

Рисунок \ (\ PageIndex {7} \): график напряжения в цепи батареи и сопротивления нагрузки. Электрический потенциал увеличивает ЭДС батареи из-за химических реакций, выполняющих работу с зарядами. В аккумуляторе происходит снижение электрического потенциала из-за внутреннего сопротивления. Потенциал уменьшается из-за внутреннего сопротивления \ (- Ir \), в результате чего напряжение на клеммах батареи равно \ ((\ epsilon – Ir) \).Затем напряжение уменьшается на ( IR ). Ток равен \ (I = \ frac {\ epsilon} {r + R} \).

Ток через нагрузочный резистор равен \ (I = \ frac {\ epsilon} {r + R} \). Из этого выражения видно, что чем меньше внутреннее сопротивление r , тем больший ток источник напряжения подает на свою нагрузку R . По мере разряда батарей r увеличивается. Если r становится значительной частью сопротивления нагрузки, то ток значительно снижается, как показано в следующем примере.

Пример \ (\ PageIndex {1} \): анализ цепи с батареей и нагрузкой

Данная батарея имеет ЭДС 12,00 В и внутреннее сопротивление \ (0,100 \, \ Омега \). (a) Рассчитайте его напряжение на клеммах при подключении к нагрузке с \ (10.00 \, \ Omega \). (b) Какое напряжение на клеммах при подключении к нагрузке \ (0.500 \, \ Omega \)? (c) Какая мощность рассеивается при нагрузке \ (0.500 \, \ Omega \)? (d) Если внутреннее сопротивление увеличивается до \ (0.500 \, \ Omega \), найдите ток, напряжение на клеммах и мощность, рассеиваемую элементом \ (0.500 \, \ Omega \) загрузка.

Стратегия

Приведенный выше анализ дал выражение для тока с учетом внутреннего сопротивления. Как только ток будет найден, напряжение на клеммах можно рассчитать с помощью уравнения \ (V_ {terminal} = \ epsilon – Ir \). Как только ток будет найден, мы также сможем найти мощность, рассеиваемую резистором.

Решение

  1. Ввод заданных значений ЭДС, сопротивления нагрузки и внутреннего сопротивления в выражение выше дает \ [I = \ frac {\ epsilon} {R + r} = \ frac {12.00 \, V} {10.10 \, \ Omega} = 1.188 \, A. \] Введите известные значения в уравнение \ (V_ {terminal} = \ epsilon – Ir \), чтобы получить напряжение на клеммах: \ [V_ { клемма} = \ epsilon – Ir = 12.00 \, V – (1.188 \, A) (0.100 \, \ Omega) = 11.90 \, V. \] Напряжение на клеммах здесь лишь немного ниже, чем ЭДС, что означает, что ток втягивается этой легкой нагрузкой незначительно.
  2. Аналогично, с \ (R_ {load} = 0.500 \, \ Omega \), ток равен \ [I = \ frac {\ epsilon} {R + r} = \ frac {12.00 \, V} {0.2} {R} \) или \ (IV \), где В, – напряжение на клеммах (в данном случае 10,0 В).
  3. Здесь внутреннее сопротивление увеличилось, возможно, из-за разряда батареи, до точки, в которой оно равно сопротивлению нагрузки. Как и раньше, мы сначала находим ток, вводя известные значения в выражение, получая \ [I = \ frac {\ epsilon} {R + r} = \ frac {12.00 \, V} {1.00 \, \ Omega} = 12.00 \, A. \] Теперь напряжение на клеммах равно \ [V_ {terminal} = \ epsilon – Ir = 12.00 \, V – (12.2 (0.500 \, \ Omega) = 72.00 \, W. \] Мы видим, что увеличенное внутреннее сопротивление значительно снизило напряжение на клеммах, ток и мощность, подаваемую на нагрузку.

Значение

Внутреннее сопротивление батареи может увеличиваться по многим причинам. Например, внутреннее сопротивление перезаряжаемой батареи увеличивается с увеличением количества раз, когда батарея перезаряжается. Повышенное внутреннее сопротивление может иметь двоякое влияние на аккумулятор.Сначала снизится напряжение на клеммах. Во-вторых, аккумулятор может перегреться из-за повышенной мощности, рассеиваемой внутренним сопротивлением.

Упражнение \ (\ PageIndex {1} \)

Если вы поместите провод непосредственно между двумя выводами батареи, эффективно закоротив клеммы, батарея начнет нагреваться. Как вы думаете, почему это происходит?

Решение

Если к клеммам подсоединен провод, сопротивление нагрузки близко к нулю или, по крайней мере, значительно меньше внутреннего сопротивления батареи.2р) \). Мощность рассеивается в виде тепла.

Тестеры батарей

Тестеры батарей, такие как те, что показаны на рисунке \ (\ PageIndex {8} \), используют малые нагрузочные резисторы, чтобы намеренно потреблять ток, чтобы определить, падает ли потенциал клемм ниже допустимого уровня. Хотя измерить внутреннее сопротивление батареи сложно, тестеры батареи могут обеспечить измерение внутреннего сопротивления батареи. Если внутреннее сопротивление высокое, батарея разряжена, о чем свидетельствует низкое напряжение на клеммах.

Рисунок \ (\ PageIndex {8} \): Тестеры батарей измеряют напряжение на клеммах под нагрузкой, чтобы определить состояние батареи. (a) Техник-электронщик ВМС США использует тестер аккумуляторов для проверки больших аккумуляторов на борту авианосца USS Nimitz . Тестер батарей, который она использует, имеет небольшое сопротивление, которое может рассеивать большое количество энергии. (b) Показанное небольшое устройство используется на небольших батареях и имеет цифровой дисплей для индикации допустимого напряжения на клеммах. (кредит А: модификация работы Джейсона А.Джонстон; кредит b: модификация работы Кейта Уильямсона)

Некоторые батареи можно перезарядить, пропустив через них ток в направлении, противоположном току, который они подают в прибор. Это обычно делается в автомобилях и батареях для небольших электроприборов и электронных устройств (Рисунок \ (\ PageIndex {9} \)). Выходное напряжение зарядного устройства должно быть больше, чем ЭДС аккумулятора, чтобы ток через него реверсировал. Это приводит к тому, что напряжение на клеммах аккумулятора превышает ЭДС, поскольку \ (V = \ epsilon – Ir \) и I теперь отрицательны.

Рисунок \ (\ PageIndex {9} \): автомобильное зарядное устройство меняет нормальное направление тока через аккумулятор, обращая вспять его химическую реакцию и пополняя ее химический потенциал.

Важно понимать последствия внутреннего сопротивления источников ЭДС, таких как батареи и солнечные элементы, но часто анализ цепей выполняется с помощью напряжения на клеммах батареи, как мы делали в предыдущих разделах. Напряжение на клеммах обозначается просто как В , без индекса «клемма».Это связано с тем, что внутреннее сопротивление батареи трудно измерить напрямую, и оно может со временем измениться.

Авторы и авторство

Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

ЭДС и внутреннее сопротивление

ЭДС и внутреннее сопротивление
следующий: резисторы последовательно и вверх: электрический ток Предыдущий: Сопротивление и удельное сопротивление Теперь настоящие батареи изготавливаются из материалов с ненулевым удельным сопротивлением.Отсюда следует, что настоящие батареи – это не просто источники чистого напряжения. Они также обладают внутренних сопротивлений . Между прочим, чистое напряжение Источник обычно обозначается как ЭДС (что означает электродвижущая сила ). Конечно, ЭДС измеряется в вольтах. Аккумулятор можно смоделировать как ЭДС, включенную последовательно с резистором. , который представляет собой его внутреннее сопротивление. Предположим, что такие батарея используется для управления током через внешний нагрузочный резистор, так как изображенный на рис.17. Обратите внимание, что на принципиальных схемах ЭДС представлена ​​в виде двух близко расположенных параллельных линии неравной длины. Электрический потенциал более длинной линии больше, чем тот из более коротких по вольтам. Резистор представлен как зигзагообразная линия.
Рисунок 17: Батарея ЭДС и внутреннего сопротивления подключена к нагрузочному резистору сопротивления.

Рассмотрим аккумулятор на рисунке.Напряжение аккумулятора равно определяется как разница в электрическом потенциале между его положительным и отрицательные клеммы: т.е., точки и соответственно. Когда мы переходим от к , электрический потенциал увеличивается на вольт, когда мы пересекаем ЭДС, но затем уменьшается на вольт, когда мы пересекаем внутренний резистор. Падение напряжения на резисторе следует из закона Ома, из которого следует, что падение напряжения на резисторе, несущем ток , находится в том направлении, в котором текущие потоки.Таким образом, напряжение аккумулятора связано с его ЭДС. и внутреннее сопротивление через

(133)

Обычно мы думаем, что ЭДС батареи по существу постоянная (поскольку она зависит только от химической реакции, происходящей внутри батареи, которая преобразует химическая энергия в электрическую), поэтому мы должны заключить, что напряжение батарея на самом деле уменьшается по мере увеличения тока, потребляемого от нее.Фактически, напряжение равно только ЭДС при пренебрежимо малом токе. Текущий розыгрыш от аккумулятора обычно не может превышать критическое значение
(134)

поскольку напряжение становится отрицательным (что может произойти только если резистор нагрузки также отрицательный: это практически невозможно). Отсюда следует, что если мы закоротим аккумулятор, подключив его положительные и отрицательные клеммы вместе с использованием проводящего провода с незначительным сопротивлением, ток, потребляемый батареей, ограничен ее внутренним сопротивлением.Фактически в этом случае сила тока равна максимально возможной. Текущий .

Настоящая батарея обычно характеризуется его ЭДС (, т.е. , его напряжение при нулевом токе) и максимальный ток, который он может подавать. Например, стандартный сухой элемент (, т. Е. , своего рода аккумулятор, используемый для питания калькуляторов и фонарей) обычно рассчитан на и скажи) . Таким образом, ничего действительно катастрофического не произойдет. произойдет, если мы закоротим сухой элемент.Мы разрядим батарею через сравнительно короткий промежуток времени, но опасно большой ток не будет поток. С другой стороны, автомобильный аккумулятор обычно рассчитывается на и что-то вроде (такой ток нужен для запустить стартер). Понятно, что автомобильный аккумулятор должен иметь много меньшее внутреннее сопротивление, чем у сухого элемента. Отсюда следует, что если мы были достаточно глупы, чтобы замкнуть автомобильный аккумулятор, в результате довольно катастрофически (представьте себе всю энергию, необходимую для запуска двигателя автомобиль собирается тонким проводом, соединяющим клеммы аккумулятора вместе).



следующий: резисторы последовательно и вверх: электрический ток Предыдущий: Сопротивление и удельное сопротивление
Ричард Фицпатрик 2007-07-14

Разница между ЭДС и напряжением (со сравнительной таблицей)

Одно из основных различий между ЭДС и напряжением состоит в том, что ЭДС – это энергия, подводимая к заряду, тогда как напряжение – это энергия, необходимая для перемещения единичного заряда из одной точки в другую.Другие различия между ними объясняются ниже в сравнительной таблице.

Содержание: ЭДС против напряжения

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия

Сравнительная таблица

Основа для сравнения ЭДС Напряжение
Определение Количество энергии, подаваемой источником на каждый кулон заряда. Энергия, используемая зарядом единицы для перемещения из одной точки в другую
Формула
Символ ε V
Измерение Измерение между конечной точкой источника, когда через него не течет ток. Измерьте расстояние между любыми двумя точками.
Источник Динамо, электрохимический элемент, трансформатор, солнечный элемент, фотодиоды и т. Д. Электрическое и магнитное поле

Определение напряжения

Напряжение определяется как энергия, необходимая для перемещения единичного заряда из одной точки в другую. Оно измеряется в вольтах и ​​обозначается символом V. Напряжение вызывается электрическим и магнитным полями.

Напряжение возникает между концами (т.е.е. катод и анод) источника. Потенциал положительной конечной точки источника выше, чем отрицательной точки. Когда на пассивном элементе возникает напряжение, это называется падением напряжения. Сумма падений напряжения в цепи равна ЭДС согласно закону Кирхгофа.

Определение ЭМП

Подача энергии от источника к каждому кулону заряда называется ЭДС. Другими словами, это подача энергии некоторым активным источником, таким как аккумулятор, для единичного кулоновского заряда.ЭДС означает электродвижущую силу. Он измеряется в вольтах и ​​обозначается символом ε.

Электродвижущая сила вышеуказанной цепи представлена ​​формулой где, r – внутреннее сопротивление цепи.
R – Внешний резистан цепи.
E – электродвижущая сила.
I – ток

Ключевые различия между ЭДС и напряжением

  1. ЭДС – это мера подачи энергии на каждый кулон заряда, тогда как напряжение – это энергия, используемая одним кулоном заряда для перемещения из одной точки в другую.
  2. ЭДС представлена ​​буквой ε, тогда как символическое представление напряжения – V.
  3. ЭДС измеряется между конечной точкой источника, когда через него не течет ток, а напряжение измеряется между любыми двумя точками замкнутой цепи.
  4. ЭДС создается электрохимическим элементом, динамо-машиной, фотодиодами и т. Д., А напряжение создается электрическим и магнитным полями.

Вольт – это единица СИ как для ЭДС, так и для напряжения.

Индуцированная ЭДС и магнитный поток – College Physics

Цели обучения

  • Рассчитайте поток однородного магнитного поля через петлю произвольной ориентации.
  • Опишите методы создания электродвижущей силы (ЭДС) с помощью магнитного поля или магнита и проволочной петли.

Аппарат, использованный Фарадеем для демонстрации того, что магнитные поля могут создавать токи, показан на (Рисунок). Когда переключатель замкнут, в катушке в верхней части железного кольца создается магнитное поле, которое передается катушке в нижней части кольца.Гальванометр используется для обнаружения любого тока, наведенного в катушке внизу. Было обнаружено, что каждый раз, когда переключатель замыкается, гальванометр обнаруживает ток в одном направлении в катушке внизу. (Вы также можете наблюдать это в физической лаборатории.) Каждый раз, когда переключатель открывается, гальванометр обнаруживает ток в противоположном направлении. Интересно, что если переключатель остается замкнутым или разомкнутым в течение некоторого времени, через гальванометр нет тока. Замыкание и размыкание переключателя индуцирует ток.Это изменение в магнитном поле, которое создает ток. Более основным, чем текущий ток, является ЭДС , которая его вызывает. Ток является результатом ЭДС , индуцированной изменяющимся магнитным полем , независимо от того, есть ли путь для протекания тока.

Аппарат Фарадея для демонстрации того, что магнитное поле может производить ток. Изменение поля, создаваемого верхней катушкой, вызывает ЭДС и, следовательно, ток в нижней катушке. Когда переключатель разомкнут и замкнут, гальванометр регистрирует токи в противоположных направлениях.Когда переключатель остается замкнутым или разомкнутым, через гальванометр не течет ток.

Эксперимент, который легко выполняется и часто проводится в физических лабораториях, показан на (Рисунок). ЭДС индуцируется в катушке, когда стержневой магнит вставляется и выходит из нее. ЭДС противоположных знаков создаются движением в противоположных направлениях, и ЭДС также меняются на противоположные за счет изменения полюсов. Те же результаты будут получены, если перемещать катушку, а не магнит – важно относительное движение.Чем быстрее движение, тем больше ЭДС, и когда магнит неподвижен относительно катушки, ЭДС отсутствует.

Движение магнита относительно катушки создает ЭДС, как показано на рисунке. Такие же ЭДС возникают при перемещении катушки относительно магнита. Чем больше скорость, тем больше величина ЭДС, а при отсутствии движения ЭДС равна нулю.

Метод индукции ЭДС, используемый в большинстве электрических генераторов, показан на (Рисунок). Катушка вращается в магнитном поле, создавая ЭДС переменного тока, которая зависит от скорости вращения и других факторов, которые будут исследованы в следующих разделах.Обратите внимание, что генератор очень похож по конструкции на двигатель (другая симметрия).

При вращении катушки в магнитном поле возникает ЭДС. Это основная конструкция генератора, в котором работа, выполняемая по вращению катушки, преобразуется в электрическую энергию. Обратите внимание, что генератор очень похож по конструкции на двигатель.

Итак, мы видим, что изменение величины или направления магнитного поля вызывает ЭДС. Эксперименты показали, что существует критическая величина, называемая магнитным потоком, определяемая соотношением

.

, где – напряженность магнитного поля в области под углом к ​​перпендикуляру к области, как показано на (Рисунок). Любое изменение магнитного потока вызывает ЭДС. Этот процесс определяется как электромагнитная индукция. Единицы магнитного потока ар. Как видно на (Рисунок), , который является составляющей , перпендикулярной области . Таким образом, магнитный поток является произведением площади и составляющей магнитного поля, перпендикулярной ей.

Магнитный поток связан с магнитным полем и площадью, на которой он существует. Поток связан с индукцией; любое изменение вызывает ЭДС.

Вся индукция, включая приведенные до сих пор примеры, возникает из-за некоторого изменения магнитного потока . Например, Фарадей изменил и, следовательно, при размыкании и замыкании переключателя в своем устройстве (показано на (Рисунок)). Это также верно для стержневого магнита и катушки, показанных на (Рисунок). При вращении катушки генератора угол и, следовательно, изменяется. Насколько велика ЭДС и какое направление она принимает, зависит от изменения в и от того, как быстро это изменение будет выполнено, как будет рассмотрено в следующем разделе.

Концептуальные вопросы

Каким образом многопетлевые катушки и железное кольцо в версии аппарата Фарадея, показанной на (Рисунок), улучшают наблюдение наведенной ЭДС?

Когда магнит вставляется в катушку, как показано на (Рисунок) (а), в каком направлении катушка воздействует на магнит? Нарисуйте диаграмму, показывающую направление тока, индуцируемого в катушке, и создаваемое ею магнитное поле, чтобы обосновать вашу реакцию. Как величина силы зависит от сопротивления гальванометра?

Объясните, как магнитный поток может быть равен нулю, когда магнитное поле не равно нулю.

Наведена ли ЭДС в катушке (рисунок), когда она растягивается? Если да, укажите причину и укажите направление индуцированного тока.

Круглая катушка с проволокой натянута в магнитном поле.

Задачи и упражнения

Какое значение магнитного потока в катушке 2 (рисунок) из-за катушки 1?

(a) Плоскости двух катушек перпендикулярны. (б) Проволока перпендикулярна плоскости катушки.

Какое значение магнитного потока, проходящего через катушку на (Рисунок) (b), обусловлено проводом?

Глоссарий

магнитный поток
величина магнитного поля, проходящего через конкретную область, вычисляемая по формуле, где – напряженность магнитного поля в области под углом к ​​перпендикуляру к области
электромагнитная индукция
процесс наведения ЭДС (напряжения) с изменением магнитного потока

ЭДС и напряжение на клеммах

Когда вы забываете выключить автомобильные фары, они медленно тускнеют по мере разрядки аккумулятора.Почему они просто не мигают, когда батарея разряжена? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разряда батареи. Причина снижения выходного напряжения для разряженных или перегруженных батарей заключается в том, что все источники напряжения состоят из двух основных частей – источника электрической энергии и внутреннего сопротивления.

Электродвижущая сила

Все источники напряжения создают разность потенциалов и могут подавать ток, если подключены к сопротивлению.В небольшом масштабе разность потенциалов создает электрическое поле, которое воздействует на заряды, вызывая ток. Мы называем эту разность потенциалов электродвижущей силой (сокращенно ЭДС). ЭДС – это вообще не сила; это особый тип разности потенциалов источника при отсутствии тока. Единицы измерения ЭДС – вольты.

Электродвижущая сила напрямую связана с источником разности потенциалов, например с конкретной комбинацией химических веществ в батарее. Однако при протекании тока ЭДС отличается от выходного напряжения устройства.Напряжение на выводах батареи, например, меньше, чем ЭДС, когда батарея подает ток, и оно падает дальше, когда батарея разряжается или разряжается. Однако, если выходное напряжение устройства можно измерить без потребления тока, то выходное напряжение будет равно ЭДС (даже для сильно разряженной батареи).

Напряжение на клеммах

схематично показывает источник напряжения. Выходное напряжение устройства измеряется на его выводах и называется напряжением на выводах В .Напряжение на клеммах определяется уравнением:

Схематическое изображение источника напряжения

Любой источник напряжения (в данном случае сухой углерод-цинковый элемент) имеет ЭДС, связанную с источником разности потенциалов, и внутреннее сопротивление r, связанное с его конструкцией. (Обратите внимание, что сценарий E означает ЭДС.) Также показаны выходные клеммы, на которых измеряется напряжение на клеммах V. Поскольку V = ЭДС-Ir, напряжение на клеммах равно ЭДС, только если ток не течет.

$ V = ЭДС – Ir $,

где r – внутреннее сопротивление, а I – ток, протекающий во время измерения.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *