Электрическая цепь: состав и элементы
Содержание
- 1 Состав электрической цепи
- 1.1 Источники питания. Внутренняя, внешняя электрическая цепь
- 1.2 Выключатель
- 1.3 Провода
- 1.4 Потребители
Электрическая цепь – набор разнородных элементов, соединенных проводниками, предназначенный для протекания тока. Ассортимент составляющих широкий. Элементы выпускают линейные, нелинейные, активные, пассивные. Классификация бессильна охватить возможные случаи.
Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.
Источники питания. Внутренняя, внешняя электрическая цепь
Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка.
Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:
- Обмотка генератора.
- Гальванический источник питания (батарейка).
- Выход трансформатора.
Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.
Помимо упорядоченного движения носители характеризуются хаотичным тепловым движением. Скорость (интенсивность) определена температурой, родом материала, некоторыми другими факторами. В образовании электрического тока вид движения участия фактически не принимает.
Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.
Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:
- Источники напряжения (ЭДС).
- Источники тока.
В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.
В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.
Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет. Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра. К примеру, действующее значение ЭДС.
Элементы цепи
Выключатель
Рубильник позволит присоединить источник питания к проводам, потребителю. Каждый (за редким исключением) пользовался настенным выключателем. При замыкании-размыкании электрической цепи возникает искра. Объясняется наличием сопротивления емкостного типа.
Для предотвращения искрения цепь дополняется дросселем, рубильник сформирован контакторами специального типа. Придуманы прочие технические решения, к примеру, катушка Тесла.
Провода
В технике провода изготавливают медные, алюминиевые. Связано с низким удельным сопротивлением металлов. Цена невысока. Выделяющееся на проводниках тепло определяется двумя параметрами:
- Сопротивление участка цепи.
- Электрический ток.
Понятно, второй параметр определяется нуждами потребителей. Поставщик стремится влиять на первый. Удельное сопротивление проводника предвидится по возможности низким. Ученых давно интересует явление сверхпроводимости. Металлы при понижении температуры теряют сопротивление. Уменьшаются потери. Среди полупроводников встречаются образцы с положительным и отрицательным температурным коэффициентом сопротивления. Абсолютное значение параметра металлов на порядки ниже.
Проблема с алюминием, медью проста: при протекании электрического тока в цепи температура растет.
Повышается сопротивление участка, дополнительно усугубляя ситуацию. Получается замкнутый круг. Ученые считают: затруднение допустимо исправить, заручившись помощью явления сверхпроводимости.
Металл при некоторой низкой температуре резко, рывком снижает сопротивление, достигая нуля (выше рубежа график понижается плавно со скоростью 1/273 1/град). Проблема практического применения в том, что значения, провоцирующие скачок, низкие. Например, для свинца рубеж составляет 7,2 К. Экстремально низкая отрицательная температура по шкале Цельсия.
Ученые видят решение проблемы в открытии материалов, демонстрирующих явление сверхпроводимости при комнатных температурах. Тогда большие токи удастся передавать потребителям, избежав потерь. В электрической цепи, сформированной сверхпроводниками, заряды способны циркулировать бесконечно длительное время без внешней подпитки источником.
Новое явление обнаружил Хейке Камерлинг-Оннес в 1911 году, исследуя образцы ртути, охлаждаемой до весьма низких температур.
На четырех градусах Кельвина сопротивление проволоки стало нулевым, до скачка снижалось, плавно следуя прямой. Стало ясно: обнаружено новое состояние материала. Позже явление сверхпроводимости продемонстрировано на образцах других металлов. Показано: эффект разрушается помещением подопытного вещества в сильное магнитное поле. Самой высокой пороговой температурой среди металлов похвастается технеций (11,3 К).
Явление сверхпроводимости при комнатных температурах
У искусственных материалов показатели намного выше. С 1986 года ученые исследуют разнообразные керамики. Последним подтвержденным фактом считаем сведения о наличии композитных материалов на основе окислов ртути с температурой перехода в новое состояние на границе 140 К. Дальнейшие работы по очевидным соображениям засекречены.
Потребители
Под потребителем электрической цепи понимается не относящееся к элементам, перечисленным выше. Полезной нагрузкой служат обыкновенная лампочка накала, спираль нагревательного прибора, электрический двигатель.
Параметры цепи очень сильно зависят именно от потребителей. Например, обмотки трансформаторов наделены сильно выраженным индуктивным сопротивлением. Негативно сказывается на передаче энергии от источника.
Не только ток меняет направление. Иногда утверждение касается мощности. Энергия начинает циркулировать туда-сюда, направляясь к источнику питания, обратно во внешнюю цепь. Реактивная мощность бессильна выполнить полезную работу, разогревает проводники цепи, искажает форму полезного сигнала. Промышленникам, ведущим учет полного потребления, рекомендуется параллельно двигателям включать компенсирующие конденсаторы. Индуктивное сопротивление компенсируется емкостным, реактивная мощность замыкается внутри потребительского сегмента, избегая выходить наружу, не выделяя лишнее тепло на кабелях сети.
Нужно отметить важное свойство индуктивных потребителей: потребляют энергию. Электрический ток становится магнитным полем, передается далее. В двигателях колебания вектора напряженности, создаваемые обмоткой, позволят совершать валу полезную работу.
Чтобы показать происходящие траты энергии, схемы дополняют источниками ЭДС (тока), направление действия которых противоположно имеющему место быть во внутренней электрической цепи.
Передачи мощности через емкостную связь сегодня не изобретено. Однако приближенно считаем подобным случаем излучение радиоволны в эфир. Простейший вибратор Герца часто представляют колебательным контуром, в котором обкладки конденсатора разведены в стороны. Шаг позволит образовываться электромагнитной волне, уносимой эфиром. Что касается передачи больших мощностей, соответствующие планы строил Никола Тесла, каждый видел на фото, стилистическом изображении башню Ворденклиф, напоминающую формой подберезовик с прямой ножкой. При помощи сети сооружений предполагалось снабжать энергией путем беспроводной связи промышленность, заводы, фабрики.
В курсе электроники преимущественно рассматриваются приемные устройства.
Между клеммами антенны передача волны через эфир обозначается схематично источником переменного напряжения малой мощности. Уловленная ЭДС усиливается каскадами, включающими резонансные контуры. Электроника, как никакая другая область техники, включает неимоверное разнообразие потребителей. Упрощенно делится на два класса:
- Активные потребители требуют для корректной работы снабжения электрической энергией. Как правило, не могут питаться непосредственно основной сетью. Микросхемы, дискретные активные элементы: транзисторы, тиристоры. Иными словами, электронные ключи. Электродвигатели принципиально отличаются, снабжаясь питанием входной сети.
- Пассивные потребители не требуют внешнего питания. Однако пропускать ток могут причудливым образом. Некоторые тиристоры открываются при достижении напряжением определенного значения. Следовательно, считаются пассивными приборами, обладают нелинейной характеристикой. К этому семейству относятся диоды, пропускающие ток в одном направлении (демонстрируют вентильные свойства).

Пассивными потребителями являются всевозможные сопротивления, конденсаторы, дроссели (катушки индуктивности). При помощи элементов электрическая цепь приобретает необычные качества. Резонансные контуры конденсаторов, индуктивностей используют фильтрами волн различной частоты.
Электрическая цепь и ее элементы
Содержание
Элементы цепи
Независимо оттого, из каких частей состоят электрические цепи, их объединяет одно – их составляющие должны производить, передавать или потреблять электричество.
Элементы подразделяются на пассивные и активные. К первым из них относят всё, что потребляет или передает электроэнергию: лампы, нагревательные элементы, электродвигатели и т.д. Ко вторым – источники, вырабатывающие электроэнергию: генераторы, аккумуляторы, солнечные батареи и т.д. Также элементы делятся на двухполюсные (те, которые имеют 2 вывода) и многополюсные (те, которые имеют 4 и более вывода). В качестве примера двухполюсника можно привести резистор.
В качестве четырехполюсника – повышающий или понижающий трансформатор.
Обязательными составляющими цепи являются:
- Источник (Source) – в большинстве случаев аккумулятор, гальванический элемент или генератор. Изредка – ветрогенераторы и солнечные батареи.
- Проводник (Conductor) – необходим для передачи электроэнергии от источника к электропотребителю.
- Потребитель электроэнергии (Load, consumer) (чаще всего в быту это осветительные приборы, двигатели, нагревательные приборы, электроника, бытовая техника, такая как компьютеры, пылесосы, стиральные машины).
- Замыкающее/размыкающее устройство (Switch) или выключатель.
Основными электроприемниками являются:
- Резисторы – потребитель, который имеет переменное или постоянное сопротивление.
- Конденсатор – потребитель, который имеет емкость. Он запасает энергию и имеет возможность ее возвратить.
- Катушка индуктивности – потребитель, создающий индуктивное поле.

- Электродвигатель – потребитель, превращающий энергию электронов, двигающихся вдоль проводника, в механическую.
При чтении схем и расчетах пользуются следующими понятиями: контур, узел и ветвь.
- Ветвью называют участок с одним или несколькими компонентами, соединенными последовательно.
- Узлом называют место соединения двух и более ветвей.
- Контуром называется совокупность ветвей, которые образуют для тока замкнутый путь. При этом один из узлов в контуре должен являться и началом, и концом пути, а остальные узлы должны встречаться не более одного раза.
Облегчить чтение схем можно с помощью вот такой таблички:
Режимы работы цепи
Опираясь на показатели нагрузки, различают такие режимы функционирования цепи: номинальный, холостой ход, замыкание и согласование.
При номинальной работе система выполняет характеристики, заявленные в техпаспорте оборудования. Холостой ход образуется в случае обрыва цепи. Этот режим работы относится к аварийным.
Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. Это также аварийный режим.
Согласование характеризуется перемещением наибольшей мощности от источника энергии к проводнику. В таком режиме нагрузка равняется сопротивлению источника питания.
Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования. Данное устройство работы системы применяется к любому электрическому бытовому прибору. Применяя полученные знания, можно понять причину поломки оборудования или оценить правильность его работы в соответствии с техническими характеристиками, заявленными производителем.
Законы электрических цепей
Закон Ома
Пусть имеется однородный участок цепи — им может служить кусок металла постоянного сечения, все точки которого имеют одинаковую температуру, и пусть на концах этого проводника поддерживается неизменная разность потенциалов U.
Тогда, согласно закону Ома, в однородном участке цепи сила тока пропорциональна разности потенциалов на концах участка:
U = IR, I = U/R, R = U/I
Существуют участки цепи, в которых зависимость силы тока от разности потенциалов на их концах нелинейна. В этом случае рассматривают среднее значение сопротивления:
Переходя к пределу при условии, что Di-> 0, получаем динамическое сопротивление:
Первый закон Кирхгофа — закон баланса токов в узле
Реальные электрические цепи включают в себя комбинации последовательно и параллельно соединенных нагрузок и генераторов. В рассчитывать разности потенциалов на всех участках цепи и силы токов в них, а также электродвижущие силы источников тока, входящих в данную цепь, можно с помощью закона Ома и закона сохранения заряда. Однако для упрощения расчетов Г. Кирхгофом были предложены два простых правила, нашедших широкое применение в электротехнике.
Первое из них относится к узлам разветвления цепи, в которых сходятся и из которых расходятся токи.
Электрический заряд в узле не накапливается.
Второй закон Кирхгофа
Алгебраическая сумма ЭДС источников питания в любом контуре равна алгебраической сумме падений напряжения на элементах этого контура:
Второе закон, по существу, является следствием закона Ома для неоднородного участка цепи.
Закон Джоуля — Ленца
Количество теплоты, выделяемое проводником с током I на сопротивлении R, прямопропорционально произведению квадрата силы тока, на сопротивление и на время прохождения тока:
Электрическая цепь и ее элементы
Теория > Физика 8 класс > Электрические явления
Электрическая цепь — совокупность устройств, предназначенных для прохождения электрического тока. Цепь образуется источниками энергии (генераторами), потребителями энергии (нагрузками), системами передачи энергии (проводами).
Электрическая цепь — совокупность устройств и объектов, образующих путь для электрического тока. Её задача – передавать энергию устройству и обеспечивать требуемый режим работы.
Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя.
Электрическая цепь делится на внутреннюю и внешнюю части.
К внутренней части электрической цепи относится сам источник электрической энергии. Источники питания цепи — это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. В современной технике в качестве источников энергии применяют главным образом электрические генераторы.
Потребители энергии преобразовывают электрическую энергию в другие виды энергии (механическую, тепловую, световую, и т. д.) К ним относятся: электродвигатели, нагревательные и осветительные приборы и др.
В качестве вспомогательного оборудования в электрическую цепь входят аппараты для включения и отключения (например, рубильники), приборы для измерения электрических величин (например, амперметры и вольтметры), аппараты защиты (например, плавкие предохранители).
Электрический ток может протекать только по замкнутой электрической цепи. Разрыв цепи в любом месте вызывает прекращение электрического тока.
Чтобы удобнее было анализировать и рассчитывать электрическую цепь, её изображают в виде схемы. В ней содержатся условные обозначения элементов, а также способы из соединения.
Ниже приведены некоторые элементы электрической цепи:
А теперь помотрим как применяются эти обозначения при составлении схемы:
Задание 1. Начертите в тетради схему последовательного соединения потребителей электроэнергии из 2-х лампочек.
Задание 2. Начертите в тетради схему параллельного соединения потребителей электроэнергии из 2-х лампочек.
Теория | Калькуляторы | ГДЗ | Таблицы и знаки | Переменка | Главная Карта Сайта
Виды электрических цепей
Неразветвлённые и разветвлённые электрические цепи
Рисунок 1 — Разветвлённая цепь
Электрические цепи подразделяют на неразветвлённые и разветвлённые. Во всех элементах неразветвлённой цепи течёт один и тот же ток. Простейшая разветвлённая цепь изображена на рисунке 1. В ней имеются три ветви и два узла. В каждой ветви течёт свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течёт одинаковый ток) и заключённый между двумя узлами. В свою очередь, узел есть точка цепи, в которой сходятся не менее трёх ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 1), то в этом месте есть электрическое соединение двух линий, в противном случае его нет.
Линейные и нелинейные электрические цепи
Линейной электрической цепью называют такую цепь, все компоненты которой линейные. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и катушки индуктивности.
Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.
В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.
Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.
Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть применён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные, являются практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).
Виды цепей
Чтобы успешно пользоваться электросхемами, необходимо иметь представление, какую электрическую цепь называют замкнутой и разомкнутой.
Замкнутой называют непрерывную цепь, состоящую из электроприборов и проводников. Как только она прерывается – становится разомкнутой. В таком состоянии она неспособна проводить ток, хотя в ней может быть напряжение, так как в ней появляется диэлектрик. В подавляющем большинстве случаев в качестве такого диэлектрика выступает обычный атмосферный воздух. На этом принципе работают приборы, предназначенные для размыкания – выключатели, рубильники, предохранители, кнопки.
Неразветвленной называют электрическую цепь, состоящую из источника и последовательно соединенных компонентов. Важнейшим признаком здесь является то, что во всех участках ток имеет одинаковую величину. Разветвленной – имеющую в своем составе одно или несколько параллельно соединенных компонентов.
Каждая может иметь одновременно несколько классификаций и названий:
- силовой – называют соединение приборов, необходимых для производства, передачи электроэнергии, ее преобразования или потребления;
- вспомогательной – ту, которая имеет разные функциональные назначения, но которая не является силовой;
- измерительной – называют необходимую для регистрации параметров сети и включенных в нее приборов;
- управляющей – называют приводящую в действие приборы или изменяющую их параметры в зависимости от общего предназначения;
- сигнализирующей называют приводящую в действия сигнальные устройства, показывающие на наличие тех или иных изменений.

Простейшей электрической цепью является источник, соединенный проводниками с электропотребителем, а простой называют любую одноконтурную. Сложными называются цепи, имеющие два и более контура. Они в свою очередь делятся на многоузловые, многоконтурные, объемные и плоскостные.
Основные компоненты
Инвентор электрического тока
Все составные части в цепи участвуют в одном электромагнитном процессе. Условно их разделяют на три группы.
- Первичные источники электрической энергии и сигналов могут преобразовывать энергию неэлектромагнитной природы в электрическую. Например, гальванический элемент, аккумулятор, электромеханический генератор.
- Вторичный тип, как на входе, так и на выходе имеет электрическую энергию. Изменяются только ее параметры – напряжение и ток, их форма, величина и частота. Примером могут быть выпрямители, инверторы, трансформаторы.
- Потребители активной энергии преобразовывают электрический ток в освещение или тепло.
Это электротермические устройства, лампы, резисторы, электродвигатели. - К вспомогательным компонентам относят коммутационные устройства, измерительные приборы, соединительные элементы и провод.
Основой электрической сети является схема. Это графический рисунок, который содержит условные изображения и обозначения элементов и их соединение. Они выполняются согласно ГОСТу 2.721-74 – 2.758-81
Схема простейшей линии включает в себя гальванический элемент. С помощью проводов к нему через выключатель подсоединена лампа накаливания. Для измерения силы тока и напряжения в нее включен вольтметр и амперметр.
Трехфазные электрические цепи
Трехфазная цепь в рабочем режиме
Среди электрических цепей распространены как однофазные, так и многофазные системы. Каждая часть многофазной цепи характеризуется одинаковым значением тока и называется фазой. Электротехника различает два понятия этого термина. Первое – непосредственная составляющая трехфазной системы.
Второе – величина, изменяющаяся синусоидально.
Трехфазная цепь – это одна из многофазных систем переменного тока, где действуют синусоидальные ЭДС (электродвижущая сила) одинаковой частоты, которые сдвинуты во времени относительно друг друга на определенный фазовый угол. Она образована обмотками трехфазного генератора, тремя приемниками электроэнергии и соединительными проводами.
Такие цепи служат для обеспечения генерации электрической энергии, для ее передачи, распределения, и имеет следующие преимущества:
- экономичность выработки и транспортировки электроэнергии в сравнении с однофазной системой;
- простое генерирование магнитного поля, которое необходимо для работы трехфазного асинхронного электродвигателя;
- одна и та же генераторная установка выдает два эксплуатационных напряжения – линейное и фазное.
Что называется электрической цепью
ЭЦ – это комплекс элементов, при помощи которых создаётся, передаётся и потребляется электрическая энергия.
Данные элементы, или участки, содержат источники электрической энергии, а также промежуточные устройства и проводники между ними, обеспечивающие неразрывность соединений.
Как по другому называется электрическая цепь
Источниками электрической энергии являются устройства, вырабатывающие ток путём физических, химических или световых преобразований.
Важно! Приемниками электроэнергии являются устройства, работа которых напрямую зависит от активности источника. Промежуточные элементы с функциональными устройствами служат для передачи электрической энергии от источников к приемникам
В зависимости от назначения, они непосредственно передают энергию с конкретными параметрами источника
Промежуточные элементы с функциональными устройствами служат для передачи электрической энергии от источников к приемникам. В зависимости от назначения, они непосредственно передают энергию с конкретными параметрами источника.
Обозначения элементов на схеме
Прежде чем приступить к монтажу оборудования необходимо изучить нормативные сопровождающие документы.
Схема позволяет донести до пользователя полную характеристику изделия с помощью буквенных и графических обозначений, занесенных в единый реестр конструкторской документации.
К чертежу прилагаются дополнительные документы. Их перечень может быть указан в алфавитном порядке с цифровой сортировкой на самом чертеже, либо отдельным листом. Классифицируют десять видов схем, в электротехнике обычно используют три основные схемы.
- Функциональная имеет минимальную детализацию. Основные функции узлов изображают прямоугольником с буквенными обозначениями.
- Принципиальная схема подробно отображает конструкцию использованных элементов, а также их связи и контакты. Необходимые параметры могут быть отображены непосредственно на схеме или в отдельном документе. Если указана только часть установки, это однолинейная схема, когда указаны все элементы – полная.
- В монтажной электрической схеме используют позиционные обозначения элементов, их месторасположение, способ монтажа и очередность.

Выключатель на схеме выглядит как кружок с наклоненной вправо чертой. По виду и количеству черточек определяют параметры устройства.
Кроме основных чертежей есть схемы замещения.
Энергия электрического поля
Рассмотрим систему из двух проводников, на которых распределены равные по модулю, но противоположные по знаку заряды. Опыт показывает, что разность потенциалов между этими проводниками пропорциональна модулю заряда: U=q/C, где С — постоянный коэффициент, определяемый в общем случае размерами проводников, их формой и расположением в пространстве, а также диэлектрической проницаемостью среды, в которую помещены проводники. Величину С, равную отношению заряда системы проводников к разности потенциалов между ними, называют электрической емкостью (короче — электроемкостью) данной системы проводников:
C = q/U
Единицей электроемкости является кулон на вольт (Кл/В). В честь М. Фарадея эта единица получила название фарад (Ф): 1 Ф = 1 Кл/В.
Систему из двух изолированных друг от друга металлических проводников, между которыми находится диэлектрик, называют конденсатором.
Накопление энергии в электрическом поле конденсатора
где
— заряд, Кл;
— напряжение, В;
— электрическая емкость конденсатора, Ф.
Если напряжение источника в цепи конденсатора изменяется, то происходит перераспределение зарядов на его пластинах, что приводит к возникновению тока в цепи:
Мощность конденсатора положительна при его заряде и отрицательна при разряде конденсатора.
Если напряжение возрастает, то i>0. Это значит, что ток и напряжение совпадают по направлению, энергия электрического поля в конденсаторе возрастает.
При убывании напряжения ток также уменьшается, энергия возвращается обратно к источнику.
Величины R(OM), L(Гн), С(Ф) зависят от свойств самого устройства, его конструкции и являются параметрами этого устройства.
Энергия электромагнитного поля
Опыт показывает, что в контуре из двух электроламп, соленоида и реостата при отключении источника тока еще некоторое время течет электрический ток, причем сила тока со временем уменьшается от некоторого начального значения до нуля.
Одновременно с током, как известно, исчезает и магнитное поле тока. Так как никаких других источников энергии, которые поддерживали бы электрический ток в контуре, нет, то остается предположить, что энергией обладает само магнитное поле. Найдем начальную энергию W магнитного поля, считая, что она расходуется на индуцирование э. д. с. и тока самоиндукции в контуре, когда магнитный поток убывает от некоторого начального значения до нуля.
Бесконечно малое изменение энергии поля равно элементарной работе тока в контуре:
Но э. д. с. самоиндукции , а сила тока i=dQ/dt. Отсюда
dW = — Lidi
Знак минус указывает, что энергия поля уменьшается. Интегрируя это выражение, находим
где
-потокосцепление;
— индуктивность или коэффициент пропорциональности между током и потокосцеплением;
— ток через катушку.
Потокосцеплением самоиндукции y цепи называется сумма произведений магнитных потоков, обусловленных только током в этой цепи, на число витков, с которыми они сцеплены.
Если все витки пронизываются одним и тем же магнитным потоком Ф, то потокосцепление равно произведению магнитного потока на число витков y=Фw, а w = nI, где I-длина соленоида, n — густота обмотки.
В СИ потокосцепление измеряется в веберах, индуктивность — в генри.
Генри — это индуктивность соленоида, в котором при силе тока 1 А создается магнитный поток 1 Вб.
Зависимость потокосцепления от тока может быть постоянной (линейная зависимость) или нелинейной.
При изменении тока изменяется потокосцепление и в катушке наводится ЭДС самоиндукции:
Знак минус показывает, что ЭДС противодействует изменению тока в цепи.
Напряжение и мощность индуктивности равны:
Мощность может быть как положительной (при намагничивании), так и отрицательной (при размагничивании).
При нарастании тока , направления тока и напряжения совпадают, в индуктивности запасается энергия магнитного поля.
При убывании тока , направления тока и напряжения не совпадают, энергия магнитного поля в индуктивности убывает, возвращается обратно к источнику.
Явление самоиндукции можно наблюдать на опыте, собрав цепь с источником постоянного тока и двумя параллельными ветвями (смотри рисунок выше). Одна ветвь состоит из электролампы Л1 и реостата R, другая — из такой же электролампы Л2 и соленоида. С помощью реостата в обеих ветвях устанавливают одинаковую силу постоянного тока. После включения рубильника видно, что лампа Л2 начинает светиться позже, чем лампа Л1. Это объясняется тем, что в соленоиде индуцируется э. д. с. самоиндукции, препятствующая некоторое время нарастанию силы тока. У разных соленоидов время нарастания силы тока оказывается различным, так как вокруг каждого из них создаются разной величины магнитные потоки, которые индуцируют различные э. д. с. самоиндукции.
Физические величины, характеризующие цепь
Величин, которыми можно описать любую электрическую цепь несколько. Основными из них являются:
- Напряжение – U (измеряется в вольтах (В)).
- Сила тока – I (измеряется в амперах (А)).

- Сопротивление – R (измеряется в омах (Ом)).
- Мощность – P (измеряется в Ваттах (Вт)).
- Ёмкость – С (измеряется в Фарадах (Ф).
Знание формул позволяет проводить практические расчеты. К примеру, сопротивление резистора зависит не только от тока, но и от напряжения. Формула, которая это отражает, называется Законом Ома для участка цепи и выглядит так:
I=U/R, где
- I – сила тока;
- U – напряжение;
- R – сопротивление.
Если резистор имеет постоянное сопротивление независимо от того, какой ток по нему протекает, он имеет название «линейный элемент».
Когда по резистору протекает ток, его сопротивление увеличивается из-за увеличения колебания на молекулярном уровне кристаллической решетки в проводнике. Колебания мешают движению электронов, и в результате энергия теряется понапрасну. Для того чтобы предотвратить перегорание резистора в цепь последовательно ему часто устанавливают предохранитель. Он содержит внутри легкоплавкий проводник, рассчитанный на перегорание при превышении параметров.
Перегорая, предохранитель уберегает от повреждения всю схему и экономит, порой, часы при ремонте, так как поменять предохранитель легче, чем искать поврежденный компонент среди десятков таких же.
Узнать больше об электрических цепях можно с помощью видео:
- Кто изобрел электрическое уличное освещение
- Статическое электричество и защита от него
- 6 простейших способов определения полярности светодиодов
Помогла ли вам статья?
Задать вопрос
Пишите ваши рекомендации и задавайте вопросы в комментариях
Основные элементы схемы Резистор Индуктор и конденсатор
В электротехнике и электронике мы часто сталкиваемся с двумя терминами «схема» и «элемент схемы» .
Где элемент электрической цепи является самым элементарным строительным блоком электрической цепи, а электрическая цепь представляет собой взаимосвязь различных элементов схемы, соединенных таким образом, что они образуют замкнутый путь для протекания тока.
Технически элемент электрической цепи представляет собой математическую модель электрического устройства и может быть полностью охарактеризован соотношением напряжения и тока. Кроме того, элемент схемы, являющийся основным строительным блоком, не может быть разделен на другие устройства.
Существует три основных элемента схемы, которые мы используем для формирования различных электрических и электронных цепей: Резистор, Индуктор и Конденсатор . В этой статье мы подробно узнаем об этих трех элементах.
Что такое резистор?
Элемент электрической цепи, создающий электрическое трение или сопротивление на пути электрического тока, называется резистором. Характеристика, по которой он противостоит потоку тока, известна как 9.
0003 сопротивление . Сопротивление резистора обозначается символом R и измеряется в Ом ($\mathrm{\Omega}$) . Типичный символ цепи резистора показан на следующем рисунке.
Напряжение на резисторе прямо пропорционально протекающему через него току. Следовательно, с точки зрения отношения напряжения к току, если напряжение на элементе прямо пропорционально току через него, то этот элемент называется 9.0003 резистор .
Типы резисторов
Резисторы можно разделить на разные типы на основе разных параметров.
В зависимости от закона Ома резисторы можно разделить на два типа:
- Линейные резисторы
- Нелинейные резисторы
Резистор, который подчиняется закону Ома, называется линейным резистором или омическим резистором . С другой стороны, если резистор не подчиняется закону Ома, то он называется 9.0003 нелинейный резистор или неомический резистор .
В зависимости от изменения значения сопротивления существует два типа резисторов –
- Постоянные резисторы
- Переменные резисторы
Резисторы, значение сопротивления которых остается постоянным и никогда не может быть изменено, известны как постоянные резисторы .
Где, известны резисторы, значение которых можно изменить переменные резисторы .
Резистор всегда преобразует электрическую энергию в тепловую и, следовательно, рассеивает энергию, которую невозможно получить в более поздний момент времени. 9{2}t}{R}}$$
Эквивалентное сопротивление резисторов, соединенных последовательно, определяется выражением,
$$\mathrm{R_{s}=R_{1}+R_{2}+R_{3 }+…+R_{n}}$$
Эквивалентное сопротивление параллельно соединенных резисторов определяется выражением,
$$\mathrm{\frac{1}{R_{p}}=\frac{1 }{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+…+\frac{1}{R_{n}}}$$
Что такое индуктор?
Катушка индуктивности представляет собой провод конечной длины, скрученный в катушку. Катушка индуктивности также является основным элементом схемы, который используется для введения индуктивности в электрическую или электронную цепь. Катушка индуктивности обладает свойством, известным как индуктивность , которые препятствуют любому изменению электрического тока.
Символ цепи типичного индуктора показан на следующем рисунке.
С точки зрения отношения напряжения к току, если элемент цепи с двумя выводами, напряжение на выводах которого прямо пропорционально производной тока по времени, то этот элемент называется катушкой индуктивности . Следовательно, математическое соотношение между напряжением и током катушки индуктивности определяется выражением
$$\mathrm{v∝\frac{di}{dt}}$$
$$\mathrm{\Rightarrow\;v=L\frac{di}{dt}}$$
Из этого выражения видно, что напряжение на индукторе было бы равно нулю, если бы сквозное его оставалось постоянным. Следовательно, катушка индуктивности с постоянным током ведет себя как катушка короткого замыкания. Кроме того, если ток через индуктор заряжается за нулевое время, то он дает бесконечное напряжение на индукторе, что практически невозможно. Следовательно, ток через индуктор не может резко измениться.
Очень важным свойством индуктора является то, что он может хранить конечное количество энергии в виде магнитного поля.
Идеальный индуктор не рассеивает энергию, а только накапливает ее. 9{2}}$$
Эквивалентная индуктивность катушек индуктивности, соединенных последовательно, определяется выражением,
$$\mathrm{L_{s}=L_{1}+L_{2}+L_{3}+… +L_{n}}$$
Эквивалентная индуктивность катушек индуктивности, соединенных параллельно, определяется выражением,
$$\mathrm{\frac{1}{L_{p}}=\frac{1}{L_{1 }}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+…+\frac{1}{L_{n}}}$$
Что такое Конденсатор?
Элемент электрической цепи, обладающий способностью накапливать электрическую энергию в виде электрического поля, называется конденсатор . Свойство конденсатора, благодаря которому он накапливает электрическую энергию, известно как емкость .
Другими словами, элемент схемы, напряжение на выводах которого прямо пропорционально интегралу тока по времени, называется конденсатором , т. е.
$$\mathrm{v=\int\;i\; dt}$$
Простой конденсатор состоит из двух металлических пластин, разделенных изоляционным материалом.
Этот изоляционный материал называется диэлектриком и хранит электрическую энергию в виде электрического поля. В зависимости от типа используемого диэлектрического материала существует несколько типов конденсаторов, таких как бумажный конденсатор, воздушный конденсатор, слюдяной конденсатор, керамический конденсатор, электролитический конденсатор и т. д.
Типы конденсаторов
Могут также классифицироваться на основании их полярности как −
- Поляризованные конденсаторы
- Неполяризованные конденсаторы
Поляризованный конденсатор имеет фиксированную полярность выводов, а его выводы отмечены фиксированной положительной и отрицательной полярностью. Таким образом, поляризованные конденсаторы можно использовать только в цепях постоянного тока. С другой стороны, неполяризованный конденсатор имеет нефиксированную полярность выводов, поэтому этот тип конденсатора также можно использовать в цепях переменного тока.
В зависимости от изменения емкости конденсаторы могут быть двух типов, а именно постоянные конденсаторы и переменные конденсаторы .
Выражение тока конденсатора:
$$\mathrm{i=C\frac{dv}{dt}}$$
постоянна, то ток через нее равен нулю. Это означает, что конденсатор при подаче постоянного напряжения действует как короткое замыкание. Конденсатор может хранить конечное количество энергии в виде электрического поля. Кроме того, идеальный конденсатор не рассеивает энергию, а только хранит ее. 9{2}}$$
Эквивалентная емкость последовательно соединенных конденсаторов определяется выражением
$$\mathrm{\frac{1}{C_{s}}=\frac{1}{C_{1}} +\frac{1}{C_{2}}+\frac{1}{C_{3}}+…+\frac{1}{C_{n}}}$$
Эквивалентная емкость конденсаторов соединенных параллельно, определяется как,
$$\mathrm{C_{p}=C_{1}+C_{2}+C_{3}+…+C_{n}}$$
Вывод
В этой статье мы подробно обсудили три самых основных элемента электрической цепи, а именно резистор, катушку индуктивности и конденсатор. Из приведенного выше обсуждения ясно, что резистор рассеивает электрическую энергию в виде тепла, которое не может быть восстановлено.
С другой стороны, катушки индуктивности и конденсаторы хранят электрическую энергию в форме магнитного поля и электрического поля соответственно. Мы можем извлечь эту накопленную энергию позже.
Основные электрические цепи — компоненты, типы — узел электроники
Краткое описание
Что такое электрическая цепь?
Электрическая цепь представляет собой замкнутый путь для передачи электрического тока через среду электрических и магнитных полей. Поток электронов через петлю составляет электрический ток. Электроны входят в цепь через «Источник», которым может быть батарея или генератор. Источник обеспечивает энергию электронам, создавая электрическое поле, которое обеспечивает электродвижущую силу.
Электроны покидают цепь через нагрузку к земле, таким образом завершая замкнутый путь. Нагрузкой или выходом может быть любой простой бытовой прибор, такой как телевизор, лампа, холодильник, или может быть сложная нагрузка, например, на гидроэлектростанции.
Простая электрическая цепь состоит из источника (например, батареи), проводов в качестве проводящей среды и нагрузки (например, лампочки). Батарея обеспечивает необходимую энергию для потока электронов к лампочке.
Базовые элементы схемы
Как упоминалось выше во введении, цепь представляет собой взаимосвязь элементов. Эти элементы подразделяются на активные и пассивные в зависимости от их способности генерировать энергию.
Активные элементы цепи
Активные элементы — это элементы, которые могут генерировать энергию. Примеры включают батареи, генераторы, операционные усилители и диоды. Обратите внимание, что в электрической цепи элементы источника являются наиболее важными активными элементами.
Источник энергии, будь то источник напряжения или тока, бывает двух типов – независимый и зависимый. Примером независимого источника является батарея, которая обеспечивает постоянное напряжение в цепи, независимо от тока, протекающего через клеммы.
Примером зависимого источника является транзистор, который обеспечивает ток в цепи в зависимости от приложенного к нему напряжения. Другим примером является операционный усилитель, который обеспечивает напряжение в зависимости от дифференциального входного напряжения, подаваемого на его клеммы.
Пассивные элементы схемы
Пассивные элементы можно определить как элементы, которые могут контролировать поток электронов через них. Они либо увеличивают, либо уменьшают напряжение. Вот несколько примеров пассивных элементов.
Резистор : Резистор препятствует протеканию через него тока. Для линейной цепи применим закон Ома, который гласит, что напряжение на резисторе прямо пропорционально протекающему через него току, при этом пропорциональная постоянная является сопротивлением.
Индуктор : Индуктор хранит энергию в форме электромагнитного поля. Напряжение на катушке индуктивности пропорционально скорости изменения тока, протекающего через нее.
Конденсатор : Конденсатор накапливает энергию в виде электростатического поля. Напряжение на конденсаторе пропорционально заряду.
Типы электрических цепей
Цепи постоянного тока
В цепях постоянного тока применяется возбуждение от постоянного источника. По типу соединения активных и пассивных компонентов с источником цепь можно разделить на последовательную и параллельную.
Серийные цепи
Когда несколько пассивных элементов соединены последовательно с источником энергии, такая цепь называется последовательной цепью. В последовательной цепи через каждый элемент протекает одинаковый ток, а напряжение делится. В последовательной цепи, когда элементы соединены в линию, если среди них есть неисправный элемент, полная цепь действует как разомкнутая цепь.
- Для резистора, подключенного к цепям постоянного тока, напряжение на его выводах прямо пропорционально протекающему через него току, что обеспечивает линейную зависимость между напряжением и током.
Для резисторов, соединенных последовательно, общее сопротивление равно сумме всех значений сопротивления. - Для последовательно соединенных конденсаторов общая емкость равна сумме обратных величин всех значений емкости.
- Для катушек индуктивности, соединенных последовательно, общая индуктивность равна сумме всех значений индуктивности.
Параллельные цепи
В параллельной цепи одна клемма всех элементов подключается к одной клемме источника, а другая клемма всех элементов подключается к другой клемме источника.
В параллельных цепях напряжение остается неизменным в параллельных элементах, а ток изменяется. Если среди параллельных элементов есть какой-либо неисправный элемент, это не влияет на цепь.
- Для резисторов, соединенных параллельно, общее сопротивление равно сумме обратных значений всех значений сопротивления.
- Для последовательно соединенных конденсаторов общая емкость равна сумме всех значений емкости.

- Для катушек индуктивности, соединенных последовательно, общая индуктивность равна сумме всех обратных величин индуктивностей.
Цепи переменного тока
Цепи переменного тока – это цепи, элементом возбуждения которых является источник переменного тока. В отличие от источника постоянного тока, который является постоянным, источник переменного тока имеет переменный ток и напряжение через равные промежутки времени. Как правило, для приложений с высокой мощностью используются цепи переменного тока.
Простая цепь переменного тока с использованием сопротивления
Для переменного тока, проходящего через резистор, соотношение тока и напряжения зависит от фазы и частоты источника питания. Приложенное напряжение будет постоянно меняться со временем, и закон Ома можно использовать для расчета тока, проходящего через резистор в любой момент времени.
Другими словами, если в момент времени t секунд значение напряжения равно v вольт, ток будет:
i = v/R
, где значение R всегда постоянно.
Приведенное выше уравнение показывает, что полярность тока зависит от полярности напряжения. Кроме того, и ток, и напряжение достигают своего максимума и нуля одновременно. Таким образом, для резистора напряжение совпадает по фазе с приложенным током.
Рассмотрим приведенную ниже принципиальную схему
Когда переключатель замкнут, ток проходит через резистор и определяется уравнением ниже =RIm cos(ωt+Φ)
Для резистора значения напряжения и тока будут увеличиваться и уменьшаться одновременно. Следовательно, разность фаз между напряжением и током равна нулю.
Цепь переменного тока с использованием чистой индуктивности
Катушка из тонкой проволоки, намотанной на цилиндрический сердечник, известна как индуктор. Сердцевина может быть воздушной (полой многослойной) или железной. При протекании переменного тока через катушку индуктивности магнитное поле также изменяется. Это изменение магнитного поля приводит к индуцированному напряжению на катушке индуктивности.
Согласно закону Ленца, наведенное напряжение таково, что оно препятствует протеканию через него тока.
В течение первого полупериода напряжения источника индуктор накапливает энергию в виде магнитного поля, а в течение следующего полупериода высвобождает энергию.
ЭДС индукции приведена ниже:
e=Ldi/dt
Здесь L — собственная индуктивность.
Теперь приложенное входное переменное напряжение определяется как v(t)=Vm Sinωt
Ток через индуктор: I(t)=Im Sinωt
Таким образом, напряжение на индукторе будет
e= L di/dt=wLI_m coswt=wLI_m sin(wt+90)
Таким образом, для катушки индуктивности напряжение опережает ток на 90 градусов.
Теперь сопротивление катушки индуктивности называется реактивным сопротивлением и определяется как
Таким образом, импеданс или сопротивление пропорциональны скорости изменения тока для катушки индуктивности.
Цепь переменного тока с конденсатором
При постоянном питании пластины конденсатора заряжаются до приложенного напряжения, временно сохраняют этот заряд, а затем начинают разряжаться.
Как только конденсатор полностью заряжен, он блокирует поток тока, поскольку пластины насыщаются.
Когда на конденсатор подается напряжение питания переменного тока, скорость зарядки и разрядки зависит от частоты питания. Напряжение на конденсаторе отстает от тока, протекающего через него, на 90 градусов.
Ток через конденсатор определяется как
e = Ldi/dt
Емкостное сопротивление определяется как:
e = Ld/idt
Таким образом, импеданс или реактивное сопротивление по отношению к источнику переменного тока обратно пропорциональны частоте источника питания. .
Что такое короткое замыкание и обрыв цепи?
Короткое замыкание
Соединение с низким или пренебрежимо малым сопротивлением между двумя проводниками в электрической цепи называется коротким замыканием. Короткое замыкание приведет к выделению большего количества тепла и, в конечном итоге, к возникновению искр, пламени или дыма.
Короткое замыкание может быть вызвано неплотными контактами, неисправной изоляцией, резким перегрызанием проводов вредителями, старыми приборами.





Это электротермические устройства, лампы, резисторы, электродвигатели.

Для резисторов, соединенных последовательно, общее сопротивление равно сумме всех значений сопротивления.