Электрические линии определение: электрическая линия – это… Что такое электрическая линия?

Содержание

электрическая линия – это… Что такое электрическая линия?

электрическая линия
current line

Большой англо-русский и русско-английский словарь. 2001.

  • электрическая лебедка
  • электрическая машина

Смотреть что такое “электрическая линия” в других словарях:

  • электрическая линия — Совокупность проводов, изоляторов и несущих конструкций для передачи электрической энергии между двумя пунктами электрической сети [ОСТ 45.55 99] Тематики электроснабжение в целом Синонимы линия EN line …   Справочник технического переводчика

  • Электрическая линия — 33. Электрическая линия. По ГОСТ 24291 Источник: ГОСТ 19431 84: Энергетика и электрификация. Термины и определения …   Словарь-справочник терминов нормативно-технической документации

  • электрическая линия — ▲ тракт ↑ электричество провод, электрический провод, электропровод гибкий проводник электрического тока. проводка. электропроводка. кабель. фидер. троллей. шина. заземление. ↓ радиосвязь …   Идеографический словарь русского языка

  • электрическая линия с газовой изоляцией — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN gas insulated circuit …   Справочник технического переводчика

  • Ораниенбаумская электрическая линия — Годы работы: с декабря 1915 Страна: Россия Город управления: Санкт Петербург Состояние: вошла в состав …   Википедия

  • магистральная электрическая линия — магистральная линия Электрическая линия, имеющая ответвления от линии [ОСТ 45.55 99] EN tapped line teed line a main line to which branch lines are connected [IEV number 601 02 11] FR ….. ligne principale à laquelle sont… …   Справочник технического переводчика

  • радиальная электрическая линия — радиальная линия Электрическая линия, не имеющая ответвления от линии. [ОСТ 45.55 99] Тематики электроснабжение в целом Синонимы радиальная линия …   Справочник технического переводчика

  • однополюсная электрическая линия — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN monopolar lineone pole line …   Справочник технического переводчика

  • подземная (электрическая) линия — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN underground main …   Справочник технического переводчика

  • разомкнутая (электрическая) линия — разомкнутая цепь — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы разомкнутая цепь EN open circuit line …   Справочник технического переводчика

  • кабельная электрическая линия — линия для передачи электроэнергии или отдельных ее импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для масло наполненных линий, кроме того,… …   Строительный словарь

Воздушные и кабельные линии электропередачи

Содержание страницы

1. Воздушная линия электропередачи

Воздушная линия электропередачи (ВЛ) – устройство, предназначенное для передачи или распределения электрической энергии по проводам с защитной изолирующей оболочкой (ВЛЗ) или неизолированным проводам (ВЛ), находящимся на открытом воздухе и прикрепленным с помощью траверс (кронштейнов), изоляторов и линейной арматуры к опорам или другим инженерным сооружениям (мостам, путепроводам). Главными элементами ВЛ являются:

  • провода;
  • защитные тросы;
  • опора, поддерживающая провода и торосы на определенной высоте над уровнем земли или воды;
  • изоляторы, изолирующие провода от тела опоры;
  • линейная арматура.

За начало и за конец воздушной линии принимают линейные порталы распределительных устройств. По конструктивному устройству ВЛ делятся на одноцепные и многоцепные, как правило 2-цепные.

Обычно ВЛ состоит из трех фаз, поэтому опоры одноцепных ВЛ напряжением выше 1 кВ рассчитаны на подвеску трёх фазных проводов (одной цепи) (рис. 1), на опорах двухцепных ВЛ подвешивают шесть проводов (две параллельно идущие цепи). При необходимости над фазными проводами подвешивается один или два грозозащитных троса. На опорах ВЛ распределительной сети напряжением до 1 кВ подвешивается от 5 до 12 проводов для электроснабжения различных потребителей по одной ВЛ (наружное и внутреннее освещение, электросиловое хозяйство, бытовые нагрузки). ВЛ напряжением до 1 кВ с глухозаземлённой нейтралью помимо фазных снабжена нулевым проводом.

Рис. 1. Фрагменты ВЛ 220 кВ: а – одноцепной; б – двухцепной

Провода воздушных линий электропередачи в основном изготавливаются из алюминия и его сплавов, в некоторых случаях из меди и ее сплавов, выполняются из холоднотянутой проволоки, обладающей достаточной механической прочностью. Однако наибольшее распространение получили многопроволочные провода из двух металлов с хорошими механическими характеристиками и относительно невысокой стоимостью. К проводам такого типа относятся сталеалюминиевые провода с отношением площадей поперечного сечения алюминиевой и стальной части от 4,0 до 8,0. Примеры расположения фазных проводов и грозозащитных тросов показаны на рис. 2, а конструктивные параметры ВЛ стандартного ряда напряжений приведены в табл. 1.

Рис. 2. Примеры расположения фазных проводов и грозозащитных тросов на опораха – треугольное; б – горизонтальное; в – шестиугольное «бочкой»; г – обратной «елкой»

Таблица 1. Конструктивные параметры воздушных линий

Номинальное

напряжение ВЛ, кВ

Расстояние между

фазными проводами, м

Длина

пролета, м

Высота

опоры, м

Габарит

линии, м

Менее 10,540 – 508 – 96 – 7
6 – 101,050 – 80106 – 7
353150 – 200126 – 7
1104 – 5170 – 25013 – 146 – 7
1505,5200 – 28015 – 167 – 8
2207250 – 35025 – 307 – 8
3309300 – 40025 – 307,5 – 8
50010 – 12350 – 45025 – 308
75014 – 16450 – 75030 – 4110 – 12
115012 – 1933 – 5414,5 – 17,5

Для всех приведенных вариантов расположения фазных проводов на опорах характерно несимметричное расположение проводов по отношению друг к другу. Соответственно это ведет к неодинаковому реактивному сопротивлению и проводимости разных фаз, обусловленных взаимной индуктивностью между проводами линии и как следствие к несимметрии фазных напряжений и падению напряжения.

Для того чтобы сделать емкость и индуктивность всех трех фаз цепи одинаковыми, на линии электропередачи применяют транспозицию проводов, т.е. взаимно меняют их расположение друг относительно друга, при этом каждый провод фазы проходит одну треть пути (рис. 3). Одно такое тройное перемещение называется циклом транспозиции.

Рис. 3. Схема полного цикла транспозиции участков воздушной линии электропередачи: 1, 2, 3 – фазные провода

Транспозицию фазных проводов воздушной линии электропередачи с неизолированными проводами применяют на напряжение 110 кВ и выше и при протяженности линии 100 км и больше. Один из вариантов монтажа проводов на транспозиционной опоре показан на рис. 4. Следует отметить, что транспозицию токопроводящих жил иногда применяют и в КЛ, кроме того современные технологии проектирования и сооружения ВЛ позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и компактные воздушные линии сверхвысокого напряжения).

Рис. 4. Транспозиционная опора

Провода и защитные тросы ВЛ в определенных местах должны быть жестко закреплены на натяжных изоляторах анкерных опор (концевые опоры 1 и 7, устанавливаемые в начале и конце ВЛ, как это показано на рис. 5 и натянуты до заданного тяжения. Между анкерными опорами устанавливают промежуточные опоры, необходимые для поддержания проводов и тросов, при помощи поддерживающих гирлянд изоляторов с поддерживающими зажимами, на заданной высоте (опоры 2, 3, 6), устанавливаемые на прямом участке ВЛ; угловые (опоры 4 и 5), устанавливаемые на поворотах трассы ВЛ; переходные (опоры 2 и 3), устанавливаемые в пролете пересечения воздушной линией какого-либо естественного препятствия или инженерного сооружения, например, железной дороги или шоссе.

Рис. 5. Эскиз воздушной линии электропередачи

Расстояние между анкерными опорами называют анкерным пролетом воздушной линии электропередачи (рис. 6). Горизонтальное расстояние между точками крепления провода на соседних опорах называется длиной пролета

L. Эскиз пролета ВЛ показан на рис. 7. Длину пролета выбирают в основном по экономическим соображениям, кроме переходных пролетов, учитывая, как высоту опор, так и провисание проводов и тросов, а также количество опор и изоляторов по всей длине ВЛ.

Рис. 6. Эскиз анкерного пролета ВЛ: 1 – поддерживающая гирлянда изоляторов; 2 – натяжная гирлянда; 3 – промежуточная опора; 4 – анкерная опора

Наименьшее расстояние по вертикали от земли до провода при его наибольшем провисании называют габаритом линии до земли – h. Габарит линии должен выдерживаться для всех номинальных напряжений с учетом опасности перекрытия воздушного промежутка между фазными проводами и наиболее высокой точкой местности. Также необходимо учитывать экологические аспекты воздействия высоких напряженностей электромагнитного поля на живые организмы и растения.

Наибольшее отклонение фазного провода fп или грозозащитного троса fт от горизонтали под действием равномерно распределенной нагрузки от собственной массы, массы гололеда и давления ветра называют стрелой провеса. Для предотвращения схлёстывания проводов стрела провеса троса выполняется меньше стрелы провеса провода на 0,5 – 1,5 м.

Конструктивные элементы ВЛ, такие как фазные провода, тросы, гирлянды изоляторов обладают значительной массой поэтому силы действующие на одну опору достигает сотен тысяч ньютон (Н). Силы тяжения на провод от веса провода, веса натяжных гирлянд изоляторов и гололедных образований направлены по нормали вниз, а силы, обусловленные ветровым напором, по нормали в сторону от вектора ветрового потока, как это показано на рис. 7.

Рис. 7. Эскиз пролета воздушной линии электропередачи

С целью уменьшения индуктивного сопротивления и увеличения пропускной способности ВЛ дальних передач используют различные варианты компактных ЛЭП, характерной особенностью которых является уменьшенное расстояние между фазными проводами. Компактные ЛЭП имеют более узкий пространственный коридор, меньший уровень напряженности электрического поля на уровне земли и позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и линии с нетрадиционной конфигурацией расщепленных фаз).

2. Кабельная линия электропередачи

Кабельная линия электропередачи (КЛ) состоит из одного или нескольких кабелей и кабельной арматуры для соединения кабелей и для присоединения кабелей к электрическим аппаратам или шинам распределительных устройств.

В отличие от ВЛ кабели прокладываются не только на открытом воздухе, но и внутри помещений (рис. 8), в земле и воде. Поэтому КЛ подвержены воздействию влаги, химической агрессивности воды и почвы, механическим повреждениям при проведении земляных работ и смещении грунта во время ливневых дождей и паводков. Конструкция кабеля и сооружений для прокладки кабеля должна предусматривать защиту от указанных воздействий.

Рис. 8. Прокладка силовых кабелей в помещении и на улице

По значению номинального напряжения кабели делятся на три группы: кабели низкого напряжения (до 1 кВ), кабели среднего напряжения (6…35 кВ), кабели высокого напряжения (110 кВ и выше). По роду тока различают кабели переменного и постоянного тока.

Силовые кабели выполняются одножильными, двухжильными, трехжильными, четырехжильными и пятижильными. Одножильными выполняются кабели высокого напряжения; двухжильными – кабели постоянного тока; трехжильными – кабели среднего напряжения.

Кабели низкого напряжения выполняются с количеством жил до пяти. Такие кабели могут иметь одну, две или три фазных жилы, а также нулевую рабочую жилу N и нулевую защитную жилу РЕ или совмещенную нулевую рабочую и защитную жилу PEN.

По материалу токопроводящих жил различают кабели с алюминиевыми и медными жилами. В силу дефицитности меди наибольшее распространение получили кабели с алюминиевыми жилами. В качестве изоляционного материала используется кабельная бумага, пропитанная маслоканифольным составом, пластмасса и резина. Различают кабели с нормальной пропиткой, обедненной пропиткой и пропиткой нестекающим составом. Кабели с обедненной или нестекающей пропиткой прокладывают по трассе с большим перепадом высот или по вертикальным участкам трассы.

Кабели высокого напряжения выполняются маслонаполненными или газонаполненными. В этих кабелях бумажная изоляция заполняется маслом или газом под давлением.

Защита изоляции от высыхания и попадания воздуха и влаги обеспечивается наложением на изоляцию герметичной оболочки. Защита кабеля от возможных механических повреждений обеспечивается броней. Для защиты от агрессивности внешней среды служит наружный защитный покров.

При изучении кабельных линий целесообразно отметить сверхпроводящие кабели для линий электропередачи в основу конструкции которых положено явление сверхпроводимости. В упрощенном виде явление сверхпроводимости в металлах можно представить следующим образом. Между электронами как между одноименно заряженными частицами действуют кулоновские силы отталкивания. Однако при сверхнизких температурах для сверхпроводящих материалов (а это 27 чистых металлов и большое количество специальных сплавов и соединений) характер взаимодействия электронов между собой и с атомной решеткой существенно видоизменяется. В результате становится возможным притягивание электронов и образование так называемых электронных (куперовских) пар. Возникновение этих пар, их увеличение, образование «конденсата» электронных пар и объясняет появление сверхпроводимости. С повышением температуры часть электронов термически возбуждается и переходит в одиночное состояние. При некоторой так называемой критической температуре все электроны становятся нормальными и состояние сверхпроводимости исчезает. То же происходит и при повышении напряженности магнитного поля. Критические температуры сверхпроводящих сплавов и соединений, используемых в технике, составляют 10 — 18 К, т.е. от –263 до –255°С.

Первые проекты, экспериментальные модели и опытные образцы таких кабелей в гибких гофрированных криостатирующих оболочках были реализованы лишь в 70—80-е годы XX века. В качестве сверхпроводника использовались ленты на основе интерметаллического соединения ниобия с оловом, охлаждаемые жидким гелием.

В 1986 г. было открыто явление высокотемпературной сверхпроводимости, и уже в начале 1987 г. были получены проводники такого рода, представляющие собой керамические материалы, критическая температура которых была повышена до 90 К. Примерный состав первого высокотемпературного сверхпроводника YBa2Cu3O7–d (d < 0,2). Такой сверхпроводник представляет собой неупорядоченную систему мелких кристаллов, имеющих размер от 1 до 10 мкм, находящихся в слабом электрическом контакте друг с другом. К концу XX века были начаты и к этому времени достаточно продвинуты работы по созданию сверхпроводящих кабелей на основе высокотемпературных сверхпроводников. Такие кабели принципиально отличаются от своих предшественников. Жидкий азот, применяемый для охлаждения, на несколько порядков дешевле гелия, а его запасы практически безграничны. Очень важным является то, что жидкий азот при рабочих давлениях 0,8 — 1 МПа является прекрасным диэлектриком, превосходящим по своим свойствам пропиточные составы, используемые в традиционных кабелях.

Технико-экономические исследования показывают, что высокотемпературные сверхпроводящие кабели будут более эффективными по сравнению с другими видами электропередачи уже при передаваемой мощности более 0,4 — 0,6 ГВ·А в зависимости от реального объекта применения. Высокотемпературные сверхпроводящие кабели предполагается в будущем использовать в энергетике в качестве токопроводов на электростанциях мощностью свыше 0,5 ГВт, а также глубоких вводов в мегаполисы и крупные энергоемкие комплексы. При этом необходимо реально оценивать экономические аспекты и полный комплекс работ по обеспечению надежности таких кабелей в эксплуатации.

Однако следует отметить, что при строительстве новых и реконструкции старых КЛ необходимо руководствоваться положениями ПАО «Россети», согласно которым на КЛ запрещено применять:

  • силовые кабели, не отвечающие действующим требованиям по пожарной безопасности и выделяющие большие концентрации токсичных продуктов при горении;
  • кабели с бумажно-масляной изоляцией и маслонаполненные;
  • кабели, изготовленные по технологии силанольной сшивки (силанольносшиваемые композиции содержат привитые органофункциональные силановые группы, и сшивание молекулярной цепи полиэтилена (ПЭ), приводящее к образованию пространственной структуры, в этом случае происходит за счет связи кремний-кислород-кремний (Si-O-Si), а не углерод-углерод (С-С), как это имеет место при пероксидном сшивании).

Кабельную продукцию в зависимости от конструкций подразделяют на кабели, провода и шнуры.

Кабель – полностью готовое к применению заводское электротехническое изделие, состоящее из одной или более изолированных токопроводящих жил (проводников), заключенных, как правило, в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может иметься соответствующий защитный покров, в состав которого может входить броня. Силовые кабели в зависимости от класса напряжения имеют от одной до пяти алюминиевых или медных жил сечением от 1,5 до 2000 мм2, из них сечением до 16 мм2 – однопроволочные, свыше – многопроволочные.

Провод – одна неизолированная или одна и более изолированных жил, поверх которых в зависимости от условий прокладки и эксплуатации может иметься неметаллическая оболочка, обмотка и (или) оплетка волокнистыми материалами или проволокой.

Шнур – две или более изолированных, или особо гибких жил сечением до 1,5 мм2, скрученных или уложенных параллельно, поверх которых в зависимости от условий прокладки и эксплуатации могут быть наложены неметаллическая оболочка и защитные покрытия.

Просмотров: 9 192

Воздушные линии электропередачи (ВЛ, ВЛЭП)

Полезные разделы

Воздушные линии электропередачи (ВЛ, ВЛЭП)

Воздушные линии электропередачи (ВЛ, ВЛЭП)

Воздушные линии электропередачи (ВЛ, ВЛЭП) –  конструкции для передачи электроэнергии на расстояние по проводам. Основными конструктивными элементами ВЛ являются провода, тросы, опоры, изоляторы и линейная арматура. Провода служат для передачи электроэнергии. В верхней части опор над проводами для защиты ВЛ от грозовых перенапряжений монтируют грозозащитные тросы. Опоры поддерживают провода и тросы на определенной высоте над уровнем земли или воды. Изоляторы изолируют провода от опоры. С помощью линейной арматуры провода закрепляются на изоляторах, а изоляторы на опорах. В некоторых случаях провода ВЛ с помощью изоляторов и линейной арматуры прикрепляются к кронштейнам инженерных сооружений. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии. Однако, у воздушных ЛЭП имеется ряд недостатков:  широкая полоса отчуждения: в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; при прохождении линии через лес, деревья по всей ширине полосы отчуждения вырубаются;незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов; несмотря на устройства грозозащиты, воздушные линии также страдают от ударов молнии. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную;эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте. 

Определение безопасных расстояний до высоковольтных ЛЭП – блоги риэлторов


Достаточно распространена ситуация, когда в районе садового товарищества, коттеджного поселка или другой застройки проходит высоковольтная ЛЭП. Интуитивно, иногда обоснованно, иногда нет, покупатели недвижимости воспринимают ЛЭП как источник повышенной опасности. Понятно, когда
речь идет о «проводах» непосредственно над головой, обрыв которых может привести к поражению электрическим током. Но риэлторы знают, что такие же опасения высказываются и в случаях, когда ЛЭП просто «рядом», причем речь может идти  о ЛЭП в сотнях метров, о территории, которая не будет доступна покупателю ни для занятия спортом, ни для отдыха или другого доступа, например, если это соседние участки. На аргументы покупателя недвижимости типа – «очень близко ЛЭП» – риэлторам и продавцам недвижимости, как правило, нечего противопоставить, так как у них нет
соответствующего инструментария. Для восполнения пробела мною была разработана
соответствующая «Методика для риэлтора…, 2008 г., 14 с.», фрагменты которой приводятся здесь.
1. Влияние электрического поля на организм человека, животных и растения
Интенсивное электрическое поле промышленной частоты (в России – 50 Гц) вызывает нарушение функционального состояния центральной нервной и сердечно-сосудистой системы человека.  Субъективно это выражается в ухудшении самочувствия работающих, повышенной утомляемости, вялости, головных болях, плохом сне, болях в сердце и.т.п.
Проживание человека в электрическом поле повышенной напряженности в 1,5-3 раза повышает вероятность сердечно-сосудистых заболеваний, лейкемии, опухолей мозга.
Еще один эффект воздействия высоковольтных ЛЭП на экологическую обстановку – создаваемый ими
шум при хорошей погоде и особенно во время дождя. Шум вызывается коронным разрядом на проводах. При наличии капель дождя на проводе возникает новый процесс, связанный с деформацией заряженных капель и их отрывом от поверхности провода. Уровень шума при дожде на расстоянии 100 м от провода допускается в 35-70 дБ. Для ЛЭП 750 кВ и ниже уровень шума на таком расстоянии получается в пределах допустимого.
2.  Допустимые значения напряженности электрического поля в районе жилой застройки, земельных участков для садоводства и огородничества и прочих территорий
В соответствии с  Санитарными нормами /1/ качестве предельно допустимых уровней приняты следующие значения напряженности электрического поля:
– внутри жилых зданий – 0,5 кВ/м;
– на территории зоны жилой застройки – кВ/м;
– в населенной местности, вне зоны жилой застройки (земли городов в пределах
городской черты в границах их перспективного развития на 10 лет, пригородные и
зеленые зоны; курорты, земли поселков городского типа, в пределах поселковой
черты и сельских населенных пунктов, в пределах черты этих пунктов), а также на
территории огородов и садов – кВ/м.
 В зависимости от продолжительности пребывания человека в электрическом поле высоковольтных ЛЭП могут использоваться  следующие нормативы, /2/:
Напряженность поля, кВ/м // допустимое время пребывания в течение 8-часового рабочего дня:
5/8 ч, 10/ 3 ч, 15/1,3 ч, 20-25/10 мин, более 25/ 0 мин. 
3. Определение безопасных расстояний до высоковольтных ЛЭП
Электрическое поле, как и другие поля (акустическое, магнитное, гравитационное) ослабевают при удалении от источника поля. Поэтому основным способом защиты населения от воздействия электрического поля является установление санитарно- защитных зон по обе стороны от крайних
фазных проводов в направлении перпендикулярном к ЛЭП.
В соответствии с /1/ установлены следующие размеры санитарно-защитной зоны для ЛЭП сверхвысокого (более 330 кВ) напряжения:
Напряжение ЛЭП, кВ/ Протяженность санитарно-защитной зоны, м:
1150/55, 750/40, 500/30, 330/20
Размер санитарно-защитной зоны устанавливается с тем расчетом, чтобы напряженность электрического поля вне пределов зоны не превышала 1 кВ/м (см. п. 2).
По Санитарным нормам /1/ считается, что для других высоковольтных ЛЭП (220 кВ и ниже) защита населения от их электромагнитного поля не требуется при условии удовлетворения этих ЛЭП
Правилам устройства электроустановок. В частности, в этих Правилах речь будет идти о высоте подвеса фазных проводов и обеспечиваемом за счет их подъема удалении от человека.
Ранее действовавшие Московские городские строительные нормы /3/ устанавливали следующие охранные зоны в зависимости от напряжения ЛЭП:
 Напряжение ЛЭП, кВ/Протяженность санитарно-защитной зоны, м:
 1150/55, 750/40, 330-500/30, 150,220/25, 110/20, 35/15, Менее20/10. 
Как видим, нормы /3/ устанавливали более жесткие требования по протяженности охранной зоны для высоковольтных ЛЭП с напряжением менее 330 кВ. По моему мнению, имеющиеся расчеты напряженностей поля различных распределительных сетей позволяют сделать вывод, что как минимум  для ЛЭП 5 -35 кВ значения  напряженности электрического поля  в охранной зоне, определенной по /3/, будут заведомо ниже 1 кВ/м. Вероятно, разработчики норм /3/ исходили из того, что вне зависимости от напряженности электрического поля, высоковольтная ЛЭП должна
иметь охранную зону, чтобы, как указано в /3/, нельзя было размещать в этой зоне: жилые и общественные здания, площадки для остановки всех видов транспорта, автозаправочные станции, спортивные площадки, стадионы, рынки, не проводить мероприятия, связанные со скоплением большого количества людей. То есть исключить тем самым и другие источники опасности, вызванные близостью ЛЭП (поражение током, возгорание и др.). Нормы /3/ можно использовать как справочные.
Относительно шумового загрязнения высоковольтными ЛЭП окружающей среды можно заметить следующее. Для линий сверхвысокого (более 330 кВ) напряжения зона комфортного удаления от ЛЭП будет в несколько раз превосходить зону, где уровень напряженности электрического поля не превышает 1 кВ/м. Другими словами, если ЛЭП «шумит», но шум от ЛЭП не беспокоит (воспринимается как тихая комната, шепот, работа малошумного холодильника), то и с уровнем напряженности электрического поля в этом месте будет все в порядке.  Шум от ЛЭП – косвенный признак высоких значений напряжения. Если ЛЭП «не шумит», принимается во внимание только
возможное значение напряженности электрического поля в рассматриваемом месте.
Нормы /1/ и /3/ явно грешат упрощенным подходом к определению санитарно-защитной зоны. Вряд ли, в нормах /1/ и /3/ рассматривалось все многообразие конструктивных схем распределения
электрической энергии при помощи ЛЭП (несколько линий на одной опоре, компактные линии, учет провисания проводов и т.д.). Маловероятно, что в нормах /1/ и /3/ размеры санитарно-защитных зон принимались с гарантированным запасом. Это экономически нецелесообразно.
По вышеназванным причинам возникает желание определить значение охранной зоны, где уровень напряженности электрического поля меньше 1 кВ/м, расчетным или экспериментальным путем.
Методика  расчетного определения напряженности электрического поля  известна. Однако на практике воспользоваться ею затруднительно. В частности для расчета требуются диаметры, высоты подвеса и  удаление друг от друга всех фазных проводов, /4/. Вместо сбора этих данных и производства расчета проще выполнить замеры напряженности поля или ограничиться более простыми способами.  Производство замеров будет особенно актуально, если ЛЭП удалена от участка всего на несколько метров (3-20), а напряжение в ней относительно низкое (10-110 кВ). Применение «мягких» норм /1/ может быть рискованно для покупателя недвижимости, применение «жестких» норм /3/ может быть невыгодным для продавца. В этом случае каждая из сторон сделки будет заинтересована в установлении объективной картины по уровням напряженности поля
при помощи замеров.
…………..
«Методика…» содержит практические рекомендации риэлторам по оперативному определению
экологической обстановки в районе ЛЭП и формированию переговорной позиции при представлении интересов как продавца, так и покупателя недвижимости, формы соответствующих протоколов.  
……….
В качестве развлечения для тех, кто еще не заснул, читая этот блог.
 
«5.3.1.4. Из практики переговоров продавца и покупателя
5.3.1.4.1.
 Продавец: «Я 17 лет живу на этой даче, разве я выгляжу больным?»
Вариант 1 возможного ответа  покупателя: «Как говорят медики, нет здоровых людей, есть недообследованные».
Вариант 2 возможного ответа  покупателя: « Воздействие электрического поля носит накопительный характер. После набора определенной дозы воздействия поля могут возникнуть заболевания (сердечные, раковые). Поэтому я хочу опираться не на предположения, а на действующие нормативы и объективные данные».
5.3.1.4.2.
Продавец: «Мы каждый день говорим по сотовому телефону. Разве сегодня можно избежать воздействия электромагнитных полей?»
Возможный ответ покупателя: « Говорить по сотовому телефону или нет – это Ваш выбор. Если же я куплю дачу с повышенным уровнем электрического поля, я себя и своих детей такого выбора лишу.
Поэтому….» (Дальше – о скидках, об определении площади участка, которой можно пользоваться без ограничений, о защитных зонах, о замерах напряженности поля и т.п.).
5.3.1.4.3.
Продавец: « Никто на наших дачах не умер, ни от рака, ни от сердечных заболеваний».
Возможный ответ покупателя: « Основные причины смерти в нашей стране –  именно сердечно-сосудистые и раковые заболевания. Что этому способствовало в большей степени – условия в
районе Вашей дачи, в квартирах  или что-то другое – установить невозможно, но предположение сделать можно».
5.3.1.4.4.
Продавец: « В наших квартирах сотни метров электрических проводов, которые опутывают нас со всех сторон – и ничего…».
Возможный ответ покупателя: «Напряжение в наших квартирных проводах 220 В или 380 В, в Вашей же ЛЭП – ….. кВ, а это в …. (сто, тысячу) раз больше. К тому же наши квартиры сделаны из железобетона  или из кирпича с армирующей сеткой. Все это –
экраны от  электромагнитного поля. В каждом доме при вводе в эксплуатацию проводятся замеры напряженности электрического поля».
Литература
1.Санитарные нормы и правила защиты населения от воздействия электрического поля,
создаваемого воздушными линиями электропередачи переменного тока промышленной
частоты (утв. Минздравом СССР 23.02.1984, N 2971-84).
2. ГОСТ 12.1.002-84. Система
стандартов безопасности труда. Электрические поля промышленной частоты.
Допустимые уровни напряженности и требования к проведению контроля на рабочих местах.
3. МГСН 2.03-97. Система нормативных документов в строительстве. Московские городские
строительные нормы. Допустимые параметры электромагнитных излучений в помещениях жилых и общественных зданий и на селитебных территориях.
4. Влияние воздушных линий электропередачи и распределительных устройств подстанций на экологию окружающей среды.http://www.dvqps.ru/
5. Методические указания по определению электромагнитного поля воздушных высоковольтных линий электропередачи и гигиенические требования к их размещению. Утверждены Заместителем главного государственного санитарного врача СССР Э.М. Саакъянц 30 мая 1985 года N4109-86.
 
 
 
 

Как определить напряжение ЛЭП по виду изоляторов ВЛ?

Для опытного специалиста электрика нет ничего проще, чем по внешнему виду опоры ЛЭП определить напряжение на ней. Сама конструкция опоры, то какие изоляторы установлены на ней, сколько проводов, как они размещены — все это при визуальном осмотре позволит сделать вывод о напряжении конкретной высоковольтной линии. Но что делать, если специалиста нет, и перед вами стоит вопрос: “Сколько вольт в ЛЭП?” и нужно узнать напряжение в линии электропередач в киловольтах (кВ). 

Для чего обычному человеку, не имеющему никакого отношения к работе линий электропередач, знать о напряжении в проводах ЛЭП? Для чего эти базовые знания по электрике? Дело все в том, что эти знания могут оказаться не просто полезной информацией, но даже кому-то помогут спасти жизнь.

Для повышения эффективности передачи электроэнергии и снижения потерь в воздушных и кабельных линиях, электрические сети разбивают на участки с разными классами напряжения ЛЭП.

Классификация ЛЭП по напряжению

  1. Низший класс напряжения ЛЭП – до 1 кВ;
  2. Средний класс напряжения ЛЭП – от 1 кВ до 35 кВ;
  3. Высокий класс напряжения ЛЭП – от 110 кВ до 220 кВ;
  4. Сверхвысокое напряжение ВЛ – от 330 кВ до 500 кВ;
  5. Ультравысокое – от 750 кВ. 

Сколько вольт опасно для человека?

Высокое напряжение воздействует на человека опасным для здоровья образом, так как ток (переменный или постоянный) способен не только поразить человека, но и нанести ожоги. Сеть 220 в, 50 Гц уже достаточно опасна так, как считается, что постоянное или переменное напряжение, которое превышает 36 вольт и ток 0,15А убивает человека. В связи с этим, в ряде случаев даже ток осветительной сети может оказаться смертельным для человека. Поэтому высоковольные провода подвешивают на определенной высоте на ЛЭП опорах. Высота столба ЛЭП зависит от стрелы провеса провода, расстояния от провода до поверхности земли, мощности ЛЭП и т. п

С ростом рабочего напряжения в проводах ЛЭП увеличиваются размеры и сложность конструкций опор электропередач. Если для передачи напряжения 220/380 В используются обычные железобетонные (иногда деревянные) опоры ЛЭП с фарфоровыми линейными изоляторами, то воздушные линии мощность 500 кВ имеют внешний вид совсем иной. Опора ВЛ 500кВ представляет собой сборную металлическую П-образную конструкцию высотой до нескольких десятков метров, к которым три провода крепятся с помощью траверс посредством гирлянд изоляторов. В воздушных линиях электропередач максимального напряжения ЛЭП 1150кВ для каждого из трех проводов предусмотрена отдельностоящая металлическая опора ЛЭП.

Важная роль при прокладке высоковольтных ЛЭП принадлежит типу линейных изоляторов, вид и конструкция которых зависят от напряжения в линии электропередач. Поэтому напряжение ЛЭП легко узнать по внешнему виду изолятора ВЛ.

 Штыревые фарфоровые изоляторы используются для подвешивания самых легких проводов в воздушных линиях небольшой мощности 0,4-10 кВ. Штыревые изоляторы этого типа имеют значительные недостатки, основными из которых являются недостаточная электрическая прочность (ограничение напряжения ЛЭП 0,4-10кВ) и неудовлетворительный способ закрепления на изоляторе проводов ВЛ, создающие в эксплуатации возможность повреждений проводов в местах их креплений при автоколебаниях подвески. Поэтому в последнее время штыревые изоляторы полностью уступили место подвесным. Изоляторы ВЛ подвесного типа, применяющиеся у нас в контактной сети, имеют несколько иной внешний вид и размеры.

При напряжении в ЛЭП свыше 35кВ используются подвесные изоляторы ВЛ, внешний вид которых представляет собой фарфоровую или стеклянную тарелку-изолятор, шапки из ковкого чугуна и стержня. Для обеспечения необходимой изоляции изоляторы собирают в гирлянды. Размеры гирлянды зависят от напряжения линии и типа изоляторов высоковольтных линий.

Приблизительно определить напряжение ЛЭП, мощность линии по внешнему виду, простому человеку бывает трудно, но, как правило, это можно сделать простым способом — точно посчитать количество и узнать сколько изоляторов в гирлянде крепления провода (в ЛЭП до 220кВ), или число проводов в одной связке («пучке») для линий от 330кВ и выше..

Сколько вольт в высоковольтных проводах ЛЭП?

 Электрические линии малого напряжения – это ЛЭП-35 кВ (напряжение 35000 Вольт) легко определить самому визуально, т.к. они имеют в каждой гирлянде небольшое количество изоляторов – 3-5 штук.

ЛЭП 110 кВ – это уже 6-10 высоковольтных изоляторов в гирляндах, если число тарелок от 10-ти до 15-ти, значит это ВЛ 220 кВ.

Если вы можете видеть, что высоковольтные провода раздваиваются (расщепление) тогда — ЛЭП 330 кВ, если количество проводов подходящих на каждую траверса ЛЭП уже три (в каждой высоковольтной цепи) — то напряжение ВЛ 500 кВ, если количество проводов в связке четыре – мощность ЛЭП 750кВ.

 Для более точного определения напряжения ВЛ обратитесь к специалистам в местное энергетическое предприятие – собственник, чтобы узнать чья опора ЛЭП и найти владельца кому принадлежат электрические сети. Также точно узнать напряжения можно, посмотрев маркировку, что написана на опоре ЛЭП, рядом с номером. Буква в маркировке означает: Т – 35 кВ, С – 110 кВ, Д – 220 кВ.

Количество изоляторов на ЛЭП (в гирлянде ВЛ)

Количество подвесных изоляторов в гирляндах ВЛ на металлических и железобетонных опорах ЛЭП в условиях чистой атмосферы (с обычным полевым загрязнением).

Тип изолятора по ГОСТ ВЛ 35 кВ ВЛ 110 кВ ВЛ 150 кВ ВЛ 220 кВ ВЛ 330 кВ ВЛ 500 кВ
ПФ6-А (П-4,5) 3 7 9 13 19
ПФ6-Б (ПМ-4,5) 3 7 10 14 20
ПФ6-В (ПФЕ-4,5) 3 7 9 13 19
(ПФЕ-11) 6 8 11 16 21
ПФ16-А 6 8 11 17 23
ПФ20-А (ПФЕ-16) 10 14 20
(ПФ-8,5) 6 8 11 16 22
(П-11) 6 8 11 15 21
ПС6-А (ПС-4,5) 3 8 10 14 21
ПС-11 (ПС-8,5) 3 7 8 12 17 24
ПС16-А 6 8 11 16 22
ПС16-Б 6 8 12 17 24
ПС22-А 10 15 21
ПС30-А 11 16 22

электрическая линия

Электрические сопротивления, автоматически изменяющиеся в определенной зависимости от силы проходящего через них тока, могут быть сконструированы различным образом. В машине ВНИИ ВОДГЕО используются, как сказано, нелинейные электромеханические автоматы [19, 37]. В машине Мак-Илроя применяются специальные лампы накаливания, обеспечивающие требуемую зависимость Д 7 от / [63]. В аналоговых устройствах Академии коммунального хозяйства [23] и в английской машине Ванда [70] для тех же целей используется метод «линейно-кусочной аппроксимации», при котором кривая, выражающая зависимость АII от I, для элементов системы заменяется ломаной линией; на отдельных ее участках Д£/ = £/ при различных значениях [ …]

Линии электропередачи могут быть воздушными и кабельными, причем кабельные линии применяют для передачи электрического тока напряжением только до 10 000 в; электроснабжение насосных станций, расположенных вне территории завода, обычно осуществляется по воздушным линиям, а насосных станций, расположенных на заводской площадке, — по кабельным линиям.[ …]

Трассы линий электропередачи и связи относят к объектам умеренного воздействия на леса. Они могут прокладываться отдельно или в едином коридоре коммуникаций вместе с дорогами и трубопроводами. Разрубка трасс под эти объекты сопровождается расчленением лесных массивов и образованием неустойчивых опушек и кулис. Срубленная древесина преимущественно оставляется в лесу: от 60 до 80% срубленной древесины остается на трассе разбросанной, сдвинутой к стенам леса или частично собранной в пакеты. Это повышает пожароопасность и создает благоприятные условия для появления вредителей леса. Земли, которые отчуждаются под ЛЭП, линии связи и трубопроводы, после окончания строительства объектов не могут использоваться для лесовыращивания в течение всего срока их эксплуатации. Это связано с необходимостью периодической расчистки площадей от древесной растительности и ограничениями, установленными Правилами охраны электрических сетей, линий, магистральных трубопроводов.[ …]

Для защиты от электрических полей промышленной частоты, возникающих вдоль линий высоковольтных электропередач (ЛЭП), необходимо увеличивать высоту подвеса проводов линий, уменьшать расстояние между ними, создавать санитарнозащитные зоны вдоль трассы ЛЭП на населенной территории (табл. 18.2). В этих зонах ограничивается длительность работ, а также заземляются машины и оборудование.[ …]

Еще одна разновидность электрического детектирования заключается в регистрации выбранных характеристических массовых линий элементов путем автоматического переключения напряженности магнитного поля или ускоряющего и фокусирующего напряжений. При этом ионный ток, соответствующий каждому выбранному виду ионов, интегрируется в течение значительно большего промежутка времени, что позволяет «сглаживать» нестабильность ионного тока разрядного источника и уменьшить влияние неоднородности образца на результаты анализа. Увеличение времени регистрации обусловливает также значительное повышение чувствительности этого способа детектирования по сравнению с таковой в методе последовательного сканирования всех массовых линий. Применение техники детектирования выбранных ионов при анализе образцов, содержащих неизвестные элементы, связано со значительными трудностями, что является существенным недостатком этого метода. Однако электрическое детектирование, сокращая время, требуемое для анализа, делает метод ИМС пригодным для рутинной эксплуатации, допускающей проведение исследований при относительно низком разрешении. Благодаря этому искровую масс-спектрометрию применяют при определении элементного состава следовых загрязнении в аэрозолях угольной пыли и продуктах газификации каменных углей.[ …]

Под действием существующего электрического поля, направленного поперек хвоста, и магнитного поля хвоста плазма дрейфует от плазменной мантии к плазменному слою и из плазменного слоя по направлению к Земле. Такое движение плазмы называется магнитосферной конвекцией. Электрическое поле поперек хвоста обусловлено магнитным пересоединением и вязким трением между солнечным ветром и магнитосферой. Благодаря крупномасштабной конвекции плазма способна покидать магнитосферу через дневную магнитопаузу, при этом концентрация холодной плазмы за пределами плазмосферы резко уменьшается (по сравнению с концентрацией плазмы в плазмосфере, в которую конвекция не проникает). Плазмосферой называется область с повышенной концентрацией ( 103 см-3) плазмы ионосферного происхождения и тепловой энергией 1,0 эВ. Образование плазмосферы обусловлено суточным вращением Земли вместе с геомагнитным полем, увлекающим за собой плазму вплоть до высот 3 • 104 км. На высоких широтах вдоль силовых линий линий из ионосферы в магнитосферу движется поток плазмы, называемый полярным ветром. Полярный ветер переносит нагретую плазму в удаленные области хвоста, пополняя магнитосферу ионами из верхней атмосферы.[ …]

Пусть при наложении внешнего электрического поля произойдет перемещение одного из атомов водорода по линии связи О—О из одного положения в другое. Тогда первый атом кислорода потеряет ион водорода, а второй приобретет. Вследствие этого появится диполь О-—0+. Восстановление равновесия произойдет в том случае, если в эту пару О-—0+ перескочит ион водорода из другой пары, и т. д. В результате появится электрический ток. Таким образом, электропроводность чистого льда можно объяснить переходом ионов водорода под действием внешнего электрического поля, т. е. лед имеет протонную проводимость.[ …]

Интенсивность излучения. Ширина линии излучения и когерентность. Напряженность электрического поля. Возможность управления и модуляции. Угол расходимости пучка. Гауссов пучок.[ …]

В разных чрезвычайных ситуациях электрические сооружения и сети могут получить различные разрушения и повреждения. Их наиболее уязвимыми частями являются наземные сооружения (электростанции, подстанции, трансформаторные станции), а также воздушные линии электропередач. В современных крупных энергосистемах применяются различные автоматические устройства, способные практически мгновенно отключить поврежденные электроисточники, сохраняя работоспособность системы в целом.[ …]

Биологически значимыми являются электрические и магнитные поля частотой 50 Гц, создаваемые воздушными линиями и трансформаторными подстанциями. ЭМП промышленной частоты в основном поглощаются землей, поэтому на небольшом расстоянии от ЛЭП напряженность этого поля быстро падает. Тем не менее под проводами ЛЭП с напряжением 750 кВ на уровне 1,8 м от поверхности земли создается магнитное поле напряженностью порядка 24-100 А/м. В местах провисания проводов эти значения увеличиваются в 3—5 раз, а напряженность электрического поля составляет от 10 до 100 кВ/м, что многократно превышает предельно допустимый уровень. Несмотря на это, в непосредственной близости и даже прямо под высоковольтными ЛЭП размещается большое количество садово-огородных участков населения.[ …]

Ионы из атмосферы вытягиваются продольным электрическим полем в плазменный слой геомагнитного хвоста. В результате крупномасштабной магнитосферной конвекции ионы попадают во внутреннюю магнитосферу и составляют основную часть ионов магнитосферного кольцевого тока. Заряженные частицы, движущиеся вокруг Земли на расстояниях (3-4) образуют магнитосферный кольцевой ток. Кольцевой ток состоит в основном из ионов Н+, 0+ с добавкой Не+,-0++, Не++. Результирующий ток течет вокруг Земли в западном направлении и понижает горизонтальную составляющую геомагнитного поля Земли. Потоки энергичных частиц с энергией свыше 1 МэВ образуют радиационный пояс в области замкнутых геомагнитных линий, который является магнитной ловушкой для частиц. Во время суббурь происходит инжекция частиц из плазменного слоя в радиационный пояс. Потоки в радиационном поясе заметно увеличиваются в периоды магнитных бурь [136].[ …]

Диапазон измерения этих приборов соответствовал электрической проводимости растворов коагулянта. Конструктивная особенность заключалась в том, что электроды были выполнены из молибдена, предварительно обработанного раствором едкого натра. В результате такой обработки поверхность электродов покрывается тонкой пленкой окислов, которая почти полностью исключает образование двойного электрического слоя на границе „электрод – раствор”, а следовательно, и образование реактивной ЭДС, действующей как помеха в измерении . Кондуктометры АК-1 и АК-1У были установлены на узле приготовления рабочего раствора коагулянта одного из блоков Северной водопроводной станции и включены вк систему автоматического регулирования концентрации раствора (рис. Технологическая схема узла рассчитана на поочередное наполнение и срабатывание баков рабочего раствора. При минимальном уровне раствора в баке по сигналу от уровнемера отключается насос, подающий раствор на дозирование, и включается на открытие задвижка 4 на линии чистой воды.[ …]

Источником электромагнитного излучения являются мощные электрические машины и установки, линии электропередач, технические комплексы радио и телевидения и др. Воздействие таких излучений на живые организмы приводит к нарушениям в тонких клеточных и молекулярных биологических структурах, вызывающим серьезные физиологические и психические расстройства. Так, по данным ученых США, у людей, проживающих в радиусе 200 м от линии электропередач 60 кВ и более, вероятность онкологических заболеваний увеличивается примерно в 3 раза. Кроме того, электромагнитные излучения вызывают существенные помехи в работе электронных систем, приборов, что может стать причинами аварий и катастроф.[ …]

Санитарные нормы и правила защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередач переменного тока промышленной частоты (№ 2971-84). — М., 1984. .[ …]

При движении электропроводящего тела сквозь магнитные силовые линии в нем возникает электрический ток. В обычном генераторе роль такого «тела» выполняют медные обмотки, вращающиеся в магнитном поле. В магнитогндродинамическом генераторе (МГД-геператоре) телом, пересекающим магнитное поле, является газ или жидкость. Возникающий в жидкости или газе ток отводится электродами в сеть, которая доставляет ток к потребителю. В МГД-генераторах нет движущихся механических частей, нет «ступенек» преобразования энергии, поэтому КПД МГД-злектро-станции высокий: 50—60% (у тепловой не больше 42%).[ …]

При предварительной очистке жидкости процесс интенсифицируется электрическим полем. Механизм удаления частиц загрязнений в электрическом поле обусловлен наличием двойного электрического слоя на поверхности частиц, состоящих из высокополярных молекул и их ассоциатов. В электрическом поле такие частицы движутся к электродам. Механизм коалесценции воды в электрическом поле объясняется перераспределением нейтральных зарядов эмульгированных капель воды в диполи, которые ориентируются вдоль силовых линий поля, притягиваются друг к другу и агрегируются. Достаточно крупные капли воды выпадают в отстойную зону. Кроме индуцированных зарядов, капли и частицы при соприкосновении с электродами могут приобретать собственные заряды, под влиянием которых происходит интенсивная миграция частиц загрязнений от электрода к электроду. Этот процесс при оптимальных условиях также приводит к дальнейшей коагуляции частиц загрязнений. На интенсификацию процесса удаления загрязнений влияет также и форма электродов и их расположение: электрод в форме заостренного клипа обеспечивает создание большей напряженности электрического поля; расположение электродов касатбЯьно под углом 15° обеспечивает повторный выброс не отделившихся мелких примесей в зоне размещения электродов.[ …]

Вертикальное движение нефтяной эмульсии, совпадающее с направлением силовых линий электрического поля, и отсутствие конвекционных потоков создают благоприятные условия для интенсивного столкновения и слияния капель воды, движущихся вверх, с оседающими каплями после их укрупнения в верхних слоях аппарата.[ …]

Примечания: 1. Ширина полос земель и площади земельных участков, отводимых для электрических сетей напряжением более 500 кВ и опор больших переходов линий электропередачи всех напряжений, определяются проектом, утвержденным в установленном порядке.[ …]

Этот процесс называется ударной ионизацией газа, он протекает устойчиво лишь в неоднородном электрическом поле, характерном для цилиндрического конденсатора (рис. . 17.9). В зазоре между ко-ронирующим 1 и осадительным 2 электродами создается электрическое поле убывающей напряженности с силовыми линиями 3, направленными от осадительного к коронирующему электроду или наоборот. Напряжение к электродам подается от выпрямителя 4.[ …]

Эмульсия в горизонтальном электродегидраторе движется снизу вверх вдоль направления силовых линий переменного электрического поля и последовательно подвергается воздействию электрического поля различной напряженности. Сырье вводится в нижнюю часть дегидратора с помощью маточника, равномерно распределяющего поток по всему сечению аппарата. Обезвоженная и-обессоленная нефть выводится также через маточник, расположенный в верхней части аппарата. Уровень соляного раствора поддерживается между нижним электродом и входным маточником на расстоянии 200-400 мм от последнего.[ …]

В аргоно-ртутных лампах низкого давления типа БУВ-15, БУВ-30 и БУВ-60-П 60% излучаемой энергии приходится на долю линии с длиной волны 2537 А°. Благодаря этому выход бактерицидной энергии в таких лампах значительно повышается. Так на 1 вт потребляемой энергии ртутно-кварцевые лампы дают выход бактерицидной энергии 0,033 вт, аргоно-ртутные —- 0,146 вт. Тем не менее значительная электрическая мощность ламп ПРК, достигающая 1000 ет, обеспечивает возможность получения значительного количества бактерицидной энергии. В табл. 22 приведена сравнительная характеристика ламп.[ …]

Структурная схема современного микропроцессорного жидкостного хроматографа приведена на рис. 11.2 (пунктирной линией показаны потоки элюента, сплошной — электрические соединения). Гидравлическая схема любого жидкостного хроматографа в простейшем случае состоит из насоса, колонки и детектора. Основное назначение насосов состоит в создании стабильного потока элюента и обеспечении давления, необходимого для пропускания подвижной фазы элюента через хроматографическую колонку. Диапазон расходов подвижной фазы 0,01—100 мкл/мин.[ …]

Как аэроионы, так и заряженные аэрозоли обладают способностью двигаться с определенной скоростью вдоль силовых линий электрического поля. Это было экспериментально доказано нами еще в 1932—1933 гг. Попытка создать с помощью электрического поля направленное движение униполярного медикаментозного аэрозоля по сложным дыхательным путям организма потерпела неудачу. Аэрозоли в этих случаях быстро разряжались уже в верхних дыхательных путях и не доходили до легочных альвеол. Таким образом, наложение поля на организм препятствует глубокому проникновению частиц.[ …]

Одним из основных затруднений при электромоделировании гидравлических систем является то, что падение потенциала и сила тока в электрических проводниках связаны линейной зависимостью, тогда как потеря напора в линиях водопроводной сети связана с расходом нелинейно.[ …]

В случае ледяных гидрометеоров сферической формы также можно ожидать возникновения коронного разряда, но при более высоких значениях напряженности электрического поля из-за отсутствия искривления поверхности под действием сил поля. Однако твердые гидрометеоры сферической формы редко имеют идеально гладкую поверхность; как правило, на них появляются всякого рода выпуклости, рога и т. п. Для твердых гидрометеоров продолговатой или пластинчатой формы существуют благоприятные условия для возникновения коронного разряда в электрическом поле, особенно если отношение осей велико и длинная ось имеет то же направление, что и электрическое поле. Весьма легко должен возникать коронный разряд с концов пары гидрометеоров продолговатой формы, когда они сближаются своими концами и составляют одну линию с направлением электрического поля. В этом случае коронный разряд будет происходить не только с внешних концов гидрометеоров, но и в промежутке между ними.[ …]

Правилами устройства электроустановок (ПУЭ) определено понятие «электроустановка». Электроустановкой принято называть совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями), предназначенных для производства, преобразования, трансформации, распределения электрической энергии и преобразования ее в другие виды энергии.[ …]

При эмиссионном спектральном анализе исследуемую пробу испаряют или сжигают, если это жидкое или твердое вещество, затем подвергают действию высокой температуры или электрического разряда для перевода атомов в возбужденное состояние и регистрируют спектр. Качественный эмиссионный анализ сводится к расшифровке линий в спектре анализируемого образца. Количественный анализ основан на сравнении интенсивности спектральных линий образца с интенсивностью линий в спектре стандартного образца, содержание определяемого элемента в котором известно.[ …]

Одним из методов разделения изотопов 233и и 238и является метод двухступенчатой селективной фотоионизации, сущность которого заключается в следующем. Изотопический сдвиг между линиями этих изотопов составляет примерно 7 ГГц. За счет до-плеровского уширения, которое проявляется при нагреве урано-рениевого сплава для получения испаряемых атомов урана, ширина каждой из линии достигает примерно 1 ГГц. Таким образом, перекрытия линий изотопического сдвига не происходит. Лазер на красителе настраивается на длину волны возбуждения 235и (А = 0,59154 мкм при ширине линии примерно 0,05 ГГц). Вспомогательное излучение ртутной лампы с помощью фильтра (ДА=0,21 — 0,31 мкм) ионизует только возбужденные атомы 23 и и не вызывает ионизацию атомов 23 8и, для ионизации которых нужно излучение с динами волн X [ …]

В исходном положении угол поворота ротора сельсина-датчика равен нулю (ад=0). На обмотку возбуждения ОВД подано переменное напряжение. В трехфазных согласующих обмотках СД наводится ЭДС, а в линии связи и в трехфазных согласующих обмотках СП возникает ток. Переменный ток, протекающий по согласующим обмоткам СП, возбуждает пульсирующее магнитное поле, ось которого перпендикулярна оси ОВП, так как ОВП повернута относительно ОВД на угол 90°. Электрический сигнал на выходе ОВП равен нулю.[ …]

Министерству энергетики и электрификации СССР и Советам Министров союзных республик осуществлять приемку в установленном порядке от садоводческих товариществ на баланс районных энергетических управлений линий электропередачи напряжением 6 — 10 киловольт, низковольтных линий электропередачи и трансформаторных подстанций, подключенных к электрическим сетям и электростанциям государственных энергосистем.[ …]

На нефтепроводе «Дружба» эксплуатируются две системы «Волна», принцип действия которых состоит в том, что при отключении любой промежуточной станции, если на ней работали два или три насосных агрегата, на предыдущую станцию по каналу связи передается электрический сигнал, при этом снижается уставка регулятора давления на линии нагнетания или отключается один агрегат.[ …]

Правовой режим земель транспорта определен Положением об этих землях, утвержденным Советом Министров СССР в 1981 г., которое является действующим на сегодняшний день нормативным актом. Порядок использования других видов земель установлен Правилами охраны электрических сетей, Правилами охраны магистральных трубопроводов, Правилами охраны линий связи и др. Там же определяется правовой режим защитных зон.[ …]

Все возрастающие требования к точности и скорости анализа обусловили внедрение в практику атомно-эмиссионного спектрального анализа фотоэлектрических способов регистрации и фотометрии спектров. Сущность этих методов заключается в том, что световой поток нужной аналитической линии отделяют от остального спектра пробы с помощью монохроматора и преобразуют в электрический сигнал. Мерой интенсивности линии служит значение этого сигнала (сила тока или напряжение).[ …]

Механизм действия отрицательных аэроионов на взвешенные в воздухе частицы состоит в следующем. Отрицательные ионы воздуха заряжают (или перезаряжают) пыль и микрофлору, находящиеся в воздухе, до определенного потенциала, пропорционально их радиусу. Заряженные пылевые частицы или микроорганизмы начинают двигаться вдоль силовых линий электрического поля по направлению к противоположно (положительно) заряженному полюсу, т. е. к земле, к стенам и к потолку. Если выразить в динах силы гравитации и силы электрические, действующие на тонкодиоперсную пыль, то легко увидеть, что электрические силы превосходят силы гравитации в тысячи раз. Это дает возможность по желанию строго направлять движение облака тонкодисперсной пыли и очищать таким образом воздух в данном месте. При отсутствии электрического поля и диффузном движении отрицательных аэроионов между каждым движущимся аэроионом и положительно заряженной землей (полом) возникают силовые линии, вдоль которых движется данный аэроион вместе с частичкой пыли или бактерией. Осевшие на поверхность пола, потолка и стен микроорганизмы могут периодически удаляться. Как видим из изложенного, разработанный автором метод электрической преципитации имеет мало общего с современным методом фильтрации, или воздействия электрическим полем (электрофильтры). Наш метод позволяет очищать воздух в помещениях любой кубатуры в присутствии человека, что отличает его от предложенных до настоящего времени способов.[ …]

С точки зрения затрат на автоматизацию и ее обслуживание равноценны те варианты, которые имеют равное число реакторов (безразлично, проточных или периодически действующих) на каждом потоке сточной воды, так как в этом случае будет использовано одно и то же число комплектов приборов контроля, средств управления и коммутационных устройств на электрических и гидравлических линиях коммуникаций. Таким образом, если количество стоков данного потока за один рабочий цикл окажется больше, чем рабочий объем одного реактора периодического действия, и по конструктивным или иным соображениям не может быть принят реактор большего объема, очевидно, в этом случае следует использовать реакторы проточного типа. Увеличение числа реакторов вдвое на потоках циан-и хромсодержащих сточных вод усложняет систему автоматизации по крайней мере в 4 раза, так как каждый из этих реакторов оборудуется двумя системами контроля и управления.[ …]

Приборы состоят из диспергирующего устройства (монохроматора). предназначенного для разделения различных эмиссионных линю! по длинам води, и приемника (или приемников излучения какого-либо типа.[ …]

Ионосфера и магнитосфера излучают радиоволны различных частот. В диапазоне низких частот 1-10 кГц обнаружено радиоизлучение ионосферного происхождения, которое вызывается возмущениями ионосферной плазмы, вызванными вторжением заряженных частиц. Радиоизлучение разделяется на несколько типов: «шипение» теплового характера, дискретное с определенным тоном и смесь дискретных излучений, так называемые хоры. Излучение локализовано в области размером 200-1000 км, поскольку распространяется вдоль узкого пучка магнитных силовых линий. Свистящие атмосферики» (или вистлеры) звуковой частоты распространяются вдоль силовых линий геомагнитного поля. Удаленными ИСЗ обнаружено километровое радиоизлучение магнитосферы, всплески которого возникают в периоды локального усиления потоков высокоэнергичных электронов. Излучение концентрируется вокруг зоны полярных сияний.[ …]

Основным прибором, при помощи которого велись наблюдения за атмосферным электричеством, был так называемый коллектор, устанавливаемый на более или менее высокой штанге, изолированной от земли. Коллектор соединялся с листочками электроскопа. Обкладка, или кожух, электроскопа заземлялись. По величине расхождения листочков можно бы ло судить о градиенте потенциала на метр высоты. Теперь мы знаем, что падение потенциала выражается в среднем у поверхности земли величиною 1 вольт на сантиметр, 100 вольт на метр и т. д. Во время грозы величина падения потенциала доходит до 40 тыс. вольт на метр. Силовые линии электрического поля атмосферы направлены сверху от положительно заряженного слоя вниз к отрицательно заряженной земле, а изопотенциальные поверхности идут параллельно поверхности земли. Таким образом, электрическое поле является обязательным фактором свободной атмосферы.[ …]

Нормальный эксплуатационный режим является фактором, определяющим работу и, как следствие этого, выбор изоляции не только в районах с тяжелыми загрязнениями, но также в районах, которые по существовавшим ранее воззрениям не являются загрязненными (лесные, сельскохозяйственные). Общий фон загрязнения атмосферы за последние годы во многих районах повысился, в частности в районах с интенсивным сельским хозяйством вследствие применения химических удобрений и механизации сельскохозяйственного производства. На повышение роли нормального эксплуатационного режима повлияло также снижение уровня внутренних перенапряжений на линиях электропередачи, обусловленное применением коммутационных разрядников с улучшенными характеристиками, и усовершенствование электрических схем линий и подстанций. В результате этого изоляция ВЛ и ОРУ, выбранная по нормальному эксплуатационному режиму, в большинстве случаев надежно работает и при внутренних перенапряжениях.[ …]

Из-за разных ускорений продольной и поперечной составляющих скоростей заряженных частиц при крупномасштабной конвекции плазмы образуется анизотропное распределение частиц по скоростям. Это приводит к возникновению волн в плазме с последующим рассеиванием частиц на этих волнах (волны «свистов») и попаданием частиц в магнитные ловушки. Затем заряженные частицы из этих ловушек попадают в атмосферу, вызывая ее свечение. Крупномасштабная конвекция расслаивается на мелкомасштабные неоднородности. Дуги полярных сияний являются проявлением мелкомасштабного расслоения. Образование дуг полярных сияний происходит от локального усиления продольного тока в результате внутримагнитосферных процессов. В продольном электрическом поле происходит ускорение электронов и по мере их продвижения к Земле и вторжения в атмосферу возникают дискретные формы полярных сияний. Для частиц высоких энергий, превышающих тепловую, области замкнутых геомагнитных линий являются геомагнитными ловушками. В них существуют потоки электронов и протонов с энергиями более 1 МэВ, которые образуют радиационный пояс. Во время магнитных бурь опасность этих радиационных поясов возрастает.[ …]

5.1. Электрические цепи с распределенными параметрами основные определения

В этом разделе будем рассматривать длинные линии или цепи, сводящиеся к длинным линиям.

Электрическими линиями с распределенными параметрами назы­вают такие линии, в которых для одного и того же момента времени ток и напряжение непрерывно изменяются при переходе от одной точки (сечения) линии к другой, соседней точке.

Под магнитными линиями с распределенными параметрами пони­мают такие линии, магнитный поток и магнитное напряжение вдоль которых непрерывно меняются при переходе от одной точки линии к соседней.

Эффект непрерывного изменения тока (потока) и электрического (магнитного) напряжения вдоль линии существует вследствие того, что линии обладают распределенными продольными и поперечными сопротивлениями (рис. 5.1, а).

На схеме (рис. 5.1, а) изображен участок линии с распределен­ными параметрами, через dx обозначен бесконечно малый элемент длины линии.

Сопротивления Z1, Z2, Z3, … называют продольными сопротивлениями, в них включены сопротивления и прямого, и обратного проводов; сопротивления Z4, Z5 , Z6 … называют поперечными сопро­тивлениями.

В результате утечки тока через сопротивление Z4 ток . Аналогично, ток и т.д. Напряжение между точками а и b не равно напряжению между точками с и d и т.д.

В электрических линиях с распределенными параметрами продоль­ные сопротивления образованы активными сопротивлениями проводов линии и индуктивностями двух противостоящих друг другу участков линии длиной dx. Поперечные сопротивления состоят из сопротивле­ний утечки, появляющейся вследствие несовершенства изоляции между проводами линии, и емкостей, образованных противостоящими друг другу элементами (участками) линии. В магнитных линиях с рас­пределенными параметрами продольные сопротивления представляют собой магнитные сопротивления самих магнитных стержней, образую­щих магнитную линию, а поперечные сопротивления обусловлены утечкой магнитного потока по воздуху между противостоящими друг

другу участками линии.

Линию с распределенными параметрами называют однородной, если равны друг другу все продольные сопротивления участков линии одинаковой длины и если равны друг другу все поперечные сопро­тивления участков линии одинаковой длины. Так, участок линии (рис. 5.1, а) однороден, если Z1 = Z2 =Z3 =… и Z4 = Z5 = Z6.

Линию с распределенными параметрами называют неоднородной, если продольные сопротивления в ней различны или поперечные сопротивления неодинаковы.

Кроме того, линии с распределенными параметрами можно под­разделить на две большие группы: нелинейные и линейные.

В качестве примера нелинейной электрической линии с распреде­ленными параметрами можно назвать электрическую линию передачи высокого напряжения при наличии между проводами линии тихого электрического разряда – явления короны на проводах. В этом слу­чае емкость между противостоящими друг другу участками линии является функцией напряжения между этими участками.

В качестве примера нелинейной магнитной линии с распределен­ными параметрами можно назвать линию, образованную параллельно расположенными магнитными сердечниками, которые в процессе работы линии могут насыщаться.

Когда говорят о линии с распределенными параметрами, то обычно этот термин мысленно связывают с мощными линиями передачи элек­трической энергии на большие расстояния, с телефонными и телеграф­ными воздушными или кабельными линиями, с рельсовыми линиями автоблокировки на железнодорожном транспорте, с антеннами в ра­диотехнике и другими родственными линиями и установками.

В то же время с линиями с распределенными параметрами имеют дело и тогда, когда «линий» в буквальном смысле слова, казалось бы, вовсе нет. Так, обычная индуктивная катушка при достаточно высо­ких частотах представляет собой линию с распределенными парамет­рами (рис. 5.1, б). Из рисунка (рис. 5.1, в) видно, что кроме индуктивностей в схеме замещения есть межвитковые емкости и емкости на корпус прибора (на землю).

Если по катушке проходит переменный ток, то через межвитко­вые емкости и емкости на землю также идет ток. При одном и том же напряжении между соседними витками ток через емкости тем больше, чем выше частота переменного тока. При низкой частоте (десятки, сотни, тысячи герц) ток через емкости несоизмеримо мал, по сравнению с токами через витки катушки, и наличие емкостей можно не учитывать в расчете (что и делалось до сих пор).

Если же частота тока очень велика, например сотни миллиардов герц, то токи через емкости могут во много раз превышать токи через витки катушки. В этом случае вся катушка в целом будет оказывать прохождению переменного тока емкостное, а не индуктивное сопротивление (коли­чественные изменения перешли в качественные).

При промежуточных частотах, порядка нескольких мегагерц (когда линейные размеры ка­тушки соизмеримы с длиной волны), индуктивная катушка является типичной линией с распределенными параметрами.

Если индуктивная катушка намотана на стальной сердечник, который способен насы­щаться, и частота тока достаточно велика, то все устройство в целом представляет собой сложную совокупность из электрической и маг­нитной нелинейных цепей с распределенными параметрами.

В курсе ТОЭ изучают только основы однородных линейных цепей с распределенными параметрами. Вся теория излагается применительно к электрическим линиям с распределенными параметрами на перемен­ном токе. Теория однородных линейных электрических цепей с рас­пределенными параметрами на постоянном токе непосредственно сле­дует из теории цепей переменного тока, если принять угловую частоту равной нулю.

Теория однородных линейных магнитных линий на постоянном токе в значительной мере аналогична теории однородных линейных электрических линий с распределенными параметрами, только вместо тока в уравнении должны быть подставлены:

  • магнитный поток, вместо электрического напряжения – маг­нитное напряжение;
  • вместо продоль­ного активного сопротивления – продольное магнитное сопротивле­ние;
  • вместо поперечной электриче­ской проводимости – поперечная магнитная проводимость.

Самый быстрый словарь в мире: Vocabulary.com

  • линия передачи проводник для передачи электрических или оптических сигналов или электроэнергии

  • канал передачи путь, по которому могут проходить электрические сигналы

  • время передачи: всемирное координированное время, когда передача отправляется с Земли на космический корабль или другое небесное тело

  • передача сообщения посредством отправленных сигналов

  • вал трансмиссии вращающийся вал, передающий вращательное движение от двигателя к дифференциалу

  • трансмиссивный (болезни), способный передаваться инфекцией

  • плотность передачи (физика) мера степени, в которой вещество передает свет или другое электромагнитное излучение

  • система трансмиссии шестерни, передающие мощность от автомобильного двигателя через карданный вал на ведущую ось

  • механизм передачи любой механизм, посредством которого инфекционный агент передается из резервуара человеку

  • трансмиундные, существующие или выходящие за пределы физического мира

  • трансаминирование процесс переноса аминогруппы от одного соединения к другому

  • переходное или относящееся к переходу из одного состояния в другое

  • кратковременный переходный процесс

  • преступление нарушение закона, долга или морального принципа

  • пресуществление действие, изменяющее форму, характер или сущность чего-либо

  • Трансаляскинский трубопровод Нефтепровод, который проходит в 800 милях от скважин в Прудо-Бей до порта Валдез

  • файл транзакции (информатика) компьютерный файл, содержащий относительно временные данные о конкретной задаче обработки данных

  • реакция на переливание реакция организма на переливание крови, несовместимой с его собственной кровью; побочная реакция может варьироваться от лихорадки и крапивницы до почечной недостаточности, шока и смерти

  • в качестве переходного этапа или в качестве переходного

  • Electric Lines – обзор

    Линии передачи – это радиочастотные компоненты, проводящие электромагнитные поля в микроволнах (Pozar, 2009), которые являются фундаментальной архитектурой микроволновых биосенсоров, которые изучаются в течение долгого времени (Harsanyi, 2000).При взаимодействии с биологическими веществами форма или окружающая среда линий передачи может изменяться, что дополнительно изменяет электромагнитные поля внутри линий передачи с точки зрения интенсивности, фазы, частоты и / или поляризации. Основываясь на этом механизме, линии передачи метаматериала могут использоваться для механического зондирования, такого как деформация и давление, а также для молекулярного зондирования, включая глюкозу (Park et al., 2014), газообразный этанол (Chen et al., 2015), суспензии клеток ( урожденная Haase et al., 2015) и опухолью (Ramahi, Kermani, 2005).

    Обычные линии передачи, такие как параллельные линии, полосковые линии и микрополосковые линии, обычно имеют слабые резонансы, что приводит к низким показателям качества и ограниченной чувствительности (Pozar, 2009). Линии передачи из метаматериалов были предложены для решения этой проблемы и достижения повышенной чувствительности за счет встроенных резонаторов (Lai et al., 2004). Кроме того, линии передачи из метаматериалов могут быть спроектированы с высокими степенями свободы, дисперсионные свойства которых могут быть спроектированы с помощью различных архитектур резонаторов с элементарной ячейкой (Eleftheriades, 2009).На рис. 1 показана типичная архитектура линий передачи из метаматериалов, состоящая из резонатора с разъемным кольцом и микрополосковой линии (Lee et al., 2011). Эта линия передачи из метаматериала может рассматриваться как резонатор индуктор-конденсатор, где индуктивность и емкость обеспечиваются микрополосковой линией и разделенным зазором, соответственно. Эта линия передачи метаматериала была продемонстрирована для безметочного детектирования простатоспецифического антигена, когда связывание аналитов вызывало сдвиги резонансной частоты метаматериала.Этот датчик показал высокую чувствительность из-за сильного резонанса и высокой добротности метаматериала (Lee et al., 2011). Другие архитектуры из метаматериалов, такие как резонаторы с выровненными зазорами с несколькими разъемными кольцами (Rusni, Ismail, 2017), решетки с разъемными кольцевыми резонаторами (RoyChoudhury et al., 2016), решетки микрополосковых участков (Puentes et al., 2009) и Решетки встречно-штыревых конденсаторов (Vrba and Vrba, 2015) были предложены для неинвазивного мониторинга уровня глюкозы в крови (Vrba et al., 2019), обнаружения ДНК (Lee et al., 2010; Rusni, Ismail, 2017) и анализ органических тканей (Puentes et al., 2011). Метаматериалы на основе поддельных поверхностных плазмонов также могут быть использованы для локализации электромагнитных полей в зоне восприятия и повышения чувствительности из-за характеристик распространения медленных волн поддельных поверхностных плазмонов (Huidobro et al., 2018). Недавно был предложен безметочный биосенсор из метаматериалов для обнаружения водных биологических образцов. Предлагаемый датчик состоял из резонатора, работающего в режиме шепчущей галеры, и линии передачи, которая поддерживала поверхностные плазмонные моды имитации и демонстрировала сильные локализованные электромагнитные поля.Подход микрожидкостного канала также использовался для обеспечения прямого взаимодействия электромагнитных полей и аналитов (Salim and Lim, 2018).

    Рис. 1. Линия передачи метаматериала для биомолекулярного зондирования. (A) Схема линии передачи метаматериала, состоящей из микрополосковой линии и резонатора с разъемным кольцом. (B) Схема резонатора с разъемным кольцом. В случае микрополосковой линии с высоким импедансом – ширина и длина узкой линии, имеющей характеристику с высоким импедансом.

    Воспроизведено Lee HJ, Lee JH и Jung HI (2011). Симметричный радиочастотный биосенсор на основе элементов из метаматериалов для быстрого обнаружения без меток. Applied Physics Letters 99 (16): 163703.

    Какие провода на опорах электросети?

    Недавно построенные пригородные зоны обычно свободны от проводов, тянущихся по небу, но в большинстве мест линии электропередач и опоры электропередач легко увидеть вдоль городских улиц и населенных пунктов. Если вы когда-нибудь задумывались, что это за провода, обычно это линии телефонных, кабельных и энергетических компаний.Каждая компания несет ответственность за свою линию. Столбы инженерных сетей состоят из трех отдельных слоев или пространств. Верхний слой – это место для снабжения. Средний уровень – это нейтральное пространство, а нижний уровень – это пространство связи.

    Статический провод

    Крайняя верхняя линия опоры электросети – это статический провод. Статический провод отводит от линий электропередач разряды молний при ударах молнии во время грозы. Статический провод подключается к заземляющему проводу.

    Линии передачи

    Ниже статической линии находятся три линии электропередачи, называемые линиями передачи. Линии передачи обычно обозначаются буквами «A», «B» и «C» и называются «фазой A-B-C». Они проводят электричество высокого напряжения от электростанций к подстанциям. Подстанции снижают напряжение с 69 до 500 киловольт до 5-30 киловольт, а затем отправляют электроэнергию по фидерным линиям, подключенным к зданиям и домам.

    Заземляющий провод

    Непосредственно под линиями передачи находится многозаземленная нейтральная линия, или MGN.Линии передачи подключаются к заземленному нейтральному проводнику, который обеспечивает обратный путь для электричества. Заземляющий провод или заземляющий провод также называют многозаземленной нейтралью. Заземляющий провод проходит по всей длине столба. Он подключен к заземляющему стержню.

    Первичная и вторичная линии

    Под MGN находятся первичная и вторичная линии. По первичной линии электричество подается на подстанции от пяти до 30 киловольт. Вторичная линия, поддерживаемая поперечинами на старых типах опор, также называется вторичным отводом.Отвод от линии электропередачи ведет к дому. Он состоит из трех проводов. Два из них – изолированные провода, по которым идет электричество от трансформатора; третий – это оголенный нейтральный провод, который подключается к заземляющему проводу. Эти линии имеют напряжение от 120 до 240 вольт.

    Нейтральное пространство

    Нейтральное пространство – это зона безопасности для рабочих, свободная от каких-либо линий. Эта зона, расположенная между вторичной линией питания и самым верхним коммуникационным кабелем, предоставляет место для линейных и коммуникационных работников, которым необходимо взбираться на опоры для обслуживания линий.

    Линии связи

    Под нейтральным пространством проходят кабельное телевидение и широкополосные линии. Самая нижняя линия зарезервирована для телефонных линий. Телефонные линии присоединяются к стальной нити, которая находится в нижней части этого места на опоре электросети.

    Заземляющий стержень

    Заземляющий стержень находится в земле рядом с основанием опоры электросети. Линия заземляющего провода подключается к этому стержню, и когда молния попадает в статический провод или столб, электричество проходит от статического провода к заземляющему проводу, а затем подается вниз в стержень, где оно безопасно рассеивается в земле.Это предотвращает попадание электричества, производимого молнией, на линии электропередач и создание сильных скачков напряжения, которые могут привести к материальному ущербу и пожарам.

    линий электрического поля | Блестящая вики по математике и науке

    Силовые линии электрического поля обладают некоторыми важными и интересными свойствами, давайте изучим их.

    • Линии электрического поля всегда начинаются с положительного заряда и заканчиваются отрицательным, поэтому они не образуют замкнутых кривых. Они не запускаются и не останавливаются в середине
    • Количество линий электрического поля, покидающих положительный заряд или входящих в отрицательный, пропорционально величине заряда.
    • Линии электрического поля никогда не пересекаются.
    • В однородном электрическом поле силовые линии прямые, параллельные и равномерно разнесенные.
    • Линии электрического поля никогда не могут образовывать замкнутые петли, так как линии никогда не могут начинаться и заканчиваться на одном заряде.
    • Эти силовые линии всегда перетекают от более высокого потенциала к более низкому.
    • Если электрическое поле в данной области пространства равно нулю, силовых линий электрического поля не существует.
    • Касательная к прямой в любой точке дает направление электрического поля в этой точке.Кроме того, это путь, по которому будет двигаться положительный тестовый заряд, если он свободен.

    Почему силовые линии электрического поля не пересекаются ???


    Если линии электрического поля пересекаются, то в точке их пересечения можно провести две касательные. Таким образом, напряженность электрического поля в точке будет иметь два направления, что абсурдно.

    а) только а) и в) а) и б) б) только

    На приведенной выше диаграмме показаны силовые электрические и эквипотенциальные линии на определенной плоскости.Какое из следующих утверждений верно?

    a) Электрический потенциал в точке A выше, чем в точке B .
    б) Напряженность электрического поля в точке A такая же, как и в точке B .
    c) Работа, совершаемая электрической силой, когда электрически заряженная частица перемещается из точки B в точку C вдоль эквипотенциальной линии, равна нулю.

    Почему внутри проводника нет силовых линий электрического поля? ??


    Это из-за того, что электрическое поле внутри проводника равно нулю! !!

    Когда электрическое поле считается однородным ???


    Электрическое поле называется однородным, если оно имеет одинаковую величину и направление в данной области пространства.

    И A, и B имеют одинаковый знак. Если мы поместим положительный заряд в P, он будет тянуться к B. Напряженность электрического поля в точке P больше, чем в точке Q.Количество электрического заряда A больше, чем у B.

    На приведенной выше диаграмме показаны силовые линии электрического поля, создаваемые двумя точечными зарядами A и B . Какое из следующих объяснений является правильным НЕ ?

    См. Также

    Что такое линии передачи? Определение, типы, параметры, свойства и применение линий передачи

    Определение : Линии передачи – это проводники, которые служат путем для передачи (посылки) через них электрических волн (энергии).Они в основном образуют соединение между передатчиком и приемником, чтобы разрешал передачу сигнала .

    Линии передачи в микроволновой технике известны как сети с распределенными параметрами . Поскольку их напряжение и ток изменяются по всей длине. Он позволяет передавать электрические сигналы с помощью пары проводящих проводов, отделенных друг от друга диэлектрической средой, обычно являющейся воздухом.

    Содержимое: линии передачи

    1. Введение
    2. Типы
    3. Параметры
    4. Недвижимость
    5. Приложения

    Введение

    На рисунке ниже представлена ​​эквивалентная принципиальная схема линии передачи:

    Здесь два проводящих провода имеют определенную длину, а параметры линии передачи распределены по всей ее длине.Это параметры R, L, C и G , которые мы подробно обсудим в следующем разделе. Два проводящих провода из-за разделения обладают некоторой емкостью. Но эта диэлектрическая среда не обеспечивает полной изоляции, поэтому через нее протекает некоторый ток утечки.

    Телефонные линии и линии электроснабжения являются некоторыми примерами линий электропередачи.

    Типы линий передачи

    Линии электропередачи в основном делятся на три категории:

    Открытая линия передачи : Это проводники, имеющие 2 линии (провода), разделенные диэлектрической средой, один конец которой подключен к источнику, а другой – к месту назначения.Это недорогие и самые простые линии передачи. Но стоимость их установки несколько выше, а обслуживание иногда затрудняется из-за изменения атмосферных условий.

    На рисунке ниже представлена ​​линия передачи с разомкнутым проводом:

    Коаксиальные кабельные линии : Эти линии образуются, когда проводящий провод коаксиально вставляется внутрь другого полого проводника. Они называются коаксиальными, поскольку 2 проводника имеют одну и ту же ось.Они широко используются в приложениях, где требуются высокие уровни напряжения.

    На рисунке ниже представлена ​​линия передачи по коаксиальному кабелю:

    Волноводы : Линия передачи этой категории используется для передачи сигналов на сверхвысоких частотах. В основном это полые проводящие трубки, поскольку они чем-то напоминают коаксиальные кабели, но не имеют центрального проводника, как в коаксиальных кабелях.

    На рисунке ниже представлена ​​линия передачи в виде волновода:

    Параметры ЛЭП

    При передаче сигнала по проводнику необходимо иметь представление о связанных с ним параметрах.Итак, в основном, существует 4 параметра, связанных с линией передачи.

    • Сопротивление : Этот параметр любой линии передачи зависит от площади поперечного сечения проводящего материала. Как мы уже говорили, это сети с распределенными параметрами, что означает, что их параметры распределены равномерно по всей длине. Он обозначается буквой R, и его единица измерения – омы на единицу длины проводника.

    Выдан:

    : ρ обозначает проводимость проводящего материала

    l обозначает длину ЛЭП, а

    a обозначает площадь поперечного сечения линии

    Здесь следует отметить, что сопротивление показывает изменение температуры и частоты подаваемого на него сигнала.

    • Емкость : Как мы уже обсуждали, линия передачи состоит из 2 параллельных проводящих проводов, разделенных диэлектрическим материалом. Таким образом, он ведет себя как конденсатор с параллельными пластинами. Таким образом, он имеет некоторую емкость, которая также равномерно распределена по его длине. Он измеряется в фарадах на единицу длины проводника.
    • Индуктивность : Когда ток течет через проводник, он создает магнитное поле, перпендикулярное направлению электрического поля.При изменении магнитного поля в линии генерируется электромагнитный поток. Таким образом, теперь эта ЭДС течет в противоположном направлении с током, протекающим через устройство, который известен как индуктивность. Его величина зависит от тока, протекающего по проводнику. Индуктивность обозначается буквой L, а ее единицей является Генри на единицу длины проводника.
    • Проводимость : два параллельных проводника разделены диэлектрической средой, но это не идеальный изолятор.Из-за чего через диэлектрик также протекает некоторый ток. Этот ток называется током утечки , и он отвечает за проводимость утечки через линию передачи. Он в основном присутствует между проводящими проводами и обозначается буквой G. Его единица измерения – mho на единицу длины проводника. Итак, четыре параметра линии передачи представлены как R, L, C и G.

    Свойства ЛЭП

    Линия передачи, которая позволяет распространять электрические волны, должна быть однородной, а также симметричной по своей природе, чтобы обеспечить удобную передачу.Итак, в принципе, существует 2 электрических свойства любой симметричной сети.

    • Характеристическое сопротивление (Z 0 ) :

    Предположим, что электрическая волна проходит от одного конца к другому по однородной линии передачи, а также по линии передачи без потерь. Тогда отношение напряжения, соответствующего линии передачи, и эквивалентного тока, протекающего по ней, называется характеристическим сопротивлением. Здесь следует отметить, что отражения прошедшей волны не будет.Выдается:

    В параметрах характеристический импеданс представлен как:

    Когда мы рассматриваем линию передачи без потерь, то она определяется как:

    Считается, что симметричная сеть точно оконцована, если характеристическое сопротивление на обоих концах уравновешено.

    • Константа распространения (ϒ) :

    Постоянная распространения линии передачи определяется как отношение тока, достигаемого на выходе, к току, приложенному на входе системы.Дается как

    : ϒ обозначает комплексную величину, представленную α + jβ

    Здесь α – постоянная затухания, а β – фазовая постоянная.

    Применение линий электропередачи

    Для передачи сигнала с высокочастотным диапазоном на короткие и большие расстояния используются линии передачи. В то же время это снижает потери мощности во время передачи. Они также используются в шлейфовых фильтрах, в технике согласования шлейфов и в трансформаторе напряжения.

    Что такое линейные опоры? Определение и типы линейных опор

    Определение: Различные типы конструкций (опоры или башни), используемые для поддержки воздушных линий или проводов, такие типы конструкций называются линейными опорами. Линейная опора играет важную роль в передаче электроэнергии. Он сохранял надлежащее расстояние между проводниками и удерживал провод на заданном расстоянии от его заземляющих частей. Он также сохранил заданный клиренс.Эти зазоры определяются электрическими и механическими соображениями.

    Типы опор линии

    Основное требование к линейным опорам – низкая стоимость, низкие затраты на обслуживание и долгий срок службы. Опоры линии изготавливаются из дерева, бетона, стали или алюминия. Он в основном подразделяется на два типа;

    1. Электрический столб
    2. Электрическая башня

    Их типы подробно описаны ниже.

    1. Электрический столб

    Опора, предназначенная для опоры линий электропередачи малого напряжения (не более 115 кВ), такой тип опоры называется электрической опорой.Обычно его делают из дерева, бетона или стали. Эти столбы в основном делятся на три типа. Их типы подробно описаны ниже;

    Типы электрических столбов

    Выбор электрических полюсов зависит от стоимости, атмосферы и линейного напряжения в линии. Электрические полюса в основном подразделяются на следующие типы.

    а. Деревянные столбы

    Это один из самых дешевых типов опор для линий, используемый для линий с короткими пролетами и низким натяжением.Деревянные опоры имеют ограничения по высоте и диаметру. Двухполюсная конструкция типа A или H используется там, где требуется большая прочность.

    Прочность этих типов конструкций от двух до четырех раз превышает прочность одинарных опор. Конструкция H-типа обычно используется для четырех полюсных выводов или полюсов, на которых установлено распределительное устройство и трансформаторы.

    Деревянная опора обладает естественными изоляционными свойствами, поэтому вероятность возникновения пробоев в результате удара молнии меньше.Одним из недостатков деревянных опор является то, что их прочность и долговечность невозможно предсказать с уверенностью.

    г. Бетонные столбы

    Бетонный столб придавал большую прочность и использовался вместо деревянного столба. Он имеет более длительный срок службы, чем у деревянного столба, из-за небольшого износа. Стоимость их обслуживания невысока. Бетонные столбы очень тяжелые и могут быть повреждены во время погрузки, разгрузки, транспортировки и монтажа из-за своей хрупкости.

    Трудности, связанные с перемещением и транспортировкой, преодолеваются за счет использования предварительно напряженных бетонных опор, которые могут быть изготовлены по частям, а затем собраны на стройплощадках.Вес предварительно напряженных бетонных столбов более прочен, чем у столбов любого другого типа. Используемого материала меньше, и он более прочен, чем любые другие типы опор.

    г. Стальные опоры

    Для низкого и среднего напряжения используются стальные трубчатые опоры или стальные опоры Grider. Более длинные пролеты возможны со стальными опорами. Столбы необходимо периодически гальванизировать или красить, чтобы не допустить их коррозии. Расходы на их обслуживание высоки.

    2. Электрические башни

    Электрическая опора – это опора, которая используется для проведения линий электропередачи высокого напряжения (выше 230 кВ).Такие типы башен изготавливаются из алюминия или стали, что придает им прочность для поддержки тяжелых электрических проводов. Электрические башни в целом подразделяются на различные типы. Эти типы описаны ниже.

    Типы опорных башен

    Линии высокого и сверхвысокого напряжения требуют больших воздушных и наземных зазоров. У них большие затраты на механическую нагрузку и изоляцию. В таких типах башен использовались очень длинные пролеты. Конструкция с большим пролетом значительно снижает затраты на изоляцию, поскольку требуется меньше опор.Такие типы башен изготавливаются из стали или алюминия, что снижает вероятность поломки. Они классифицируются как

    а. Самонесущие башни

    Самонесущие башни делятся на две категории; широкопольные и узкопольные башни. В широкой базовой башне принимается решетка (крест-накрест) с зажаренным соединением. Каждая ножка имеет отдельный фундамент. Узкопольные конструкции используются в виде решетчатой ​​(крестообразной) конструкции из стального уголка, швеллера или трубчатого профиля с болтовым или сварным соединением.Самонесущая башня также классифицируется как

    .
    • Tangent Tower – Используется для прямого прохождения линии. В этих мачтах используются подвесные изоляторы.
    • Deviation Tower – Используется на линии, где линия передачи меняет направление.

    В этих башнях используются деформационные изоляторы. У них более широкое основание, более прочные элементы и они дороже по сравнению с касательными башнями. Конструкция с узким основанием требует меньше стали или алюминия по сравнению с широкой опорной башней, но стоимость фундамента для нее выше.Выбор между ними основан на стоимости материалов, фундаментов и требований в отношении полосы отчуждения.

    г. Башни с оттяжками

    Такие типы башен бывают портальными или V-образными. Оба они имели две опоры, соединенные вверху траверсой и снабженные четырьмя оттяжками.

    В портальной конструкции каждая опора опирается на свой фундамент, тогда как в конструкции с V-образной опорой две опоры опираются под углом друг к другу только на одной упорной опоре, которая является более тяжелой.

    Учебное пособие по физике: Линии электрического поля

    В предыдущем разделе Урока 4 обсуждалась векторная природа напряженности электрического поля. Величина или напряженность электрического поля в пространстве, окружающем заряд источника, напрямую связана с количеством заряда на заряде источника и обратно пропорционально расстоянию от источника заряда. Направление электрического поля всегда направлено в том направлении, в котором положительный испытательный заряд будет выталкиваться или вытягиваться, если его поместить в пространство, окружающее исходный заряд.Поскольку электрическое поле является векторной величиной, его можно представить векторной стрелкой. В любом заданном месте стрелки указывают направление электрического поля, а их длина пропорциональна напряженности электрического поля в этом месте. Такие векторные стрелки показаны на схеме ниже. Обратите внимание, что длины стрелок больше, когда они ближе к источнику заряда, и короче, когда они дальше от источника заряда.

    Более полезным средством визуального представления векторной природы электрического поля является использование силовых линий электрического поля.Вместо того, чтобы рисовать бесчисленные векторные стрелки в пространстве, окружающем заряд источника, возможно, более полезно нарисовать узор из нескольких линий, которые проходят между бесконечностью и зарядом источника. Эти линии, иногда называемые линиями электрического поля , указывают направление, в котором положительный тестовый заряд будет ускоряться, если поместить на линию. Таким образом, линии направлены от положительно заряженных исходных зарядов к отрицательно заряженным исходным зарядам.Для передачи информации о направлении поля каждая линия должна включать стрелку, указывающую в соответствующем направлении. Схема силовых линий электрического поля может включать бесконечное количество линий. Поскольку рисование такого большого количества линий имеет тенденцию к снижению читабельности рисунков, количество линий обычно ограничено. Присутствия нескольких линий вокруг заряда обычно достаточно, чтобы передать природу электрического поля в пространстве, окружающем эти линии.


    Правила построения диаграмм электрического поля

    Существует множество условных обозначений и правил для рисования таких моделей линий электрического поля.Условные обозначения просто установлены для того, чтобы рисунки линий электрического поля передавали наибольший объем информации о природе электрического поля, окружающего заряженный объект. Одно из распространенных правил – окружать более заряженные объекты большим количеством линий. Предметы с большим зарядом создают более сильные электрические поля. Окружив сильно заряженный объект большим количеством линий, можно передать силу электрического поля в пространстве, окружающем заряженный объект, с помощью линейной плотности.Это соглашение изображено на диаграмме ниже.

    Плотность линий, окружающих любой данный объект, не только раскрывает информацию о количестве заряда в исходном заряде, но и плотность линий в определенном месте в пространстве раскрывает информацию о напряженности поля в этом месте. Рассмотрим объект, показанный справа. На разных расстояниях от заряда источника нарисованы два разных круглых сечения. Эти поперечные сечения представляют области пространства ближе и дальше от источника заряда.Силовые линии расположены ближе друг к другу в областях пространства, ближайших к заряду; и они разбросаны дальше друг от друга в наиболее удаленных от заряда областях пространства. Основываясь на соглашении относительно линейной плотности, можно было бы заключить, что электрическое поле является наибольшим в местах, ближайших к поверхности заряда, и, по крайней мере, в местах, удаленных от поверхности заряда. Плотность линий в структуре силовых линий электрического поля раскрывает информацию о силе или величине электрического поля.

    Второе правило рисования линий электрического поля включает рисование силовых линий, перпендикулярных поверхностям объектов в местах, где линии соединяются с поверхностями объектов. На поверхности объектов как симметричной, так и неправильной формы никогда не бывает компонента электрической силы, направленной параллельно поверхности. Электрическая сила и, следовательно, электрическое поле всегда направлены перпендикулярно поверхности объекта. Если бы когда-либо существовала какая-либо составляющая силы, параллельная поверхности, то любой избыточный заряд, находящийся на поверхности заряда источника, начал бы ускоряться.Это привело бы к возникновению электрического тока внутри объекта; это никогда не наблюдается в статическом электричестве . Как только силовая линия покидает поверхность объекта, она часто меняет свое направление. Это происходит при рисовании линий электрического поля для конфигураций из двух или более зарядов, как описано в разделе ниже.

    Последнее правило рисования линий электрического поля включает пересечение линий. Линии электрического поля никогда не должны пересекаться. Это особенно важно (и соблазнительно нарушить) при рисовании линий электрического поля в ситуациях, связанных с конфигурацией зарядов (как в разделе ниже).Если бы силовым линиям электрического поля когда-либо разрешили пересекать друг друга в данном месте, вы могли бы представить себе результаты. Линии электрического поля раскрывают информацию о направлении (и силе) электрического поля в определенной области пространства. Если линии пересекаются друг с другом в данном месте, тогда должны быть два отчетливо разных значения электрического поля с их собственным индивидуальным направлением в этом заданном месте. Этого никогда не могло быть. Каждое отдельное место в космосе имеет свою собственную напряженность электрического поля и направление, связанное с ней.Следовательно, линии, представляющие поле, не могут пересекать друг друга в любом заданном месте в пространстве.


    Линии электрического поля для конфигураций из двух или более зарядов

    В приведенных выше примерах мы видели силовые линии электрического поля в пространстве, окружающем точечные заряды. Но что, если область пространства содержит более одного точечного заряда? Как можно описать электрическое поле в пространстве, окружающем конфигурацию из двух или более зарядов, линиями электрического поля? Чтобы ответить на этот вопрос, мы сначала вернемся к нашему первоначальному методу рисования векторов электрического поля.

    Предположим, что есть два положительных заряда – заряд A (Q A ) и заряд B (Q B ) – в данной области пространства. Каждый заряд создает собственное электрическое поле. В любом заданном месте, окружающем заряды, напряженность электрического поля можно рассчитать с помощью выражения kQ / d 2 . Поскольку есть два заряда, расчет kQ / d 2 необходимо будет выполнить дважды в каждом месте – один раз с kQ A / d A 2 и один раз с kQ B / d B 2 (d A – это расстояние от этого места до центра заряда A, а d B – расстояние от этого места до центра заряда B).Результаты этих вычислений проиллюстрированы на диаграмме ниже с векторами электрического поля (E A и E B ), нарисованными в различных местах. Сила поля обозначается длиной стрелки, а направление поля обозначается направлением стрелки.

    Поскольку электрическое поле является вектором, обычные операции, применяемые к векторам, могут быть применены к электрическому полю. То есть они могут быть добавлены «голова к хвосту» для определения результирующего или результирующего вектора электрического поля в каждом месте.Это показано на схеме ниже.

    На диаграмме выше показано, что величина и направление электрического поля в каждом месте – это просто векторная сумма векторов электрического поля для каждого отдельного заряда. Если выбрано больше местоположений и процесс рисования E A , E B и E net повторяется, тогда напряженность и направление электрического поля во множестве местоположений будут известны. (Это не делается, поскольку это очень трудоемкая задача.В конце концов, линии электрического поля, окружающие конфигурацию двух наших зарядов, начнут проявляться. Для ограниченного числа точек, выбранных в этом месте, можно увидеть начало рисунка силовых линий электрического поля. Это показано на диаграмме ниже. Обратите внимание, что для каждого местоположения векторы электрического поля касаются направления линий электрического поля в любой данной точке.

    Построение силовых линий электрического поля таким способом – утомительная и громоздкая задача.Использование компьютерной программы для построения полевых графиков или лабораторной процедуры дает аналогичные результаты за меньшее время (и с большим количеством операций). Какой бы метод ни использовался для определения рисунков силовых линий электрического поля для конфигурации зарядов, общая идея состоит в том, что образец является результатом рисунков для отдельных зарядов в конфигурации. Картины силовых линий электрического поля для других конфигураций заряда показаны на диаграммах ниже.

    На каждой из приведенных выше диаграмм заряды отдельных источников в конфигурации имеют одинаковую величину заряда.Имея одинаковое количество заряда, каждый исходный заряд имеет одинаковую способность изменять окружающее его пространство. Следовательно, узор является симметричным по своей природе, и количество линий, исходящих от заряда источника или идущих к заряду источника, одинаково. Это усиливает обсуждавшийся ранее принцип, согласно которому плотность линий, окружающих любой заданный заряд источника, пропорциональна количеству заряда на этом заряде источника. Если количество заряда на исходном заряде не идентично, рисунок примет асимметричный характер, поскольку один из исходных зарядов будет иметь большую способность изменять электрическую природу окружающего пространства.Это показано на рисунках силовых линий электрического поля ниже.

    После построения диаграмм линий электрического поля для различных конфигураций заряда можно предсказать общие закономерности для других конфигураций. Есть ряд принципов, которые помогут в таких прогнозах. Эти принципы описаны (или повторно описаны) в списке ниже.

    • Линии электрического поля всегда проходят от положительно заряженного объекта к отрицательно заряженному объекту, от положительно заряженного объекта к бесконечности или от бесконечности к отрицательно заряженному объекту.
    • Силовые линии электрического поля никогда не пересекаются.
    • Линии электрического поля наиболее плотны вокруг объектов с наибольшим зарядом.
    • В местах, где линии электрического поля встречаются с поверхностью объекта, линии перпендикулярны поверхности.

    Линии электрического поля как невидимая реальность

    В Уроке 4 подчеркивалось, что концепция электрического поля возникла, когда ученые пытались объяснить действие на расстоянии, которое происходит между заряженными объектами.Понятие электрического поля было впервые введено физиком 19 века Майклом Фарадеем. Фарадей считал, что рисунок линий, характеризующий электрическое поле, представляет собой невидимую реальность. Вместо того чтобы мыслить в терминах влияния одного заряда на другой, Фарадей использовал концепцию поля, чтобы предположить, что заряженный объект (или массивный объект в случае гравитационного поля) влияет на пространство, которое его окружает. Когда другой объект входит в это пространство, на него воздействует поле, установленное в этом пространстве.С этой точки зрения видно, что заряд взаимодействует с электрическим полем, а не с другим зарядом. Для Фарадея секрет понимания действия на расстоянии заключается в понимании силы заряда-поля-заряда. Заряженный объект посылает свое электрическое поле в космос от «съемника до шкива». Каждый заряд или конфигурация зарядов создает сложную сеть влияния в окружающем его пространстве. Хотя линии невидимы, эффект очень реален. Поэтому, когда вы практикуете упражнение по построению силовых линий электрического поля вокруг зарядов или конфигурации зарядов, вы делаете больше, чем просто рисуете извилистые линии.Скорее, вы описываете наэлектризованную паутину пространства, которая притягивает и отталкивает другие заряды, попадающие в нее.

    Мы хотели бы предложить … Иногда просто прочитать об этом недостаточно. Вы должны с ним взаимодействовать! И это именно то, что вы делаете, когда используете один из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного приложения «Положите заряд в цель» и / или интерактивного интерфейса «Линии электрического поля».Оба интерактивных компонента можно найти в разделе Physics Interactives на нашем веб-сайте. Оба Interactives обеспечивают увлекательную среду для исследования силовых линий электрического поля.

    Проверьте свое понимание

    Используйте свое понимание, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.

    1. На диаграммах ниже показаны несколько диаграмм направленности силовых линий электрического поля.Какие из этих шаблонов неверны? _________ Объясните, что не так во всех неправильных схемах.

    2. Эрин Агин нарисовала следующие силовые линии электрического поля для конфигурации из двух зарядов. Что Эрин сделала не так? Объяснять.


    3. Рассмотрите силовые линии электрического поля, показанные на диаграмме ниже.Из диаграммы видно, что объект A – ____, а объект B – ____.

    а. +, +

    г. -, –

    г. +, –

    г. -, +

    e. недостаточно информации


    4.Рассмотрим линии электрического поля, нарисованные справа для конфигурации из двух зарядов. На схеме обозначено несколько мест. Расположите эти места в порядке убывания напряженности электрического поля – от наименьшего к наибольшему.



    5. Используйте свое понимание силовых линий электрического поля для определения зарядов на объектах в следующих конфигурациях.


    6.Наблюдайте за линиями электрического поля ниже для различных конфигураций.

    Оставить комментарий