Электромагнитной индукции примеры – помогите привести примеры явления электромагнитной индукции, пожалуйста!

Содержание

«Применение явления электромагнитной индукции в бытовых приборах

МУНИЦИПАЛЬНОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №2»

Реферат

по физике на тему:

«Применение явления электромагнитной индукции в бытовых приборах»

Выполнила ученика 9 «Б» класса

Абдурагимова Расита Бакриевна

г. Южно-Сухокумск. 2018 г.

Предыстория

После открытий Эрстеда и Ампера стало ясно, что электричество обладает магнитной силой. Теперь необходимо было подтвердить влияние магнитных явлений на электрические. Эту задачу блистательно решил Фарадей.

В 1821 году М. Фарадей сделал запись в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.

Итак, Майкл Фарадей (1791−1867) — английский физик и химик.

Один из основателей количественной электрохимии. Впервые получил (1823) в жидком состоянии хлор, затем сероводород, диоксид углерода, аммиак и диоксид азота. Открыл (1825) бензол, изучил его физические и некоторые химические свойства. Ввел понятие диэлектрической проницаемости. Имя Фарадея вошло в систему электрических единиц в качестве единицы электрической емкости.

Многие из этих работ могли сами — по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции. Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего.

Когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле.

Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки. Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества.

На одну и ту же деревянную скалку Фарадей намотал параллельно друг другу две изолированные проволоки. Концы одной проволоки он соединил с батареей из десяти элементов, а концы другой — с чувствительным гальванометром. Когда был пропущен ток через первую проволоку, Фарадей обратил все свое внимание на гальванометр, ожидая заметить по колебаниям его появление тока и во второй проволоке. Однако ничего подобного не было: гальванометр оставался спокойным. Фарадей решил увеличить силу тока и ввел в цепь 120 гальванических элементов. Результат получился тот же. Фарадей повторил этот опыт десятки раз и все с тем же успехом. Всякий другой на его месте оставил бы опыты, убежденный, что ток, проходящий через проволоку, не оказывает никакого действия на соседнюю проволоку. Но фарадей старался всегда извлечь из своих опытов и наблюдений все, что они могут дать, и потому, не получив прямого действия на проволоку, соединенную с гальванометром, стал искать побочные явления.

электромагнитная индукция. электрический ток и поле.

Сразу же он заметил, что гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индуктивными, и это название сохранилось за ними доселе.

Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), — индукция, и новый вид этой энергии — индукционное электричество.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ (лат. inductio — наведение) — явление порождения вихревого электрического поля переменным магнитным полем. Если внести в переменное магнитное поле замкнутый проводник, то в нем появится электрический ток. Появление этого тока называют индукцией тока, а сам ток — индукционным.

Опыт, позволяющий наблюдать явление электромагнитной индукции

/

Примером на применение явления электромагнитной индукции в моей работе стал индукционный генератор переменного тока.

Индукционный генератор переменного тока

В индукционных генераторах переменного тока механическая энергия превращается в электрическую. Индукционный генератор состоит из двух частей: подвижной, которая называется ротором, и неподвижной, которая называется статором. Действие генератора основано на явлении электромагнитной индукции. Индукционные генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется много типов индукционных генераторов, но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, состоящая из последовательно соединенных витков, в которых индуцируется переменная электродвижущая сила. Так как электродвижущие силы, наводимые в последовательно соединенных витках, складываются, то амплитуда электродвижущей силы индукции в обмотке пропорциональна числу витков в ней.

Число силовых линий, пронизывающих каждый виток, непрерывно меняется от максимального значения, когда он расположен поперек поля, до нуля, когда силовые линии скользят вдоль витка. В результате при вращении витка между полюсами магнита через каждые пол-оборота направление тока меняется на противоположное, и в витке появляется переменный ток. Во внешнюю цепь ток отводится при помощи скользящих контактов. Для этого на оси обмотки укреплены контактные кольца, присоединенные к концам обмотки. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки с внешней цепью (см. рисунок на след. стр.).

Пусть виток провода вpащается в одноpодном магнитном поле с постоянной угловой скоpостью. Магнитный поток, пронизывающий виток, меняется по закону, здесь S — площадь витка. Согласно закону Фаpадея в обмотке наводится электродвижущая сила индукции, которая опpеделяется следующим обpазом:

,

где N — число витков в обмотке. Таким образом, электродвижущая сила индукции в обмотке изменяется по синусоидальному закону и пpопоpциональна числу витков в обмотке и частоте вpащения.

В опыте с вращающейся обмоткой статором является магнит и контакты, между которыми помещена обмотка. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится электродвижущая сила, уложены в пазах статора и остаются неподвижными. На тепловых электростанциях для вращения ротора используются паровые турбины. Турбины, в свою очередь, приводятся во вращение струями водяного пара, полученного в огромных паровых котлах за счет сжигания угля или газа (теплоэлектростанции) или распада вещества (атомные электростанции). На гидроэлектростанциях для вращения ротора используются водяные турбины, которые вращаются водой, падающей с большой высоты.

Электрогенераторы играют важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии — и, тем не менее, снабжать ею заводы, дома и т. п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей демонстрировал прототип электрогенератора Джону Пилу, канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, все это очень интересно, а какой от всего этого толк?».

«Какой толк? — якобы удивился Фарадей. — Да вы знаете, сэр, сколько налогов эта штука со временем будет приносить в казну?!»

Заключение

Изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году идею телеграфа, которая затем и легла в основу этого изобретения.

А вообще открытие электромагнитной индукции недаром относят к наиболее выдающимся открытиям XIX века — на этом явлении основана работа миллионов электродвигателей и генераторов электрического тока во всем мире…

В настоящее время все больше появляется техники с использованием явления электромагнитной индукции: плиты, зарядные устройства, электросчетчики, кофеварки, водонагреватели, тостеры, миксеры, утюги, настольные лампы и приборы для приготовления пищи и т.д. Чем же они отличаются от «добрых» старых электрических плит, проводных зарядных устройств? В чем их плюсы? А может они, тоже имеют свои недостатки? Современному потребителю все сложнее сделать выбор между техникой с использованием явления электромагнитной индукции и обычной. Возникает противоречие между желанием покупателя приобрести современный, надежный, энергоэкономичный продукт и отсутствием у него необходимой информации для совершения осознанного выбора конкретной модели из огромного количества аналогов. В своей работе я хочу помочь потребителю решить эту проблему.

Практическое применение явления электромагнитной индукции

Радиовещание

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве

электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг

друга, эти поля образуют единое переменное электромагнитное поле – электромагнитную волну.

Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве

со скоростью света -300000 км/с.

Магнитотерапия

В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие

электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой

электрическими и магнитными полями.

Синхрофазотроны

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц.

В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их

изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой

Лоренца.

Расходомеры – счётчики

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей

жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая

электронной частью в электрический аналоговый/цифровой сигнал.

Генератор постоянного тока

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора

имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном

поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу “правой

руки”. При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам

генератора подключить нагрузку, то в ней пойдет ток.

Трансформаторы

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния,

распределении ее между приемниками, а также в различных выпрямительных, усилительных,

сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор

представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются

две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник

электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки – вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле,

созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше

напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить

пониженное напряжение

Как работает интернет?

Ну а теперь давайте рассмотрим самое интересное, как работает интернет.

Нас уже не удивляет то, что за пару секунд мы получаем веб-страницу на своем экране.
Но не многие знают, как это происходит. Сейчас об этом и поговорим.

Итак, у нас есть человек, кто угодно – я, вы, или ваш дальний родственник. У этого человека есть доступ к компьютеру, который он с радостью включает. Человек хочет зайти в интернет и для этого запускает браузер, т.е. программу-клиент, установленную на его компьютере. В адресной строке браузера он вводит доменное имя сайта, допустим, info-line.net.

Это мы все знали. А что же происходит в те милисекунды, которые мы не замечаем? Что же скрыто от наших глаз?

После ввода доменного имени в браузер, программа-клиент связывается с провайдером  и сообщает ему о том, что она хочет запросить сайт info-line.net

На провайдере установлен DNS сервер, который преобразует доменное имя интернет-ресурса info-line.net в IP-адрес (IP – это межсетевой протокол) вида 178.162.144.134.

IP-адрес  выдается провайдером каждому компьютеру при подключении к интернету, естественно веб-сайты тоже имеют свои ip-адреса. На данный момент существует две версии IP – 4-ая (IPv4) и 6-ая (IPv6). Была еще и 5-ая версия, но она не была принята для публичного пользования. В настоящее время наиболее широко используется 4-ая версия IP.

IP-адреса нужны для нахождения компьютеров в сети. Ведь нужно знать, куда отправлять пакет. На почте, вам нужно указать адрес получателя. В сети вместо адреса выступает IP.

После этого, IP переводится из десятичной системы исчисления в двоичную и принимает привычный машинный вид в виде цифр 0 и 1.

Далее,  провайдер пересылает ваш запрос сайта на маршрутизатор (или по-другому — Роутер).
Маршрутизатор – это устройство, которое согласно таблицам маршрутов направляет передаваемые пакеты информации по указанному адресу. Маршрутизатор – это что-то вроде аналога GPS-навигатора в реальной жизни, он знает маршрут и указывает рабочий путь передаваемому пакету информации.

Пакеты передаются от одного маршрутизатора к другому, пока не достигают сервера, т.е. того IP-адреса, который был указан клиентом в виде получателя.

На web-сервере обрабатывается вся полученная информация и выдается результат в виде html-страницы, то есть обычной веб-страницы, которые мы так часто видим на экране.

Данный результат отправляется по обратной цепочке через маршрутизаторы и провайдера к нашему компьютеру, после чего встает вопрос, а куда дальше-то пакеты посылать? В какую программу?

Для этого предназначены порты.

Что такое порт?

Порт – это системный ресурс, выделяемый приложению для связи с другими приложениями в сети. Все программы для связи между собою посредством сети, используют порты.

Если провести аналогию с домом, то дом – это IP, а квартира – это порт. Список портов можно посмотреть, открыв файл services по адресу: C:\Windows\System32\drivers\etc (ваш адрес может отличаться)

Как мы видим, портов здесь достаточно много. Например, порт 25 служит для отправки почты, порт 110 для ее получения. Веб-сайты работают на порту номер 80, а система DNS, о которой мы уже говорили – на порту 53.

Мы можем проверить работу портов в браузере. Если мы введем веб-сайт и после него, укажем :80, то у нас откроется веб-сайт, а если укажем :53, то получим сообщение об ошибке следующего содержания: «Данный адрес использует порт, который, как правило, не используется для работы с веб-сайтами. В целях вашей безопасности Firefox отменил данный запрос».

Порт номер 21 используется для FTP, как мы уже знаем из прошлых уроков. Порты 135-139 используются системой Windows для доступа к общим ресурсам компьютера – папкам, принтерам. Эти порты должны быть закрыты фаерволлом для Интернета в целях безопасности. Порты 3128, 8080 используются в качестве прокси-серверов. Прокси – это компьютер-посредник, например, между моим компьютером и веб-ресурсом, на который я хочу зайти. Прокси используются для самых разных целей. Бывают бесплатные и платные прокси. Настроить их можно в настройках браузера. В браузере Firefox это делается следующим образом:

  1. Заходим в настройки

  2. Переходим в «Дополнительные»

  3. Открываем вкладку «сеть»

  4. В блоке «соединение» жмем кнопку «настроить»

  5. Переходим на ручную настройку прокси-сервера

  6. Указываем данные прокси.

ЗАКЛЮЧЕНИЕ

Явление электромагнитной индукции и его частные случаи широко применяются в электротехнике. Для преобразования механической энергии в энергию электрического тока используются синхронные генераторы. Для повышения или понижения напряжения переменного тока применяются трансформаторы. Использование трансформаторов позволяет экономично передавать электроэнергию от электрических станций к узлам потребления.

СПИСОК ЛИТЕРАТУРЫ:

1. Электрические машины, Л.М. Пиотровский, Л., «Энергия», 1972.

2. Силовые трансформаторы. Справочная книга / Под ред. С.Д. Лизунова, А.К. Лоханина. М.:Энергоиздат 2004.

3. Конструирование трансформаторов. А.В. Сапожников. М.: Госэнергоиздат. 1959.

4. Расчёт трансформаторов. Учебное пособие для вузов. П.М. Тихомиров. М.: Энергия, 1976.

5. Физика-учебник для 11 класса, авторы: Г.Я. Мякишев и Б.Б. Буховцев М. Просвещение, издание 2017.

infourok.ru

Электромагнитная индукция | white-santa.ru


Электромагнитная индукция
– это словосочетание сразу же наводит мысль на что-то космическое и невесомое, можно даже сказать неощутимое и невесомое, и ваш разум практически прав.

Конечно же электромагнитная индукция никак не связана с космосом или невесомостью, но веже какая-то магия в этой области присутствует. Все электрические машины, работа которых основывается на явлении электромагнитной индукции на первый взгляд просто не мыслимы. К примеру трансформатор – преобразует электрическую энергию одной величины в другую, при том, что его обмотки не связаны друг с другом, фактически по воздуху.

А асинхронные двигатели, работа которых так же объясняется явлением электромагнитной индукции. С кокой силой вращается его ротор, какие механизмы он способен вращать, а ведь этот ротор так же ни с чем не связан, он свободно вращается вокруг своей оси.
Но от куда берется эта сила? Давайте копнем глубже, а рассмотрим детально электромагнитную индукцию.
Для более глубокого понимания явления электромагнитной индукции давайте рассмотрим следующий опыт:
   

   Между двух полюсов постоянного магнита расположим некий проводник, к концам которого будет подключен гальванометр (чувствительный измерительный прибор).


Обратим внимание, что стрелка прибора находится в среднем положении, когда проводник между полюсов магнита находится в состоянии покоя, стоит только переместить проводник, как стрелка тут же отклонится, при прекращении движения проводника стрелка проводника возвратится в среднее положение. Если проводник переместить в обратном направлении, то стрелка прибора так же отклонится на время движения проводника, но уже направление отклонения стрелки гальванометра будит противоположным.


Изменение положения стрелки гальванометра, в момент движения проводника в магнитном поле указывает на то, что в этом проводнике наводится некая электродвижущая сила сокращенно э.д.с.
Появление этой силы, можно объяснить тем, что под действием магнитного поля, свободные электроны, находящиеся в проводнике, начинают упорядоченно двигаться по проводнику.

Так как к нашему проводнику подключен измерительный прибор, то эта система из перемещаемого проводника и гальванометра с соединительными проводами представляет собой замкнутую цепь, а в этом случаи по цепи протекает электрический ток, на что и указывает стрелка гальванометра.
Обратите внимание, что электрический ток, а ему предшествует наведение электродвижущей силы возникает лишь в момент движения проводника в магнитном поле постоянного магнита. А величина наведенной электродвижущей силы зависит от скорости перемещения проводника.

Закон электромагнитной индукции Фарадея

И так, мы знаем, что наведенная электродвижущая сила в проводнике, движущемся в некотором магнитном поле, с определенной скоростью, а её величина зависит от скорости передвижения проводника. Но это еще не все, электродвижущая сила так же зависит от длины проводника, важна именно длина, которая находится под действием магнитного поля магнита, а еще зависит от индукции магнитного поля и от направления передвижения самого проводника.
М.

Фарадей сформулировал закон электромагнитной индукции следующим образом:

«Индуцируемая электродвижущая сила прямо пропорциональна индукции магнитного поля B, длине проводника l и скорости его перемещения v в направлении, перпендикулярном силовым линиям поля.»

Этот закон можно выразить формулой, где электродвижущая сила обозначается буквой e:

Когда проводник движется не под прямым углом по отношению к магнитному полю, то формула имеет следующий вид:

Где:
e – электродвижущая сила; B – индукция магнитного поля; l – длина проводника; v – скорость перемещения проводника в магнитном поле;
Sin ϕ – синус угла под которым производится перемещение относительно магнитного поля.
Индуцирование электродвижущей силы в проводнике происходит лишь тогда, когда он перемещается в магнитном поле, то есть пересечение магнитными силовыми линиями не должно быть постоянным, а всегда изменятся.
Электродвижущая сила в этом проводнике будит индуцироваться не зависимо от того, замкнута цепь проводника или нет.
Как для протекания электрического тока, основным условием является наличие замкнутой цепи, так и для электродвижущей силы, главное условие ее наведения – это изменение силовых магнитных линий, пересекающих проводник.
Заметьте, что движение проводника в магнитном поле не является основополагающим фактором индуцирования электродвижущая сила. Допускается и то, что проводник неподвижен, а перемещаться будит лишь магнитное поле, в котором находится этот проводник.

Правило правой руки

Вы, наверное, обратили внимание, что при изменении направления перемещения проводника в магнитном поле изменяется и направление отклонения стрелочки гальванометра, следовательно, и индуцируемая электродвижущая сила изменила свое направление.
Существует правило, благодаря которому можно определить направление индуцируемой электродвижущей силы, это правило называется «Правило правой руки».
Правило правой руки звучит следующим образом:

«Если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец совместить с направлением движения проводника, то вытянутые четыре пальца укажут направление индуцированной электродвижущей силы»

Применение электромагнитной индукции

Электромагнитная индукция это — серьёзное основание (база), понимание и овладение которым, открывает большинство дверей в мире электрических машин.
Работа всех электрических машин переменного тока основывается на явлении электромагнитной индукции.
К таким машинам относят всем давно известные трансформаторы, различные типы двигателей, в основном это асинхронные двигатели с короткозамкнутым ротором, а также с фазным ротором, различные типы и виды генераторов: асинхронные, синхронные.
Многие, наверное, слышали о индукционных печах, индукционный способ плавки, а индукционные счетчики электрической энергии уже устаревшие.
Принцип работы многих электрических аппаратов основывается на явлении магнитной индукции, это такие как магнитные пускатели, контакторы, различные типы реле и современные датчики положения.
В современной технике данное явление применяется в беспроводных зарядках для телефонов, в микроволновых печах и так далее.
Но существует и обратная сторона медали. Из-за явления электромагнитной индукции в электроэнергетике существуют колоссальные потери на всем известные вихревые токи, которые наводятся практически везде. Хотя с этим видом потерь активно борются и находят те или иные способы уменьшения таких потерь, но все же они вещественны и ощутимы.

white-santa.ru

Электромагнитная индукция: применение индукции

 

Мы уже знаем, что электрический ток, двигаясь по проводнику, создает вокруг него магнитное поле. На основе этого явления человек изобрел и широко применяет самые разнообразные электромагниты. Но возникает вопрос: если электрические заряды, двигаясь, вызывают возникновение магнитного поля, а не работает ли это и наоборот?

То есть, может ли магнитное поле явиться причиной возникновения электрического тока в проводнике? В 1831 году Майкл Фарадей установил, что в замкнутой проводящей электрической цепи при изменении магнитного поля возникает электрический ток. Такой ток назвали индукционным током, а явление возникновения тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего этот контур, носит название электромагнитной индукции.

Явление электромагнитной индукции

Само название «электромагнитная» состоит из двух частей: «электро» и «магнитная». Электрические и магнитные явления неразрывно связаны друг с другом. И если электрические заряды, двигаясь, изменяют магнитное поле вокруг себя, то и магнитное поле, изменяясь, поневоле заставит перемещаться электрические заряды, образуя электрический ток.

При этом именно изменяющееся магнитного поля вызывает возникновение электрического тока. Постоянное магнитное поле не вызовет движение электрических зарядов, а соответственно, и индукционный ток не образуется. Более детальное рассмотрение явления электромагнитной индукции , вывод формул и закона электромагнитной индукции относится к курсу девятого класса.

Применение электромагнитной индукции

В данной же статье мы поговорим о применении электромагнитной индукции. На использовании законов электромагнитной индукции основано действие многих двигателей и генераторов тока. Принцип их работы понять довольно просто.

Изменение магнитного поля можно вызвать, например, перемещением магнита. Поэтому, если каким-либо сторонним воздействием передвигать магнит внутри  замкнутой цепи, то в этой цепи возникнет ток. Так можно создать генератор тока.

Если же наоборот, пустить ток от стороннего источника по цепи, то находящийся внутри цепи магнит начнет двигаться под воздействием магнитного поля, образованного электрическим током. Таким образом можно собрать электродвигатель.

Описанными выше генераторами тока преобразовывают механическую энергию в электрическую на электростанциях. Механическая энергия это энергия угля, дизельного топлива, ветра, воды и так далее. Электричество поступает по проводам к потребителям и там обратным образом преобразовывается в механическую в электродвигателях.

Электродвигатели пылесосов, фенов, миксеров, кулеров, электромясорубок и прочих многочисленных приборов, используемых нами ежедневно, основаны на использовании электромагнитной индукции и магнитных сил. Об использовании в промышленности этих же явлений и говорить не приходится, понятно, что оно повсеместно.

Нужна помощь в учебе?



Предыдущая тема: Действие магнитного поля на проводник с током: схема простого электродвигателя
Следующая тема:&nbsp&nbsp&nbspСвет: свойства, источники света, распространение света

Все неприличные комментарии будут удаляться.

www.nado5.ru

Практическое применение явления электромагнитной индукции — МегаЛекции

Реферат

по дисциплине «Физика»

 

Тема: «Открытие явления электромагнитной индукции»

 

Выполнил:

Студент группы 13103/1

Принял:

 

Санкт-Петербург

Оглавление

1. Майкл Фарадей. 2

2. Опыты Фарадея. 3

3. Практическое применение явления электромагнитной индукции. 9

4. Список использованной литературы.. 12

 

 

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

В 1820 г. Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 г. в своём дневнике [1].

Майкл Фарадей

Майкл Фарадей (1791—1867) родился в Лондоне, в одной из беднейших его частей. Его отец был кузнецом, а мать — дочерью земледельца-арендатора. Когда Фарадей достиг школьного возраста, его отдали в начальную школу. Курс, пройденный Фарадеем здесь, был очень узок и ограничивался только обучением чтению, письму и началам счета.

Рис.1. Майкл Фарадей

В нескольких шагах от дома, в котором жила семья Фарадеев, находилась книжная лавка, бывшая вместе с тем и переплетным заведением. Сюда-то и попал Фарадей, закончив курс начальной школы, когда возник вопрос о выборе профессии для него. Майклу в это время минуло только 13 лет. Уже в юношеском возрасте, когда Фарадей только что начинал свое самообразование, он стремился опираться исключительно только на факты и проверять сообщения других собственными опытами.



Эти стремления доминировали в нем всю жизнь как основные черты его научной деятельности Физические и химические опыты Фарадей стал проделывать еще мальчиком при первом же знакомстве с физикой и химией. Однажды Майкл посетил одну из лекций Гэмфри Дэви, великого английского физика. Фарадей сделал подробную запись лекции, переплел ее и отослал Дэви. Тот был настолько поражен, что предложил Фарадею работать с ним в качестве секретаря. Вскоре Дэви отправился в путешествие по Европе и взял с собой Фарадея. За два года они посетили крупнейшие европейские университеты.

Вернувшись в Лондон в 1815 году, Фарадей начал работать ассистентом в одной из лабораторий Королевского института в Лондоне. В то время это была одна из лучших физических лабораторий мира. С 1816 по 1818 год Фарадей напечатал ряд мелких заметок и небольших мемуаров по химии. К 1818 году относится первая работа Фарадея по физике.

Опираясь на опыты своих предшественников и скомбинировав несколько собственных опытов, к сентябрю 1821 года Майкл напечатал «Историю успехов электромагнетизма». Уже в это время он составил вполне правильное понятие о сущности явления отклонения магнитной стрелки под действием тока.

Добившись этого успеха, Фарадей на целых десять лет оставляет занятия в области электричества, посвятив себя исследованию целого ряда предметов иного рода. В 1823 году Фарадеем было произведено одно из важнейших открытий в области физики — он впервые добился сжижения газа, и вместе с тем установил простой, но действительный метод обращения газов в жидкость. В 1824 году Фарадей сделал несколько открытий в области физики. Среди прочего он установил тот факт, что свет влияет на цвет стекла, изменяя его. В следующем году Фарадей снова обращается от физики к химии, и результатом его работ в этой области является открытие бензина и серно-нафталиновой кислоты.

В 1831 году Фарадей опубликовал трактат «Об особого рода оптическом обмане», послуживший основанием прекрасного и любопытного оптического снаряда, именуемого «хромотропом». В том же году вышел еще один трактат ученого «О вибрирующих пластинках». Многие из этих работ могли сами по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции.

Опыты Фарадея

Одержимый идеями о неразрывной связи и взаимодействии сил природы, Фарадей пытался доказать, что точно так же, как с помощью электричества Ампер мог создавать магниты, так же и с помощью магнитов можно создавать электричество.

Логика его была проста: механическая работа легко переходит в тепло; наоборот, тепло можно преобразовать в механическую работу (скажем, в паровой машине). Вообще, среди сил природы чаще всего случается следующее соотношение: если А рождает Б, то и Б рождает А.

Если с помощью электричества Ампер получал магниты, то, по-видимому, возможно «получить электричество из обычного магнетизма». Такую же задачу поставили перед собой Араго и Ампер в Париже, Колладон – в Женеве.

Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего. К тому времени, когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле. Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки.

Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества. Фарадей ставит множество опытов, ведет педантичные записи. Каждому небольшому исследованию он посвящает параграф в лабораторных записях (изданы в Лондоне полностью в 1931 году под названием «Дневник Фарадея»). О работоспособности Фарадея говорит хотя бы тот факт, что последний параграф «Дневника» помечен номером 16041. Блестящее мастерство Фарадея-экспериментатора, одержимость, четкая философская позиция не могли не быте вознаграждены, но ожидать результата пришлось долгих одиннадцать лет.

Кроме интуитивной убежденности во всеобщей связи явлений, его, собственно, в поисках «электричества из магнетизма» ничто не поддерживало. К тому же он, как его учитель Дэви, больше полагался на свои опыты, чем на мысленные построения. Дэви учил его:

– Хороший эксперимент имеет больше ценности, чем глубокомыслие такого гения, как Ньютон.

И тем не менее именно Фарадею суждены были великие открытия. Великий реалист, он стихийно рвал путы эмпирики, некогда навязанные ему Дэви, и в эти минуты его осеняло великое прозрение – он приобретал способность к глубочайшим обобщениям.

Первый проблеск удачи появился лишь 29 августа 1831 года. В этот день Фарадей испытывал в лаборатории несложное устройство: железное кольцо диаметром около шести дюймов, обмотанное двумя кусками изолированной проволоки. Когда Фарадей подключил к зажимам одной обмотки батарею, его ассистент, артиллерийский сержант Андерсен, увидел, как дернулась стрелка гальванометра, подсоединенного к другой обмотке.

Дернулась и успокоилась, хотя постоянный ток продолжал течь по первой обмотке. Фарадей тщательно просмотрел все детали этой простой установки – все было в порядке.

Но стрелка гальванометра упорно стояла на нуле. С досады Фарадей решил выключить ток, и тут случилось чудо – во время размыкания цепи стрелка гальванометра опять качнулась и опять застыла на нуле!

Гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее. Оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение.

Вот тут-то и открылись Фарадею во всей ясности великие идеи Ампера – связь между электрическим током и магнетизмом. Ведь первая обмотка, в которую он подавал ток, сразу становилась магнитом. Если рассматривать ее как магнит, то эксперимент 29 августа показал, что магнетизм как будто бы рождает электричество. Только две вещи оставались в этом случае странными: почему всплеск электричества при включении электромагнита стал быстро сходить на нет? И более того, почему всплеск появляется при выключении магнита?

На следующий день, 30 августа, – новая серия экспериментов. Эффект ясно выражен, но тем не менее абсолютно непонятен.

Фарадей чувствует, что открытие где-то рядом.

23 сентября он пишет своему другу Р.Филиппсу:

«Я теперь опять занимаюсь электромагнетизмом и думаю, что напал на удачную вещь, но не могу еще утверждать это. Очень может быть, что после всех моих трудов я в конце концов вытащу водоросли вместо рыбы».

К следующему утру, 24 сентября, Фарадей подготовил много различных устройств, в которых основными элементами были уже не обмотки с электрическим током, а постоянные магниты. И эффект тоже существовал! Стрелка отклонялась и сразу же устремлялась на место. Это легкое движение происходило при самых неожиданных манипуляциях с магнитом, иной раз, казалось, случайно.

Следующий эксперимент – 1 октября. Фарадей решает вернуться к самому началу – к двум обмоткам: одной с током, другой – подсоединенной к гальванометру. Различие с первым экспериментом – отсутствие стального кольца – сердечника. Всплеск почти незаметен. Результат тривиален. Ясно, что магнит без сердечника гораздо слабее магнита с сердечником. Поэтому и эффект выражен слабее.

Фарадей разочарован. Две недели он не подходит к приборам, размышляя о причинах неудачи.

Эксперимент триумфальный – 17 октября.

«Я взял цилиндрический магнитный брусок (3/4 дюйма в диаметре и 8 1/4 дюйма длиной) и ввел один его конец внутрь спирали из медной проволоки (220 футов длиной), соединенной с гальванометром. Потом я быстрым движением втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра испытала толчок. Затем я так же быстро вытащил магнит из спирали, и стрелка опять качнулась, но в противоположную сторону. Эти качания стрелки повторялись всякий раз, как магнит вталкивался или выталкивался».

Секрет – в движении магнита! Импульс электричества определяется не положением магнита, а движением!

Это значит, что «электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».

Рис. 2. Опыт Фарадея с катушкой

Эта идея необыкновенно плодотворна. Если движение магнита относительно проводника создает электричество, то, видимо, и движение проводника относительно магнита должно рождать электричество! Причем эта «электрическая волна» не исчезнет до тех пор, пока будет продолжаться взаимное перемещение проводника и магнита. Значит, есть возможность создать генератор электрического тока, действующий сколь угодно долго, лишь бы продолжалось взаимное движение проволоки и магнита!

28 октября Фарадей установил между полюсами подковообразного магнита вращающийся медный диск, с которого при помощи скользящих контактов (один на оси, другой – на периферии диска) можно было снимать электрическое напряжение. Это был первый электрический генератор, созданный руками человека. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), — индукция, и новый вид этой энергии — индукционное электричество.

Опыты, аналогичные фарадеевским, как уже говорилось, проводились во Франции и в Швейцарии. Профессор Женевской академии Колладон был искушенным экспериментатором (он, например, произвел на Женевском озере точные измерения скорости звука в воде). Может быть, опасаясь сотрясения приборов, он, как и Фарадей, по возможности удалил гальванометр от остальной установки. Многие утверждали, что Колладон наблюдал те же мимолетные движения стрелки, что и Фарадей, но, ожидая более стабильного, продолжительного эффекта, не придал этим «случайным» всплескам должного значения…

Действительно, мнение большинства ученых того времени сводилось к тому, что обратный эффект «создания электричества из магнетизма» должен, по-видимому, иметь столь же стационарный характер, как и «прямой» эффект – «образование магнетизма» за счет электрического тока. Неожиданная «мимолетность» этого эффекта сбила с толку многих, в том числе Колладона, и эти многие поплатились за свою предубежденность [2].

Продолжая свои опыты, Фарадей открыл далее, что достаточно простого приближения проволоки, закрученной в замкнутую кривую, к другой, по которой идет гальванический ток, чтобы в нейтральной проволоке возбудить индуктивный ток направления, обратного гальваническому току, что удаление нейтральной проволоки снова возбуждает в ней индуктивный ток уже одинакового направления с гальваническим, идущим по неподвижной проволоке, и что, наконец, эти индуктивные токи возбуждаются только во время приближения и удаления проволоки к проводнику гальванического тока, а без этого движения токи не возбуждаются, как бы близко друг к другу проволоки ни находились.

Таким образом, было открыто новое явление, аналогичное вышеописанному явлению индукции при замыкании и прекращении гальванического тока. Эти открытия вызвали в свою очередь новые. Если можно вызвать индуктивный ток замыканием и прекращением гальванического тока, то не получится ли тот же результат от намагничивания и размагничивания железа?

Работы Эрстеда и Ампера установили уже родство магнетизма и электричества. Было известно, что железо делается магнитом, когда вокруг него обмотана изолированная проволока и по последней проходит гальванический ток, и что магнитные свойства этого железа прекращаются, как только прекращается ток.

Исходя из этого, Фарадей придумал такого рода опыт: вокруг железного кольца были обмотаны две изолированные проволоки; причем одна проволока была обмотана вокруг одной половины кольца, а другая — вокруг другой. Через одну проволоку пропускался ток от гальванической батареи, а концы другой были соединены с гальванометром. И вот, когда ток замыкался или прекращался и когда, следовательно, железное кольцо намагничивалось или размагничивалось, стрелка гальванометра быстро колебалась и затем быстро останавливалась, то есть в нейтральной проволоке возбуждались все те же мгновенные индуктивные токи — на этот раз: уже под влиянием магнетизма.

Рис. 3. Опыт Фарадея с железным кольцом

Таким образом, здесь впервые магнетизм был превращен в электричество. Получив эти результаты, Фарадей решил разнообразить свои опыты. Вместо железного кольца он стал употреблять железную полосу. Вместо возбуждения в железе магнетизма гальваническим током он намагничивал железо прикосновением его к постоянному стальному магниту. Результат получался тот же: в проволоке, обматывавшей железо, всегда возбуждался ток в момент намагничивания и размагничивания железа. Затем Фарадей вносил в проволочную спираль стальной магнит — приближение и удаление последнего вызывало в проволоке индукционные токи. Словом, магнетизм, в смысле возбуждения индукционных токов, действовал совершенно так же, как и гальванический ток.

В то время физиков усиленно занимало одно загадочное явление, открытое в 1824 году Араго и не находившее объяснения, несмотря на то, что этого объяснения усиленно искали такие выдающиеся ученые того времени, как сам Араго, Ампер, Пуассон, Бабэдж и Гершель. Дело состояло в следующем. Магнитная стрелка, свободно висящая, быстро приходит в состояние покоя, если под нее подвести круг из немагнитного металла; если затем круг привести во вращательное движение, магнитная стрелка начинает двигаться за ним.

В спокойном состоянии нельзя было открыть ни малейшего притяжения или отталкивания между кругом и стрелкой, между тем как тот же круг, находившийся в движении, тянул за собою не только легкую стрелку, но и тяжелый магнит. Это поистине чудесное явление казалось ученым того времени таинственной загадкой, чем-то выходящим за пределы естественного. Фарадей, исходя из своих вышеизложенных данных, сделал предположение, что кружок немагнитного металла, под влиянием магнита, во время вращения обегается индуктивными токами, которые оказывают воздействие на магнитную стрелку и влекут ее за магнитом. И действительно, введя край кружка между полюсами большого подковообразного магнита и соединив проволокою центр и край кружка с гальванометром, Фарадей получил при вращении кружка постоянный электрический ток.

Вслед за тем Фарадей остановился на другом вызывавшем тогда общее любопытство явлении. Как известно, если посыпать на магнит железных опилок, они группируются по определенным линиям, называемым магнитными кривыми. Фарадей, обратив внимание на это явление, дал основы в 1831 году магнитным кривым название «линий магнитной силы», вошедшее затем во всеобщее употребление. Изучение этих «линий» привело Фарадея к новому открытию, оказалось, что для возбуждения индуктивных токов приближение и удаление источника от магнитного полюса необязательны. Для возбуждения токов достаточно пересечь известным образом линии магнитной силы.

Рис. 4. «Линии магнитной силы»

Дальнейшие работы Фарадея в упомянутом направлении приобретали, с современной ему точки зрения, характер чего-то совершенно чудесного. В начале 1832 года он демонстрировал прибор, в котором возбуждались индуктивные токи без помощи магнита или гальванического тока. Прибор состоял из железной полосы, помещенной в проволочной катушке. Прибор этот при обыкновенных условиях не давал ни малейшего признака появления в нем токов; но лишь только ему давалось направление, соответствующее направлению магнитной стрелки, в проволоке возбуждался ток.

Затем Фарадей давал положение магнитной стрелки одной катушке и потом вводил в нее железную полосу: ток снова возбуждался. Причиною, вызывавшею в этих случаях ток, был земной магнетизм, вызывавший индуктивные токи подобно обыкновенному магниту или гальваническому току. Чтобы нагляднее показать и доказать это, Фарадей предпринял еще один опыт, вполне подтвердивший его соображения.

Он рассуждал, что если круг из немагнитного металла, например, из меди, вращаясь в положении, при котором он пересекает линии магнитной силы соседнего магнита, дает индуктивный ток, то тот же круг, вращаясь в отсутствие магнита, но в положении, при котором круг будет пересекать линии земного магнетизма, тоже должен дать индуктивный ток. И действительно, медный круг, вращаемый в горизонтальной плоскости, дал индуктивный ток, производивший заметное отклонение стрелки гальванометра. Ряд исследований в области электрической индукции Фарадей закончил открытием, сделанным в 1835 году, «индуктирующего влияния тока на самого себя».

Он выяснил, что при замыкании или размыкании гальванического тока в самой проволоке, служащей проводником для этого тока, возбуждаются моментальные индуктивные токи.

Русский физик Эмиль Христофорович Ленц (1804—1861) дал правило для определения направления индукционного тока. «Индукционный ток всегда направлен так, что создаваемое им магнитное поле затрудняет или тормозит вызывающее индукцию движение, — отмечает А.А. Коробко-Стефанов в своей статье об электромагнитной индукции. — Например, при приближении катушки к магниту возникающий индукционный ток имеет такое направление, что созданное им магнитное поле будет противоположно магнитному полю магнита. В результате между катушкой и магнитом возникают силы отталкивания. Правило Ленца вытекает из закона сохранения и превращения энергии. Если бы индукционные токи ускоряли вызывающее их движение, то создавалась бы работа из ничего. Катушка сама собой после небольшого толчка устремлялась бы навстречу магниту, и одновременно индукционный ток выделял бы в ней теплоту. В действительности же индукционный ток создается за счет работы по сближению магнита и катушки.

Рис. 5. Правило Ленца

Почему возникает индукционный ток? Глубокое объяснение явления электромагнитной индукции дал английский физик Джемс Клерк Максвелл — творец законченной математической теории электромагнитного поля. Чтобы лучше понять суть дела, рассмотрим очень простой опыт. Пусть катушка состоит из одного витка проволоки и пронизывается переменным магнитным полем, перпендикулярным к плоскости витка. В катушке, естественно, возникает индукционный ток. Исключительно смело и неожиданно истолковал этот эксперимент Максвелл.

При изменении магнитного поля в пространстве, по мысли Максвелла, возникает процесс, для которого присутствие проволочного витка не имеет никакого значения. Главное здесь — возникновение замкнутых кольцевых линий электрического поля, охватывающих изменяющееся магнитное поле. Под действием возникающего электрического поля приходят в движение электроны, и в витке возникает электрический ток. Виток — это просто прибор, позволяющий обнаружить электрическое поле. Сущность же явления электромагнитной индукции в том, что переменное магнитное поле всегда порождает в окружающем пространстве электрическое поле с замкнутыми силовыми линиями. Такое поле называется вихревым».

Изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году идею телеграфа, которая затем и легла в основу этого изобретения. А вообще открытие электромагнитной индукции недаром относят к наиболее выдающимся открытиям XIX века — на этом явлении основана работа миллионов электродвигателей и генераторов электрического тока во всем мире…[3]

Практическое применение явления электромагнитной индукции

1. Радиовещание

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг друга, эти поля образуют единое переменное электромагнитное поле – электромагнитную волну. Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве со скоростью света -300000 км/с.

Рис. 6. Радио

 

\

2. Магнитотерапия

В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой электрическими и магнитными полями.

Рис. 7

3. Синхрофазотроны

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.

Рис. 8

4. Расходомеры-счетчики

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая электронной частью в электрический аналоговый/цифровой сигнал.

Рис. 9

5. Генератор постоянного тока

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу “правой руки”. При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам генератора подключить нагрузку, то в ней пойдет ток.

Рис. 10

6. Трансформаторы

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки – вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.

Рис. 11

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение [4].

Список использованной литературы

1. [Электронный ресурс]. Электромагнитная индукция.

< https://ru.wikipedia.org/>

2. [Электронный ресурс].Фарадей. Открытие электромагнитной индукции.

< http://www.e-reading.club/chapter.php/26178/78/Karcev_-_Maksvell.html >

3. [Электронный ресурс]. Открытие электромагнитной индукции. <http://www.electrolibrary.info/history/electromagnitnayaindukciya2.htm>

4. [Электронный ресурс]. Практическое применение явления электромагнитной индукции.

<https://sites.google.com/site/zakonelektromagnitnojindukcii/home/prakticeskoe-primenenie-avlenia-elektromagnitnoj-indukcii>

 


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

megalektsii.ru

§5. Закон электромагнитной индукции.

I. Краткие теоретические сведения

Закон электромагнитной индукции Фарадея: ЭДС индукции, возникающая в замкнутом контуре, численно равна изменению магнитного потока в единицу времени. Направление ЭДС индукции таково, что индукционный ток создает магнитный поток, препятствующий изменению магнитного потока, вызывающего ЭДС индукции.

.

Поток вектора магнитной индукции:

,

где – угол между вектором магнитной индукции и нормалью к плоскости контура.

Индуктивность соленоида:

,

где – магнитная проницаемость материала сердечника,n– число витков на единицу длины,V– объем соленоида.

II. Примеры решения задач

Пример 5.1.Короткозамкнутый виток провода сопротивлением R, имеющий форму квадрата со стороной а, поместили в однородное магнитное поле с индукцией В, перпендикулярной плоскости витка. Затем витку придали форму половины окружности (не растягивая провод, а только деформируя его). Какой заряд протечет через поперечное сечение провода в результате такой деформации.

Решение.

Из закона электромагнитной индукции:

,

где магнитный поток , т.к. магнитное поле перпендикулярно плоскости витка, т.е. угол между вектором магнитной индукции и нормалью к плоскости витка равен нулю.

Из закона Ома,

где R – сопротивление контура. Тогда:

Начальная площадь контура: , конечная площадь контура – площадь половины окружности:, где r – радиус окружности. Радиус окружности найдем из условия, что длина провода остается неизменной:. Тогда конечная площадь контура:.

Таким образом, заряд который пройдет через поперечное сечение провода:

.

Пример 5.2.Кольцо радиуса r вращается вокруг оси лежащей в его плоскости, так что угловая скорость зависит от времени по закону(где а > 0). Кольцо помещено в однородное магнитное поле с индукцией В, направленной перпендикулярно к оси вращения. Найти индукционный ток в кольце, если его сопротивление R.

Решение.

Индукционный ток :

.

Из закона электромагнитной индукции:

,

где магнитный поток ,– угол между вектором магнитной индукции и нормалью к плоскости контура. Тогда:

.

В начальный момент времени нормаль к контуру совпадает с направлением вектора индукции магнитного поля:

.

В момент времени , (гдеТ– период вращения, т.е. время одного полного оборота) кольцо повернется на угол 90вокруг своей оси, т.е.= 90и магнитный поток равен нулю.

В момент времени , кольцо повернется на угол 180вокруг своей оси, т.е.= 180и магнитный поток равен:

.

В момент времени , кольцо повернется на угол 270вокруг своей оси и= 270, т.е. магнитный поток равен нулю.

Таким образом, зависимость магнитного потока от времени имеет вид:, где.

Магнитный поток: и. Тогда индукционный ток равен:

.

Пример 5.3.В очень длинном соленоиде, радиус которого равенR, а число витков на единицу длины равноn, ток изменяется со временем по закону:(гдеI0и– положительные постоянные). Определит напряженность электрического вихревого поляЕ(r)(внутри и снаружи соленоида) в любой момент времени.

Решение.

Закон электромагнитной индукции:

,

где – поток вектора магнитной индукции. Индукция магнитного поля внутри соленоида:, индукция магнитного поля вне бесконечного соленоида равна нулю. Силовые линии магнитного поля параллельны оси соленоида, силовые линии электрического поля – окружности, плоскости которых перпендикулярны оси соленоида. Выбираем замкнутый контур вдоль силовой линии электрического поля внутри соленоида, тогда поток вектора магнитной индукции через поверхность ограниченную данным контуром равен:

,

где r– радиус замкнутого контура.

.

Если замкнутый контур выбираем вне соленоида, то .

Пример 5.4.Провод, имеющий форму параболы, находится в однородном магнитном поле с индукциейВ. Из вершины параболы в момент времениt= 0 начали перемещать перемычку 12 (рис. 5.1 а). Найти э.д.с. в образовавшемся контуре как функциюу, если перемычку перемещают с постоянным ускорениема, причем в моментt= 0 скорость перемычки была равна нулю.

Решение.

Из закона электромагнитной индукции:

,

где магнитный поток ,= 0 – угол между вектором магнитной индукции и нормалью к плоскости контура.

Чтобы найти площадь S, вычислим площадь заштрихованной фигурыS/на рис. 5.1 б, учитывая, чтои.

.

.

.

.

Пример 5.5.По П-образному проводнику, расположенному в горизонтальной плоскости, может скользить без трения перемычка 12 (рис. 5.2). Перемычка имеет длинуl, массуmи сопротивлениеR. Вся система находится в однородном магнитном поле с индукциейВ. В момент времениt= 0 на перемычку стали действовать постоянной горизонтальной силойF, и перемычка начала перемещаться вправо. Найти зависимость от времени скорости перемычки. Самоиндукция и сопротивление П-образного проводника малы.

Решение.

При перемещении перемычки под действием силы Fв контуре возникает ЭДС индукции и индукционный ток (направление тока указано на рис. 5.2):

,

где магнитный поток ,= 180 – угол между вектором магнитной индукции и нормалью к плоскости контура. Величина индукционного тока определяется выражением:

,

где v– скорость движения перемычки.

На проводник, по которому течет ток, в магнитном поле действует сила Ампера:

.

Уравнение движения перемычки имеет вид:

Решаем дифференциальное уравнение:

.

studfiles.net

Электромагнитная индукция

Электромагнитная индукция – это явление возникновения электрического тока (индукционного тока) в замкнутом проводнике (контуре) при воздействии на него изменяющегося во времени магнитного поля. При этом для реализации этого явления не важно, движется проводник или источник магнитного поля. Благодаря этому явления стала возможна работа электрогенераторов и других электрических машин.

История открытия электромагнитной индукции

Электромагнитная индукция была открыта 29 августа 1831 года Майклом Фарадеем. Хотя изначально это явление заметил другой выдающийся ученый Ханс Христиан Эрстед. Проводя свои опыты, он обнаружил, что если магнитную стрелку поместить возле контура, по которому пропускается электрический ток, то стрелка отклоняется. После он выдвинул предположение, что если электрический ток способен породить явление магнетизма, то, скорее всего, возможно и обратное явление, когда магнитное поле порождает электрический ток.

Фундаментально доказать свое предположение Эрстед не смог, поэтому слава в открытии явления электромагнитной индукции досталась Фарадею, который собственно и продолжил начинания своего коллеги.

Интересно, что на пальму первенства в этом открытии помимо Фарадея претендовал американский физик Джозеф Генри. Он также смог провести успешные опыты по индукции токов. Но пока американец решался опубликовать результаты своей работы, Фарадей опередил его.

< Предыдущая   Следующая >

scsiexplorer.com.ua

Электромагнитная индукция. | Объединение учителей Санкт-Петербурга

Электромагнитная индукция

1831 г. – М. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает так называемый индукционный ток. (Индукция, в данном случае, – появление, возникновение).

Индукционный ток в катушке возникает при

перемещении постоянного магнита относительно катушки;

при перемещении электромагнита относительно катушки;

при перемещении сердечника относительно электромагнита, вставленного в катушку;

при регулировании тока в цепи электромагнита;

при замыкании и размыкании цепи

Появление тока в замкнутом контуре при изменении магнит­ного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил (или о возникно­вении ЭДС индукции).

Явление возникновения ЭДС в замкнутом проводящем контуре при изменении магнитного поля (потока), пронизывающего контур, назы­вается электромагнитной индукцией.

Или: явление возникновения электрического поля при изменении магнитного поля (потока), называется электромагнитной индукцией.

Закон электромагнитной индукции

При всяком изменении магнитного потока через проводящий замкнутый контур в этом контуре возникает электрический ток. I зависит от свойств контура (сопротивление):  .  e не зависит от свойств контура: .

ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Основные применения электромагнитной индукции: генерирование тока (индукционные генераторы на всех электростанциях, динамомашины), трансформаторы.

 

Возникновение индукционного тока – следствие закона сохранения энергии!

В случае 1: При приближении магнита, увеличении тока, замыкании цепи: ; Магнитный поток Ф­ → ΔФ>0.Чтобы компенсировать это изменение (увеличение) внешнего поля, необходимо магнитное поле, направленное в сторону, противоположную внешнему полю: , где  – т.н. индукционное магнитное поле.

В случае 2: при удалении магнита, уменьшении тока, размыкании цепи: . Магнитный поток Ф  → ΔФ<0. Чтобы компенсировать это изменение (уменьшение), необходимо магнитное поле, сонаправленное с внешним полем: .

Источником магнитного поля является ток. Поэтому:

Возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им поток магнитной индукции через площадь, ограниченную контуром, стремится компенсиро­вать то изменение потока магнитной индукции, которое вызывает данный ток (правило Ленца).

 

Ток в контуре имеет отрицательное направление (),еслипротивоположно (т.е. ΔΦ>0). Ток в контуре имеет положительное направление (), если  совпа­дает с ,   (т.е. ΔΦ<0).

Поэтому с учетом правила Ленца (знака) выражение для закона электромагнитной индукции записывается: .

Данная формула справедлива для СИ (коэффициент пропорциональности равен 1). В других системах единиц коэффициент другой.

Если контур (например, катушка) состоит из нескольких витков, то ,

где n – количество витков. Все предыдущие формулы справедливы в случае линейного (равномерного) изменения магнитного потока. В произвольном случае закон записывается через производную: , где e – мгновенное значение ЭДС индукции.

www.eduspb.com

Оставить комментарий