Фаза тока фаза напряжения: Сдвиг фаз переменного тока и напряжения

Содержание

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

остается справедливой.

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Рисунок 2. Сдвиг фаз тока и напряжения.

Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный

сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее.

Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т.

е. формулы

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Разность фаз напряжения и тока

Условимся под разностью фаз φ напряжения и тока всегда понимать разность начальных фаз напряжения и тока (а не наоборот):



Поэтому на векторной диаграмме угол φ отсчитывается в направлении от вектора I к вектору U (рис. 3.10). Именно при таком определении разности фаз угол φ равен аргументу комплексного сопротивления. Угол φ положителен при отстающем токе () и отрицателен при опережающем токе ().
Разность фаз между напряжением и током зависит от соотношения индуктивного и емкостного сопротивлений. При имеем и ток отстает по фазе от напряжения, . При имеем , ток совпадает по фазе с напряжением, rLC-цепь в целом проявляет себя как активное сопротивление. Это случай так называемого резонанса в последовательном контуре. Наконец, при имеем , ток опережает по фазе напряжение.

Векторные диаграммы для трех возможных соотношений даны на рис. 3.11. При построении этих диаграмм начальная фаза тока ; принята равной нулю. Поэтому равны друг другу.
Рассматривая при заданной частоте цепь по рис. 3.8 в целом как пассивный двухполюсник, можно ее представить одной из трех эквивалентных схем: при как последовательное соединение сопротивления и индуктивности (), при как сопротивление r и при как последовательное соединение сопротивления и емкости (). При заданных L и С соотношение между зависит от частоты, а потому от частоты зависит и вид эквивалентной схемы.
Выше, в разделе, было принято, что задан ток, а определялись напряжения на элементах и на входных выводах цепи. Однако часто бывает задано напряжение на выводах, а ищется ток. Решение такой задачи не представляет труда. Записав по заданным величинам комплексное напряжение U и комплексное сопротивление Z, определим комплексный ток

и тем самым действующий ток и начальную фазу тока.
Часто равной нулю принимается начальная фаза заданного напряжения: . В этом случае, как следует из раздела, начальная фаза тока ; равна и противоположна по знаку разности фаз φ, т. е .
Установленные выше соотношения между амплитудами и действующими токами и напряжениями, а также выражение для сдвига фаз ф позволяют вычислить ток и не прибегая к записи закона Ома в комплексной форме. Подробно этот путь решения показан в примере 3.4.

Фаза тока, что это такое. Простым и понятных языком. | Ортеа

Давайте рассмотрим, что же все таки такое – фаза тока.

Ист очник фото Яндекс Фаза тока

Ист очник фото Яндекс Фаза тока

Практически все новички и собственники домов часто сталкиваются с проблемой: что же такое фаза тока в обычной электрической проводке? Такие вопросы возникают чаще всего в процессе ремонта каких-то электроприборов.

При возникновении такой ситуации, в первую очередь, нужно думать и соблюдать технику безопасности. А знания и умения должны отойти на второй план. Глубокие познания об самых простых законах образования тока и различных процессов, которые происходят непосредственно в бытовых приборах. Эти знания не только могут помочь найти решение проблем множества неисправностей, которые возникают в электроприборах, но и решить их самым простым и надежным способом.

Практически все конструкторы и инженеры работают над тем, чтобы сократить количество несчастных случаев в процессе ремонтных работ с электросетью либо электроприборами. Основная цель потребителей – соблюдать четко прописанные нормы и стандарты.

Давайте детальнее поговорим о токе:

  • однофазном;
  • двухфазном;
  • трехфазном.

Однофазный ток.

Под однофазным током подразумевают – переменный ток, образующийся в процессе вращательных действий в области магнитного поля проводника либо целой совокупности проводников, которые объединяются общий поток.

Как вы уже знаете, однофазный ток передается с помощью двух проводов. Эти провода называют:

1. Один провод это, непосредственно, фаза;
2.Второй – ноль.

В этих проводах напряжение 220 В.

Однофазное электропитание можно охарактеризовать множеством способов. Ни для кого не секрет, что однофазный ток поступает к потребителю с помощью:

1.Двух проводов;
2.Трех проводов.

Первый вариант подачи однофазного тока – двухпроводной использует два провода, как это понятно уже исходя из названия. Один провод передает фазу, а второй предназначается для нулевого напряжения. На использовании такой системы ориентировались практически всегда при строительстве домостроений в СССР.

Использование второго предусматривает добавление еще одного провода. Он применяется для заземления. Основное предназначение такого провода – исключение варианта поражения людей электрическим током. Так же он нужен для отвода тока при утечке и исключение неполадок электроприборов.

Двухфазный ток.

Под понятием двухфазный электрический ток все понимают – слияние двух однофазных токов, которые имеют сдвиг по фазе друг к другу. Угол сдвига может быть Pi2 либо 90 °.

Рассмотреть образование двухфазного тока можно на примере. Необходимо взять две индуктивные катушки и разместить их в пространстветак, чтобы оси этих катушек были перпендикулярны друг у другу. Затем нужно подключить обе катушки к двухфазному току. В итоге мы будем иметь систему, в которой образовалось 2 обособленных магнитных поля. В результирующем магнитном поле вектор будет вращатьсяс одной и той же скоростью и под одинаковым углом. В результате такого вращения и образуется магнитное поле. Ротор с обмотками, которые произведены в форме короткозамкнутого «беличьего колеса» либо металлического цилиндра на валу, будут вращаться и тем самымприводить в движение различные частицы.
Передача двухфазного тока осуществляется при помощью двух проводов: двумя фазными и двумя нулевыми.

Трехфазный ток.

Под трехфазной системой электрических цепей – принято понимать систему, состоящую из трех цепей. В этих цепях имеются переменные, ЭДС с одинаковой частотой, которые одинаково сдвинуты по фазе и по отношению друг к другу на 1/3 периода(=2/3). Каждый отдельный кусочек такой цепи можно смело назвать его фазой. А совокупную систему принято считать трехфазным током. Трехфазный ток без особого труда можно передавать на достаточно большие расстояния. Паре фазных проводов свойственно напряжение 380В. Если в паре фаза и ноль – 220В.

Распределить трехфазный ток по домостроениям можно такими способами:

1.Четырехпроводным;
2.Пятипроводным.

Четырехпроводное подключение – происходит с использованием трех фаз и одного нулевого провода. Такая система до распределительного щитка, после используют два стандартных провода – фазу и ноль, чтобы иметь напряжение 220В.

При пятипроводном подключении трехфазного тока к уже привычной схеме нужно добавить еще провод, который обеспечивает защиту и заземление. В трехфазной сети все фазы имеют одинаковую нагрузку, чтобы избежать перекоса фаз. От используемой в домостроении проводки зависит и возможность подключения к сети тех или иных электроприборов. Например, заземление просто необходимо если в сеть планируют включать достаточно мощные электроприборы, такие как холодильник, печь, обогреватель, компьютер, телевизор, джакузи, душевая кабинка. Трехфазный ток применяют как источник электропитания двигателей, которые пользуются большой популярностью у потребителей.

Как устроена бытовая проводка

Изначально электроэнергию получают на электростанциях. Потом с помощью промышленной электросети ее передают на трансформаторную подстанцию, а там уже и происходит преобразование напряжения в 380В. Обмотки понижающего трансформатора соединены по принципу «звезда»: все три контакта необходимо подключить к точке «0», а оставшиеся контакты к клеммам «A», «B» и «C».

Все контакты «0», которые были объединены необходимо подключить к заземленному проводу на подстанции. Именно на территории подстанции и происходит расщепление ноля на:

1.Рабочий ноль;
2.PE-проводник, который выполняет защитную функцию.

После выхода из понижающего трансформатора все нули и фазы тока поступают в распределительный щиток домостроения. В результате получается трехфазная система, которая распределяется по всем щиткам многоэтажки. К конечному потребителю попадает напряжение 220В, проводник РЕ выполняет именно эту защитную функцию.

Теперь давайте более детально рассмотрим, что же представляет собой ноль и фаза тока? Нулем принято считать проводник тока, который подключают к контуру заземления в понижающем трансформаторе. Он предназначен для образования нагрузки фазы тока. Присоединять проводник необходимо к обмотке трансформатора. Так же есть такое понятие «защитный ноль» – это именно РЕ-контакт, который мы описывали ранее. Основное его предназначение – отвод тока в случае возникновения поломок либо неисправностей в цепи.

Такой метод пользуется огромной популярностью при подключении к электросети многоэтажных домов. Пользуются им уже много десятилетий. Случаются случаи, когда в системе возникают неисправности. В основном, причиной этому служит низкое качество соединения в цепи либо порыв на линии.

Что происходит в нуле и фазе при обрыве провода.

Обрывы на линии достаточно часто возникают по вине мастеров – они забывают подключить фазу либо ноль. Такие поломки достаточно распространены. Так же довольно часто происходит процесс отгорания нуля на подъездном щитке например, из-за высокой нагрузки в системе.

Если происходит порыв на любом участке цепи, то прекращает функционировать вся цепь, т.к. она размыкается. В таких ситуациях совершенно не важно, какой провод поврежден – фаза или ноль.

То же самое случается и при порыве между распределительным щитом многоэтажки и щитком в подъезде. При таком порыве все потребители, которые были подключены к данному щитку, будут без электроэнергии.

Все ситуации, которые мы попытались описать выше, имеют место быть. Они могут показаться сложными, но не несут никакой опасности для человечества. Ведь обрыв произошел только одного провода, поэтому это совершенно не опасно.

Очень тревожная ситуация – когда пропадает контакт между контуром заземления на подстанции и средним пунктом, к которому поступает все напряжение внутридомового щитка.

Именно в таком варианте электрический ток движется по контурам AB, BC, CA. Совокупное напряжение этих контуров 380В. Именно по этой причине и возникает достаточно опасная ситуация – один щиток может вообще не иметь напряжения, потому что хозяин отключит все электроприборы, а на другом образуется очень высокий уровень напряжения, около 380В. Это может способствовать выходу из строя многих приборов, потому что для них необходимо напряжение в 220В.

Естественно, появление данной ситуации можно избежать. Имеется масса недорогого/дорогостоящего оборудования, которое защитит вашу технику от скачков напряжения.

К такому оборудованию относится и стабилизатор напряжения. Различают такие виды стабилизаторов:

1.Однофазный;
2.Трехфазный.

Как же определить фаза это или ноль?

Для определения ноль это либо фаза рекомендуют пользоваться специальным оборудованием – отверткой-тестером.

Функционирует этот прибор по принципу проведения тока с низким напряжением через тело человека, который его использует. Отвертка имеет такие составляющие:

1.Наконечник, с помощью которого есть возможность подключаться к фазе в розетке;
2.Резистор, который снижает разницу электротока до достижения им безопасного уровня;
3.Светодиод, который загорается, если это фаза;
4.Плоский контакт, который способствует возникновению сети с участием тела оператора.

Помимо отверток-тестеров имеются и иные варианты определения какой именно из контактов в розетке имеет поломку. С помощью такого оборудования электрики и определяют фазу и ноль в розетке. Кому-то привычнее использовать более точный тестер, который функционирует как вольтметр.

По показателям вольтметра можно сказать:

1.О наличии напряжения 220В между нулем и фазой;
2.О напряжении между нулем и землей либо его отсутствии;
3.О напряжении между нулем и фазой либо его отсутствии.

Источником статьи является orteamoscow

5. Фаза переменного тока | 1. Основы теории переменного тока | Часть2

5. Фаза переменного тока

Фаза переменного тока

Наша задача немного усложнится, если мы попытаемся связать два (или более) переменных тока или напряжения, которые “идут не в ногу друг с другом”. “Идут не в ногу друг с другом” подразумевает, что две волны не синхронизированы: их пики и нулевые значения не совпадают в один и тот же момент времени:

 

 

Показанные на данном рисунке две волны имеют одинаковую амплитуду и частоту, но они не идут в ногу друг с другом. С технической точки зрения такое положение дел называется сдвигом фаз. Ранее мы с вами рассматривали, как можно построить “синусоиду” путем вычисления синусоидальной функции в диапазоне от 0 до 360 градусов. Отправная точка синусоиды имела нулевую амплитуду и находилась в нулевом градусе, далее она двигалась к пиковой положительной амплитуде на 900, затем к нулю на 1800, потом к пиковой отрицательной амплитуде на 270

0, и наконец возвращалась к нулю на 3600. Мы можем использовать градусы на горизонтальной оси графика, чтобы с их помощью выразить сдвиг фаз между двумя волнами:

 

 

Сдвиг фаз между этими волнами составляет около 45 градусов: волна “А” значительно опережает волну “В”. На следующем рисунке приведено еще несколько примеров различных сдвигов фаз:

 

 

Поскольку рассмотренные выше волны имеют одинаковую частоту, сдвиг фаз для их будет одинаковым в любых соответствующих точках в любой момент времени. По этой причине сдвиг фаз для двух и более волн одинаковой частоты можно выразить как постоянную величину применимую ко всей волне. То есть, можно с уверенностью сказать что то вроде следующего: Напряжение “А” на 45 градусов не совпадает по фазе с напряжением “B”. Про ту волну, которая находится впереди, можно сказать что она “опережает”, а про ту волну, которая находится позади, можно сказать что она “отстает”.

Сдвиг фаз можно измерить только между несколькими волнами (двумя и более). Обычно, при анализе цепи переменного тока, в качестве основы для определения фазы волны используется напряжение источника питания, величина которого обозначается как “ХХХ вольт при 0 градусов”. Любое другое напряжение (или ток) этой цепи будет иметь сдвиг фазы, выраженный по отношению к данному источнику питания.

То, что мы рассмотрели в данной статье, делает расчеты цепей переменного тока более сложными, чем расчеты цепей постоянного тока. При применении законов Ома и Кирхгофа, величина переменного напряжения (тока) должна включать в себя  и амплитуду и сдвиг фаз. Соответственно, математические операции сложения, вычитания, умножения и деления должны применяться как к сдвигу фаз, так и к амплитуде. К счастью, существует математическая система исчислений, называемая комплексными числами, которая идеально подходит для выполнения этой задачи.

Регулирование фазы и частоты при измерениях | Как оценить возможность включения в работу нового электрооборудования | Архивы

Страница 15 из 46

При проверке устройств релейных защит и в некоторых других случаях требуется регулирование угла фазового сдвига между током и напряжением, что осуществляется с помощью фазорегуляторов. Для этой цели используются чаще всего индукционные фазорегуляторы, представляющие собой заторможенный асинхронный электродвигатель с фазным ротором (рис. 90). Устанавливая ротор такого электродвигателя с помощью рукоятки и редуктора в различные положения, можно получить различные углы между напряжениями статора и ротора U2 в пределах 0—360° (рис. 91).


Рис. 90. Трехфазный индукционный фазорегулятор:
а—  общий вид: б — схема включения; 1— редуктор; 2— статор; 3— ротор

Если нужно  регулировать фазу напряжения относительно напряжения, то на нагрузку 1 подается напряжение статора U1, а на нагрузку 2 — напряжение с колец ротора U2.


Рис. 91. Векторная диаграмма напряжений индукционного фазорегулятора

Рис 92. Фазорегулятор Мосэнерго на автотрансформаторах.
Рис. 92. Внешний вид генератора ГТЧ

Тогда угол а в зависимости от положения ротора будет изменяться  между напряжениями U2 и U1. Если нужно регулировать фазу тока относительно напряжения, то в токовую цепь нагрузки подается питание от напряжения ста- тора U1 через последовательно включенные активные сопротивления (для того чтобы ток 2 совпадал по фазе с , а напряжение на нагрузку подается с колеи ротора U2. Тогда угол в зависимости от положения ротора будет изменяться между напряжением U2 и током 2. Промышленность выпускает индукционные фазорегуляторы типов МЛФ-22, ФР-41, ФР-82-2, технические данные которых приводятся в [2]. Однако эти фазорегуляторы тяжелы, громоздки и неудобны при частых транспортировках.
В связи с этим более широкое применение в практики наладочных работ нашли фазорегуляторы, выполненные на автотрансформаторах. Пример такого фазорегулятора, изготавливаемого в Мосэнерго, показан на рис. 92. Описание его приводится в [2], В комплектных устройствах, выпускаемых промышленностью, предусмотрены для регулирования фазы тока и напряжения коммутационные фазорегуляторы.
При настройке реле частоты и проверке частотомеров наиболее широко используются генераторы технической частоты (ГТЧ), изготавливаемые энергосистемами. Внешний вид такого генератора представлен на рис. 93.
При проверках и настройках высокочастотных каналов связи и телемеханики используются специальные генераторы, технические данные которых приводятся в [2].

Фаза тока это – Всё о электрике

Что такое фаза, фазовый угол и сдвиг фаз

Говоря о переменном токе, часто оперируют такими терминами как «фаза», «фазовый угол», «сдвиг фаз». Обычно это касается синусоидального переменного или пульсирующего тока (полученного путем выпрямления синусоидального тока).

Поскольку периодическое изменение ЭДС в сети или тока в цепи — это гармонический колебательный процесс, то и функция, описывающая данный процесс, – гармоническая, то есть синус или косинус, в зависимости от начального состояния колебательной системы.

Аргументом функции в данном случае является как раз фаза, то есть положение колеблющейся величины (тока или напряжения) в каждый рассматриваемый момент времени относительно момента начала колебаний. А сама функция принимает значение колеблющейся величины, в этот же момент времени.

Чтобы лучше понять значения термина «фаза», обратимся к графику зависимости напряжения в однофазной сети переменного тока от времени. Здесь мы видим что, напряжение изменяется от некоторого максимального значения Um до -Um, периодически проходя чрез ноль.

В процессе изменения, напряжение принимает множество значений в каждый момент времени, периодически (спустя период времени Т) возвращаясь к тому значению, с которого начиналось наблюдение за данным напряжением.

Можно сказать, что в любой момент времени напряжение находится в определенной фазе, которая зависит от нескольких факторов: от времени t, прошедшего от начала колебаний, от угловой частоты, и от начальной фазы. То что стоит в скобках — полная фаза колебаний в текущий момент времени t. Пси — начальная фаза.

Начальную фазу называют в электротехнике еще начальным фазовым углом, поскольку фаза измеряется в радианах или в градусах, как и все обычные геометрические углы. Пределы изменения фазы лежат в интервале от 0 до 360 градусов или от 0 до 2*пи радиан.

На приведенном выше рисунке видно, что в момент начала наблюдения за переменным напряжением U, его значение не было нулем, то есть фаза уже успела в данном примере отклониться от нуля на некоторый угол Пси, равный около 30 градусов или пи/6 радиан — это и есть начальный фазовый угол.

В составе аргумента синусоидальной функции, Пси является константной, поскольку данный угол определяется в начале наблюдения за изменяющимся напряжением, и потом уже в принципе не изменяется. Однако его наличие определяет общий сдвиг синусоидальной кривой относительно начала координат.

По ходу дальнейшего колебания напряжения, текущий фазовый угол изменяется, вместе с ним изменяется и напряжение.

Для синусоидальной функции, если полный фазовый угол (полная фаза с учетом начальной фазы) равен нулю, 180 градусам (пи радиан) или 360 градусам (2*пи радиан), то напряжение принимает нулевое значение, а если фазовый угол принимает значение 90 градусов (пи/2 радиан) или 270 градусов (3*пи/2 радиан) то в такие моменты напряжение максимально отклонено от нуля.

Обычно в ходе электротехнических измерений в цепях переменного синусоидального тока (напряжения), наблюдение ведут одновременно и за током и за напряжением в исследуемой цепи. Тогда графики тока и напряжения изображают на общей координатной плоскости.

В этом случае частота изменения тока и напряжения идентичны, но различны, если смотреть на графики, их начальные фазы. В этом случае говорят о фазовом сдвиге между током и напряжением, то есть о разности их начальных фазовых углов.

Иными словами фазовый сдвиг определяет то, на сколько одна синусоида смещена во времени относительно другой. Фазовый сдвиг, как и фазовый угол, измеряется в градусах или радианах. По фазе опережает тот синус, период которого начинается раньше, а отстает по фазе тот, чей период начинается позже. Фазовый сдвиг обозначают обычно буквой Фи.

Фазовый сдвиг, например, между напряжениями на проводах трехфазной сети переменного тока относительно друг друга является константой и равен 120 градусов или 2*пи/3 радиан.

Что такое фаза тока?

Практически все новички и собственники домов часто сталкиваются с проблемой: что же такое фаза тока в обычной электрической проводке? Такие вопросы возникают чаще всего в процессе ремонта каких-то электроприборов.

При возникновении такой ситуации, в первую очередь, нужно думать и соблюдать технику безопасности. А знания и умения должны отойти на второй план. Глубокие познания об самых простых законах образования тока и различных процессов, которые происходят непосредственно в бытовых приборах. Эти знания не только могут помочь найти решение проблем множества неисправностей, которые возникают в электроприборах, но и решить их самым простым и надежным способом.

Практически все конструкторы и инженеры работают над тем, чтобы сократить количество несчастных случаев в процессе ремонтных работ с электросетью либо электроприборами. Основная цель потребителей – соблюдать четко прописанные нормы и стандарты.

Давайте детальнее поговорим о токе:

  • однофазном;
  • двухфазном;
  • трехфазном.

Однофазный ток.

Под однофазным током подразумевают – переменный ток, образующийся в процессе вращательных действий в области магнитного поля проводника либо целой совокупности проводников, которые объединяются общий поток.

Как вы уже знаете, однофазный ток передается с помощью двух проводов. Эти провода называют:

1.Один провод это, непосредственно, фаза;
2.Второй – ноль.

В этих проводах напряжение 220 В.

Однофазное электропитание можно охарактеризовать множеством способов. Ни для кого не секрет, что однофазный ток поступает к потребителю с помощью:

1.Двух проводов;
2.Трех проводов.

Первый вариант подачи однофазного тока – двухпроводной использует два провода, как это понятно уже исходя из названия. Один провод передает фазу, а второй предназначается для нулевого напряжения. На использовании такой системы ориентировались практически всегда при строительстве домостроений в СССР.

Использование второго предусматривает добавление еще одного провода. Он применяется для заземления. Основное предназначение такого провода – исключение варианта поражения людей электрическим током. Так же он нужен для отвода тока при утечке и исключение неполадок электроприборов.

Двухфазный ток.

Под понятием двухфазный электрический ток все понимают – слияние двух однофазных токов, которые имеют сдвиг по фазе друг к другу. Угол сдвига может быть Pi2 либо 90 °.

Рассмотреть образование двухфазного тока можно на примере. Необходимо взять две индуктивные катушки и разместить их в пространстветак, чтобы оси этих катушек были перпендикулярны друг у другу. Затем нужно подключить обе катушки к двухфазному току. В итоге мы будем иметь систему, в которой образовалось 2 обособленных магнитных поля. В результирующем магнитном поле вектор будет вращатьсяс одной и той же скоростью и под одинаковым углом. В результате такого вращения и образуется магнитное поле. Ротор с обмотками, которые произведены в форме короткозамкнутого «беличьего колеса» либо металлического цилиндра на валу, будут вращаться и тем самымприводить в движение различные частицы.
Передача двухфазного тока осуществляется при помощью двух проводов: двумя фазными и двумя нулевыми.

Трехфазный ток.

Под трехфазной системой электрических цепей – принято понимать систему, состоящую из трех цепей. В этих цепях имеются переменные, ЭДС с одинаковой частотой, которые одинаково сдвинуты по фазе и по отношению друг к другу на 1/3 периода(=2/3). Каждый отдельный кусочек такой цепи можно смело назвать его фазой. А совокупную систему принято считать трехфазным током. Трехфазный ток без особого труда можно передавать на достаточно большие расстояния. Паре фазных проводов свойственно напряжение 380В. Если в паре фаза и ноль – 220В.

Распределить трехфазный ток по домостроениям можно такими способами:

Четырехпроводное подключение – происходит с использованием трех фаз и одного нулевого провода. Такая система до распределительного щитка, после используют два стандартных провода – фазу и ноль, чтобы иметь напряжение 220В.

При пятипроводном подключении трехфазного тока к уже привычной схеме нужно добавить еще провод, который обеспечивает защиту и заземление. В трехфазной сети все фазы имеют одинаковую нагрузку, чтобы избежать перекоса фаз. От используемой в домостроении проводки зависит и возможность подключения к сети тех или иных электроприборов. Например, заземление просто необходимо если в сеть планируют включать достаточно мощные электроприборы, такие как холодильник, печь, обогреватель, компьютер, телевизор, джакузи, душевая кабинка. Трехфазный ток применяют как источник электропитания двигателей, которые пользуются большой популярностью у потребителей.

Как устроена бытовая проводка

Изначально электроэнергию получают на электростанциях. Потом с помощью промышленной электросети ее передают на трансформаторную подстанцию, а там уже и происходит преобразование напряжения в 380В. Обмотки понижающего трансформатора соединены по принципу «звезда»: все три контакта необходимо подключить к точке «0», а оставшиеся контакты к клеммам «A», «B» и «C».

Все контакты «0», которые были объединены необходимо подключить к заземленному проводу на подстанции. Именно на территории подстанции и происходит расщепление ноля на:

1.Рабочий ноль;
2.PE-проводник, который выполняет защитную функцию.

После выхода из понижающего трансформатора все нули и фазы тока поступают в распределительный щиток домостроения. В результате получается трехфазная система, которая распределяется по всем щиткам многоэтажки. К конечному потребителю попадает напряжение 220В, проводник РЕ выполняет именно эту защитную функцию.

Теперь давайте более детально рассмотрим, что же представляет собой ноль и фаза тока? Нулем принято считать проводник тока, который подключают к контуру заземления в понижающем трансформаторе. Он предназначен для образования нагрузки фазы тока. Присоединять проводник необходимо к обмотке трансформатора. Так же есть такое понятие «защитный ноль» – это именно РЕ-контакт, который мы описывали ранее. Основное его предназначение – отвод тока в случае возникновения поломок либо неисправностей в цепи.

Такой метод пользуется огромной популярностью при подключении к электросети многоэтажных домов. Пользуются им уже много десятилетий. Случаются случаи, когда в системе возникают неисправности. В основном, причиной этому служит низкое качество соединения в цепи либо порыв на линии.

Что происходит в нуле и фазе при обрыве провода.

Обрывы на линии достаточно часто возникают по вине мастеров – они забывают подключить фазу либо ноль. Такие поломки достаточно распространены. Так же довольно часто происходит процесс отгорания нуля на подъездном щитке например, из-за высокой нагрузки в системе.

Если происходит порыв на любом участке цепи, то прекращает функционировать вся цепь, т.к. она размыкается. В таких ситуациях совершенно не важно, какой провод поврежден – фаза или ноль.

То же самое случается и при порыве между распределительным щитом многоэтажки и щитком в подъезде. При таком порыве все потребители, которые были подключены к данному щитку, будут без электроэнергии.

Все ситуации, которые мы попытались описать выше, имеют место быть. Они могут показаться сложными, но не несут никакой опасности для человечества. Ведь обрыв произошел только одного провода, поэтому это совершенно не опасно.

Очень тревожная ситуация – когда пропадает контакт между контуром заземления на подстанции и средним пунктом, к которому поступает все напряжение внутридомового щитка.

Именно в таком варианте электрический ток движется по контурам AB, BC, CA. Совокупное напряжение этих контуров 380В. Именно по этой причине и возникает достаточно опасная ситуация – один щиток может вообще не иметь напряжения, потому что хозяин отключит все электроприборы, а на другом образуется очень высокий уровень напряжения, около 380В. Это может способствовать выходу из строя многих приборов, потому что для них необходимо напряжение в 220В.

Естественно, появление данной ситуации можно избежать. Имеется масса недорогого/дорогостоящего оборудования, которое защитит вашу технику от скачков напряжения.

К такому оборудованию относится и стабилизатор напряжения. Различают такие виды стабилизаторов:

Как же определить фаза это или ноль?

Для определения ноль это либо фаза рекомендуют пользоваться специальным оборудованием – отверткой-тестером.

Функционирует этот прибор по принципу проведения тока с низким напряжением через тело человека, который его использует. Отвертка имеет такие составляющие:

1.Наконечник, с помощью которого есть возможность подключаться к фазе в розетке;
2.Резистор, который снижает разницу электротока до достижения им безопасного уровня;
3.Светодиод, который загорается, если это фаза;
4.Плоский контакт, который способствует возникновению сети с участием тела оператора.

Помимо отверток-тестеров имеются и иные варианты определения какой именно из контактов в розетке имеет поломку. С помощью такого оборудования электрики и определяют фазу и ноль в розетке. Кому-то привычнее использовать более точный тестер, который функционирует как вольтметр.

По показателям вольтметра можно сказать:

1.О наличии напряжения 220В между нулем и фазой;
2.О напряжении между нулем и землей либо его отсутствии;
3.О напряжении между нулем и фазой либо его отсутствии.

Фаза тока.

У новичков в мире электрики и домовладельцев иногда возникает вопрос: что такое фаза тока в бытовой электропроводке. Связано это с необходимостью починить какой-либо электроприбор.

В возникшей ситуации наиболее приоритетной задачей мастера должно стать соблюдение правил техники безопасности, а не проявление прикладных навыков и умений. Знание элементарных законов функционирования тока и процессов, проходящих внутри бытовых электроприборов не только поможет справиться с большинством неисправностей, возникающих в них, но и сделает этот процесс наиболее безопасным.

Конструкторы и инженеры делают все возможное, чтобы предотвратить несчастный случай при работе с электричеством в быту. Задача потребителя сводится к соблюдению предписанных норм.

Далее мы рассмотрим:

  • однофазный ток;
  • двухфазный ток;
  • трехфазный ток.

Однофазный ток.

Переменный ток, который получают при помощи вращения в магнитном потоке проводника или системы проводников, соединенных в одну катушку, называется однофазным переменным током.

Как правило, для передачи однофазного тока используют 2 провода. Называются они фазным и нулевым соответственно. Напряжение между этими проводами составляет 220 В.

Однофазное электропитание. Однофазный ток можно подвести к потребителю двумя различными способами: 2-проводным и 3-проводным. При первом (двухпроводном), для подведения однофазного тока используют два провода. По одному протекает фазный ток, другой предназначен для нулевого провода. Таким образом электропитание подведено почти во все, построенные в бывшем СССР, дома. При втором способе для подведения однофазного тока — добавляют ещё один провод. Называется такой провод заземлением (РЕ). Он предназначен для предотвращения поражения человека электрическим током, а так же для отвода токов утечки и предотвращения приборов от поломки.

Двухфазный ток.

Двухфазным электрическим током называется совокупность двух однофазных токов, сдвинутых по фазе относительно друг друга на угол Pi2 или на 90 °.

Наглядный пример образования двухфазного тока. Возьмем две катушки индуктивности и расположим их в пространстве таким образом, чтобы их оси были взаимно перпендикулярны, после чего запитаем систему катушек двухфазным током, как результат получим в системе два магнитных потока. Вектор результирующего магнитного поля будет вращаться с постоянной угловой скоростью, как следствие, возникает вращающееся магнитное поле. Ротор с обмотками, изготовленными в виде короткозамкнутого «беличьего колеса» или представляющий собой металлический цилиндр на валу, будет вращаться, приводя в движение механизмы.

Передают двухфазные токи при помощи двух проводов: двумя фазными и двумя нулевыми.

Трехфазный ток.

Трехфазной системой электрических цепей называется система, которая состоит из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ=2π/3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током. Трехфазный ток легко передаётся на дальние расстояния. Любая пара фазных проводов имеет напряжение 380 В. Пара – фазный провод и нуль — имеет напряжение 220 В.

Распределение трёхфазного тока по жилым домам выполняется двумя способами: 4-проводным и 5-проводным. Четырёхпроводное подключение выполняется тремя фазными и одним нулевым проводом. После распределительного щита для питания розеток и выключателей используют два провода — одну из фаз и нуль. Напряжение между этими проводами будет составлять 220В.

Пятипроводное подключение трехфазного тока — в схему добавляется защитный, заземляющий провод (РЕ). В трёхфазной сети фазы должны нагружаться максимально равномерно, в противном случае может произойти перекос фаз. От того, какая электропроводка используется в доме, зависит какое электрооборудование можно в неё включать. К примеру, заземление обязательно, если в сеть включаются приборы с большой мощностью — холодильники, печи, обогреватели, электронные бытовые приборы — компьютеры, телевизоры, устройства, связанные с водой — джакузи, душевые кабины (вода проводник тока). Трехфазный ток необходим для электропитания двигателей (актуальных для частного дома).

Устройство бытовой электропроводки.

Вначале электроэнергия вырабатывается на электростанции. Затем через промышленную электросеть она попадает на трансформаторную подстанцию, где напряжение преобразуется в 380 вольт. Соединение вторичных обмоток понижающего трансформатора выполнено по схеме «звезда»: три контакта подключены к общей точке «0», а три оставшихся присоединены к клеммам «A», «B» и «C» соответственно. Для наглядности приводится картинка.

Объединенные контакты «0» подсоединяются к заземлительному контуру подстанции. Также здесь ноль расщепляется на:

  • Рабочий ноль (на картинке изображен синим)
  • PE-проводник, выполняющий защитную функцию (линия желто-зеленого цвета)

Нули и фазы тока с выхода понижающего трансформатора подводятся к распределительному щитку жилого дома. Полученная трехфазная система разводится по щиткам в подъездах. В конечном итоге, в квартиру попадает фазовое напряжение 220 В и проводник PE, выполняющий защитную функцию.

Итак, что же такое фаза тока и ноль? Нулем называют проводник тока, присоединенный к заземлительному контуру понижающего трансформатора и служащий для создания нагрузки от фазы тока, подсоединенной к противоположному концу обмотки трансформатора. Кроме того, существует так называемый «защитный ноль» – это PE-контакт, описанный ранее. Он служит для отвода токов при возникновении технической неисправности в цепи.

Этот метод подключения жилых домов к городской электросети отработан десятилетиями, но все же он не идеален. Иногда в вышеописанной системе появляются неисправности. Чаще всего, они связаны с низким качеством соединения на определенном участке цепи или полным обрывом электрического провода.

Что происходит в нуле и фазе при обрыве провода.

Обрыв электрического провода часто обусловлен элементарной рассеянностью мастера – забыть присоединить к определенному прибору в доме фазу тока или ноль – проще простого. Кроме того, нередки случаи отгорания нуля на подъездном щитке в связи с высокой нагрузкой на систему.

В случае обрыва соединения любого электроприбора в доме со щитком, этот прибор перестает работать – ведь цепь не замкнута. При этом не имеет значения, какой именно провод разорван – ноль или фаза тока.

Аналогичная ситуация происходит, когда разрыв наблюдается между распределительным щитком многоквартирного дома и щитом конкретного подъезда – все квартиры, подключенные к щиту подъезда, окажутся обесточены.

Вышеописанные ситуации не вызывают серьезных сложностей и не представляют опасности. Они связаны с обрывом лишь одного проводника и не несут в себе угрозы безопасности электроприборов или людей, находящихся в квартире.

Самая опасная ситуация – исчезновение соединения между заземлительным контуром подстанции и средней точкой, к которой подключена нагрузка внутридомового электрощита.

В этом случае электрический ток пойдет по контурам AB, BC, CA, а общее напряжение на этих контурах – 380 В. В связи с этим возникнет очень неприятная и опасная ситуация – на одном электрощитке может вовсе не быть напряжения, так как хозяин квартиры посчитал нужным отключить электроприборы, а на другом возникнет высокое напряжение близкое к 380 вольтам. Это вызовет выход из строя большинства электроприборов, ведь номинальное напряжение работы для них – 240 вольт.

Конечно, такие ситуации можно предотвратить – существуют достаточно дорогостоящие решения для защиты от скачков напряжения. Некоторые производитель встраивают их в свои приборы.

Как определить ноль и фазу собственными силами.

Для определения нуля и фазы тока существуют специальные отвертки-тестеры.

Она работает по принципу прохождения тока низкого напряжения через тело человека, использующего ее. Отвертка состоит из следующих частей:

  • Наконечник для подключения к фазовому потенциалу розетки;
  • Резистор, снижающий амплитуду электротока до безопасных пределов;
  • Светодиод, загорающийся при наличии потенциала фазы тока в цепи;
  • Плоский контакт для создания цепи сквозь тело оператора.

Принцип работы с отверткой-тестером показан на картинке ниже.

Кроме тестовых отверток, существуют и другие способы определить, к какому контакту розетки подключена фаза тока, а к какому – ноль. Некоторые электрики предпочитают пользоваться более точным тестером, используя его в режиме вольтметра.

Показания стрелки вольтметра означают:

1. Наличие напряжения 220 В между фазой и нулем

2. Отсутствие напряжения между землей и нулем

3. Отсутствие напряжения между фазой и нулем

Вообще-то, в последнем случае стрелка должна показывать 220 В, но в данном конкретном случае центральный контакт розетки не подключен к потенциалу земли.

{SOURCE}

фаза напряжения – это… Что такое фаза напряжения?

  • фаза наполнения
  • фаза преобразования

Смотреть что такое “фаза напряжения” в других словарях:

  • фаза возникновения короткого замыкания в электроустановке — Фаза напряжения электроустановки к моменту возникновения короткого замыкания, выраженная в электрических градусах [ГОСТ 26522 85] Тематики электробезопасность …   Справочник технического переводчика

  • Фаза инерции — Фаза этногенеза – в Пассионарной теории этногенеза Льва Гумилёва, стадия процесса этногенеза, определяемая направлением, скоростью и пределами изменения уровня пассионарного напряжения в этнической системе. Ф.э. характеризуется: а) направлением… …   Википедия

  • Фаза подъема — Фаза этногенеза – в Пассионарной теории этногенеза Льва Гумилёва, стадия процесса этногенеза, определяемая направлением, скоростью и пределами изменения уровня пассионарного напряжения в этнической системе. Ф.э. характеризуется: а) направлением… …   Википедия

  • Фаза обскурации — Фаза этногенеза – в Пассионарной теории этногенеза Льва Гумилёва, стадия процесса этногенеза, определяемая направлением, скоростью и пределами изменения уровня пассионарного напряжения в этнической системе. Ф.э. характеризуется: а) направлением… …   Википедия

  • Фаза надлома — Фаза этногенеза – в Пассионарной теории этногенеза Льва Гумилёва, стадия процесса этногенеза, определяемая направлением, скоростью и пределами изменения уровня пассионарного напряжения в этнической системе. Ф.э. характеризуется: а) направлением… …   Википедия

  • Фаза этногенеза — – в Пассионарной теории этногенеза Льва Гумилёва, стадия процесса этногенеза, определяемая направлением, скоростью и пределами изменения уровня пассионарного напряжения в этнической системе. Ф.э. характеризуется: а) направлением изменения и… …   Википедия

  • фаза тока — Аргумент синусоидального электрического тока, отсчитываемый от точки перехода значения тока через нуль к положительному значению. Примечание — Аналогично определяют фазы синусоидальных электрического напряжения, электродвижущей силы,… …   Справочник технического переводчика

  • фаза — 15 фаза Проводник, пучок проводников, ввод, обмотка или иной элемент многофазной системы переменного тока, являющийся токоведущим при нормальном режиме работы 601 03 09 de Aussenleiter en phase fr phase Источник: ГОСТ 24291 90: Электрическая… …   Словарь-справочник терминов нормативно-технической документации

  • ФАЗА — (от греч. phasis появление) 1) Ф. в теории колебаний и волн (в частности, перем. токов) величина, определяющая состояние колебат. процесса в каждый момент времени. Напр., для напряжения, совершающего гармонические колебания, и = umsinФ, где Ф =… …   Большой энциклопедический политехнический словарь

  • фаза изометрического напряжения — см. Фаза изометрического сокращения …   Большой медицинский словарь

Отношение линейного напряжения к фазному напряжению Отношение линейного тока к фазному току

Обновление:

В трехфазной сбалансированной системе напряжение на фазе по отношению к другой фазе всегда равно величине напряжения и фазового угла, а векторная сумма трех фаз всегда равна нулю.

Напряжение в сети или фазное напряжение выше 440 В можно измерить с помощью трансформатора напряжения. Измеритель потенциала снижает напряжение с более высокого уровня до низкого, обычно со 110 вольт до 63.5Вольт.

В то же время линейный ток или фазный ток выше 25 А, трансформатор тока используется для понижения уровня тока с высокого до низкого, как правило, 1 А или 5 А.

Что такое линейное напряжение:

В трехфазной системе питания разность потенциалов между двумя фазами называется линейным напряжением (обычно между фазами). Обозначается V L-L . Напряжение между R и Y, или Y с B, или от B до R. В энергосистеме напряжение системы означает линейное напряжение.См. Схему,

Пример: наш внутренний источник питания трехфазный, 440 Вольт. Здесь 440 вольт означает, что межфазное напряжение равно 440.

Примечание: Если они упоминают в однофазной сети 230 вольт, это означает, что разность потенциалов между фазой и нейтралью составляет 230 вольт.

В звездообразном соединении:

Напряжение сети = 1,732 фазного напряжения.

Соединение треугольником:

Напряжение сети = фазное напряжение.

Что такое линейный ток:

Измерение тока в одной фазе перед подключением компонента по схеме звезды или треугольника называется линейным током (обычно входным током в двигателе или выходным током в генераторе). В трехфазной сбалансированной системе это может быть ток фазы R, ток фазы Y или ток фазы B.

Обозначается I L ампер.

В звездообразном соединении:

Линейный ток = фазный ток. (мы получаем это, применяя текущее правило Кирхгофа.)

Соединение треугольником:

Линейный ток = фазный ток. (мы получаем его, применяя правило Кирхгофа по напряжению.)

Что такое фазное напряжение:

В трехфазной системе разность потенциалов между одной фазой и естественной точкой называется фазным напряжением. Обозначается V ph вольт

Соединение звездой:

Фазное напряжение = Напряжение в сети делится на 1,732

Соединение треугольником:

Фазный ток:

Фазный ток – это величина тока внутри соединения звездой или треугольником трехфазной системы.Обозначается I ph .

В звездообразном соединении:

Фазный ток = Линейный ток

Соединение треугольником:

Примечание: Значение 3 = 1,732.

Разница между линейным напряжением и фазным напряжением с решенными примерами

Линейное напряжение в трехфазной системе – это разность потенциалов между любыми двумя линиями или фазами, присутствующими в системе, обозначенная как V line или V L-L.Присутствующие здесь фазы являются проводниками или обмотками катушки. Если R, Y и B – три фазы (красная фаза, желтая фаза, синяя фаза), то разница напряжений между R и Y, Y и B или B и R образует линейное напряжение. С другой стороны, фазовое напряжение – это разность потенциалов между одной фазой (R, Y или B) и точкой соединения нейтрали, обозначенная как V фаза = VR (напряжение в красной фазе) = VY (напряжение в желтой фазе) = VB ( напряжение в синей фазе).

(изображение будет загружено в ближайшее время)

Точно так же линейный ток – это ток в одной фазе, а фазный ток – это ток внутри трехфазного соединения.

Чтобы понять соотношение линейного напряжения и фазного напряжения, первое, что нам нужно понять, – это различные типы трехфазных систем подключения.

Соотношение между линейным напряжением и фазным напряжением при соединении звездой

Рассмотрим три катушки провода или обмотки трансформатора, соединенные общей точкой соединения. Три провода, идущие от каждой катушки к нагрузке, называются линейными проводами, а сами проводники являются фазами. Эта система представляет собой типичную трехфазную трехпроводную систему соединения звездой.Если нейтральный провод присоединяется к общей средней точке, это называется трехфазной четырехпроводной системой соединения звездой.

Термины линейное напряжение и фазное напряжение уже объяснялись ранее, и они связаны следующим образом:

\ [V_ {line} = \ sqrt {3} V_ {phase} \];

Пока линейный ток = фазный ток.

(изображение будет загружено в ближайшее время)

(изображение будет загружено в ближайшее время)

Соотношение между линейным напряжением и фазным напряжением при соединении треугольником

При соединении треугольником все три конца фаз соединены в замкнутый треугольник шлейф, и у него нет общей нейтральной точки, как при соединении звездой.Здесь линейное и фазное напряжение связаны следующим образом:

\ [V_ {line} = V_ {phase} \];

Пока линейный ток = √3 × фазный ток.

(изображение будет загружено в ближайшее время)

Разница между фазным напряжением и линейным напряжением определяется следующим образом:

Разница между линейным напряжением и фазным напряжением

Sl No.

Напряжение сети

Фазное напряжение

1.

Напряжение сети выше, чем напряжение фазы при соединении звездой.

Фазное напряжение меньше линейного напряжения при соединении звездой.

2.

Линейное напряжение – это разность потенциалов между двумя фазами или линиями.

Фазное напряжение – это разность потенциалов между фазой и нейтралью.

3.

При соединении звездой линейное напряжение в √3 раз больше фазного напряжения.

При соединении звездой фазное напряжение в 1 / √3 раза больше линейного напряжения.

При соединении треугольником линейное и фазное напряжение равны.

(изображение будет загружено в ближайшее время)

Решенные примеры

1. Рассчитайте фазное напряжение, если линейное напряжение составляет 460 вольт, учитывая, что система представляет собой трехфазную сбалансированную систему, соединенную звездой.

Ответ: Мы знаем,

Vphase = Vline / √3 = 460 / √3 = 265.59 вольт.

2. В какой из следующих цепей линейное и фазное напряжение равны? А как насчет соотношения линейного напряжения и фазного напряжения в другой цепи?

(изображение скоро будет загружено)

Ответ: Как мы знаем, при соединении треугольником (второй рисунок) линейное и фазное напряжение равны. В то время как для соединения звездой линейное напряжение выше, чем фазное напряжение, которое определяется соотношением: Vline = √3 Vphase.

Интересные факты

  • В любой проблеме или вопросе обычно указывается напряжение сети.В случае фазного напряжения следует упомянуть. Если не указано иное, считайте это линейным напряжением.

  • Наш бытовой трехфазный источник питания или 440 вольт – это сетевое напряжение.

  • Однофазный источник переменного тока 230 В – это разница напряжений между фазой и нейтральным переходом или, скорее, фазное напряжение.

  • Многофазная система, в которой все линейные напряжения и линейные токи равны, известна как трехфазная сбалансированная система.В случае несимметричных нагрузок система, как правило, неуравновешенная.

Трехфазное питание, значения напряжения и тока

Трехфазное соединение треугольником: линия, фазный ток, напряжения и мощность в конфигурации Δ

Что такое соединение треугольником (Δ)?

Delta or Mesh Connection ( Δ ) Система также известна как Трехфазная трехпроводная система ( 3-фазная 3-проводная ) и является наиболее предпочтительной системой для передачи энергии переменного тока при распределении, Обычно используется соединение звездой.

В системе межсоединений Delta (также обозначается как Δ ) начальные концы трех фаз или катушек соединены с конечными концами катушки. Или начальный конец первой катушки соединен с конечным концом второй катушки и так далее (для всех трех катушек), и это выглядит как замкнутая сетка или цепь, как показано на рис. (1).

Проще говоря, все три катушки соединены последовательно, образуя тесную сеть или цепь. Из трех переходов вынуты три провода, и все токи, исходящие из перехода, считаются положительными.

В соединении треугольником соединение трех обмоток выглядит как короткое замыкание, но это неверно, , если система сбалансирована, тогда значение алгебраической суммы всех напряжений вокруг сетки равно нулю в соединении треугольником .

Когда клемма разомкнута в Δ, то нет возможности протекать токи с базовой частотой вокруг замкнутой ячейки.

Также прочтите:

На заметку: В конфигурации треугольником, в любой момент, значение ЭДС одной фазы равно равнодействующей значений ЭДС двух других фаз, но в противоположном направлении.

Рис (1). Трехфазная мощность, значения напряжения и тока при соединении треугольником (Δ)

Значения напряжения, тока и мощности при соединении треугольником (Δ)

Теперь мы найдем значения линейного тока, линейного напряжения, фазного тока, фазных напряжений и Питание в трехфазной системе переменного тока треугольником.

Линейные напряжения (V L ) и фазные напряжения (V Ph ) при соединении треугольником

На рис.2 видно, что между двумя клеммами имеется только одна фазная обмотка (т.е.е. между двумя проводами имеется одна фазная обмотка). Следовательно, в соединении треугольником, напряжение между (любой парой) двух линий равно фазному напряжению фазной обмотки , которая подключена между двумя линиями.

Поскольку последовательность фаз R → Y → B, направление напряжения от фазы R к фазе Y положительное (+), а напряжение фазы R опережает напряжение фазы Y на 120 °. Аналогично, напряжение фазы Y опережает фазное напряжение B на 120 °, а его направление положительно от Y к B.

Если линейное напряжение между;

  • Строка 1 и Строка 2 = V RY
  • Строка 2 и Строка 3 = V YB
  • Строка 3 и Строка 1 = V BR

Затем мы видим, что V RY ведет V YB на 120 ° и V YB отводы V BR на 120 ° .

Предположим,

V RY = V YB = V BR = V L …………… (линейное напряжение)

Тогда

V L = V PH

И.е. при соединении треугольником, линейное напряжение равно фазному напряжению .

Линейные токи (I L ) и фазные токи (I Ph ) при соединении треугольником

Из нижеприведенного (рис. 2) видно, что общий ток каждой линии равен разность векторов между двумя фазными токами в соединении треугольником, протекающем по этой линии. т.е.

  • Ток в линии 1 = I 1 = I R – I B
  • Ток в линии 2 = I 2 = I Y – I R
  • Ток в линии 3 = I 3 = I B – I Y

{Векторная разница}

Рис (2).Линейный и фазовый ток и линейное и фазовое напряжение в соединении треугольником (Δ)

Ток линии 1 можно найти, определив разность векторов между I R и I B , и мы можем сделать это, увеличив I B. Вектор в обратном порядке, так что I R и I B образуют параллелограмм. Диагональ этого параллелограмма показывает разность векторов I R и I B , которая равна току в строке 1 = I 1 .Более того, изменяя вектор I B на противоположное, он может указывать как (-I B ), следовательно, угол между I R и -I B (I B , при обратном изменении = -I B ) составляет 60 °. Если,

I R = I Y = I B = I PH …. Фазные токи

Тогда;

Ток, протекающий в строке 1, будет;

I L или I 1 = 2 x I PH x Cos (60 ° / 2)

= 2 x I PH x Cos 30 °

= 2 x I PH x ( √3 / 2) …… Так как Cos 30 ° = √3 / 2

I L = √3 I PH

i.е. При соединении по схеме треугольник линейный ток в √3 раза больше фазного тока.

Точно так же мы можем найти два расширенных линейных тока, как указано выше. т.е.

I 2 = I Y – I R … Векторная разность = √3 I PH

I 3 = I B – I Y … Разность векторов = √3 I PH

As, все токи в линии равны по величине, т.е.

I 1 = I 2 = I 3 = I L

Следовательно,

IL = √3 I PH

Это видно на рисунке выше;

  • Линейные токи отстоят друг от друга на 120 °
  • Линейные токи отстают на 30 ° от соответствующих фазных токов
  • Угол Ф между линейными токами и соответствующими линейными напряжениями составляет (30 ° + Ф), т.е.е. каждый линейный ток отстает на (30 ° + Ф) от соответствующего линейного напряжения.

Связанный пост: Осветительные нагрузки, соединенные звездой и треугольником

Питание в соединении треугольником

Мы знаем, что мощность каждой фазы;

Мощность / Фаза = В PH x I PH x CosФ

И суммарная мощность трех фаз;

Общая мощность = P = 3 x V PH x I PH x CosФ … .. (1)

Мы знаем, что значения фазного тока и фазного напряжения при соединении треугольником;

I PH = I L / √3….. (Из I L = √3 I PH )

V PH = V L

Ввод этих значений в уравнение мощности ……. (1)

P = 3 x V L x (I L / √3) x CosФ …… (I PH = I L / / √3)

P = √3 x√ 3 x V L x (I L / √3) x CosФ… {3 = √3x√3}

P = √3 x V L x I L x CosФ

Следовательно доказано;

Мощность при соединении треугольником ,

P = 3 x V PH x I PH x CosФ ….или

P = √3 x V L x I L x CosФ

Где Cos Φ = коэффициент мощности = фазовый угол между фазным напряжением и фазным током (а не между линейным током и линейным напряжением).

То же самое объясняется в MCQ трехфазной цепи с пояснительным ответом (MCQ № 1)

Полезно запомнить:

При соединении звездой и треугольником общая мощность при сбалансированной нагрузке одинакова .

Т.е. общая мощность в трехфазной системе = P = √3 x V L x I L x CosФ

Полезно знать:

Сбалансированная система – это система, в которой:

  • Напряжения всех трех фаз равны по величине
  • Напряжения всех фаз совпадают по фазе друг с другом i.е. 360 ° / 3 = 120 °
  • Все трехфазные токи равны по величине
  • Все фазные токи синфазны друг другу, т.е. 360 ° / 3 = 120 °
  • Трехфазная сбалансированная нагрузка – это система, в которой нагрузка подключенные к трем фазам, идентичны.

Также читайте:

Что такое линейное и фазовое напряжение трансформатора? | by Grace jia

Трансформатор, такой как масляный трансформатор, представляет собой вид напряжения, который может стабилизировать напряжение в цепи и обеспечить стабильность напряжения и тока в цепи.Для трансформатора это своего рода электрооборудование, которое играет огромную роль в различных схемах и различных схемах. Множество преимуществ. Трансформаторы имеют собственное напряжение и ток. Существует два типа трансформаторов напряжения: линейное и фазное. Это два разных напряжения в трансформаторе. Они связаны и разные. Так какие отношения между ними?

Линейное напряжение – это фазное напряжение, умноженное на 3 корня, которое представляет собой напряжение между горячими линиями.

Фазное напряжение – это напряжение между каждой фазой и нейтралью. Это напряжение между каждой линией под напряжением и нейтралью.

Под линейным напряжением понимается напряжение на выводной линии трехфазного трансформатора. Фазный ток относится к току, протекающему через фазную катушку трехфазного оборудования, а фазное напряжение – это напряжение, приложенное к отдельному набору катушек. Фазовое напряжение – это напряжение между фазной линией и нейтралью.Для соединения треугольником линейное напряжение равно фазному напряжению, а линейный ток равен 3-кратному корню из фазного тока; для соединения звездой линейный ток равен фазному току, а линейное напряжение равно 3-кратному корню из фазного напряжения. Для практического трехфазного оборудования, такого как трансформаторы, двигатели и т. Д., Измерение линейного тока в линии легче реализовать, чем измерение фазного тока и фазного напряжения, поэтому на паспортной табличке указаны линейный ток и линейное напряжение.

Ток нагрузки вторичной стороны трансформатора: линейный ток = фазный ток, линейное напряжение между тремя фазами, фаза и напряжение любой фазы из трех фаз.

В симметричной трехфазной цепи для расчета можно использовать фазное или линейное напряжение, но формула отличается.

Используйте формулу расчета сетевого напряжения:

P = 1,732 × U × I

Используйте формулу расчета фазного напряжения:

P = 3 × U × I

Введение двух напряжений трансформатора и связанных Здесь будут представлены методы расчета.Для двух напряжений трансформатора функции и различные преимущества должны проявляться в большей степени для обеспечения стабильности напряжения трансформатора и обеспечения безопасности трансформатора. И стабильная работа!

Компания в основном производит: масляные силовые трансформаторы , сухие трансформаторы, коробчатые подстанции, распределительные устройства высокого и низкого напряжения и различные специальные трансформаторы. Подъемное, инструментальное и испытательное оборудование укомплектовано.Наша компания прошла сертификацию системы менеджмента качества международного стандарта ISO9001–2015. Все показатели производительности продукции соответствуют национальным и международным стандартам.

Если вы хотите узнать больше о продукте, пожалуйста, нажмите здесь .

Больше продуктов, пожалуйста, просмотрите Hifactory .

C: \ files \ курсы \ 3414 \ ece3414notes1a.wpd

% PDF-1.6 % 106 0 объект > эндобдж 165 0 объект > эндобдж 104 0 объект > поток Акробат Дистиллятор 5.0.5 (Windows) 2004-07-07T15: 23: 25Z2013-08-22T07: 29: 22-05: 002013-08-22T07: 29: 22-05: 00PScript5.dll, версия 5.2application / pdf

  • donohoe
  • C: \ файлы \ курсы \ 3414 \ ece3414notes1a.wpd
  • uuid: 3786948f-c39e-456b-ad4f-ee67c605ecc1uuid: b71a17ff-4d5e-4cd1-bca5-025288013c01 конечный поток эндобдж 168 0 объект > / Кодировка >>>>> эндобдж 100 0 объект > эндобдж 99 0 объект > эндобдж 164 0 объект > эндобдж 101 0 объект > эндобдж 102 0 объект > эндобдж 58 0 объект > эндобдж 61 0 объект > эндобдж 64 0 объект > эндобдж 67 0 объект > эндобдж 70 0 объект > эндобдж 73 0 объект > эндобдж 76 0 объект > эндобдж 78 0 объект > поток Hl ;; + V7ssZ @ BfJDq` > _; q ֌ v / 7 _ ^;> _}? _ / ^ Z_ {K || k ~ F’0r77Z 銵 x> -ĺd80w =! 1Квкуп.PuexSWNlW27ErnmAFnaEr $ rcV5gqp 陾 = + _} f9Uqx1r35fwYd3La6gph ֍ Zq.] 0b (E (k l {_, x? lXF8Ų 뙬 ./. ‘ mTMAЯ ~ d {o & ̸’MF968g ۻ $% f [; {SIW aʖb45a39 x [7ǧK: bCn 3 빍 J * [8X9y4 {n $ _g1ƥVz8U ~ wpJA / v1CZ *, ⥢UvR6lV

    Типы электрических служб и напряжения

    На этой странице описаны различные типы коммунальных электросетей и напряжения питания. Номинальное напряжение питания системы, указанное ниже, может изменяться на ± 10% или более. Модели счетчиков WattNode ® доступны в семи различных версиях, которые охватывают весь диапазон типов электрических услуг и напряжений.Новый WattNode Wide-Range Modbus охватывает 100-600 В переменного тока, звезда и треугольник, однофазный и трехфазный с одной моделью. Измерители и трансформаторы тока предназначены для использования в системах с частотой 50 или 60 Гц.

    Классификация электрических услуг

    Системы распределения электроэнергии переменного тока можно классифицировать по следующим признакам:

    • Частота: 50 Гц или 60 Гц
    • Количество фаз: одно- или трехфазное
    • Количество проводов: 2, 3 или 4 (без учета защитного заземления)
    • Нейтраль присутствует:
      • Соединенные звездой системы имеют нейтраль
      • Системы, подключенные по схеме Delta , обычно не имеют нейтрали
    • Классы напряжения: (ANSI C84.1-2016)
      • Низкое напряжение: 1000 В или менее
      • Среднее напряжение: более 1000 В и менее 100 кВ
      • Высокое напряжение: больше 100 кВ, но равно или меньше 230 кВ
      • Сверхвысокое напряжение : более 230 кВ, но менее 1000 кВ
      • Сверхвысокое напряжение : не менее 1000 кВ

    Линия-нейтраль, звезда Линейное напряжение звезды или треугольника
    120 208
    120 1 240
    230 400
    240 415
    277 480
    347 600
    • Линейное напряжение в трехфазных системах обычно равно 1.В 732 раза больше напряжения между фазой и нейтралью:
    • В симметричной трехфазной электрической системе напряжения между фазой и нейтралью должны быть одинаковыми, если нагрузка сбалансирована.
    • Примечание: 120 1 Относится к трехфазной четырехпроводной схеме подключения по схеме «треугольник».

    Общие электрические услуги и нагрузка

    • На следующих чертежах символы катушек представляют вторичную обмотку сетевого трансформатора или другого понижающего трансформатора. Нормы электрических правил в большинстве юрисдикций требуют, чтобы нейтральный проводник был соединен (подключен) с заземлением на входе в электрические сети.

    Однофазный трехпроводной

    Также известна как система Эдисона, с расщепленной фазой или нейтралью с центральным отводом. Это наиболее распространенная услуга по проживанию в Северной Америке. Линия 1 к нейтрали и линия 2 к нейтрали используются для питания 120-вольтного освещения и подключаемых нагрузок. Линия 1 – линия 2 используется для питания однофазных нагрузок на 240 вольт, таких как водонагреватель, электрическая плита или кондиционер.

    Трехфазная четырехпроводная звезда

    Самый распространенный в Северной Америке электроснабжение коммерческих зданий – это звезда на 120/208 В, которая используется для питания 120-вольтных нагрузок, освещения и небольших систем отопления, вентиляции и кондиционирования воздуха.В более крупных объектах напряжение составляет 277/480 вольт и используется для питания однофазного освещения на 277 вольт и больших нагрузок HVAC. В западной Канаде распространено напряжение 347/600 В.

    Трехфазный трехпроводной, треугольник

    Используется в основном на промышленных предприятиях для обеспечения питания нагрузок трехфазных электродвигателей, а также в системах распределения электроэнергии. Номинальное рабочее напряжение составляет 240, 400, 480, 600 и выше.

    Загрузить: Типы электрических служб и напряжение (AN-129) (PDF, 3 страницы)

    Необычные электрические услуги

    Трехфазный, четырехпроводной, треугольник

    Также известна как система дельт с высоким или диким участком.Используется на старых производственных предприятиях с нагрузкой в ​​основном трехфазными двигателями и примерно 120-вольтовым однофазным освещением и розетками. Подобно трехфазной трехпроводной схеме, описанной выше, но с центральным ответвлением на одной из обмоток трансформатора для создания нейтрали для однофазных нагрузок на 120 вольт. Двигатели подключаются к фазам A, B и C, а однофазные нагрузки подключаются к фазе A или C и к нейтрали. Фаза B, высокий или дикий полюс, не используется, так как напряжение на нейтрали составляет 208 вольт.

    Трехфазный двухпроводной, заземленный в угол треугольник

    Используется для снижения затрат на электромонтаж за счет использования служебного кабеля только с двумя изолированными проводниками, а не с тремя изолированными проводниками, используемыми в обычном трехфазном служебном входе.

    Международные системы распределения электроэнергии

    Описание L – N Vac L – L Vac Страны Модели ватт-узлов (звезда или треугольник)
    1-фазный, 2-проводный 120 В с нейтралью 120 США 3Y-208
    1-фазный, 2-проводный 230 В с нейтралью 230 ЕС, прочие 3Y-400
    1-фазный, 2-проводный 208 В (без нейтрали) 208 США 3Д-240
    1-фазный, 2-проводный 240 В (без нейтрали) 240 США 3Д-240
    1-фазный, 3-проводный 120/240 В 120 240 США 3Y-208
    3-фазный, 3-проводный, 208 В, треугольник (без нейтрали) 208 США 3Д-240
    3-фазный, 3-проводный 230 В, треугольник (без нейтрали) 230 Норвегия 3Д-240
    3-фазный, 3-проводный, 400 В, треугольник (без нейтрали) 400 ЕС, прочие 3Д-400
    3-фазный, 3-проводный 480 В, треугольник (без нейтрали) 480 США 3Д-480
    3 фазы, 3 провода, треугольник 600 В (без нейтрали) 600 США, Канада нет 1
    3 фазы, 4 провода 208Y / 120 В 120 208 США 3Y-208, 3Д-240
    3 фазы, 4 провода 400Y / 230 В 230 400 ЕС, прочие 3У-400, 3Д-400
    3 фазы, 4 провода 415Y / 240 В 240 415 Австралия 3У-400, 3Д-400
    3 фазы, 4 провода 480Y / 277 В 277 480 США 3Y-480, 3D-480
    3 фазы, 4 провода 600Y / 347 В 347 600 США, Канада 3Y-600
    3-фазный 4-проводный треугольник 120/208/240 Дикая фаза 120, 208 240 США 3Д-240
    3-фазный 4-проводный треугольник 240/415/480 Дикая фаза 240, 415 480 США 3Д-480
    Трехфазное соединение, заземленное треугольником 208/240 240 США 3Д-240
    Трехфазное соединение, заземленное треугольником 415/480 480 США 3Д-480
    • 1 Используя трансформаторы напряжения (ТТ), измерители WattNode могут измерять дельта-сигналы 600 В, а также службы среднего и высокого напряжения.

    Вопросы

    • Появляются ли 3Y-600 и 3D-600 в США или только в Канаде?
      • Да, соединения 600 В по схеме “звезда” и “треугольник” используются в обеих странах, но в США они менее распространены.
    • Какие услуги используются в Канаде?
      • В основном для обслуживания звездочкой 208Y / 120 В и 600Y / 347 В, а иногда и треугольником 600 В.

    См. Также

    Объяснение основных измерений трехфазной мощности

    Время чтения: 7 минут

    Хотя однофазное электричество используется для питания обычных бытовых и офисных электроприборов, системы трехфазного переменного тока почти повсеместно используются для распределения электроэнергии и подачи электричества непосредственно на оборудование с более высокой мощностью.

    В этой технической статье описываются основные принципы работы трехфазных систем и различие между различными возможными соединениями для измерения.

    • Трехфазные системы
    • Соединение звездой или звездой
    • Соединение треугольником
    • Сравнение звезды и дельты
    • Измерения мощности
    • Подключение однофазного ваттметра
    • Однофазное трехпроводное соединение
    • Трехфазное трехпроводное соединение (метод двух ваттметров)
    • Трехфазное трехпроводное соединение (метод трех ваттметров)
    • Теорема Блонделя: необходимое количество ваттметров
    • Трехфазное, четырехпроводное соединение
    • Настройка измерительного оборудования

    Трехфазные системы

    Трехфазное электричество состоит из трех напряжений переменного тока одинаковой частоты и одинаковой амплитуды.Каждая фаза переменного напряжения отделена от другой на 120 ° (Рисунок 1).

    Рис. 1. Форма сигнала трехфазного напряжения

    Эту систему можно схематично представить как осциллограммами, так и векторной диаграммой (рис. 2).

    Рисунок 2. Векторы трехфазного напряжения

    Зачем нужны трехфазные системы? По двум причинам:

    1. Три разнесенных вектора напряжения могут использоваться для создания вращающегося поля в двигателе. Таким образом, двигатели можно запускать без дополнительных обмоток.
    2. Трехфазная система может быть подключена к нагрузке таким образом, чтобы количество необходимых медных соединений (и, следовательно, потери при передаче) было вдвое меньше, чем они были бы в противном случае.

    Рассмотрим три однофазные системы, каждая из которых выдает 100 Вт на нагрузку (рисунок 3). Общая нагрузка составляет 3 × 100 Вт = 300 Вт. Для подачи питания 1 ампер протекает через 6 проводов, и, таким образом, возникают 6 единиц потерь.

    Рисунок 3. Три однофазных источника питания – шесть единиц потерь

    В качестве альтернативы, три источника могут быть подключены к общей обратной линии, как показано на рисунке 4. Когда ток нагрузки в каждой фазе одинаков, нагрузка считается равной. сбалансированный. При сбалансированной нагрузке и трех токах, сдвинутых по фазе на 120 ° друг от друга, сумма тока в любой момент равна нулю, и ток в обратной линии отсутствует.

    Рис. 4. Трехфазное питание, сбалансированная нагрузка – 3 единицы потерь

    В трехфазной системе под углом 120 ° требуется только 3 провода для передачи энергии, для которой в противном случае потребовалось бы 6 проводов. Требуется половина меди, и потери при передаче по проводу уменьшатся вдвое.

    Соединение звездой или звездой

    Трехфазная система с общим подключением обычно изображается, как показано на Рисунке 5, и называется соединением «звезда» или «звезда».

    Рисунок 5. Соединение звездой или звездой – три фазы, четыре провода

    Общая точка называется нейтральной точкой.Эта точка часто заземляется на источнике питания из соображений безопасности. На практике нагрузки не сбалансированы идеально, и четвертый нейтральный провод используется для передачи результирующего тока.

    Нейтральный проводник может быть значительно меньше трех основных проводов, если это разрешено местными правилами и стандартами.

    Рисунок 6. Сумма мгновенных напряжений в любой момент времени равна нулю.

    Соединение треугольником

    Три однофазных источника питания, о которых говорилось ранее, также могут быть подключены последовательно.Сумма трех сдвинутых по фазе напряжений на 120 ° в любой момент равна нулю. Если сумма равна нулю, то обе конечные точки имеют одинаковый потенциал и могут быть соединены вместе.

    Соединение обычно выполняется, как показано на рисунке 7, и известно как соединение треугольником по форме греческой буквы дельта, Δ.

    Рисунок 7. Соединение треугольником – трехфазное, трехпроводное соединение

    , звезда и треугольник, сравнение

    Конфигурация “звезда” используется для распределения питания между однофазными бытовыми приборами в доме и офисе.Однофазные нагрузки подключаются к одной ветви звезды между линией и нейтралью. Общая нагрузка на каждую фазу распределяется в максимально возможной степени, чтобы обеспечить сбалансированную нагрузку на первичное трехфазное питание.

    Конфигурация “звезда” также может подавать одно- или трехфазное питание на более мощные нагрузки при более высоком напряжении. Однофазные напряжения – это напряжения между фазой и нейтралью. Также доступно более высокое межфазное напряжение, как показано черным вектором на Рисунке 8.

    Рисунок 8. Напряжение (фаза-фаза)

    Конфигурация “треугольник” чаще всего используется для питания трехфазных промышленных нагрузок большей мощности.Различные комбинации напряжений могут быть получены от одного трехфазного источника питания по схеме «треугольник», однако путем подключения или «ответвлений» вдоль обмоток трансформаторов питания.

    В США, например, система с треугольником 240 В может иметь обмотку с расщепленной фазой или обмотку с центральным отводом для обеспечения двух источников питания 120 В (рисунок 9).

    Рис. 9. Конфигурация треугольником с обмоткой «расщепленная фаза» или «отвод от средней точки»

    Из соображений безопасности центральный отвод может быть заземлен на трансформаторе. 208 В также имеется между центральным ответвлением и третьей «верхней ветвью» соединения треугольником.

    Измерения мощности

    Мощность в системах переменного тока измеряется с помощью ваттметров. Современный цифровой ваттметр с выборкой, такой как любой из анализаторов мощности Tektronix, умножает мгновенные выборки напряжения и тока вместе для расчета мгновенных ватт, а затем берет среднее значение мгновенных ватт за один цикл для отображения истинной мощности.

    Ваттметр обеспечит точные измерения истинной мощности, полной мощности, реактивной мощности вольт-ампер, коэффициента мощности, гармоник и многих других параметров в широком диапазоне форм волн, частот и коэффициента мощности.

    Чтобы анализатор мощности дал хорошие результаты, вы должны уметь правильно определять конфигурацию проводки и правильно подключать ваттметры анализатора.

    Подключение однофазного ваттметра

    Рисунок 10. Однофазные, двухпроводные измерения и измерения постоянного тока

    Требуется только один ваттметр, как показано на рисунке 10. Системное подключение к клеммам напряжения и тока ваттметра несложно. Клеммы напряжения ваттметра подключены параллельно к нагрузке, и ток проходит через клеммы тока, которые включены последовательно с нагрузкой.

    Однофазное трехпроводное соединение

    В этой системе, показанной на рисунке 11, напряжения вырабатываются одной обмоткой трансформатора с центральным отводом, и все напряжения синфазны. Эта система широко распространена в жилых домах Северной Америки, где доступны один источник питания 240 В и два источника питания 120 В, которые могут иметь разную нагрузку на каждую ногу.

    Для измерения общей мощности и других величин подключите два ваттметра, как показано на Рисунке 11 ниже.

    Рисунок 11. Метод однофазного трехпроводного ваттметра

    Трехфазное трехпроводное соединение (метод двух ваттметров)

    При наличии трех проводов требуются два ваттметра для измерения общей мощности.Подключите ваттметры, как показано на рисунке 12. Клеммы напряжения ваттметров соединены фаза с фазой.

    Рисунок 12. Трехфазный, трехпроводной, метод 2 ваттметра

    Трехфазное трехпроводное соединение (метод трех ваттметров)

    Хотя для измерения общей мощности в трехпроводной системе требуются только два ваттметра, как показано ранее, иногда удобно использовать три ваттметра. В соединении, показанном на Рисунке 13, ложная нейтраль была создана путем соединения клемм низкого напряжения всех трех ваттметров вместе.

    Рисунок 13. Трехфазное, трехпроводное (метод трех ваттметров: установите анализатор в трехфазный, четырехпроводной режим).

    Трехпроводное трехпроводное соединение имеет преимущества индикации мощности в каждой фазе (не возможно при подключении двух ваттметров) и фазных напряжений.

    Теорема Блонделя: необходимое количество ваттметров

    В однофазной системе всего два провода. Мощность измеряется одним ваттметром. В трехпроводной системе требуется два ваттметра, как показано на рисунке 14.

    Рис. 14. Доказательство для трехпроводной системы «звезда»

    В общем, количество требуемых ваттметров равно количеству проводов минус один.

    Проба для трехпроводной системы звездой

    Мгновенная мощность, измеренная ваттметром, является произведением мгновенных значений напряжения и тока.

    • Показание ваттметра 1 = i1 (v1 – v3)
    • Показание ваттметра 2 = i2 (v2 – v3)
    • Сумма показаний W1 + W2 = i1v1 – i1v3 + i2v2 – i2v3 = i1v1 + i2v2 – (i1 + i2) v3
    • (Из закона Кирхгофа: i1 + i2 + i3 = 0, поэтому i1 + i2 = -i3)
    • 2 показания W1 + W2 = i1v1 + i2v2 + i3v3 = общая мгновенная мощность в ваттах.

    Трехфазное, четырехпроводное соединение

    Три ваттметра необходимы для измерения общей мощности в четырехпроводной системе. Измеренные напряжения представляют собой истинные напряжения между фазой и нейтралью. Междуфазные напряжения могут быть точно рассчитаны по амплитуде и фазе межфазных напряжений с использованием векторной математики.

    Современный анализатор мощности также будет использовать закон Кирхгофа для расчета тока, протекающего в нейтральной линии.

    Настройка измерительного оборудования

    Для заданного количества проводов требуются N, N-1 ваттметров для измерения общих величин, таких как мощность.Вы должны убедиться, что у вас достаточно количества каналов (метод 3 ваттметра), и правильно их подключить.

    Современные многоканальные анализаторы мощности вычисляют общие или суммарные величины, такие как ватты, вольты, амперы, вольт-амперы и коэффициент мощности, напрямую с использованием соответствующих встроенных формул. Формулы выбираются в зависимости от конфигурации проводки, поэтому настройка проводки имеет решающее значение для получения точных измерений общей мощности. Анализатор мощности с функцией векторной математики также преобразует величины между фазой и нейтралью (или звездой) в величины фаза-фаза (или дельта).

    Коэффициент √3 может использоваться только для преобразования между системами или масштабирования измерений только одного ваттметра в сбалансированных линейных системах.

    Оставить комментарий