Физика 10 класс молекулярная физика формулы – Молекулярная физика – FIZI4KA

Молекулярная физика. Тепловые явления

145. Молекулярная физика раздел физики, изучающий строение и свойства вещества, исходя из молекулярно-кинетических представлений о его стро­ении.

146. Основные положения молекулярно-кинетической теории:

1) Все тела состоят из атомов, молекул и ионов, имеющих в свою очередь сложное строение.

2) Атомы, молекулы и ионы находятся в непрерывном хаотическом движении, называемом тепловым. Скорость этого движения зависит от температуры.

3) Между атомами и молекулами существуют силы взаимного притяжения и отталкивания.

147. Экспериментальным подтверждением справедливости первых двух положений являются диффузия, броуновское движение, растворимость и др. Подтверждением справедливости третьего положения служит явление возникновения сил упругости при деформации тел.

148. Диффузия – это явление самопроизвольного проникновения молекул одного вещества в промежутки между молекулами другого вещества, происходящее в результате теплового движения.

149. Броуновское движение – это движение мельчайших макроскопических тел (пылинок, цветочной пыльцы, частичек туши и т.д.) под действием ударов со стороны молекул жидкости или газа.

150. Диаметр молекул имеет порядок 10-10 м, а масса – 10-26 кг.

151. Количество вещества – величина, равная числу структурных элементов (атомов, молекул, ионов), составляющих систему.

где N – число частиц, NA – постоянная Авогадро, m – масса вещества, – молярная масса вещества. Единицей количества вещества является 1 моль.

152. 1 моль – это порция молекул, равная числу Авогадро. Более точное определение 1 моля: это порция молекул или других структурных единиц вещества, в которой содержится столько же молекул или других структурных единиц, сколько их содержится в 0,012 кг углерода.

153. Молярная масса – это масса одного моля данного вещества. Единицей молярной массы является кг/моль.

154. Относительная молекулярная масса – это величина численно равная отношению массы молекулы данного вещества к 1/12 массы изотопа атома углерода 6С12. Измеряется в углеродных единицах (у. ед) или атомных единицах (а.е.м.)

155. Число N молекул в теле массой m можно подсчитать по формуле:

где – количество вещества, NА – число Авогадро, – молярная масса вещества, из которого состоит тело.

156. Идеальным называется газ, потенциальная энергия взаимодействия, между молекулами которого равна нулю.

157. Основное уравнение МКТ:

где n – число молекул в единице объёма (концентрация), m – масса молекулы,- средний квадрат скорости.

158. Другой вид основного уравнения МКТ

где p – давление, – средняя кинетическая энергия молекул.

159. Средняя квадратичная скорость молекул

где – молярная масса вещества, m0 – масса молекулы, T – абсолютная температура.

160. Средняя кинетическая энергия поступательного движения молекулы идеального газа

161. Зависимость давления газа от концентрации молекул и температуры:

162. Температура величина, характеризующая состояние термодинамического (теплового) равновесия макроскопической системы.

163. Абсолютный нуль температуры – это предельная температура, при которой давление идеального газа обращается в нуль при фиксированном объёме или объём идеального газа стремится к нулю при неизменном давлении.

Можно сформулировать иначе: Абсолютный нуль температуры – это предельная температура, при которой прекращается поступательное движение молекул.

164. Абсолютная (термодинамическая) шкала это шкала температур, в которой за начало отсчета принят абсолютный нуль. Единица температуры в этой шкале – кельвин (К), величина которого совпадает с градусом Цельсия. В шкале Цельсия абсолютный нуль равен -273,15С. Связь между абсолютной температурной шкалой и шкалой Цельсия выражается формулой

165. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона):

где р – давление, V – объём, R=8,31 Дж/(мольК) – универсальная газовая постоянная, T – абсолютная температура, – молярная масса газа. Или

где – плотность газа.

166. Уравнение Клапейрона или объединённый газовый закон:

167. Изотермическим называется процесс, протекающий при постоянной температуре. Если при этом масса газа не изменяется, то процесс подчиняется закону Бойля-Мариотта. Формулировка закона: Для данной массы газа произведение давления на объём при постоянной температуре есть величина постоянная.

Или

168. Изобарным называется процесс, протекающий при постоянном давлении. Если масса газа не меняется, то процесс подчиняется закону Гей-Люссака: Для данной массы газа при постоянном давлении отношение объёма к абсолютной температуре есть величина постоянная.

Или

169. Изохорным называется процесс, протекающий при постоянном объёме. Если масса газа постоянна, то процесс подчиняется закону Шарля: Для данной массы газа при постоянном объёме отношение давления к абсолютной температуре есть величина постоянная.

Или

170. Давление смеси газов равно сумме парциальных давлений, созданных каждым газом.

Этот закон известен под названием “закон Дальтона”.

171. Термодинамика – это раздел физики, в котором рассматриваются тепловые явления с точки зрения происходящих в них преобразований энергии.

172. Внутренняя энергия – это сумма кинетической энергии хаотического движения молекул, потенциальной энергии их взаимодействия и внутримолекулярной энергии молекул, из которых состоит тело.

173. Внутреннюю энергию тел можно изменить двумя способами: теплообмен и совершение работы. Признаком изменения внутренней энергии тела является изменение его температуры и (или) агрегатного состояния.

174. Внутренняя энергия одноатомного, идеального газа определяется по формуле:

175. Изменение внутренней энергии одноатомного газа можно подсчитать по формуле:

где m – масса газа, – молярная масса газа.

176. Теплообмен бывает трёх видов: лучеиспускание, конвекция, теплопередача. Лучеиспускание – это теплообмен с помощью электромагнитных волн теплового диапазона. Конвекция – это теплообмен, осуществляемый при перемешивании жидкостей или газов, имеющих разную температуру, Теплопередача -это форма передачи энергии, при которой осуществляется непосредственный обмен энергией между хаотически движущимися молекулами тел при их тепловом контакте.

177. Количество теплоты – это энергия, которую тело получает или отдаёт при теплообмене.

178. Теплоёмкость тела – это величина равная количеству теплоты, которое надо передать телу для изменения его температуры на 1 кельвин.

Теплоёмкость тела измеряется в Дж/К. Количество теплоты, которое надо сообщить телу с теплоёмкостью С вычисляется по формуле

179. Удельная теплоёмкость – это величина численно равная количеству теплоты, которую надо сообщить веществу массой 1 кг для изменения его температуры на 1 кельвин.

Удельная теплоёмкость измеряется в Дж/(кгК). Теплоёмкость тела связана с удельной теплоёмкостью вещества, из которого оно изготовлено, формулой

180. Закон сохранения энергии в тепловых процессах (первый закон термодинамики): количество теплоты, переданное телу, идёт на увеличение его внутренней энергии и на совершение работы против внешних сил.

181.

Применение первого закона термодинамики к изопроцессам.

1) Изотермический (Т=const)

т.к. U=0, т.е. количество теплоты, переданное системе, идёт на совершение работы против внешних сил;

2) Изобарный (p=const)

т.е. количество теплоты, переданное системе, идёт на совершение работы против внешних сил и на изменение её внутренней энергии;

3) Изохорный (V=const)

т.е. количество теплоты, переданное системе, идёт на изменение её внутренней энергии.

4) Адиабатным называется процесс, протекающий без теплообмена с окружающей средой (Q=0). Закон сохранения энергии для него имеет вид:

т.е. работа против внешних сил совершается за счёт убыли внутренней энергии.

182. Работа расширения газа при постоянном давлении вычисляется по формуле:

где V2 и V1 – конечный и начальный объёмы газа, р – давление. Т.к.

то

где T2 – температура газа в конечном состоянии, T1 – температура газа в начальном состоянии, – молярная масса, R – универсальная газовая постоянная.

183. Тепловой двигатель (тепловая машина) – это устройство, совершающее работу за счёт уменьшения внутренней энергии рабочего тела.

184. Любая тепловая машина состоит из трёх частей: нагревателя, холодильника и рабочего тела.

185. Тепловой коэффициент полезного действия тепловой машины равен:

где Q1 – количество теплоты, полученной от нагревателя, Q2 – количество теплоты, отданной холодильнику, A ‑ механическая работа.

186. Формула Карно для идеальной тепловой машины:

где Т1 – температура нагревателя, Т2 – температура холодильника, – КПД.

187. Плавление – это процесс перехода вещества из твёрдого состояния в жидкое при температуре плавления.

188. Процесс превращения жидкости в твёрдое кристаллическое состояние называется кристаллизацией.

189. Удельная теплота плавления – это количество теплоты, необходимое для превращения 1 кг твёрдого кристаллического вещества из твёрдого состояния в жидкое, при температуре плавления.

Удельная теплота плавления измеряется в Дж/кг .

190. Парообразование – это процесс перехода вещества из твёрдого или жидкого состояния в газообразное.

191. Испарение – это процесс парообразования, происходящий с открытой поверхности жидкости или твёрдого тела.

192. Сублимация (возгонка) – это переход твёрдого вещества в газообразное, минуя жидкое состояние.

193. Кипение – это процесс парообразования, происходящий не только с открытой поверхности жидкости, но и по всему её объёму внутрь пузырьков газа, растворённого в жидкости. Для каждой жидкости существует своя температура кипения. Жидкость кипит при такой температуре, при которой давление её насыщенных паров равно атмосферному давлению.

194. Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным.

195.Точка росы – температура, при которой пар переходит в состояние насыщения.

196. Процесс перехода вещества из газообразного состояния в жидкое, называется конденсацией.

197. Количество теплоты, которое необходимо для превращения единицы массы жидкости в пар, называется удельной теплотой парообразования и конденсации

Удельная теплота парообразования измеряется в Дж/кг.

198. Абсолютная влажность – это парциальное давление (плотность) водяных паров в атмосфере.

199. Относительная влажность – это величина равная отношению абсолютной влажности к давлению (плотности) насыщенного пара при данной температуре.

studfiles.net

Физика. 10 класс – Конспекты

Физика. 10 класс – Конспекты

«Физика – 10 класс»

По учебнику “Физика. 10 класс” – базовый и профил. уровни, авторы Мякишев, Буховцев, Сотский.

Введение

Физика и познание мира ………. смотреть
Механика ………. смотреть


КИНЕМАТИКА

Кинематика точки и твёрдого тела

§ 1. Механическое движение. Система отсчёта ………. смотреть
§ 2. Способы описания движения ………. смотреть
§ 3. Траектория. Путь. Перемещение ………. смотреть
§ 4. Равномерное прямолинейное движение. Скорость. Уравнение движения ………. смотреть
§ 5. Примеры решения задач по теме «Равномерное прямолинейное движение» ………. смотреть
§ 6. Сложение скоростей ………. смотреть
§ 7. Примеры решения задач по теме «Сложение скоростей» ………. смотреть
§ 8. Мгновенная и средняя скорости ………. смотреть
§ 9. Ускорение ………. смотреть
§ 10. Движение с постоянным ускорением ………. смотреть
§ 11. Определение кинематических характеристик движения с помощью графиков ………. смотреть
§ 12. Примеры решения задач по теме «Движение с постоянным ускорением» ………. смотреть
§ 13. Движение с постоянным ускорением свободного падения ………. смотреть
§ 14. Примеры решения задач по теме «Движение с постоянным ускорением свободного падения» ………. смотреть
§ 15. Равномерное движение точки по окружности ………. смотреть
§ 16. Кинематика абсолютно твёрдого тела. Поступательное и вращательное движение ………. смотреть
§ 16. Кинематика абсолютно твёрдого тела. Угловая скорость. Связь между линейной и угловой скоростями ………. смотреть
§ 17. Примеры решения задач по теме «Кинематика твёрдого тела» ………. смотреть


ДИНАМИКА

Законы механики Ньютона

§ 18. Основное утверждение механики ………. смотреть
§ 19. Сила ………. смотреть
§ 19. Инертность тела. Масса. Единица массы ………. смотреть
§ 20. Первый закон Ньютона ………. смотреть
§ 21. Второй закон Ньютона ………. смотреть
§ 22. Принцип суперпозиции сил ………. смотреть
§ 23. Примеры решения задач по теме «Второй закон Ньютона» ………. смотреть
§ 24. Третий закон Ньютона ………. смотреть
§ 25. Геоцентрическая система отсчёта ………. смотреть
§ 26. Принцип относительности Галилея. Инвариантные и относительные величины ………. смотреть


Силы в механике

§ 27. Силы в природе ………. смотреть
§ 28. Сила тяжести и сила всемирного тяготения ………. смотреть
§ 29. Сила тяжести на других планетах ………. смотреть
§ 30. Примеры решения задач по теме «Закон всемирного тяготения» ………. смотреть
§ 31. Первая космическая скорость ………. смотреть
§ 32. Примеры решения задач по теме «Первая космическая скорость» ………. смотреть
§ 33. Вес. Невесомость ………. смотреть
§ 34. Деформация и силы упругости. Закон Гука ………. смотреть
§ 35. Примеры решения задач по теме «Силы упругости. Закон Гука» ………. смотреть
§ 36. Силы трения ………. смотреть
§ 37. Примеры решения задач по теме «Силы трения» ………. смотреть
§ 37. Примеры решения задач по теме «Силы трения» (продолжение) ………. смотреть


ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ

Закон сохранения импульса

§ 38. Импульс материальной точки ………. смотреть
§ 38. Закон сохранения импульса ………. смотреть
§ 38. Реактивное движение. Успехи в освоении космоса ………. смотреть
§ 39. Примеры решения задач по теме «Закон сохранения импульса» ………. смотреть

Закон сохранения энергии

§ 40. Механическая работа и мощность силы ………. смотреть
§ 41. Энергия. Кинетическая энергия ………. смотреть
§ 42. Примеры решения задач по теме «Кинетическая энергия и её изменение» ………. смотреть
§ 43. Работа силы тяжести. Консервативные силы ………. смотреть
§ 43. Работа силы упругости. Консервативные силы ………. смотреть
§ 44. Потенциальная энергия ………. смотреть
§ 45. Закон сохранения энергии в механике ………. смотреть
§ 46. Работа силы тяготения. Потенциальная энергия в поле тяготения ………. смотреть
§ 47. Примеры решения задач по теме «Закон сохранения механической энергии» ………. смотреть

Динамика вращательного движения абсолютно твёрдого тела

    § 48. Основное уравнение динамики вращательного движения ………. смотреть
    § 49. Закон сохранения момента импульса. Кинетическая энергия абсолютно твёрдого тела, вращающегося относительно неподвижной оси ………. смотреть
    § 50. Примеры решения задач по теме «Динамика вращательного движения абсолютно твёрдого тела» ………. смотреть

    СТАТИКА

    Равновесие абсолютно твёрдых тел

    § 51. Равновесие тел ………. смотреть
    § 52. Примеры решения задач по теме «Равновесие твёрдых тел» ………. смотреть


    МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕПЛОВЫЕ ЯВЛЕНИЯ

    Почему тепловые явления изучаются в молекулярной физике ………. смотреть

    Основы молекулярно-кинетической теории

    § 53. Основные положения молекулярно-кинетической теории. Размеры молекул ………. смотреть
    § 54. Примеры решения задач по теме «Основные положения МКТ» ………. смотреть
    § 55. Броуновское движение ………. смотреть
    § 56. Силы взаимодействия молекул. Строение газообразных, жидких и твёрдых тел ………. смотреть

    Молекулярно-кинетическая теория идеального газа

    § 57. Идеальный газ в МКТ. Среднее значение квадрата скорости молекул ………. смотреть
    § 57. Основное уравнение молекулярно-кинетической теории газов ………. смотреть
    § 58. Примеры решения задач по теме «Основное уравнение молекулярно-кинетической теории» ………. смотреть
    § 59. Температура и тепловое равновесие ………. смотреть
    § 60. Определение температуры. Энергия теплового движения молекул ………. смотреть
    § 60. Абсолютная температура. Температура — мера средней кинетической энергии молекул ………. смотреть
    § 61. Измерение скоростей молекул газа ………. смотреть
    § 62. Примеры решения задач по теме «Энергия теплового движения молекул» ………. смотреть

    Уравнение состояния идеального газа. Газовые законы

    § 63. Уравнение состояния идеального газа ………. смотреть
    § 64. Примеры решения задач по теме «Уравнение состояния идеального газа» ………. смотреть
    § 65. Газовые законы ………. смотреть
    § 66. Примеры решения задач по теме «Газовые законы» ………. смотреть
    § 67. Примеры решения задач по теме «Определение параметров газа по графикам изопроцессов» ………. смотреть

    Взаимные превращения жидкостей и газов

    § 68. Насыщенный пар ………. смотреть
    § 69. Давление насыщенного пара ………. смотреть
    § 70. Влажность воздуха ………. смотреть
    § 71. Примеры решения задач по теме «Насыщенный пар. Влажность воздуха» ………. смотреть

    Твёрдые тела

    § 72. Кристаллические тела ………. смотреть
    § 72. Аморфные тела ………. смотреть

    Основы термодинамики

    § 73. Внутренняя энергия ………. смотреть
    § 74. Работа в термодинамике ………. смотреть
    § 75. Примеры решения задач по теме «Внутренняя энергия. Работа» ………. смотреть
    § 76. Количество теплоты. Уравнение теплового баланса ………. смотреть
    § 77. Примеры решения задач по теме: «Количество теплоты. Уравнение теплового баланса» ………. смотреть
    § 78. Первый закон термодинамики ………. смотреть
    § 79. Применение первого закона термодинамики к различным процессам ………. смотреть
    § 80. Примеры решения задач по теме: «Первый закон термодинамики» ………. смотреть
    § 81. Второй закон термодинамики ………. смотреть
    § 81. Статистический характер второго закона термодинамики ………. смотреть
    § 82. Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей ………. смотреть
    § 83. Примеры решения задач по теме: «КПД тепловых двигателей» ………. смотреть


    ОСНОВЫ ЭЛЕКТРОДИНАМИКИ

    Что такое электродинамика ………. смотреть

    Электростатика

    § 84. Электрический заряд и элементарные частицы. Закон сохранения заряда ………. смотреть
    § 85. Закон Кулона. Единица электрического заряда ………. смотреть
    § 86. Примеры решения задач по теме «Закон Кулона» ………. смотреть
    § 87. Близкодействие и действие на расстоянии ………. смотреть
    § 88. Электрическое поле ………. смотреть
    § 89. Напряжённость электрического поля. Силовые линии ………. смотреть
    § 90. Поле точечного заряда и заряженного шара. Принцип суперпозиции полей ………. смотреть
    § 91. Примеры решения задач по теме «Напряжённость электрического поля. Принцип суперпозиции полей» ………. смотреть
    § 92. Проводники в электростатическом поле ………. смотреть
    § 92. Диэлектрики в электростатическом поле ………. смотреть
    § 93. Потенциальная энергия заряженного тела в однородном электростатическом поле ………. смотреть
    § 94. Потенциал электростатического поля и разность потенциалов ………. смотреть
    § 95. Связь между напряжённостью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности ………. смотреть
    § 96. Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» ………. смотреть
    § 97. Электроёмкость. Единицы электроёмкости. Конденсатор ………. смотреть
    § 98. Энергия заряженного конденсатора. Применение конденсаторов ………. смотреть
    § 99. Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора» ………. смотреть

    Законы постоянного тока

    § 100. Электрический ток. Сила тока ………. смотреть
    § 101. Закон Ома для участка цепи. Сопротивление ………. смотреть
    § 102. Электрические цепи. Последовательное и параллельное соединения проводников ………. смотреть
    § 103. Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» ………. смотреть
    § 104. Работа и мощность постоянного тока ………. смотреть
    § 105. Электродвижущая сила ………. смотреть
    § 106. Закон Ома для полной цепи ………. смотреть
    § 107. Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи» ………. смотреть

    Электрический ток в различных средах

    § 108. Электрическая проводимость различных веществ. Электронная проводимость металлов ………. смотреть
    § 109. Зависимость сопротивления проводника от температуры. Сверхпроводимость ………. смотреть
    § 110. Электрический ток в полупроводниках. Собственная и примесная проводимости ………. смотреть
    § 111. Электрический ток через контакт полупроводников с разным типом проводимости. Транзисторы ………. смотреть
    § 112. Электрический ток в вакууме. Электронно-лучевая трубка ………. смотреть
    § 113. Электрический ток в жидкостях. Закон электролиза ………. смотреть
    § 114. Электрический ток в газах. Несамостоятельный и самостоятельный разряды ………. смотреть
    § 115. Плазма ………. смотреть
    § 116. Примеры решения задач по теме «Электрический ток в различных средах» ………. смотреть

    Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский


class-fizika.ru

Задачи по молекулярной физике с подробными решениями

Задачи по молекулярной физике с решениями

Элементы молекулярной физики. Основное уравнение молекулярно-кинетической теории (МКТ)

4.1.1 В баллоне находится 20 моль газа. Сколько молекул газа находится
4.1.2 Определить массу молекулы кислорода
4.1.3 Сколько молекул содержится в 5 кг кислорода?
4.1.4 При температуре 320 К средняя квадратичная скорость молекулы кислорода 500 м/с
4.1.5 Определить давление водорода, если средняя квадратичная скорость его молекул
4.1.6 Какова средняя кинетическая энергия поступательного движения молекул газа
4.1.7 Определить давление, при котором 1 м3 газа, имеющий температуру 60 C, содержит
4.1.8 Сколько молекул содержится в 1 л воды?
4.1.9 Какое значение температуры по шкале Кельвина соответствует температуре 100 C?
4.1.10 Какой объем при нормальных условиях занимают 5 г углекислого газа?
4.1.11 Чему равна температура газа, если при концентрации 2,65×10^25 м^(-3) он создает
4.1.12 Определить число молекул, содержащихся в 1 г воды
4.1.13 Определить количество вещества, содержащегося в медной отливке массой 96 кг
4.1.14 В комнате размером 4x5x2,7 м^3 испарился кристаллик йода массой 20 мг. Сколько
4.1.15 В лабораторных условиях создан высокий вакуум, то есть очень малое давление
4.1.16 Определить молярную массу газа, если его плотность при нормальных условиях
4.1.17 Найти число молекул в 2 кг углекислого газа
4.1.18 Во сколько раз масса молекулы углекислого газа CO2 больше массы молекулы аммиака Nh4
4.1.19 За 20 суток из стакана полностью испарилась 0,2 кг воды. Сколько в среднем молекул
4.1.20 Считая, что диаметр молекул водорода составляет около 0,23 нм, подсчитать, какой длины
4.1.21 В сосуде находится газ под давлением 150 кПа при температуре 23 C. Найти
4.1.22 Определить среднюю квадратичную скорость молекул водорода
4.1.23 Под каким давлением находится кислород в баллоне, если при температуре 27 C
4.1.24 При какой температуре средняя квадратичная скорость молекул кислорода
4.1.25 Какова плотность сжатого воздуха при 0 C в камере шины автомобиля «Волга»? Давление
4.1.26 Определить среднюю квадратичную скорость молекул азота при температуре
4.1.27 Определить плотность воздуха при нормальных условиях. Молярную массу принять
4.1.28 Каково давление азота, если его плотность равна 1,35 кг/м^3, а средняя квадратичная
4.1.29 Сколько молекул кислорода находится в сосуде объемом 1 л, если температура
4.1.30 Определить плотность воздуха при 27 C и давлении 0,1 МПа
4.1.31 Какое давление на стенки сосуда производят молекулы газа, если масса газа 3 г, объем
4.1.32 Какое давление производит углекислый газ при температуре 330 К, если его плотность
4.1.33 Вычислить среднюю квадратичную скорость молекул углекислого газа
4.1.34 Определить среднеквадратичную скорость молекул газа при давлении 100 кПа и плотности
4.1.35 В баллоне емкостью 40 л находится 10 кг кислорода под давлением 20 МПа. Найти
4.1.36 Энергия поступательного движения, которой обладают все молекулы газа, находящегося
4.1.37 Найти концентрацию молекул газа, у которого средняя квадратичная скорость молекул
4.1.38 В первом сосуде находится азот, во втором — водород. Чему равно отношение давления
4.1.39 В сосуде вместимостью 2 м3 находится 2,4 кг газа. Под каким давлением находится газ
4.1.40 Плотность газа в баллоне электрической лампы 0,9 кг/м3, давление при горении 110 кПа
4.1.41 При какой температуре находится одноатомный газ, если средняя кинетическая энергия
4.1.42 Под каким давлением находится кислород в баллоне, если при температуре 27 C
4.1.43 Найдите отношение средних скоростей молекул O2 и h3 при одинаковой температуре
4.1.44 Найти среднюю квадратичную скорость молекул газа, имеющего плотность 1,8 кг/м3
4.1.45 В баллоне находится кислород при давлении 4 МПа и температуре 42 C. Определить
4.1.46 В баллоне объемом 0,01 м3 находится газ, кинетическая энергия поступательного движения
4.1.47 Во сколько раз плотность метана (Ch5) отличается от плотности кислорода (O2)
4.1.48 Определить давление азота в ампуле, если при 0 C в ней концентрация молекул
4.1.49 Во сколько раз средняя квадратичная скорость молекул воздуха при температуре 303 К
4.1.50 При некоторой температуре средняя скорость молекул азота равна 600 м/с. Какова
4.1.51 До какой температуры при нормальном атмосферном давлении надо нагреть кислород
4.1.52 Во сколько раз плотность воздуха зимой при температуре минус 23 C больше плотности
4.1.53 Во сколько раз изменится средняя квадратичная скорость теплового движения молекул
4.1.54 Во сколько раз изменится средняя квадратичная скорость молекул идеального газа
4.1.55 Гелий находится при температуре 580 К. При какой температуре должен находиться
4.1.56 Во сколько раз изменится плотность молекул газа, если при увеличении температуры
4.1.57 Каким давлением нужно сжать воздух, чтобы при температуре 100 C его плотность стала
4.1.58 Среднеквадратичная скорость молекул газа равна 500 м/с. Какой объем займет газ массой
4.1.59 Оценить минимальное расстояние между центрами соседних атомов железа, считая его
4.1.60 Какое время понадобится для того, чтобы на поверхность стекла нанести слой серебра
4.1.61 Концентрация молекул кислорода (M=32 г/моль) в сосуде вместимостью 5 л равна
4.1.62 Если m0 — масса одной молекулы газа, N — общее число молекул газа, а NА — число Авогадро
4.1.63 Если m — масса газа, M — молярная масса газа, а NА — число Авогадро, то по какой формуле
4.1.64 Какое количество вещества содержится в алюминиевой ложке массы 27 г? Относительная
4.1.65 Чему равно среднее расстояние между молекулами насыщенного водяного пара при
4.1.66 Молекула двухатомного газа содержит 16 протонов и 16 нейтронов. Чем равна плотность
4.1.67 В сосуде вместимостью 4 м3 находится 4,8 кг идеального газа. Средняя квадратичная
4.1.68 В сосуде под давлением 10^5 Па плотность идеального газа составляет 1,2 кг/м3. Чему
4.1.69 Если температура идеального газа уменьшится в 4 раза, то во сколько раз изменится
4.1.70 По какой формуле можно рассчитать давление газа через его температуру T
4.1.71 Если M — молярная масса, m0 — масса молекулы, а v^2 — средний квадрат скорости молекул
4.1.72 В 1 см3 объема при давлении 20 кПа находятся 5×10^19 атомов гелия (молярная масса гелия
4.1.73 Если температура идеального газа возрастает в 2 раза, то как изменяется среднеквадратичная
4.1.74 Каким выражением определяется суммарная кинетическая энергия поступательного
4.1.75 В 1 дм3 объема при давлении 10^5 Па находятся 3×10^21 молекул кислорода (молярная

Уравнение Клапейрона-Менделеева

4.2.1 Какой объем занимает 1 кг кислорода при 0 C и давлении 800 кПа?
4.2.2 Найти массу углекислого газа в баллоне вместимостью 40 л при температуре 288 К и
4.2.3 В баллоне емкостью 25,6 л находится 1,04 кг азота при давлении 3,55 МПа. Определите
4.2.4 Баллон содержит 28 кг кислорода при давлении 770 кПа. Какова масса гелия, занимающего
4.2.5 В изотермическом процессе объем газа уменьшился вдвое. Во сколько раз
4.2.6 Некоторая масса газа при давлении 126 кПа и температуре 295 К занимает объем 500 л
4.2.7 Сколько молекул хлора содержится при нормальных условиях в колбе емкостью 0,5 л?
4.2.8 До какой температуры нужно нагреть запаянный шар, содержащий 9 г воды, чтобы шар
4.2.9 Сколько молекул воздуха содержится в комнате объемом 60 м3 при нормальных
4.2.10 Сколько весит воздух, занимающий объем 150 л при температуре 15 C и давлении
4.2.11 В баллоне емкостью 4 л создано давление 0,1 мкПа. Сколько молекул газа содержится
4.2.12 Баллон емкостью 40 л содержит 2,6 кг кислорода. При какой температуре возникает
4.2.13 Найти концентрацию молекул газа, если в баллоне емкостью 4 л создано давление
4.2.14 Сколько молекул ртути содержится в 1 м3 воздуха в помещении, зараженном ртутью
4.2.15 В баллоне емкостью 40 л содержится 1,98 кг углекислого газа при 0 С. При повышении
4.2.16 Баллон содержится 50 л кислорода, температура 27 C, давление 2 МПа. Найти массу
4.2.17 Сколько молекул газа заключено в объеме 0,5 м3, если он при температуре 300 К
4.2.18 В баллоне для сжиженных газов находится 4,2 кг метана (Ch5) при давлении 1 МПа
4.2.19 В 1 м3 газа при давлении 120 кПа содержится 2×10^25 молекул, средняя квадратичная
4.2.20 Найти массу водорода, находящегося в баллоне объемом 20 л под давлением 830 кПа
4.2.21 Газ массой 16 г при давлении 1 МПа и температуре 112 C занимает объем 1600 см3
4.2.22 Найти число молекул воздуха в комнате, имеющей объем 8x5x4 м3, при температуре 10 C
4.2.23 Вычислить молярную массу бутана, 2 л которого при температуре 15 C и давлении 87 кПа
4.2.24 Какая часть газа осталась в баллоне, давление в котором было 12,2 МПа, а температура
4.2.25 Идеальный газ при давлении 1,33 кПа и температуре 15 C занимает объем 2 л. Каким
4.2.26 Из баллона емкостью 5 л из-за неисправности вентиля произошла утечка газа, в результате
4.2.27 Газ, объем которого 0,8 м3 при температуре 300 К производит давление 280 кПа. На сколько
4.2.28 В баллоне объемом 200 л при температуре 20 C и давлении 10 МПа находится кислород
4.2.29 Некоторый газ массой 7 г, находящийся в баллоне при температуре 27 C, создает давление
4.2.30 Сколько молекул воздуха выходит из комнаты объемом 80 м3 при повышении температуры
4.2.31 В цилиндре дизеля воздух сжимается от 80 до 3000 кПа, а объем уменьшается от 7,5 до 0,5 л
4.2.32 В открытом сосуде газ нагрели так, что его температура увеличилась в 3 раза. Сколько
4.2.33 Температура воздуха в комнате была 10 C. После того как печь протопили, температура
4.2.34 Газ массой 1,2 г занимает объем 400 см3 при температуре 280 К. После нагревания газа
4.2.35 Из баллона со сжатым водородом объемом 0,01 м3 вытекает газ, при температуре 280 К
4.2.36 Откачанная лампа накаливания объемом 10 см3 имеет трещину, в которую проникает
4.2.37 Когда из сосуда выпустили некоторое количество газа, давление в нем упало на 40%
4.2.38 При температуре 727 C газ занимает объем 8 л и производит давление 200 кПа на стенки
4.2.39 Воздух в открытом сосуде нагревают от 10 до 600 C и затем, герметически закрыв сосуд
4.2.40 До какой температуры нагрели колбу, содержащую воздух, если давление воздуха в ней
4.2.41 Баллон, содержащий 1 кг азота, при испытании взорвался при температуре 630 К. Какое
4.2.42 При какой температуре давление 240 л водорода равно 126,6 кПа, если при нормальных
4.2.43 В баллоне находилось 5 кг газа при давлении 1 МПа. Какое количество газа взяли из баллона
4.2.44 Во сколько раз изменится объем кислорода массой 0,32 кг, если его давление увеличится
4.2.45 Баллон содержит газ при температуре 7 C и давлении 91,2 МПа. Каким будет давление
4.2.46 В баллоне находится газ при температуре 15 C. Во сколько раз изменится его давление
4.2.47 Сколько электронов заключается в 1 л кислорода при давлении 1 МПа и температуре
4.2.48 Плотность пара некоторого соединения углерода с водородом равна 3 г/л при 43 C
4.2.49 В комнате объемом в 30 м3 температура с 15 C поднялась до 25 C. На сколько при этом
4.2.50 Баллон содержит сжатый газ при 27 C и давлении 3 МПа. Каково будет давление, если
4.2.51 На сколько уменьшится масса воздуха в открытом сосуде, если его нагреть от 0 до 100 C?
4.2.52 Баллон содержит сжатый газ при 27 C и давлении 2000 кПа. Каково будет давление, если
4.2.53 Перед проведением газосварочных работ манометр баллона с кислородом показывал
4.2.54 Газ при давлении 126,6 кПа и температуре 300 К занимает объем 0,6 м3. Найти объем
4.2.55 Газ при давлении 0,2 МПа и температуре 15 C имеет объем 5 л. Чему равен объем
4.2.56 Сосуд вместимостью 0,6 м3, содержащий гелий массой 2 кг, разорвался при температуре
4.2.57 В сосуде объемом 10 литров находится 2 г водорода при температуре 2000 К. Определить
4.2.58 Какова минимальная разница в массе воздуха зимой и летом при нормальном атмосферном
4.2.59 Воздух в сосуде объемом 5 л находится при температуре 27 C под давлением 2 МПа
4.2.60 Некоторая масса водорода находится при температуре 200 К и давлении 0,4 кПа. Газ
4.2.61 Перед проведением газосварочных работ манометр баллона с кислородом показывал
4.2.62 В сосуде находится 1 литр воды при температуре 27 C. Чему стало бы равным давление
4.2.63 В двух сосудах находится одинаковое количество одного и того же газа. В первом сосуде
4.2.64 Резиновая камера содержит воздух при температуре 27 C и нормальном атмосферном
4.2.65 В баллоне объемом 10 л находится кислород, масса которого 12,8 г. Давление в баллоне
4.2.66 Баллон содержит 0,3 кг гелия. Абсолютная температура в баллоне уменьшилась на 10%
4.2.67 В откачанной ампуле объемом 3 см3 содержится радий массой 5 г в течение одного года
4.2.68 Два сосуда, содержащих одинаковую массу одного и того же газа, соединены трубкой
4.2.69 Сколько молей газа следует добавить к одному молю данного газа, чтобы его давление
4.2.70 В открытом цилиндре находится 90 г газа. Температуру газа увеличили от 300 до 450 К
4.2.71 Из баллона объемом 200 дм3, содержащего гелий при давлении 2 МПа и температуре 273 К
4.2.72 На рисунке показан график процесса, происходящего с идеальным газом. Укажите точки
4.2.73 На PT-диаграмме изображен замкнутый процесс, который совершает кислород некоторой
4.2.74 Если нагреть 1 моль идеального газа на 1 К при постоянном объеме, то давление возрастет
4.2.75 Имеется два сосуда с одним и тем же газом при одинаковой температуре. Плотность газа
4.2.76 При увеличении температуры газа на 60 К его объем возрос на 1 л. На сколько литров
4.2.77 Насос захватывает при каждом качании 1 л воздуха при нормальных условиях и нагнетает
4.2.78 Воздушный шар имеет легкорастяжимую теплоизолированную оболочку массой 130 кг
4.2.79 В некотором процессе давление и объем идеального газа связаны соотношением
4.2.80 Какой радиус должен иметь наполненный гелием воздушный шар, чтобы он мог подняться
4.2.81 Надувной шарик, заполненный гелием, удерживают на нити. Найдите натяжение нити
4.2.82 Два баллона с объемами 20 и 10 л соединены длинной тонкой трубкой и содержат 6 моль
4.2.83 Воздушный шар объемом 20 м3, наполненный гелием, поднялся на высоту 180 м за 0,5 минуты
4.2.84 Внутри замкнутого цилиндра, наполненного воздухом, находится шарик радиусом 3 см
4.2.85 На дне цилиндра, наполненного воздухом, плотность которого 1,29 кг/м3, лежит полый
4.2.86 В замкнутом сосуде к верхней стенке на пружине жесткостью 4 Н/м подвешена сфера
4.2.87 Во сколько раз изменится температура идеального газа, если уменьшить его объем
4.2.88 Внутри закрытого с обоих концов горизонтального цилиндра есть поршень
4.2.89 Тонкий резиновый шар радиусом 2 см наполнен воздухом при температуре 20 C
4.2.90 Цилиндрический сосуд делится невесомым поршнем на две части. В одну часть сосуда
4.2.91 Два одинаковых шара соединены тонкой трубкой, в которой находится капелька ртути
4.2.92 Внутри закрытого с обоих концов горизонтального цилиндра имеется тонкий поршень
4.2.93 Два одинаковых сосуда, содержащих газ при 300 К, соединили горизонтальной трубкой
4.2.94 Горизонтально расположенный цилиндр разделен скользящей без трения перегородкой
4.2.95 Объем пузырька, всплывающего на поверхность со дна озера, увеличился в два раза
4.2.96 Состояние одного киломоля идеального газа менялось по графику 1-2-3. Определить
4.2.97 Сосуд объемом 5 л разделен перегородкой на две части, заполненные одним газом
4.2.98 При некотором процессе идеального газа связь между давлением и объемом газа pV^3=const
4.2.99 Воздушный шар объемом 1000 м3 наполнен гелием при температуре окружающего воздуха
4.2.100 В цилиндре с площадью основания 100 см2 находится воздух. Поршень расположен на высоте
4.2.101 В сосуд, на дне которого лежит твердый шар, нагнетают воздух при температуре 27 C
4.2.102 В закрытом с обоих концов цилиндре длиной 2 м поршень соединён с днищами пружинами
4.2.103 Тонкостенный резиновый шар собственным весом 0,6 Н наполнен неоном и погружен в озеро
4.2.104 Давление воздуха в сосуде равно 102,4 кПа. Вместимость цилиндра разрежающего насоса
4.2.105 Компрессор всасывает в 1 мин 3 м3 сухого воздуха при температуре 290 К и давлении 100 кПа
4.2.106 Давление воздуха в сосуде 97 кПа. После трёх ходов откачивающего поршневого насоса
4.2.107 В цилиндре длиной 2L=2 м тонкий поршень соединён с днищами пружинами одинаковой
4.2.108 Газ, занимающий при температуре 127 C и давлении 100 кПа объем 2 л, изотермически
4.2.109 В цилиндре под поршнем находится газ при нормальных условиях. Сначала объем газа
4.2.110 При увеличении абсолютной температуры идеального газа в 2 раза его давление
4.2.111 Когда из сосуда выпустили некоторое количество газа, давление в нем упало на 40%

Изопроцессы

4.3.1 Определить начальную температуру газа, если при изохорном нагревании
4.3.2 В закрытом баллоне находится газ при температуре 295 К
4.3.3 Давление в откачанной рентгеновской трубке при 15 градусах Цельсия
4.3.4 На сколько Кельвин надо нагреть воздух при постоянном давлении
4.3.5 Газ изотермически сжимают от объема 0,15 м3 до объема 0,1 м3
4.3.6 Газ нагрели на 1 К при постоянном объеме. Давление газа при этом
4.3.7 Газ нагрели на 100 К при постоянном объеме. Давление газа
4.3.8 В закрытом сосуде находится идеальный газ. Во сколько раз
4.3.9 Во сколько раз изменяется плотность идеального газа
4.3.10 В процессе изобарного нагревания газа его объем увеличился в 2 раза
4.3.11 Сосуд объемом 12 м3, содержащий газ под давлением 400 кПа
4.3.12 Сосуд, содержащий 10 л воздуха при давлении 1 МПа, соединяют с пустым
4.3.13 Резиновая камера содержит воздух под давлением 104 кПа. Камеру
4.3.14 До какой температуры нужно нагреть воздух, взятый при 20 градусах
4.3.15 Объем некоторой массы газа при изобарном нагревании на 10 К
4.3.16 Даны две изохоры для одной и той же массы идеального газа
4.3.17 Газ сжат изотермически от 8 до 6 л. Давление при этом возросло
4.3.18 В сосуде объемом 1 л при температуре 183 градуса Цельсия находится
4.3.19 В цилиндре под поршнем изотермически сжимают 9 г водяного
4.3.20 Во сколько раз изменится плотность идеального газа при температуре
4.3.21 При 27 градусах Цельсия газ занимает объем 10 л. До какой
4.3.22 Продукты сгорания газа охлаждаются в газоходе с 1000 до 300 градусов
4.3.23 Газ занимает объем 8 л при температуре 300 К. Определите массу газа
4.3.24 Давление азота в электрической лампочке объемом 0,15 л равно 68 кПа
4.3.25 Бутылка с газом закрыта пробкой, площадь сечения которой 2,5 см2
4.3.26 В цилиндре под поршнем находится газ. Масса поршня 0,6 кг
4.3.27 Два сосуда объемом 2 и 4 л, заполненные одинаковым газом, соединены
4.3.28 В цилиндре под поршнем находится воздух. Вес поршня 60 Н
4.3.29 В цилиндре под поршнем находится вода массой 35 мг и пар массой 25 мг
4.3.30 Баллон, наполненный воздухом при температуре 273 К и атмосферном
4.3.31 В цилиндре под поршнем находится воздух при давлении 0,2 МПа
4.3.32 Один конец цилиндрической трубки, длина которой 25 см и радиус 1 см
4.3.33 Расположенная горизонтально, запаянная с обоих концов стеклянная трубка
4.3.34 В вертикальном закрытом цилиндре находится подвижный поршень
4.3.35 Открытую стеклянную трубку длиной 1 м наполовину погружают в ртуть
4.3.36 В стеклянной трубке находится столбик ртути длиной 10 см. Когда
4.3.37 Посередине откачанной и запаянной с обоих сторон горизонтально
4.3.38 Открытую с обеих сторон стеклянную трубку длиной 60 см
4.3.39 В трубке длиной 1,73 м, заполненной газом, находится столбик ртути
4.3.40 В каком из изображенных на рисунке процессов, проведенных
4.3.41 Горизонтально расположенный закрытый цилиндрический сосуд
4.3.42 На рисунке изображены гиперболы для трех идеальных газов с одинаковыми массами
4.3.43 На рисунке изображены гиперболы для трех идеальных газов с разными массами
4.3.44 Постоянную массу идеального газа переводят из состояния 1
4.3.45 Горизонтально расположенный закрытый цилиндрический сосуд длины
4.3.46 Температура воздуха в комнате повысилась от 17 до 27 градусов Цельсия
4.3.47 Газ при 27 градусах Цельсия занимает объем V. До какой температуры
4.3.48 Баллон, содержащий 12 л кислорода при давлении 1 МПа, соединяют

Влажность

4.4.1 Определите относительную влажность воздуха при температуре 18 C, если точка росы
4.4.2 Определите давление водяных паров в воздухе при температуре 20 С и относительной
4.4.3 5 м3 воздуха при температуре 25 С содержат 86,5 г водяного пара. Определить абсолютную
4.4.4 Определить абсолютную влажность воздуха при температуре 37 C, если давление
4.4.5 В 6 м3 воздуха с температурой 19 С содержится 51,3 г водяного пара. Определите
4.4.6 В 10 м3 воздуха с температурой 19 С содержится 71,3 г водяного пара. Определите
4.4.7 В комнате объемом 120 м3 при температуре 15 C относительная влажность составляет 60%
4.4.8 Найти массу водяного пара, содержащегося в спортивном зале объемом 1100 м3
4.4.9 В комнате объемом 200 м3 относительная влажность воздуха при 20 С равна 70%
4.4.10 При температуре 22 C относительная влажность воздуха равна 60%. Найти относительную
4.4.11 В комнате размером 10x5x3 м3 поддерживается температура 293 К, а точка росы 283 К
4.4.12 В цистерне объемом 10 м3 находится воздух с относительной влажностью 70%
4.4.13 Воздух в помещении имеет температуру 24 C и относительную влажность 50%. Определите
4.4.14 Найти массу водяных паров в 1 м3 воздуха при нормальном атмосферном давлении
4.4.15 Давление водяного пара в воздухе на 40% ниже давления насыщенных паров при этой же
4.4.16 В сосуде объемом 100 л при 27 C находится воздух с относительной влажностью 30%
4.4.17 Влажность в комнате объемом 520 м3 при температуре 25 C равна 90%. Какое количество
4.4.18 Сколько надо испарить воды в 1000 м3 воздуха, относительная влажность которого 40%
4.4.19 В комнате объемом 60 м3 при температуре 18 C относительная влажность воздуха 50%

easyfizika.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о