Физика определение невесомость: Невесомость — урок. Физика, 9 класс.

Вес тела и невесомость – кратко определение (физика, 10 класс)

4.6

Средняя оценка: 4.6

Всего получено оценок: 305.

4.6

Средняя оценка: 4.6

Всего получено оценок: 305.

Действие гравитации Земли приводит к тому, что у тел на Земле появляется вес. В обиходе это понятие неотличимо от понятий «масса» и «сила тяжести». Однако в физике эти понятия различаются. Кратко рассмотрим определение понятия «вес» и особенности этого явления.

Сущность веса тела

Как известно из курса физики в 10 классе, любое тело, находящееся на Земле, испытывает действие силы тяжести. Однако далеко не в любом случае сила тяжести приводит к движению тела. В большинстве случаев на тело действует еще одна сила, уравновешивающая силу тяжести. Эта уравновешивающая сила называется реакцией опоры. Равнодействующая силы тяжести и реакции опоры равна нулю, поэтому тело покоится.

А согласно третьему закону Ньютона, раз существует сила реакции опоры, должна существовать равная ей сила, действующая на саму опору.

Сила, с которой тело действует на опору или подвес, называется весом тела.

Рис. 1. Вес тела.

Особенности веса тела

Из приведенного определения можно выделить важные особенности веса тела, отличающего его от близких понятий.

Фактически, вес — это частный случай силы упругости.

Рис. 2. Сила упругости.

Невесомость

Из четвертой из указанных особенностей следует, что если у тела нет опоры, то у него отсутствует вес, реакции опоры также нет. Говорят, что тело находится в состоянии невесомости. В таком состоянии отсутствует как вес, так и реакция опоры. Заметим, что масса тела и сила тяжести остаются прежними. Поэтому тело в состоянии невесомости будет двигаться равноускоренно по направлению действия силы тяжести.

Наиболее известный пример движения в невесомости — это движение космического корабля по орбите. Единственная сила, которая на него действует, — это сила тяжести. Она сообщает кораблю центростремительное ускорение, благодаря которому орбита имеет круговую или эллиптическую форму.

Однако, для исследования веса тела и невесомости не обязательно запускать космические корабли. Любое тело в начале падения движется без опоры, а значит, находится в состоянии невесомости. Правда, время нахождения в таком состоянии невелико. По мере набора скорости, на тело начинает действовать сила сопротивления воздуха, которая представляет собой опору, и у тела появляется вес.

Полноценное (хотя и очень кратковременное) состояние невесомости испытывает человек во время обычного прыжка.

Рис. 3. Невесомость.

Что мы узнали?

Вес — это сила, с которой тело действует на опору. В отличие от силы тяжести, которая действует независимо от опоры, для существования веса опора необходима. Фактически, вес — это частный случай силы упругости. Если тело не имеет опоры, оно находится в состоянии невесомости.

Тест по теме

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Asef Aydamirov

    5/5

Оценка доклада

4. 6

Средняя оценка: 4.6

Всего получено оценок: 305.


А какая ваша оценка?

Вес и невесомость | Физика

1. Вес тела, движущегося с ускорением

В § 12 мы доказали, что вес покоящегося тела равен действующей на это тело силе тяжести. Рассмотрим теперь вес тела, движущегося с ускорением. Это ускорение телу сообщает равнодействующая силы тяжести и силы, действующей со стороны опоры (или подвеса).

Поэтому, говоря далее об ускорении тела, мы должны понимать, что оно равно ускорению опоры (или подвеса).

Ускорение тела направлено вверх. Докажем, что в таком случае модуль веса тела

P = m(g + a),     (1)

где m – масса тела, a – модуль ускорения тела.

Пусть тело массой m лежит на опоре, движущейся с ускорением , направленным вверх (рис. 16.1, а).

Тело давит на опору своим весом , а опора действует на груз с силой нормальной реакции ). По третьему закону Ньютона

= –. (2)

Отсюда следует, что

P = N.     (3)

На тело действуют сила тяжести mg_vec и сила нормальной реакции (рис. 16.1, б). Их равнодействующая = + m вызывает ускорение тела .
Следовательно, согласно второму закону Ньютона

+ m = m.

Запишем эту формулу в проекциях на направленную вверх ось x:

N – mg = ma.

Отсюда

N = m(g + a)     (4)

Из формул (3) и (4) следует, что

P = m(g + a).

Доказательство завершено: мы получили формулу (1).

Обратите внимание: если ускорение тела направлено вверх, вес груза больше действующей на него силы тяжести.

Когда вес тела больше силы тяжести, говорят, что оно испытывает перегрузку. Здоровый человек без вреда выдерживает кратковременные трехкратные перегрузки, то есть увеличение веса в три раза.

Космонавтам при старте и посадке космического корабля приходится выдерживать многократные перегрузки. Чтобы это не нанесло ущерба здоровью космонавтов, их тренируют с помощью специального аппарата – центрифуги (см. § 8).

Ускорение направлено вниз. Будем считать,что ускорение тела не превышает по модулю ускорения свободного падения.

? 1. Докажите, что в этом случае

P = m(g – a).     (5)

Итак, если ускорение тела направлено вниз, то вес тела меньше действующей на него силы тяжести.

Из формулы (5) следует, что при a = g, то есть когда тело движется с ускорением свободного падения, вес тела равен нулю. Подробнее мы рассмотрим это в пункте «Невесомость».

Обратите внимание: в формулы (1) и (5) для веса тела, движущегося с ускорением, не входит скорость тела. Это означает, что вес тела не зависит от модуля и направления скорости тела.

Например, если ускорение тела в некоторый момент направлено вверх, то вес будет больше действующей на это тело силы тяжести независимо от того, куда направлена скорость тела: вверх, вниз, горизонтально или под углом к горизонту!

? 2. Через 2 с после начала движения с постоянным ускорением скорость лифта стала равной 6 м/с. В лифте на весах стоит пассажир массой 60 кг. Каковы во время разгона лифта показания весов (в кг), если лифт едет вверх? вниз?

? 3. Лифт, двигавшийся со скоростью 4 м/с, начал тормозить. Во время торможения с постоянным ускорением вес находящегося в лифте человека массой 50 кг был равен 400 Н.
а) Куда направлено ускорение лифта?
б) Чему равно ускорение лифта?
в) Куда ехал лифт до остановки – вверх или вниз?

? 4. Подвешенный на нити длиной 1 м груз массой 0,5 кг совершает колебания в вертикальной плоскости (рис. 16.2). В нижней точке скорость груза равна 2 м/с.
а) Как направлено в нижней точке ускорение груза?
б) Чему равно ускорение груза в нижней точке?
в) Чему равна сила натяжения нити в нижней точке?


? 5. Автомобиль массой 1 т едет по выпуклому мосту, имеющему форму дуги окружности радиусом 40 м. Какой должна быть скорость автомобиля в верхней точке моста, чтобы в этой точке:
а) вес автомобиля был равен 2 кН?
б) автомобиль не давил на мост?

? 6. К пружине жесткостью 400 Н/м подвешивают груз массой 200 г, в результате чего пружина растягивается. Какова кратность перегрузки для груза в момент, когда удлинение пружины равно 2 см?

2. Невесомость

В предыдущем пункте была получена формула для веса тела, находящегося на опоре, движущейся с ускорением а, направленным вниз:

P = m(g – a).

(Мы считаем, что модуль ускорения тела не превышает ускорения свободного падения.)

Из этой формулы следует, что, когда ускорение опоры приближается к ускорению свободного падения у, вес тела стремится к нулю.

При a = g тело совсем перестает давить на опору. В этот момент вес тела становится ровным нулю. Такое состояние называют невесомостью.

Итак, тело находится в состоянии невесомости, когда оно под действием силы тяжести движется с ускорением свободного падения . При этом оно не давит на опору и не растягивает подвес, поэтому их можно вообще убрать.

Однако находящееся в состоянии невесомости тело не обязательно должно падать вниз! Вспомним, что ускорение брошенного произвольным образом тела во время всего полета равно ускорению свободного падения (если можно пренебречь сопротивлением воздуха). Следовательно, брошенное тело находится в состоянии невесомости во время всего полета.

? 7. Шарик брошен вертикально вверх. В какие моменты он находится в состоянии невесомости: при подъеме, в верхней точке траектории или когда он падает вниз?

Чтобы испытать кратковременное состояние невесомости, достаточно просто подпрыгнуть (рис. 16.З).

Длительное состояние невесомости испытывают космонавты при выключенных двигателях космического корабля. При этом как корабль, так и космонавты находятся под действием только силы тяжести, то есть движутся с ускорением свободного падения.

Поставим опыт

Нальем воду в пластиковую бутылку с отверстием в дне. Вода будет вытекать из отверстия. Но если бросить бутылку (в любом направлении), то во время полета бутылки вода из нее не выливается! Дело в том, что бутылка н вода в ней находятся в невесомости: вода не давит на дно бутылки и поэтому не выливается.

? 8. Шарик скатывается по «мертвой петле» радиусом 20 см (рис. 16.4), не отрываясь от нее. Чему равна скорость шарика в верхней точке окружности, если в этой точке он находится в состоянии невесомости?


Подсказка. Если шарик находится в состоянии невесомости, центростремительное ускорение ему сообщает только сила тяжести.

Дополнительные вопросы и задания

9. К пружине жесткостью k подвешивают груз массой m и отпускают без толчка. Чему равен вес груза в тот момент когда:
а) пружина не деформирована?
б) удлинение пружины равно x?

10. На тележке укреплен штатив, на котором на нити подвешен груз (рис. 16.5). Какой угол α с вертикалью составляет нить, когда тележка движется с ускорением a = 5 м/с2?


Подсказка. Ускорение грузу сообщает равнодействующая силы тяжести m и силы натяжения нити .

Невесомость | Определение, эффекты и факты

невесомость

Смотреть все СМИ

Похожие темы:
свободное падение инерционная сила

См. весь связанный контент →

невесомость , состояние свободного падения, при котором действие гравитации компенсируется инерционной (например, центробежной) силой, возникающей в результате орбитального полета. Срок

невесомость часто используется для описания такого состояния. За исключением космического полета, истинную невесомость можно испытать лишь на короткое время, например, в самолете, летящем по баллистической (то есть параболической) траектории.

Экипажи космических кораблей сталкиваются с проблемами невесомости. В ходе первых советских и американских пилотируемых полетов стало известно, что во время относительно коротких полетов происходит снижение частоты сердечных сокращений и дыхания, а также прогрессирующая потеря массы тела и кальция в костях. Однако по возвращении на Землю происходит обратное действие большинства этих эффектов. В более поздних продолжительных миссиях, например, с участием американских космических станций «Скайлэб» и советских «Салют», были проведены обширные биомедицинские исследования.

Их результаты показали, что периодические физические упражнения с правильно сконструированным оборудованием необходимы для поддержания здоровья и что человеческому телу требуется около 40 дней, чтобы приспособиться к среде с невесомостью. В такой среде происходит перераспределение телесных жидкостей: меньше в нижних конечностях и больше в верхней части тела; увеличивается высота; масса тела обычно, но не всегда, уменьшается при потере мышечной ткани; вены и артерии ног становятся слабее; возникает анемия, сопровождающаяся значительным снижением формулы крови. По возвращении на Землю ощущается слабость и потеря чувства равновесия. Восстановление от всех этих последствий происходит относительно быстро и почти полностью завершается примерно через неделю. Серьезной причиной для беспокойства, однако, является потеря кальция в костях, которая увеличивается с продолжительностью миссии и не имеет признаков прекращения. Возможность непоправимого износа в будущих космических полетах большой продолжительности указывает на необходимость искусственной гравитации.
Использование центробежной силы в правильно сконструированном вращающемся космическом аппарате — очевидный способ имитации гравитации.

Викторина “Британника”

Физика и естественное право

Узнайте, как астронавты тренируются, чтобы бороться с воздействием микрогравитации на костную и мышечную массу

Посмотреть все видео к этой статье метаболизм, циркадные ритмы, образование паутины, рост и ориентация корней у растений. Проведены также опыты по определению влияния силы тяжести и последствий ее отсутствия в физических, химических и металлургических процессах. Смешивание сплавов и химических реагентов без расслоения, которое происходит на Земле, смешивание газов и металлов с получением вспененного металла с необычными свойствами и образование крупных совершенных кристаллов иллюстрируют некоторые возможности технологии невесомости.

Редакторы Британской энциклопедии Эта статья была недавно отредактирована и дополнена Адамом Августином.

Невесомость на орбите

Космонавты, находящиеся на орбите Земли, часто испытывают ощущение невесомости. Эти ощущения, испытываемые астронавтами на орбите, аналогичны ощущениям любого, кто был временно подвешен над сиденьем во время аттракциона в парке развлечений. Мало того, что ощущения одни и те же (у космонавтов и гонщиков на американских горках), но и причины этих ощущений невесомости тоже одни и те же. Однако, к сожалению, многим людям трудно понять причины невесомости.

 

Во что вы верите?

Причину невесомости понять довольно просто. Однако упрямство предвзятых мнений по теме часто мешает способности понять. Рассмотрим следующий вопрос с несколькими вариантами ответов о невесомости в качестве проверки ваших предвзятых представлений по теме:

Проверьте свои предвзятые представления о невесомости:

Астронавты на орбитальной космической станции невесомы потому что. ..

а. в космосе нет гравитации и они ничего не весят.

б. космос – это вакуум, а в вакууме нет гравитации.

в. космос – это вакуум, а в вакууме нет сопротивления воздуха.

д. астронавты находятся далеко от поверхности Земли, в месте, где гравитация оказывает минимальное влияние.

Если вы верите в одно из приведенных выше утверждений, то, возможно, потребуется небольшая перестройка и перераспределение вашего мозга, чтобы понять настоящую причину невесомости. Как и в случае со многими темами в физике, прежде чем приступить к обучению, необходимо сначала разучиться. Иными словами: не то, что вы не знаете, делает изучение физики трудной задачей; именно то, что вы знаете, делает изучение физики трудной задачей. Поэтому, если у вас есть предвзятое мнение (или сильное предубеждение) о том, что такое невесомость, вам нужно знать об этом предвзятом мнении. И, рассматривая следующую альтернативную концепцию о значении невесомости, оцените разумность и логику двух конкурирующих идей.

 

Контактные и бесконтактные силы

Прежде чем понять невесомость, нам придется рассмотреть две категории сил — контактные силы и силы действия на расстоянии . Когда вы сидите в кресле, вы испытываете две силы: силу гравитационного поля Земли, притягивающую вас вниз к Земле, и силу стула, толкающую вас вверх. Восходящая сила стула иногда называется нормальной силой и является результатом контакта между верхней частью стула и вашим нижним концом. Эта нормальная сила классифицируется как контактная сила. Контактные силы могут возникнуть только в результате фактического прикосновения двух взаимодействующих объектов — в данном случае стула и вас. Сила гравитации, действующая на ваше тело, не является силой контакта; его часто классифицируют как силу действия на расстоянии. Сила гравитации является результатом взаимного притяжения вашего центра масс и центра масс Земли друг к другу; эта сила существовала бы даже в том случае, если бы вы не находились в контакте с Землей. Сила гравитации не требует физического контакта двух взаимодействующих объектов (вашего тела и Земли); он может действовать на расстоянии через пространство. Поскольку сила тяжести не является контактной силой, ее невозможно ощутить при контакте. Вы никогда не сможете почувствовать силу гравитации, воздействующую на ваше тело, так же, как вы почувствовали бы контактную силу. Если вы скользите по асфальтовому теннисному корту (не рекомендуется), вы почувствуете силу трения (силу контакта). Если вас толкнет хулиган в коридоре, вы почувствуете приложенную силу (контактную силу). Если бы вы качались на скакалке на уроке физкультуры, вы бы почувствовали силу натяжения (силу контакта). Если вы сидите в кресле, вы чувствуете нормальную силу (контактную силу). Но если вы прыгаете на батуте, даже двигаясь по воздуху, вы не чувствуете, как Земля притягивает вас силой тяжести (силой действия на расстоянии). Силу гравитации никогда нельзя почувствовать. Тем не менее, те силы, которые возникают в результате контакта, можно почувствовать. А в случае, если вы сидите в кресле, вы можете почувствовать силу стула; и именно эта сила дает вам ощущение веса. Поскольку восходящая нормальная сила равнялась бы направленной вниз силе тяжести в состоянии покоя, сила этой нормальной силы дает меру гравитационного притяжения. Если бы на ваше тело не действовала направленная вверх нормальная сила, вы бы не ощущали своего веса. Без контактной силы (нормальной силы) невозможно ощутить бесконтактную силу (силу гравитации).

 

Значение и причина невесомости

Невесомость — это просто ощущение, которое испытывает человек, когда нет никаких внешних объектов, соприкасающихся с его телом и оказывающих на него давление или притяжение. Ощущения невесомости существуют, когда устраняются все контактные силы. Эти ощущения характерны для любой ситуации, в которой вы на мгновение (или постоянно) находитесь в состоянии свободного падения. В свободном падении единственная сила, действующая на ваше тело, — это сила тяжести — бесконтактная сила. Поскольку силу гравитации невозможно почувствовать без каких-либо других противодействующих сил, вы не ощутите ее. Вы бы чувствовали себя невесомыми в состоянии свободного падения.

Такое ощущение невесомости характерно для райдеров американских горок и других аттракционов, в которых райдеры на мгновение оказываются в воздухе и отрываются от своих сидений. Предположим, что вас подняли в кресле на вершину очень высокой башни, а затем ваш стул внезапно упал. Когда вы и ваш стул падаете на землю, вы оба ускоряетесь с одинаковой скоростью — г . Поскольку стул нестабилен и падает с той же скоростью, что и вы, он не может на вас давить. Нормальные силы возникают только при контакте с устойчивыми опорными поверхностями. Сила тяжести — единственная сила, действующая на ваше тело. Нет никаких внешних объектов, соприкасающихся с вашим телом и оказывающих на него силу. Таким образом, вы испытаете ощущение невесомости. Вы бы весили столько же, сколько всегда (или столько же), но не ощущали бы этого веса.

Невесомость — это только ощущение; это не реальность, соответствующая похудевшему человеку. Когда вы свободно падаете на американских горках (или в других аттракционах в парке развлечений), вы ни на мгновение не потеряли свой вес. Невесомость очень мало связана с весом и в основном связана с наличием или отсутствием контактных сил. Если под «весом» мы подразумеваем силу гравитационного притяжения к Земле, то свободно падающий человек не «похудел»; они все еще испытывают гравитационное притяжение Земли. К сожалению, путаница фактического веса человека с его ощущением веса является источником многих заблуждений.

 

Показания весов и вес

Строго говоря, весы не измеряют вес человека. Хотя мы используем весы для измерения своего веса, показания весов на самом деле являются мерой направленной вверх силы, приложенной весами для уравновешивания направленной вниз силы тяжести, действующей на объект. Когда объект находится в состоянии равновесия (покоится или движется с постоянной скоростью), эти две силы уравновешиваются. Восходящая сила весов, действующая на человека, равна нисходящей силе тяжести (также известной как вес). И в этом случае показания весов (то есть меры восходящей силы) равны весу человека. Однако, если вы встанете на весы и подпрыгнете вверх и вниз, показания весов быстро изменятся. Когда вы совершаете это подпрыгивающее движение, ваше тело ускоряется. В периоды ускорения сила подъема весов меняется. Таким образом, показания шкалы меняются. Ваш вес меняется? Точно нет! Вы весите столько же (или меньше), как всегда. Показания весов меняются, но помните: ВЕСЫ НЕ ИЗМЕРЯЮТ ВАШ ВЕС. Весы измеряют только внешнее контактное усилие, действующее на ваше тело.

Теперь рассмотрим Отиса Л. Эвадерца, который проводит один из своих знаменитых экспериментов с лифтом. Он стоит на весах в ванной и ездит на лифте вверх и вниз. Когда он ускоряется вверх и вниз, показания шкалы отличаются от показаний, когда он находится в состоянии покоя и движется с постоянной скоростью. Когда он ускоряется, восходящая и нисходящая силы не равны. Но когда он покоится или движется с постоянной скоростью, противодействующие силы уравновешивают друг друга. Зная, что показания весов являются мерой восходящей нормальной силы весов, действующей на его тело, можно было предсказать ее значение для различных стадий движения. Например, значение нормальной силы (F норма ) на 80-килограммовом теле Отиса можно было бы предсказать, если бы было известно ускорение. Этот прогноз можно сделать, просто применив второй закон Ньютона, как обсуждалось в Модуле 2. В качестве иллюстрации использования второго закона Ньютона для определения различных контактных сил при поездке в лифте рассмотрим следующую диаграмму. На диаграмме 80-килограммовый автомобиль Отиса движется с постоянной скоростью (A), ускоряясь вверх (B), ускоряясь вниз (C) и свободно падая (D) после разрыва троса лифта.

В каждом из этих случаев восходящую контактную силу (F норма ) можно определить с помощью диаграммы свободного тела и второго закона Ньютона. Взаимодействие двух сил — восходящей нормальной силы и направленной вниз силы тяжести — можно рассматривать как перетягивание каната. Суммарная сила, действующая на человека, указывает, кто выигрывает в перетягивании каната (сила вверх или сила вниз) и на сколько. Суммарная сила 100 Н вверх указывает на то, что направленная вверх сила «побеждает» на величину, равную 100 Н. Сила тяжести, действующая на всадника, находится с помощью уравнения 9.0015 F грав = м*г .

Этап А

Ступень В

Ступень С

Этап D

F нетто = м*а

F нетто = 0 N

F нетто = м*а

F сетка = 400 Н, до

F нетто = м*а

F нетто = 400 Н, вниз

F нетто = м*а

F нетто = 784 Н, вниз

F норма равно F грав

F норма = 784 N

F норма > F грав на 400 Н

Ф норма = 1184 Н

F норма < F грав на 400 Н

F норма = 384 Н

F норма < F грав на 784 N

F норма = 0 N

Нормальная сила больше силы тяжести при восходящем ускорении (B), меньше силы тяжести при нисходящем ускорении (C и D) и равна силе тяжести при отсутствии ускорения (А). Поскольку именно нормальная сила обеспечивает ощущение собственного веса, лифтер будет ощущать свой нормальный вес в случае А, больший, чем его нормальный вес, в случае В и меньший своего нормального веса в случае С. водитель лифта чувствовал бы себя абсолютно невесомым; без внешней контактной силы он не ощущал бы своего веса. Во всех четырех случаях пассажир лифта весит одинаковую массу – 784 Н. Однако ощущение веса пассажира колеблется на протяжении всей поездки в лифте.

Невесомость на орбите

Астронавты на околоземной орбите невесомы по тем же причинам, что и водители свободно падающего аттракциона в парке развлечений или свободно падающего лифта. Они невесомы, потому что нет никакой внешней контактной силы, толкающей или притягивающей их тело. В каждом случае сила тяжести является единственной силой, действующей на их тело. Будучи силой действия на расстоянии, она не может ощущаться и, следовательно, не дает никакого ощущения их веса. Но наверняка космонавты на орбите что-то весят; то есть на их тело действует сила тяжести. На самом деле, если бы не сила тяжести, астронавты не вращались бы по кругу. Это сила тяжести, которая обеспечивает требование центростремительной силы, чтобы обеспечить внутреннее ускорение, характерное для кругового движения. Сила тяжести — единственная сила, действующая на их тела. Космонавты находятся в свободном падении. Подобно падающему гонщику в парке развлечений и падающему лифтеру, астронавты и их окружение падают на Землю исключительно под действием гравитации. Космонавты и все их окружение — космическая станция с ее содержимым — падают на Землю, не сталкиваясь с ней. Их тангенциальная скорость позволяет им оставаться в орбитальном движении, в то время как сила гравитации притягивает их внутрь.

Многие студенты считают, что космонавты на орбите невесомы, потому что не испытывают гравитации. Таким образом, предположить, что отсутствие гравитации является причиной невесомости, которую испытывают орбитальные астронавты, было бы нарушением принципов кругового движения. Если человек считает, что отсутствие гравитации является причиной их невесомости, то этому человеку трудно найти причину, по которой астронавты вообще находятся на орбите. Дело в том, что для существования орбиты должна существовать сила тяжести.

Можно ответить на это обсуждение, придерживаясь второго заблуждения: астронавты невесомы, потому что сила тяжести в космосе уменьшается. Рассуждение выглядит следующим образом: «при меньшей гравитации будет меньше веса, и, следовательно, они будут чувствовать себя меньше, чем их нормальный вес». Хотя это отчасти верно, это не объясняет их чувство невесомости. Сила тяжести, действующая на космонавта на космической станции, заведомо меньше, чем на поверхности Земли. Но насколько меньше? Достаточно ли он мал, чтобы объяснить значительное снижение веса? Точно нет! Если космическая станция вращается на высоте около 400 км над поверхностью Земли, то значение g в этом месте уменьшится с 9от 0,8 м/с/с (у поверхности Земли) до примерно 8,7 м/с/с. Это приведет к тому, что космонавт весом 1000 Н на поверхности Земли уменьшится в весе примерно до 890 Н на орбите. Хотя это, безусловно, снижение веса, оно не объясняет ощущения абсолютной невесомости, которые испытывают космонавты. Их ощущение абсолютной невесомости является результатом того, что у них «вырывается пол» (так сказать) при свободном падении на Землю.

Другие студенты-физики считают, что невесомость возникает из-за отсутствия воздуха в космосе. Их заблуждение заключается в идее, что нет силы тяжести, когда нет воздуха. По их мнению, гравитация не существует в вакууме. Но это не так. Гравитация — это сила, действующая между массой Земли и массой других объектов, которые ее окружают. Сила гравитации может действовать на больших расстояниях, и ее действие может даже проникать сквозь космический вакуум и в него. Возможно, студенты, придерживающиеся этого заблуждения, путают силу гравитации с давлением воздуха. Атмосферное давление возникает в результате того, что частицы окружающего воздуха давят на поверхность объекта в равных количествах со всех сторон. Сила тяжести не зависит от давления воздуха. В то время как давление воздуха уменьшается до нуля в месте, лишенном воздуха (например, в космосе), сила тяжести не становится равной 0 Н. Действительно, наличие вакуума приводит к отсутствию сопротивления воздуха; но это не объясняет ощущения невесомости. Астронавты просто чувствуют себя невесомыми, потому что нет никакой внешней контактной силы, толкающей или притягивающей их тело. Они находятся в состоянии свободного падения.

 

Мы хотели бы предложить…

Иногда недостаточно просто прочитать об этом. Вы должны взаимодействовать с ним! И это именно то, что вы делаете, когда используете один из интерактивов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного поездки на лифте. Вы можете найти его в разделе Physics Interactives на нашем сайте. Интерактивная программа “Поездка в лифте” позволяет учащимся исследовать влияние направления движения и изменений в состоянии движения на нормальные силы при поездке в лифте.


Посетите: Elevator Ride Interactive


Проверьте свое понимание

1. Отис Л. Эвадерц проводит свои знаменитые эксперименты с лифтом. Отис стоит на весах в ванной и считывает показания, поднимаясь и спускаясь по зданию Джона Хэнкока. Масса Отиса 80 кг. Он замечает, что показания весов зависят от того, что делает лифт. Используйте диаграмму свободного тела и второй закон Ньютона для решения следующих задач.

а. Каково значение шкалы, когда Отис ускоряется вверх со скоростью 0,40 м/с 2 ?

 

б. Каково значение шкалы, когда Отис движется вверх с постоянной скоростью или 2,0 м/с?

 

г. Когда Отис приближается к вершине здания, лифт замедляется со скоростью 0,40 м/с 2 . Будьте осторожны с направлением ускорения. Что показывают весы?

 

д.

Оставить комментарий