Физики в мире – История физики — Википедия

Физика — Новости науки

В традиционных квантовых чипах носители информации — электроны. Но более быстрыми в плане передачи сигнала могут быть фотоны, которые способны перемещаться со скоростью света. Однако … Подробнее →

Метки Квантовая механика, Физика

Ученые уже достаточно давно проводят исследования, направленные на то, чтобы выяснить, что же именно происходит, когда различные материалы испаряются, плавятся и кристаллизуются, другими словами, переходят … Подробнее →

Метки Технологии, Физика

Спиновая жидкость — магнитное состояние вещества. Несмотря на название, это твердый материал, в котором странное свойство квантовой механики — запутанность — обеспечивает жидкое магнитное состояние. Спиновая жидкость была … Подробнее →

Метки Квантовая механика, Физика

Ученые из Университета Глазго (Шотландия) сообщили об уникальном эксперименте, во время которого им удалось запечатлеть на снимке квантовую запутанность. Их работа опубликована в журнале Science Advances.

Метки Квантовая механика, Физика

Ученые из Центра квантовой нанотехнологии в Сеуле выполнили магнитно-резонансную томографию и получили изображение магнитного поля отдельных атомов.

Метки Нанотехнологии, Физика

Наши современные представления об электроне говорят, что он является одновременно и частицей, и волной. Поэтому описать его точную форму очень трудно, ведь в атоме он … Подробнее →

Метки Квантовая механика, Физика

Ученые-физики из Италии и Швейцарии обновили один из самых важных экспериментов за всю историю физики, но на этот раз, вместо обычной материи в этом эксперименте … Подробнее →

Метки Квантовая механика, Физика

Международная группа физиков, среди которых были и российские исследователи, доказала, что уже при рекордно большой температуре в –23 °C в гидриде лантана наблюдается сверхпроводимость. Хотя … Подробнее →

Метки Технологии, Физика

Единица массы теперь определяется фундаментальной константой природы, а не куском металла, — пишет sciencenews.org. Обновления в системе измерений вступили в силу 20 мая: пересмотрены килограмм и … Подробнее →

Метки Технологии, Физика

Представьте себе, что нужно сделать для того, чтобы можно было наблюдать за явлением, которое длится в триллион раз дольше, чем нынешний возраст Вселенной? Однако, зарегистрировать … Подробнее →

Метки Квантовая механика, Физика

В окружающем нас мире материя может находиться в самых различных состояниях. Большинству из людей известны лишь три основных состояния материи — твердое тело, жидкость и газ. … Подробнее →

Метки Физика, Химия

Международная группа исследователей, в которой были и российские ученые, проанализировала результаты крупнейшего эксперимента OPERA и пришла к выводу, что в них почти наверняка нет никаких … Подробнее →

Метки Квантовая механика, Физика

Команда исследователей из Наньянгского технологического университета в Сингапуре (NTU) и Университета Гриффита в Австралии соорудила прототип квантового устройства, способного генерировать все возможные варианты будущего в … Подробнее →

Метки Квантовая механика, Физика

Если вы ударите мячом об стену, он отскочит в обратном направлении в соответствии со всеми канонами классической физики. Но мир квантовой физики является намного более … Подробнее →

Метки Квантовая механика, Физика

РИА Новости. Анализ последних данных, собранных на БАК перед его отключением, помог ученым открыть новый тип пентакварков, состоящих из двух обособленных компонентов. Об этом они рассказали … Подробнее →

Метки Квантовая механика, Физика

РИА Новости. Эксперименты на американском коллайдере RHIC приблизили российских и зарубежных физиков к пониманию того, что отвечает за формирование спина протона, и раскрыли неожиданную роль … Подробнее →

Метки Квантовая механика, Физика

Когда мы думаем о звуковых волнах, мы думаем о невидимых колебаниях, распространяющихся в воздухе, которые, согласно физической теории, не имеют никакой массы. Но такое представление … Подробнее →

Метки Квантовая механика, Физика

Коллаборация LHCb (CERN, Европейская организация по ядерным исследованиям), в которую входят Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и Новосибирский … Подробнее →

Метки Квантовая механика, Физика

sci-dig.ru

Самые выдающиеся открытия человечества в области физики


Самые выдающиеся открытия человечества в области физики

1. Закон падения тел (1604)

 

Галилео Галилей


Галилео Галилей опроверг почти 2000 летнее аристотелевское убеждение, что тяжелые тела падают быстрее, чем легкие, доказав, что все тела падают с одинаковой скоростью.

2. Закон всемирного тяготения (1666)

Исаак Ньютон


Исаак Ньютон приходит к выводу, что все объекты во Вселенной, от яблок до планет оказывают гравитационное притяжение (воздействие) друг на друга.

3. Законы движения (1687)


Исаак Ньютон меняет наше представление о Вселенной, сформулировав три закона для описания движения объектов.


1. Движущийся объект остается в движении, если внешняя сила воздействует на него.
2. Соотношение между массой объекта (m), ускорение (а) и приложенной силой  (F) F = mа.
3. Для каждого действия есть равная и противоположная реакция (противодействие).

4. Второй закон термодинамики (1824 – 1850)


Ученые, работающие над повышением эффективности паровых машин, развили теорию понимания преобразование тепла в работу. Они доказали, что поток тепла от более высоких к более низким температурам, заставляет паровоз (или иной механизм) двигаться, уподобляя процессу потока воды, который вращает мельничное колесо.

Их работа приводит к трем принципам: тепловые потоки необратимы от горячего к холодному телу, тепло не может быть полностью преобразовано в другие формы энергии, а также системы становятся все более неорганизованными с течением времени.


5. Электромагнетизм (1807 – 1873)

Ханс Кристиан Эстед


Новаторские эксперименты выявили связь между электричеством и магнетизмом и систематизированы в системе уравнений, которые выражают их основные законы.
В 1820 году датский физик Ханс Кристиан Эрстед говорит студентам о возможности того, что электричество и магнетизм связаны между собой. Во время лекции, эксперимент показывает правдивость его теории перед всем классом.


6. Специальная теория относительности (1905)

Альберт Энштейн


Альберт Эйнштейн отвергает основные предположения о времени и пространстве, описывая, что часы идут медленнее и расстояние искажается, если скорость приближаются к скорости света.

7. E = MC2 (1905)


Или энергия равна массе, умноженной на квадрат скорости света. Знаменитая формула Альберта Эйнштейна доказывает, что масса и энергия являются различными проявлениями одного и того же, и, что очень небольшое количество массы может быть преобразовано в очень большое количество энергии. Самый глубокий смысл этого открытия является то, что ни один объект с любой массой, отличной от 0 никогда не может двигаться быстрее скорости света.

8. Закон Квантового Скачка (1900 – 1935)

Макс Планк

Альберт Энштейн

Вернер Гейзенберг

Эрвин Шредингер


Закон, для описания поведения субатомных частиц, описали Макс Планк, Альберт Эйнштейн, Вернер Гейзенберг и Эрвин Шредингер. Квантовый скачок определяется как изменение электрона в атоме из одного энергетического состояния в другое. Это изменение происходит сразу, а не постепенно.

9. Природа света (1704 – 1905)

Томас Янг

Исаак Ньютон

Альберт Энштейн


Результаты экспериментов Исаака Ньютона, Томаса Янга и Альберта Эйнштейна приводит к пониманию того, что такое свет, как он себя ведет, и как он передается. Ньютон использует призму для разделения белого света на составляющие цвета, а другая призма смешивала цветной свет в белый, доказывая, что цветной свет, смешиваясь, образует белый свет. Было установлено, что свет представляет собой волну, и что длина волны определяет цвет. Наконец, Эйнштейн признает, что свет всегда движется с постоянной скоростью, независимо от скорости измерителя.

10. Открытие нейтрона (1935)

Джеймс Чедвик


Джеймс Чедвик обнаружил нейтроны, которые вместе с протонами и электронами составляют атом вещества. Это открытие существенно изменило модель атома и ускорило ряд других открытий в атомной физике.

 

11. Открытие сверхпроводников (1911 – 1986)


Неожиданное открытие, что некоторые материалы не имеют никакого сопротивления электрическому току при низких температурах, обещали революцию в промышленности и технике. Сверхпроводимость возникает в самых разнообразных материалах при низких температурах, включая простые элементы, такие как олово и алюминий, различные металлические сплавы и некоторые керамические соединения.

12. Открытие кварков (1962)

Мюррей Гелл-Манн


Мюррей Гелл-Манн предположил существование элементарных частиц, которые в совокупности образуют составные объекты, такие как протоны и нейтроны. Кварк имеет свой заряд. Протоны и нейтроны содержат три кварка.

13. Открытие ядерных сил (1666 – 1957)


Открытия основной силы, действующие на субатомном уровне, привело к пониманию, что все взаимодействия во Вселенной являются результатом четырех фундаментальных сил природы – сильных и слабых ядерных сил, электромагнитных сил и гравитации.

Все эти открытия сделаны учеными, которые посвятили свою жизнь науке. В то время диплом MBA на заказ передать на написание кому-то было невозможно, только систематический труд, упорство, наслаждение своим стремлением – позволило им стать знаменитыми.


Похожие статьи:

mostinfo.su

Самые великие учёные мира. ТОП-10

Ниже представлен список десяти самых великих учёных в истории человечества, существенно изменивших мир. Также рекомендуем, ознакомится с рейтингом самых известных женщин-учёных в мире.


10

Аристотель (384–322 до н. э.)


Аристотель — выдающийся древнегреческий учёный энциклопедист, философ и логик, основатель классической (формальной) логики. Считается одним из величайших гениев в истории и самым влиятельным философом древности. Сделал огромный вклад в развитие логики и естественных наук, особенно астрономии, физики и биологии. Хотя многие из его научных теорий были опровергнуты, они значительно поспособствовали поиску новых гипотез их объяснения.


9

Архимед (287–212 до н. э.)


Архимед — известный древнегреческий математик, изобретатель, астроном, физик и инженер. Как правило, считается величайшим математиком всех времён и одним из ведущих учёных классического периода античности. Среди его вклада в области физики — фундаментальные принципы гидростатики, статики и объяснение принципа действия на рычаг. Ему приписывают изобретение новаторских механизмов, включая осадные машины и винтовой насос, названый в его честь. Архимед также изобрёл спираль, которая носит его имя, формулы для расчёта объёмов поверхностей вращения и оригинальную систему для выражения очень больших чисел.


8

Галилео (1564–1642)


На восьмом месте в рейтинге самых великих учёных в истории мира находится Галилео — итальянский физик, астроном, математик и философ. Был назван «отцом наблюдательной астрономии» и «отцом современной физики». Галилео стал первым, кто использовал телескоп для наблюдений за небесными телами. Благодаря этому он сделал ряд выдающихся астрономических открытий, таких как открытие четырёх крупнейших спутников Юпитера, солнечных пятен, вращение Солнца, а также установил, что Венера меняет фазы. Ещё он изобрёл первый термометр (без шкалы) и пропорциональный циркуль.


7

Майкл Фарадей (1791–1867)


Майкл Фарадей — английский физик и химик, в первую очередь известен за открытие электромагнитной индукции. Фарадей также открыл химическое действие тока, диамагнетизм, действие магнитного поля на свет, законы электролиза. Ещё он изобрёл первый, хотя и примитивный электрический двигатель, и первый трансформатор. Ввёл термины катод, анод, ион, электролит, диамагнетизм, диэлектрик, парамагнетизм и др. В 1824 году открыл химические элементы бензол и изобутилен. Некоторые историки считают Майкла Фарадея лучшим экспериментатором в истории науки.


6

Томас Алва Эдисон (1847–1931)


Томас Алва Эдисон — американский изобретатель и бизнесмен, основатель престижного научного журнала Science. Считается одним из самых плодовитых изобретателей своего времени с рекордным количеством выданных патентов на его имя — 1093 в США и 1239 в других странах. Среди его изобретений — создание в 1879 году электрической лампы накаливания, системы распределения электроэнергии потребителям, фонографа, усовершенствование телеграфа, телефона, киноаппаратуры и т. д.


5

Мари Кюри (1867–1934)


Мария Склодовская-Кюри — французский физик и химик, педагог, общественный деятель, пионер в области радиологии. Единственная женщина лауреат Нобелевской премии в двух различных областях науки — физики и химии. Первая женщина профессор, преподающая в университете Сорбонна. Её достижения включают разработку теории радиоактивности, методы разделения радиоактивных изотопов и открытие двух новых химических элементов — радия и полония. Мари Кюри является одним из изобретателей, которые погибли от своих изобретений.


4

Луи Пастер (1822–1895)


Луи Пастер — французский химик и биолог, один из основателей микробиологии и иммунологии. Открыл микробиологическую суть брожения и многих болезней человека. Инициировал новый отдел химии — стереохимии. Наиболее важным достижением Пастера считаются работы по бактериологии и вирусологии, в результате которых были созданы первые вакцины против бешенства и сибирской язвы. Его имя широко известно благодаря созданной им и названной позже в его честь технологии пастеризации. Все работы Пастера стали ярким примером сочетания фундаментальных и прикладных исследований в области химии, анатомии и физики.


3

Сэр Исаак Ньютон (1643–1727)


Исаак Ньютон — выдающийся английский физик, математик, астроном, философ, историк, исследователь Библии и алхимик. Является первооткрывателем законов движения. Сэр Исаак Ньютон открыл закон всемирного тяготения, заложил основы классической механики, сформулировал принцип сохранения импульса, заложил основы современной физической оптики, построил первый телескоп-рефлектор и развил теорию цвета, сформулировал эмпирический закон теплообмена, построил теорию скорости звука, провозгласил теорию о происхождении звёзд и многие другие математические и физические теории. Ньютон также стал первым, кто математически описал явление приливов.


2

Альберт Эйнштейн (1879–1955)


Второе место в списке самых великих учёных в истории мира занимает Альберт Эйнштейн — немецкий физик еврейского происхождения, один из величайших физиков-теоретиков ХХ века, создатель общей и специальной теории относительности, открыл закон взаимосвязи массы и энергии, а также многих других значительных физических теорий. Победитель Нобелевской премии по физике в 1921 году за открытие закона фотоэлектрического эффекта. Автор более 300 научных работ по физике и 150 книг и статей в области истории, философии, публицистики и др.


1

Никола Тесла (1856–1943)


Самым великим учёным всех времён считается Никола Тесла — сербский и американский изобретатель, физик, инженер-электромеханик, известный своими достижениями в области переменного тока, магнетизма и электротехники. В частности, ему принадлежат изобретения переменного тока, полифазовои системы и электродвигателя с переменным током. Всего же Тесла является автором около 800 изобретений в области электро- и радиотехники, в их числе первые электрические часы, двигатель на солнечной энергии, радио и т. д. Был ключевой фигурой при построении первой гидроэлектростанции на Ниагарском водопаде.

Поделится в соц. сетях

decem.info

Физика в современном мире

Физика является одной из важнейших наук. Она оказала настолько серьезное влияние на жизнь человечества, что этого просто невозможно не заметить. Тем не менее, многие люди не сразу ответят на вопрос о ее предназначении.

Заслуги физики трудно переоценить. Будучи наукой, изучающей наиболее общие и фундаментальные законы окружающего нас мира, она неузнаваемо изменила жизнь человека. Когда-то термины «физика» и «философия» были синонимами, так как обе дисциплины были направлены на познание мироздания и управляющих им законов. Но позже, с началом научно-технической революции, физика стала отдельным научным направлением. Так что же она дала человечеству? Чтобы ответить на этот вопрос, достаточно оглянуться вокруг. Благодаря открытию и изучению электричества люди пользуются искусственным освещением, их жизнь облегчают бесчисленные электрические устройства. Исследование физиками электрических разрядов привело к открытию радиосвязи. Именно благодаря физическим исследованиям во всем мире пользуются интернетом и сотовыми телефонами. Когда-то ученые были уверены в том, что аппараты тяжелее воздуха летать не могут, это казалось естественным и очевидным. Но братья Монгольфье, изобретатели воздушного шара, а за ними и братья Райт, создавшие первый самолет, доказали необоснованность этих утверждений. Именно благодаря физике человечество поставило себе на службу силу пара. Появление паровых машин, а вместе с ними паровозов и пароходов, дало мощный толчок к промышленной революции. Благодаря укрощенной силе пара люди получили возможность использовать на заводах и фабриках механизмы, не только облегчающие труд, но и в десятки, сотни раз повышающие его производительность. Без этой науки не были бы возможны и космические полеты. Благодаря открытию Исааком Ньютоном закона всемирного тяготения появилась возможность рассчитать силу, необходимую для выведения космического корабля на орбиту Земли. Знание законов небесной механики позволяет запущенным с Земли автоматическим межпланетным станции успешно достигать других планет, преодолевая миллионы километров и точно выходя к назначенной цели. Можно без преувеличения сказать, что знания, добытые физиками за века развития науки, присутствуют в любой области человеческой деятельности. Окиньте взглядом то, что вас сейчас окружает – в производстве всех находящихся вокруг вас предметов важнейшую роль сыграли достижения физики.

В наше время эта наука активно развивается, в ней появилось такое по-настоящему загадочное направление, как квантовая физика. Открытия, сделанные в этой области, могут неузнаваемо изменить жизнь человека.

infourok.ru

Глава 1. Как с помощью физики понять наш мир – FIZI4KA

В этой главе . . .

  • Определяем место физики в нашем мире
  • Жмем на тормоза
  • Управляем окружающими нас силами и энергией
  • Согреваемся с термодинамикой
  • Знакомимся с электричеством и магнетизмом
  • Ломаем голову над самыми трудными проблемами физики

Физика — это наука про вас и окружающий вас мир. Возможно, вы считаете ее обузой, т.е. неприятным обязательством, которое накладывает на вас школа или университет, но это совсем не так. Физика — это наука, которую вы начинаете постигать сразу же после рождения.

Ничто не может находиться вне физики, физика — это всеобъемлющая наука. Изучая разные аспекты мира природы, вы соответственно изучаете разные разделы физики: физику движущихся объектов, действующих сил, электричества, магнетизма, процессов, происходящих со скоростью близкой к скорости света, и т.п. Эти и многие другие темы подробно рассматриваются в данном курсе.

Физика окружает людей с их первых попыток ощутить окружающий мир. Само слово “физика” происходит от греческого слова, которое означает “природа”.

Что изучает физика

Наблюдая за окружающим нас сложным миром, можно заметить множество происходящих процессов. Солнце сияет, звезды мерцают, лампочки светят, машины едут, принтеры печатают, люди ходят пешком и ездят на велосипедах, реки текут и т.д. При более внимательном изучении этих процессов неизбежно возникает множество вопросов.

  • Как мы видим?
  • Почему мы теплые на ощупь?
  • Из чего состоит вдыхаемый нами воздух?
  • Почему мы соскальзываем вниз по заснеженному склону?
  • Как устроены сияющие ночью звезды? Или это планеты? Почему они движутся?
  • Как устроена эта крошка пыли?
  • Существуют ли невидимые нами миры?
  • Что такое свет?
  • Почему одеяла согревают нас?
  • Из чего состоит вещество?
  • Что произойдет, если прикоснуться к линии высокого напряжения? (Ответ на этот вопрос вам, конечно, хорошо известен. Даже такое ограниченное знание основ физики порой может спасти жизнь.)

Физика — это особого рода исследование мира и принципов его устройства: от самых основных (как, например, законов инерции, согласно которым так трудно вручную сдвинуть с места неподвижный автомобиль) до более экзотичных (законов крошечных миров внутри элементарных частиц, которые являются фундаментальными строительными блоками вещества). В своей основе физика охватывает все, что мы знаем о нашем мире.

Наблюдаем, за движущимися объектами

Некоторые наиболее фундаментальные вопросы об устройстве мира связаны с движением объектов. Замедлит ли свое движение катящийся вам навстречу огромный камень? Как быстро нужно двигаться, чтобы избежать столкновения с ним? (Секундочку, сейчас я подсчитаю на калькуляторе…) Движение было одной из первых тем исследований, которыми издавна занимались физики и пытались получить убедительные ответы на свои вопросы.

В части I этого курса рассматривается движение разных объектов: от бильярдных шаров до железнодорожных вагонов. Движение является фундаментальным явлением нашей жизни и одним их тех явлений, о которых большинство людей знает достаточно много. Достаточно нажать на педаль газа, и машина придет в движение.

Но не все так просто. Описание принципов движения является первым шагом в понимании физики, которое проявляется в наблюдениях и измерениях и создании мысленных и математических моделей на основе этих наблюдений и измерений. Этот процесс не знаком большинству людей, и именно для таких людей предназначен курс.

Простой, на первый взгляд, процесс изучения движения является началом начал. Если внимательно присмотреться, то можно заметить, что реальное движение постоянно меняется. Взгляните на торможение мотоцикла у светофора, на падение листка на землю и продолжение его движения под действием ветра, на невероятное движение бильярдных шаров после замысловатого удара мастера.

Движение постоянно меняется под действием силы, о чем будет рассказываться в части II. Все мы понемногу знаем основные законы приложения сил, но иногда для их правильного измерения нужно обладать более обширными знаниями. Иначе говоря, для этого требуется настоящий физик, как вы.

Поглощаем энергию вокруг нас

Примеры других проявлений физики никогда не приходится долго искать. Каждый день на дорогах происходят аварии автомобилей, движущихся с огромными скоростями.

Благодаря законам физики (а точнее, законам физики из части III этого курса) можно выполнять все необходимые измерения и предсказания, чтобы избежать таких неприятных ситуаций. Чтобы внезапно остановить быстро движущийся автомобиль, требуется много чего. Но него именно?

Вот когда для описания движения объектов нам могут пригодиться представления об их энергии и импульсе. Энергия движения называется кинетической. Помните, что когда ваша машина за 10 с ускоряется с места до скорости около 100 км/ч, то она приобретает достаточно много кинетической энергии.

Откуда берется кинетическая энергия? Нельзя сказать, что ниоткуда, иначе нам не приходилось бы заботиться о цене на топливо. Потребляя топливо, двигатель автомобиля совершает работу по ускорению автомобиля.

Рассмотрим другой пример. Допустим, что вам нужно затащить пианино в свою новую квартиру на шестом этаже. В это самое время стоит снова вспомнить о физике, достать калькулятор и подсчитать необходимую для этого работу.

При перемещении пианино вверх по ступеням оно приобретает потенциальную энергию, поскольку вам приходится совершать работу по преодолению силы гравитации.

Допустим, что, к величайшему сожалению, вашим соседям не понравилось ваша игра на пианино и они выкинули его в окно. Что в таком случае произойдет? В процессе падения в гравитационном поле Земли потенциальная энергия пианино преобразуется в кинетическую энергию, т.е. энергию движения. Это очень интересный для наблюдения процесс, в ходе которого можно оценить финальную скорость движения пианино в момент столкновения с тротуаром. Не унывайте, предъявите соседям счет за пианино и сбегайте в магазин за ударной установкой.

Получаем удовольствие от тепловых процессов

Тепло и холод являются неотъемлемыми компонентами повседневной жизни, а потому физика и в этом отношении сопровождает нас и летом, и зимой. Доводилось ли вам видеть капли конденсированной влаги на стакане с холодной водой в теплой комнате? Теплые пары воды в воздухе резко охлаждаются при соприкосновении с холодным стаканом и конденсируются на нем, образуя капельки воды. Пары воды таким образом передают свою энергию холодной воде в стакане, которая постепенно становится все теплее и теплее.

Именно термодинамике полностью посвящена часть IV этого курса. С помощью термодинамики можно определить, сколько тепла излучается нашим телом в холодный день, сколько мешочков льда нужно для охлаждения жерла вулкана, какова температура поверхности Солнца и дать ответ на многие другие вопросы, связанные с тепловой энергией.

Физика не ограничивается только нашей планетой. Почему космос холодный? Он практически пуст, так почему же он стал таким холодным? Почти все тепло в космосе распространяется в виде излучения и только очень малая его часть возвращается назад. В обычной окружающей нас среде все объекты излучают тепло и поглощают тепло друг друга. Но в космосе тепло преимущественно излучается, и потому все объекты преимущественно охлаждаются.

Излучение тепла — это только один из трех способов переноса тепла. Более подробно разнообразные тепловые процессы, будь то тепло от Солнца или от трения объектов, описываются в части IV этого курса.

Играем с зарядами и магнитами

После овладения основными законами видимого мира движущихся объектов и скрытого мира работы и энергии можно будет приступать к изучению еще более загадочных объектов. В части V читателю предлагается заглянуть в тайны еще одной части невидимого мира — электричества и магнетизма.

Действие электричества и магнетизма можно почувствовать не прямым, а только косвенным образом. Комбинируя электричество и магнетизм, можно генерировать свет, который лежит в основе видимости мира. Свойства света и его поведение при взаимодействии с линзами и другими объектами описываются в части V.

Большая часть физики связана с невидимым окружающим нас миром. Само вещество состоит из частиц, которые переносят электрические заряды, а в самих нас собрано невероятное количество таких зарядов.

При накоплении зарядов мы можем наблюдать такие явления, как статическое электричество и вспышки молний. Движение зарядов проявляется как привычное нам электричество из розетки.

Электричество, как часть физики, проявляется и в молнии, и лампочке. В этой книге показано не только, где проявляется, но и как ведет себя электричество. Кроме того, здесь кратко описываются принципы работы резисторов, конденсаторов и индукторов.

Готовимся решить самые трудные задачи физики

Даже начиная с очень простых и скучных вопросов физики, можно быстро прийти к самым экзотическим явлениям и проблемам. В части VI приведены 10 наиболее интересных фактов из специальной теории относительности Эйнштейна и 10 наиболее интересных проблем современной физики.

Альберт Эйнштейн является одним из наиболее известных и талантливых физиков. Для многих людей он является типичным гением, который предложил совершенно необычный взгляд на природу и заглянул в самые темные уголки наших представлений о природе.

Но что конкретно сделал Эйнштейн? Что означает его знаменитая формула Е=шс2? Означает ли это эквивалентность массы и энергии, т.е. что можно преобразовать вещество в энергию и энергию обратно в вещество? Да, конечно, означает.

Это довольно неожиданный физический факт, с которым нам не приходится сталкиваться в повседневной жизни. Но на самом деле мы сталкиваемся с ним каждый день. Для генерации своего теплового излучения Солнце должно ежесекундно преобразовывать в энергию около 4,79 млн т вещества!

Согласно теории Эйнштейна, еще более странные явления происходят при достижении скорости света.

“Посмотри на этот звездолет”, — скажете вы, глядя на ракету, пролетающую рядом почти со скоростью света. — Похоже, что вдоль направления движения он стал вдвое короче во время этого полета, чем в состоянии покоя.”

“Какой еще звездолет?” — спросят ваши друзья. — Он пролетел слишком быстро, и мы ничего не заметили.”

“Время, измеренное на этом звездолете, течет медленнее, чем время на Земле. По нашим меркам требуется около 200 лет, чтобы достичь ближайшей звезды, а по меркам экипажа звездолета потребуется всего 2 года.”

“Как это понять?” — спросят все.

Физика окружает нас повсюду— в любом известном нам месте. Хотите испытать свои возможности, тогда физика — именно то, что вам нужно. В конце книги перечислено несколько самых сложных проблем современной физики: возможное существование чревоточин в пространстве и строение черной дыры, которая притягивает все, включая свет. Узнайте об этом побольше и наслаждайтесь знаниями!

Глава 1. Как с помощью физики понять наш мир

4.9 (98%) 10 votes

fizi4ka.ru

Значение физики в современном мире

Сейчас любая отрасль хозяйства (информационные технологии, промышленность, медицина, сельское хозяйство и даже гуманитарная сфера жизни общества) использует современные технологические установки, автоматизированные устройства, которые якобы сделают за вас всю работу, и вам не нужно знать, как они работают.

Но если вы хотите добиться успеха, то будете искать способы совершенствования того или иного процесса, вносить изменения, сравнивать и анализировать различные подходы, решать проблемы, работать в команде, и тогда вам пригодятся знания, полученные в старшей школе на уроках физики и астрономии: ваше умение глобально мыслить, видеть проблему целостно, связывать и систематизировать факты и события.

Применяя базовые знания, полученные в основной школе, вы научитесь применять математический аппарат для описания природных явлений и процессов, строить модели для описания сложных процессов и, наоборот, — применять теоретические закономерности к реальным объектам.

Физика — это теоретическая основа современной техники и производственных технологий, астрономия, как раздел физики, позволяет получить представление о строении Вселенной в целом. Вместе они изучают общие закономерности протекания природных явлений, закладывают основы миропонимания на разных уровнях познания природы и дают общее обоснование естественнонаучной картины мира.

Взаимосвязь астрономии и физики очевидна — астрономия включает в себя весь спектр понятий современной физики и в значительной мере опирается на ее законы. Поэтому, изучая те или иные физические законы, мы часто будем обращаться к примерам их проявления во Вселенной

А чтобы изучение этих наук стало для вас увлекательным и понятным, в наших статьях мы стараемся приводить не только научные факты, теории и объяснения, но и побудить вас проблемными вопросами к поиску ответа, описанием природного явления или технологического процесса — к анализу и объяснения. В тексте статей вам будет встречаться рубрика «Обратите внимание», где указаны интересные факты, которые следует учитывать для решения конкретной задачи, которую не всегда можно решить общепринятыми методами.

Знания становятся вашим достижением, если вы их можете использовать в практической деятельности: решая задачи, выполняя опыты и учебные проекты! Надеемся, что изучение физики будет для вас интересным и несложным.

www.polnaja-jenciklopedija.ru

Невероятные научные рекорды среди величин / Наука, физика, теория

Мы привыкли думать, что живем в эпоху технологического рассвета, но на самом же деле, невероятные значения величин были достигнуты в ходе множества экспериментов в XX веке.

Температурный рекорд — максимальное значение

Самой высокой температуры на сегодняшний день удалось достичь при взрыве термоядерной бомбы. Температура в центре взрыва была зафиксирована в пределах 300-400 миллионов градусов по Цельсию. В 1986 году в лаборатории физики плазмы (Пристон, США) при испытаниях на установке ТОКАМАК было зафиксировано значение 200 млн градусов.

Рекордно низкая температура

Ноль градусов Кельвина соответствует отметке -273.15 градусов Цельсия, а по шкале Фаренгейта это значение составляет -459.67 градусов. Рекорд минимальной температуры, не побитый на сегодняшний день, составляет 2·10–9 K. Данное значение было зафиксировано в Финляндии, а именно, в лаборатории, принадлежащей Хельсинскому университету невысоких температур при ядерном размагничивании. Рекорд был объявлен в 1989 году.

Самый маленький термометр на планете

И снова рекорд установлен в Америке. Биофизик из Государственного Нью-Йоркского университета Фредерик Сакс разработал и представил термометр микроскопических размеров. Он используется для измерения температуры живых клеток. Диаметр наконечника составляет всего лишь 1 микрон, а это примерно в 50 раз меньше диаметра среднестатистического человеческого волоса.

Гигантский барометр

На этот раз рекорд установил житель Нидерландов Берт Болле. В 1987 году он сконструировал водяной барометр, высота которого равняется 12 метрам. Устройство находится в Музее барометров в городе Синт-Мартенсдейк.

Максимальное зафиксированное давление

Рекорд был установлен в 1978 году в США, а именно, в Вашингтонской геофизической лаборатории от Института Карнеги. Давление в 10 ГПа удалось получить в огромном гидравлическом прессе. Годом позже в этой же лаборатории под давлением 57 килобар был получен твердый водород.

Рекордная скорость физического объекта

Американские ученые в 1980 году смогли разогнать обычный пластиковый диск до скорости 150 километров в секунду. Эксперимент проводился в Вашингтонской лаборатории BMC. Такая скорость является на данный момент максимальной для любого видимого твердого тела.

Предельно точные весы

Прибор называется «Сарториус-4108». Это немецкая разработка, которая подарила миру возможность взвешивать предметы массой до 0.5 грамма с невероятной точностью — 0.01 мкг (приблизительно 1/60 веса краски, используемой в типографии для нанесения на бумагу точки).

Самая крупная пузырьковая камера

Устройство, оцененное в 7 млн американских долларов, было изготовлено в 1973 году. Как и у большинства рекордов в данной статье, родиной у этого стали США. Диаметр камеры составляет 4.57 м, а вмещает она 33 тысячи литров жидкого водорода. Температура материала составляет -247 градусов Цельсия. Конструкция имеет сверхпроводящий магнит, который создает поле 3 Тл.

Самая быстрая в мире центрифуга

Автором разработки является Теодор Сведберг (Швеция), а создал он устройство еще в далеком 1923 году. Максимальная скорость вращения, которая когда-либо была зафиксирована, составляет приблизительно 7250 км/ч. По сообщению ученых из Бирмингемского университета (Великобритания), в 1975 году конический стержень длиной 15.2 см, изготовленный из углеродистого волокна, вращался в вакууме с такой скоростью.

Рекордно точное сечение

При помощи высокоточного алмазно-токарного станка, который имеется в Калифорнийской национальной лаборатории Лоуренса, можно разрезать человеческий волос вдоль примерно 3 тысячи раз. Устройство оценивается в 13 млн долларов.

Мощнейший электрический ток

Самый мощный на данный момент электрический ток смогли сгенерировать ученые из лаборатории Лос-Аламоса, которая находится в штате Нью-Мексико. Рекорд действительно невообразимый, так как за пару микросекунд установка «Зевс», в которой находятся 4 032 конденсатора, способна сгенерировать ток, который в два раза превышает общее количество тока, вырабатываемое сразу всеми станциями на планете.

Максимальная температура пламени

При сгорании C4N2 (субнитрида углерода) удалось зафиксировать максимальную температуру пламени — 5 261 К при 1 атм.

Наиболее слабое трение

Самый маленький коэффициент трения, равный 0.02, имеет политетрафторэтилен (формула — С2F4n). Такое же трение возникает, когда мокрый лед трется о такой же мокрый лед. Также выше упомянутое вещество называется ПТФЭ. В больших количествах его начала получать американская фирма «Е.И. Дюпон де Немур».

Начиная с 1943 года из Америки сырье начинает экспортироваться как «тефлон», с этого момента он становится невероятно популярным у домохозяек по всему миру, так как кастрюли и сковородки из тефлона существенно облегчили им готовку: еда к нему не пригорает.

В Лаборатории Университета Вирджинии (США) вращается в вакууме 10–6 мм ртутного столба ротор. Скорость вращения составляет 1000 оборотов в секунду, а масса ротора — 13.6 кг. Интересно, что в сутки он теряет лишь 1 оборот в секунду. Таким образом, предмет будет продолжать вращаться еще много лет.

Самое крошечное отверстие в мире

Отверстие-рекордсмен имеет размер всего лишь 4·10–6 мм в диаметре, его можно увидеть лишь с применением электронного микроскопа JEM 100C и устройства от компании «Quantel Electronics». Ещё одно отверстие невероятно маленького размера (2·10–9 м) совершенно случайно прожёг луч от электронного микроскопа в материале бета-алюмината натрия. Это произошло в Иллинойском университете в 1983 году.

Мощнейший лазерный луч

Уже в 1962 году была предпринята удачная попытка осветить небесное тело. В ходе эксперимента луч отразился от Луны. Точность прицела лазера координировалась 121-см телескопом, который был установлен в Технологическом университете Массачусетса. Исход эксперимента был крайне интересным. Ученые смогли осветить очень крупный объект — лунное пятно, диаметр которого превышал 6 км. Автором лазерной разработки (1958) является Чарльз Таунз.

Световой импульс обладает такой мощностью, что может прожечь самый твердый на Земле материал — алмаз. Это произойдет за счет его испарения при огромной температуре — 10 000 градусов по Цельсию. Лазеру под названием «Шива», который находился в Ливерморской лаборатории Лоуренса (Калифорния, США), удалось сконцентрировать световой пучок, мощность которого составляла примерно 2,6·1013 Вт. Размер предмета, на который был направлен лазер, был не больше булавочной головки, а время фокусировки составило 9,5·10–11 с. И такой результат был получен не в наши дни, а в 1978 году.

Самый яркий свет

Эксперимент проводил доктор Роберт Грэм. Ему удалось получить самую яркую вспышку ультрафиолетового света в истории — 5·1015 Вт, длительность которой составляла 1 пикосекунду (при переводе в секунды это равняется 1·10–12).

На сегодняшний день источниками самого яркого света считаются лазерные импульсы, Рекордсмен среди источников света — аргонная дуговая лампа высокого давления, которая потребляет мощность порядка 313 кВт, а ее сила света составляет 1.2 млн кандел. Такое устройство смогла изготовить канадская фирма «Вортек индастриз» в 1984 году.

Если говорить о самых мощных прожекторах, которые выпускались в мире, первенство сохраняет за собой компания «Дженерал электрик», которая в период Второй мировой войны выпускала такие устройства. Разрабатывались прожекторы в Лондоне. Потребительская мощность такого устройства равнялась 600 кВт, а яркость дуги составляла при этом 46 500 кд/см2.

Самый короткий в мире световой импульс

В США широко известна компания AT&T (American Telephone and Telegraph). В 1985 году в одной из ее лабораторий команда ученых получила световой импульс длительностью 8·10–15 с (или 8 фемтосекунд). Длина импульса составляла 2,4 мкм.

Самая «живучая» лампочка

Стандартная лампочка накаливания работает в течение примерно 750-1000 часов. Тем не менее, существуют и исключения. Самой долговечной является обычная пятиваттная лампочка, которая впервые зажглась более века назад — в 1901 году. Производителем лампочки является компания «Шелби электрик».

Магнит-тяжеловес

Самым тяжелым в мире признан электромагнит, который является составной частью детектора L3. Он используется для проведения экспериментов на большом электрон-позитронном коллайдере в Швейцарии. Ярмо восьмиугольного электромагнита изготовлено из низкоуглеродистой стали и весит порядка 6400 тонн. Вес алюминиевой катушки составляет 1 100 тонн.

Приятно, что элементы ярма в свое время изготовлены были в СССР. Кстати, вес каждого элемента составляет 30 тонн. Катушка же изготовлена в Швейцарии, она состоит почти из 170 витков, которые закреплены на восьмиугольной раме при помощи электросварки.

Таким образом, этот электромагнит по размеру можно сравнить со зданием высотой примерно 4 этажа, его общий вес примерно равняется 7810 тоннам, а металла для его создания было израсходовано больше, чем во время строительства Эйфелевой башни.

Самое мощное магнитное поле

Рекордным является постоянное магнитное поле величиной 35,3 ± 0,3 Т. Его удалось получить в Массачусетском институте в 1988 году. Для создания такого поля понадобился гибридный магнит.

Самое слабое магнитное поле

Примечательно, что получить самое слабое в истории магнитное поле удалось в этой же лаборатории. Его величина равнялась 8·10–15 Т. Оно использовалось в исследовательских целях. Доктор Дэвид Кон применял его в экспериментах, связанных с чрезвычайно слабыми магнитными полями, которые создаются мозгом и сердцем.

Мощнейший микроскоп

Немецкая фирма ИБМ известна тем, что в 1981 году в ее лаборатории был изобретен самый мощный в мире растровый туннелирующий микроскоп. С его помощью объект можно увеличивать в 100 миллионов раз. Он позволяет отчетливо рассмотреть в подробностях атом диаметром 3·10–10 м.

Самый громкий шум

Такого уровня шума удалось достичь в лабораторных условиях. Он равен 210 дБ, как сообщило агентство НАСА. Настолько громкий шум был получен при использовании железобетонного стенда на 14.63 метров, а также фундамента, глубина которого составляла 18.3 метра. Эксперимент 1965 года проводился в Центре космических полетов штата Алабама. При подобном шуме возникает звуковая волна такой силы, что ею в теории вполне можно просверлить отверстие в достаточно плотных материалах. На момент проведения эксперимента шум можно было услышать в радиусе 161 км.

Самый миниатюрный микрофон

Самый маленький микрофон был изобретен не американцами для шпионажа, как многие могли подумать, а профессором из Турции для измерения давления в потоке жидкости. При своих крохотных размерах 1.5 х 0.7 мм он охватывает диапазон 10 Гц — 10 кГц.

Самая высокая нота

Самую высокую в истории ноту «взял» лазерный луч, сконцентрированный на куске сапфира. Эксперимент так же, как и многие другие из данного списка, проводился в Массачусетском университете в 1964 году.

Мощнейший в истории ускоритель частиц

Таким прибором по праву считается протонный синхротрон, который находится в Лаборатории ускорений им. Ферми в штате Иллинойс, США. Его диаметр составляет целых 2 километра. В 1976 году энергия, равная 500 ГэВ, была получена именно на нем. 

Почти 10 лет спустя, в октябре 1985 года, с его помощью получали энергию в 1,6 ГэВ. Для такого результата потребовалось использование тысячи сверхпроводящих магнитов, которые работали при температуре около -268 градусов по Цельсию, для чего была использована самая большая установка для сжижения гелия с производительностью 4500 литров в час.

В Женеве (Швейцария) в 1983 году удалось обеспечить столкновение пучков антипротонов и протонов в синхротроне с энергией 540 ГэВ. Для сравнения, такая же энергия выделяется при столкновении протонов, энергия которых равна 150 тыс. ГэВ, с неподвижным телом.

Наиболее тихое место на планете

В США существует такое место, которое называется «мертвая комната» площадью примерно 90 квадратных метров. Это техническая лаборатория компании «Bell Telephone System». А известна она тем, что в ней бесследно исчезает 99.98% звуков.

Самые острые предметы (и одновременно самые тонкие трубочки)

Конечно, самыми острыми предметами в мире не являются ножи. Это трубочки из стекла для микропипеток, которые необходимы для работы с живыми клетками. Авторами технологии являются Дейл Дж. Фламинг и Кеннет Т. Браун, работавшие на кафедре физиологии в Калифорнийском университете Сан-Франциско.

Технология производства была разработана в 1977 году. Наружный диаметр режущего наконечника составил 0.02 мкм, а внутренний — 0.01 мкм, то есть последний примерно в 6500 раз тоньше обычного человеческого волоска.

Самый маленький предмет, сделанный человеком

Рекордно малым предметом считаются «квантовые точки», которые являются разработкой техасской компании «Texas Instruments». Материалами «точек» являются индий и арсенид галлия. Их диаметр составляет 1/100 000 000 от 1 мм.

Самый высокий вакуум

Вакуум, признанный в мире самым высоким, был получен опять-таки в США, а именно, в Научно-исследовательском центре ИБМ, названном в честь Томаса Дж. Уотсона. В ходе эксперимента 1976 года вакуум, равный 10–14 торр, был получен при температуре -269 градусов Цельсия. В качестве наглядного примера: если каждая молекула была бы размером с мячик для тенниса, то изначальное расстояние между ними, равное 1 м, увеличилось бы до 80 км.

Самая низкая вязкость

Самой низкой вязкостью из всех доступных материалов и веществ обладает гелий при определенных условиях. В 1957 году Калифорнийский технологический институт сделал заявление, что при температуре примерно -273,15 °C жидкий гелий становится абсолютно текучим, то есть утрачивает вязкость.

Наибольшее полученное напряжение

И закрывают список научно-технологических рекордов ученые из США, а точнее, из корпорации «National Electronics». В мае 1979 года им удалось получить в лабораторных условиях самую большую разность электрических потенциалов — 32 ± 1,5 мл нВ.

www.qwrt.ru

Оставить комментарий