Формула эдс генератора: Генератор постоянного тока: устройство, принцип работы, классификация

Генератор постоянного тока: устройство, принцип работы, классификация

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinwt; e2 = -Blvsinwt; , где Bмагнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, tвремя, wt – угол, под которым рамка пересекает магнитный поток.  

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinwt, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Рис. 4. Двигатель постоянного тока

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные  показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме.

Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5).  Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6).  Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС.

(см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

ЭДС

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

КПД

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

Список использованной литературы

  • Вольдек А. И., Попов В. В. «Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы» 2008
  • О.А.Косарева «Шпаргалка по общей электротехники и электроники»
  • Китаев В. Е., Корхов Ю. М., Свирин В. К. «Электрические машины» Часть 1. Машины постоянного тока. 1978
  • Данилов И.А., Лотоцкий К.В. «Электрические машины» 1972

Урок 43-3 Устройство и принцип работы генератора переменного тока

Рассмотрим замкнутый контур (рамку) площадью S, помещенный в однородное магнитное поле, индукция которого равна B. Контур равномерно вращается вокруг оси OO’ с угловой скоростью ω.

Магнитный поток, пронизывающий контур, определяется формулой Ф = BS cosΔφ, где Δφ — угол между вектором нормали n к плоскости контура и вектором В. Рамка вращается внутри магнита с частотой v, и за время t совершает N = vt оборотов. За оборот рамка поворачивается на угол 2π рад. Угол на который поворачивается рамка за время t: Δφ = 2π vt = ωt, тогда изменение магнитного потока ΔФ = BS cos Δφ = BS cos ωt .

В замкнутом контуре возникает э.д.с. индукции, которая по закону электромагнитной индукции равна скорости изменения магнитного потока .

Тогда получим мгновенное значение э.д.с.

e = – Ф’ = – (BS cos ωt)’ = BSω sin ωt

Следовательно э.д.с. индукции, возникающая в замкнутом контуре, при его равномерном вращении в однородном магнитном поле меняется со временем по закону синуса. Э.д.с. индукции максимальна при sin ωt = 1, т.е. α = ωt = π/2

Величина ε0 = ωBS – называется амплитудным значением э.д.с. индукции.

Если такой контур замкнуть на внешнюю цепь, то по цепи пойдет ток, сила и направление которого изменяются. Такая рамка, вращающаяся в магнитном поле является простейшимгенератором переменного тока.

В нашей стране используется переменный ток частотой 50 Гц (в США – 60 Гц). Такой ток вырабатывается генераторами.

Генераторы электрического тока – это устройства для преобразования различных видов энергии – механической, химической, тепловой, световой и др. – в электрическую.

Работа генератора переменного тока основана на явлении электромагнитной индукции.

В настоящее время имеется много различных типов генераторов. Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС – электродвижущая сила (в рассмотренной модели генератора это вращающаяся рамка).

Неподвижную часть генератора называют статором, а подвижную – ротором.

Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной. К концам обмотки ротора присоединены контактные кольца. Неподвижные пластины – щетки – прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.

Модель генератора переменного тока.

Промышленные генераторы имеют намного большие размеры, для увеличения напряжения, снимаемого с клемм генератора, на рамки наматывают не один, а много витков. Во всех промышленных генераторах переменного тока витки, в которых индуцируется переменный ток, устанавливают неподвижно, а вращается магнитная система. Если ротор вращать с помощью внешней силы, то вместе с ротором будет вращаться и магнитное поле, создаваемое им, при этом в проводниках статора будет индуцироваться э. д.с.

Принцип действия генератора переменного тока следующий. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, – в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

Структурная схема генератора переменного тока.

Неподвижные пластины – щетки – прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.
Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

13.7: Электрогенераторы и обратная ЭДС

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    4433
    • OpenStax
    • OpenStax
    Цели обучения

    К концу этого раздела вы сможете:

    • Объяснить, как работает электрический генератор
    • Определить ЭДС индукции в петле в любой момент времени, вращающейся с постоянной скоростью в магнитном поле
    • Показать, что вращающиеся катушки имеют ЭДС индукции; в двигателях это называется обратной ЭДС, потому что она противодействует входу ЭДС двигателя

    Множество важных явлений и устройств можно понять с помощью закона Фарадея.

    В этом разделе мы рассмотрим два из них. 9о\)) за 15,0 мс. Круглая катушка из 200 витков имеет радиус 5,00 см и находится в однородном магнитном поле 0,80 Тл. Какая ЭДС наведена?

    Рисунок \(\PageIndex{1}\): Когда катушка этого генератора поворачивается на четверть оборота, магнитный поток \(\Phi_m\) изменяется от своего максимума до нуля, индуцируя ЭДС.

    Стратегия

    С помощью закона индукции Фарадея находим ЭДС индукции: в примере 13.4.3. Согласно диаграмме, проекция вектора нормали к поверхности \(\hat{n}\) на магнитное поле изначально равна \(cos\, \theta\), и это вставляется определением скалярного произведения. Величина магнитного поля и площадь петли фиксируются во времени, что упрощает интегрирование. ЭДС индукции записывается по закону Фарадея: 9{-3} s} = 131 \, V.\]

    Значение

    Это практическое среднее значение, аналогичное 120 В, используемому в домашнем хозяйстве.

    ЭДС, рассчитанная в примере \(\PageIndex{1}\), представляет собой среднее значение за одну четвертую оборота. Чему равна ЭДС в каждый момент времени? Оно изменяется в зависимости от угла между магнитным полем и перпендикуляром к катушке. Мы можем получить выражение для ЭДС как функции времени, рассматривая ЭДС движения на вращающейся прямоугольной катушке шириной

    w и высота l в однородном магнитном поле, как показано на рисунке \(\PageIndex{2}\).

    Рисунок \(\PageIndex{2}\): Генератор с одной прямоугольной катушкой, вращающейся с постоянной угловой скоростью в однородном магнитном поле, создает ЭДС, которая изменяется синусоидально во времени. Обратите внимание, что генератор похож на двигатель, за исключением того, что вал вращается для создания тока, а не наоборот.

    Заряды в проводах петли испытывают магнитную силу, потому что они движутся в магнитном поле. На заряды в вертикальных проводах действуют силы, параллельные проводу, вызывающие токи. Но находящиеся в верхнем и нижнем сегментах ощущают силу, перпендикулярную проводу, которая не вызывает тока.

    Таким образом, мы можем найти ЭДС индукции, рассматривая только боковые провода. ЭДС движения равна \(\epsilon = Blv\), где скорость v перпендикулярно магнитному полю B . Здесь скорость составляет угол \(\theta\) с B , так что ее составляющая, перпендикулярная B , равна v sin \(\theta\) (см. рисунок \(\PageIndex{2}\) ). Таким образом, в этом случае ЭДС, индуцированная с каждой стороны, равна \(\эпсилон = Blv \, sin \, \theta\), и они имеют одинаковое направление. Полная ЭДС вокруг контура тогда равна

    \[\epsilon = 2 Blv \, sin \, \theta.\]

    Это выражение верно, но оно не дает ЭДС как функцию времени. Чтобы найти зависимость ЭДС от времени, предположим, что катушка вращается с постоянной угловой скоростью \(\omega\). Угол \(\theta\) связан с угловой скоростью соотношением \(\theta = \omega t\), так что \[\epsilon = 2 Blv \, sin (\omega t).\]

    Теперь линейная скорость v связана с угловой скоростью \(\omega\) соотношением \(v = r\omega\). Здесь \(r = \omega/2\), так что \(v = (\omega/2)\omega\), и

    \[\epsilon = 2Bl \frac{\omega}{2} \omega \, sin \, \omega t = (l\omega) Bw \, sin \, \omega t.\]

    Учитывая, что площадь петли равна \(A = l\omega\), и учитывая N витков, находим, что

    \[\epsilon = NBAw \, sin \, (\omega t).\]

    Это ЭДС наведенная в катушке генератора N витков и площадь A вращающихся с постоянной угловой скоростью \(ω\) в однородном магнитном поле B . Это также может быть выражено как

    \[\epsilon = \epsilon_0 \, sin \, \omega t,\], где

    \[\epsilon_0 = NAB\omega\]

    пиковая ЭДС, поскольку максимальное значение из \(sin (\omega t) = 1\). Обратите внимание, что частота колебаний равна \(f = \omega/2\pi\), а период равен \(T = 1/f = 2\pi /\omega\). На рисунке \(\PageIndex{3}\) показан график ЭДС как функции времени, и теперь кажется разумным, что переменное напряжение является синусоидальным.

    Рисунок \(\PageIndex{3}\): ЭДС генератора передается на лампочку с показанной системой колец и щеток. На графике показана ЭДС генератора как функция времени, где \(\epsilon_0\) — пиковая ЭДС. Период равен \(T = 1/f = 2\pi /\omega\), где f — частота.

    Тот факт, что пиковая ЭДС равна \(\epsilon_0 = NBA\omega\), имеет смысл. Чем больше количество катушек, тем больше их площадь, и чем сильнее поле, тем больше выходное напряжение. Интересно, что чем быстрее раскручивается генератор (больше ω), тем больше ЭДС. Это заметно на велосипедных генераторах, по крайней мере, на более дешевых.

    На рисунке \(\PageIndex{4}\) показана схема, с помощью которой генератор может производить импульсы постоянного тока. Более сложное расположение нескольких катушек и разъемных колец может обеспечить более плавный постоянный ток, хотя для создания постоянного тока без пульсаций обычно используются электронные, а не механические средства.

    Рисунок \(\PageIndex{4}\): Разъемные кольца, называемые коммутаторами, в этой конфигурации создают импульсную ЭДС постоянного тока.

    В реальной жизни электрические генераторы сильно отличаются от рисунков в этом разделе, но принцип тот же. Источником механической энергии, вращающей катушку, может быть падающая вода (гидроэнергия), пар, образующийся при сжигании ископаемого топлива, или кинетическая энергия ветра. На рисунке \(\PageIndex{5}\) показан вид паровой турбины в разрезе; пар движется по лопастям, соединенным с валом, который вращает катушку внутри генератора. Генерация электрической энергии из механической энергии является основным принципом всей энергии, которая передается через наши электрические сети в наши дома.

    Рисунок \(\PageIndex{5}\): Паровая турбина/генератор. Пар, образующийся при сжигании угля, воздействует на лопатки турбины, вращая вал, соединенный с генератором.

    Генераторы, показанные в этом разделе, очень похожи на двигатели, показанные ранее. Это не случайно. Фактически двигатель становится генератором, когда его вал вращается. Некоторые ранние автомобили использовали свой стартер в качестве генератора. В следующем разделе мы дополнительно исследуем действие двигателя в качестве генератора.

    Back Emf

    Генераторы преобразуют механическую энергию в электрическую, тогда как двигатели преобразуют электрическую энергию в механическую. Таким образом, неудивительно, что двигатели и генераторы имеют одинаковую общую конструкцию. Двигатель работает, посылая ток через петлю провода, расположенную в магнитном поле. В результате магнитное поле оказывает крутящий момент на петлю. Это вращает вал, тем самым извлекая механическую работу из электрического тока, подаваемого изначально. (Обратитесь к разделу «Сила и крутящий момент в токовой петле» для обсуждения двигателей, которые помогут вам больше узнать о них, прежде чем продолжить.)

    Когда катушка двигателя вращается, магнитный поток через катушку изменяется, и возникает ЭДС (в соответствии с законом Фарадея). Таким образом, двигатель действует как генератор всякий раз, когда его катушка вращается. Это происходит независимо от того, вращается ли вал от внешнего источника, например, от ременной передачи, или от действия самого двигателя. То есть, когда двигатель совершает работу и его вал вращается, возникает ЭДС. Закон Ленца говорит нам, что ЭДС противодействует любому изменению, так что входная ЭДС, питающая двигатель, противостоит ЭДС, создаваемой самим двигателем, называемой 9.0048 противоЭДС двигателя (рисунок \(\PageIndex{6}\)).

    Рисунок \(\PageIndex{6}\): Катушка двигателя постоянного тока представлена ​​на этой схеме в виде резистора. Обратная ЭДС представлена ​​как переменная ЭДС, которая противодействует ЭДС, приводящей в движение двигатель. Обратная ЭДС равна нулю, когда двигатель не вращается, и увеличивается пропорционально угловой скорости двигателя.

    Выходная мощность генератора двигателя представляет собой разницу между напряжением питания и противо-ЭДС. Обратная ЭДС равна нулю при первом включении двигателя, а это означает, что катушка получает полное управляющее напряжение, а двигатель потребляет максимальный ток, когда он включен, но не вращается. По мере того, как двигатель вращается быстрее, обратная ЭДС растет, всегда противодействуя ЭДС возбуждения, и уменьшает как напряжение на катушке, так и количество потребляемого ею тока. Этот эффект заметен во многих распространенных ситуациях. При первом включении пылесоса, холодильника или стиральной машины свет в той же цепи ненадолго гаснет из-за 92R)\), возможно, даже выжечь. С другой стороны, если на двигатель нет механической нагрузки, он увеличивает свою угловую скорость ω до тех пор, пока противо-ЭДС не станет почти равной движущей ЭДС. Тогда двигатель использует ровно столько энергии, сколько необходимо для преодоления трения.

    Вихревые токи в железных сердечниках двигателей могут привести к значительным потерям энергии. Их обычно минимизируют за счет изготовления сердечников из тонких электроизолированных листов железа. На магнитные свойства сердечника практически не влияет ламинирование изоляционного листа, в то время как резистивный нагрев значительно снижается. Рассмотрим, например, катушки двигателя, представленные на рисунке \(\PageIndex{6}\). Катушки имеют эквивалентное сопротивление \(0,400 Ом, Омега\) и приводятся в действие ЭДС 48,0 В. Вскоре после включения они потребляют ток 92R = 5,76 \, кВт\) энергии в виде теплопередачи. При нормальных условиях работы этого двигателя предположим, что противо-ЭДС равна 40,0 В. Тогда при рабочей скорости общее напряжение на катушках составляет 8,0 В (48,0 В минус противо-ЭДС 40,0 В), а потребляемый ток равен

    \[ I = V/R = (8,0 Ом, В)/(0,400 Ом, Омега) = 20 Ом, А.\]

    Тогда при нормальной нагрузке рассеиваемая мощность равна \(P = IV = (20 Ом, А)(8,0 л, В) = 160 л, Вт\). Это не создает проблем для этого двигателя, в то время как прежние 5,76 кВт сожгли бы катушки, если бы они продолжались.

    Двигатель с последовательным возбуждением в работе

    Общее сопротивление \((R_f + R_a)\) двигателя постоянного тока с последовательным возбуждением составляет \(2,0 \, \Omega\) (Рисунок \(\PageIndex{7}\ )). При подключении к источнику 120 В \((\epsilon_S)\) двигатель потребляет 10 А при работе с постоянной угловой скоростью. (a) Чему равна противо-ЭДС, индуцируемая во вращающейся катушке \(\epsilon_i\)? б) Какова механическая мощность двигателя? в) Какая мощность рассеивается на сопротивлении катушек? г) Какова выходная мощность источника 120 В? (e) Предположим, что нагрузка на двигатель увеличивается, что приводит к его замедлению до точки, когда он потребляет 20 А. Ответьте на пункты с (a) по (d) для этой ситуации.

    Рисунок \(\PageIndex{7}\): Представление схемы двигателя постоянного тока с последовательной обмоткой.

    Стратегия

    Противо-ЭДС рассчитывается на основе разницы между подаваемым напряжением и потерями от тока через сопротивление. Мощность каждого устройства рассчитывается по одной из формул мощности на основе предоставленной информации.

    Решение

    1. Обратная ЭДС равна \[\epsilon_i = \epsilon_S – I(R_f + RE_a) = 120 \, V – (10 \, A)(2,0 \, \Omega) = 100 \, V .\] 92 \, Вт.\]


      Эта страница под названием 13.7: Electric Generators and Back Emf распространяется под лицензией CC BY 4.0 и была создана, изменена и/или курирована OpenStax с использованием исходного контента, который был отредактирован в соответствии со стилем и стандартами платформы LibreTexts; подробная история редактирования доступна по запросу.

      1. Наверх
        • Была ли эта статья полезной?
        1. Тип изделия
          Раздел или Страница
          Автор
          ОпенСтакс
          Лицензия
          СС BY
          Версия лицензии
          4,0
          Программа OER или Publisher
          ОпенСтакс
          Показать оглавление
          нет
        2. Теги
          1. задняя ЭДС
          2. Электрогенератор
          3. пиковая ЭДС
          4. источник@https://openstax. org/details/books/university-physics-volume-2

        Электрогенераторы | Физика

        Цели обучения

        К концу этого раздела вы сможете:

        • Рассчитать ЭДС, индуцируемую в генераторе.
        • Рассчитайте пиковую ЭДС, которая может быть наведена в конкретной генераторной системе.

        Электрические генераторы индуцируют ЭДС, вращая катушку в магнитном поле, как кратко описано в ЭДС индукции и магнитном потоке. Теперь мы рассмотрим генераторы более подробно. Рассмотрим следующий пример.

        Пример 1. Расчет ЭДС, наведенной в катушке генератора

        Катушка генератора, показанная на рисунке 1, поворачивается на четверть оборота (от θ = 0º до θ = 90º) за 15,0 мс. Круглая катушка из 200 витков имеет радиус 5,00 см и находится в однородном магнитном поле 1,25 Тл. Чему равна средняя ЭДС индукции?

        Рис. 1. Когда катушка этого генератора поворачивается на четверть оборота, магнитный поток Φ изменяется от своего максимума до нуля, индуцируя ЭДС.

        Стратегия

        Мы используем закон индукции Фарадея, чтобы найти среднюю ЭДС, индуцированную за время Δ t :

        [латекс]\text{emf}=-N\frac{\Delta\Phi}{\Delta t}\\[/latex].

        Мы знаем, что Н = 200 и Δ t = 15,0 мс, поэтому мы должны определить изменение потока Δ Φ , чтобы найти ЭДС.

        Решение

        Поскольку площадь петли и напряженность магнитного поля постоянны, мы видим, что

        [латекс]\Delta\Phi =\Delta\left(BA\cos\theta\right)=AB\ Дельта\влево(\cos\тета\вправо)\\[/латекс].

        Теперь, Δ (cos 9{-3}\text{ s}}=131\text{ V}\\[/latex].

        Обсуждение

        Это практическое среднее значение, аналогичное 120 В, используемому в домашнем хозяйстве.

        ЭДС, рассчитанная в приведенном выше примере 1 , представляет собой среднее значение за одну четвертую оборота. Чему равна ЭДС в каждый момент времени? Оно изменяется в зависимости от угла между магнитным полем и перпендикуляром к катушке. Мы можем получить выражение для ЭДС как функции времени, рассматривая ЭДС движения на вращающейся прямоугольной катушке шириной w и высотой в однородном магнитном поле, как показано на рисунке 2.

        Рисунок 2. Генератор с одной прямоугольной катушкой, вращающейся с постоянной угловой скоростью в однородном магнитном поле, создает ЭДС, которая изменяется синусоидально во времени . Обратите внимание, что генератор похож на двигатель, за исключением того, что вал вращается для создания тока, а не наоборот.

        Заряды в проводах петли испытывают магнитную силу, так как движутся в магнитном поле. На заряды в вертикальных проводах действуют силы, параллельные проводу, вызывающие токи. Но находящиеся в верхнем и нижнем сегментах ощущают силу, перпендикулярную проводу, которая не вызывает тока. Таким образом, мы можем найти ЭДС индукции, рассматривая только боковые провода. ЭДС движения принимается равной ЭДС = 9.0280 Bℓv , где скорость v перпендикулярна магнитному полю B . Здесь скорость составляет угол θ с B , так что ее составляющая, перпендикулярная B , равна v sin θ (см. рис. 2). Таким образом, в этом случае ЭДС, индуцированная с каждой стороны, равна ЭДС = Bℓv sin θ , и они имеют одинаковое направление. Суммарная ЭДС вокруг петли тогда равна

        [латекс]\текст{ЭДС}=2{B\ell v}\sin\theta\\[/латекс].

        Это выражение верно, но оно не дает ЭДС как функцию времени. Чтобы найти зависимость ЭДС от времени, предположим, что катушка вращается с постоянной угловой скоростью ω . Угол θ связан с угловой скоростью соотношением θ  ωt , так что

        [латекс]\текст{ЭДС}=2{B\ell v}\sin\omega t\\[/ латекс].

        Теперь линейная скорость v связана с угловой скоростью ω соотношением . Здесь r = w /2, так что v = ( w /2) ω , и

        [латекс]\text{emf}=2 B\ell \frac }{2}\omega\sin\omega t=\left(\ell w\right)B\omega\sin\omega t\\[/latex].

        Заметив, что площадь петли равна w , и учитывая N петель, мы находим, что

        [латекс]\text{emf}=NAB\omega\sin\omega t\\[/latex]

        – ЭДС , индуцированная в катушке генератора N витков и площадь A вращающаяся с постоянной угловой скоростью ω в однородном магнитном поле B . Это также может быть выражено как

        [латекс]\text{emf}={\text{emf}}_{0}\sin\omega t\\[/latex],

        , где

        [латекс]{\ text{emf}}_{0}=NAB\omega\\[/latex]

        — максимальная (пиковая) emf . Обратите внимание, что частота колебаний равна f = ω /2π , а период равен T = 1/ f = 2π/ ω . На рис. 3 показан график зависимости ЭДС от времени, и теперь кажется разумным, что переменное напряжение является синусоидальным.

        Рис. 3. ЭДС генератора подается на лампочку с показанной системой колец и щеток. На графике показана зависимость ЭДС генератора от времени. emf0 — пиковая эдс. Период T = 1/ f = 2π/ω, где f — частота. Обратите внимание, что буква E означает emf.

        Тот факт, что пиковая ЭДС, ЭДС = NABω , имеет смысл. Чем больше количество катушек, тем больше их площадь, и чем сильнее поле, тем больше выходное напряжение. Интересно, что чем быстрее раскручивается генератор (больше ω ), тем больше ЭДС. Это заметно на велосипедных генераторах, по крайней мере, на более дешевых. Один из авторов, будучи подростком, находил забавным ехать на велосипеде достаточно быстро, чтобы сжечь его фары, пока однажды темной ночью ему не пришлось ехать домой без света. На рисунке 4 показана схема, с помощью которой можно сделать генератор для получения импульсного постоянного тока. Более сложное расположение нескольких катушек и разъемных колец может обеспечить более плавный постоянный ток, хотя для создания постоянного тока без пульсаций обычно используются электронные, а не механические средства.

        Рис. 4. Разъемные кольца, называемые коммутаторами, в этой конфигурации создают на выходе импульсную ЭДС постоянного тока.

        Пример 2. Расчет максимальной ЭДС генератора

        Вычислить максимальную ЭДС, ЭДС 0 , генератора, рассмотренного в Примере 1. , определено, по ЭДС 0 = NABω можно найти ЭДС 0 . Все остальные величины известны.

        Решение

        Угловая скорость определяется как изменение угла в единицу времени:

        [латекс]\omega =\frac{\Delta\theta}{\Delta t}\\[/latex].

        Одна четвертая оборота составляет π/2 радиана, а время составляет 0,0150 с; таким образом,

        [латекс]\begin{array}{lll}\omega & =& \frac{\pi /2\text{rad}}{0,0150 \text{s}}\\ & =& 104,7\text{ рад/с}\end{массив}\\[/latex].

        104,7 рад/с — это ровно 1000 об/мин. Подставляем это значение на 9{2}\right)\left(1.25\text{ T}\right)\left(104.7 \text{ рад/с}\right)\\ & =& 206\text{ V}\end{массив}\\ [/латекс].

        Обсуждение

        Максимальная ЭДС больше, чем средняя ЭДС 131 В, найденная в предыдущем примере, как и должно быть.

        В реальной жизни электрические генераторы выглядят совсем иначе, чем на рисунках в этом разделе, но принцип тот же. Источником механической энергии, вращающей катушку, может быть падающая вода (гидроэнергия), пар, образующийся при сжигании ископаемого топлива, или кинетическая энергия ветра. На рис. 5 показан вид в разрезе паровой турбины; пар движется по лопастям, соединенным с валом, который вращает катушку внутри генератора.

        Рис. 5. Паровая турбина/генератор. Пар, образующийся при сжигании угля, воздействует на лопатки турбины, вращая вал, соединенный с генератором. (кредит: Nabonaco, Wikimedia Commons)

        Генераторы, показанные в этом разделе, очень похожи на двигатели, показанные ранее. Это не случайно. Фактически двигатель становится генератором, когда его вал вращается. Некоторые ранние автомобили использовали свой стартер в качестве генератора. В разделе «Обратная ЭДС» мы дополнительно исследуем работу двигателя как генератора.

        Резюме раздела

        • Электрический генератор вращает катушку в магнитном поле, индуцируя ЭДС, определяемую как функция времени

          [латекс]\text{emf}=2{B\ell v}\sin\omega t\\[/latex],

          , где A  является площадью N витковой катушки, вращающейся с постоянной угловой скоростью ω в однородном магнитном поле B .

        • Пиковая ЭДС ЭДС 0  генератора равна

          эдс = NABω

        Концептуальные вопросы

        1. Используя RHR-1, покажите, что ЭДС на сторонах контура генератора на рисунке 4 одинаковы, и, таким образом, добавьте.
        2. Источником электрической энергии генератора является работа, совершаемая для вращения его катушек. Как работа, необходимая для поворота генератора, связана с законом Ленца?

        Задачи и упражнения

        1. Рассчитайте пиковое напряжение генератора, который вращает свою 200-витковую катушку диаметром 0,100 м со скоростью 3600 об/мин в поле 0,800 Тл.

        2. При какой угловой скорости в об/мин пиковое напряжение генератора составит 480 В, если его 500-витковая катушка диаметром 8,00 см вращается в поле 0,250 Тл?

        3. Какова пиковая ЭДС, создаваемая вращением катушки диаметром 20,0 см из 1000 витков в магнитном поле Земли 5,00 × 10 −5  Тл, если плоскость катушки изначально перпендикулярна полю Земли и поворачивается параллельно полю за 10,0 мс?

        4. Какова пиковая ЭДС, создаваемая катушкой радиусом 0,250 м, состоящей из 500 витков, которая поворачивается на четверть оборота за 4,17 мс, первоначально имея плоскость, перпендикулярную однородному магнитному полю. (Это 60 об/с.)

        5. (a) Велосипедный генератор вращается со скоростью 1875 рад/с, производя пиковую ЭДС 18,0 В. Он имеет прямоугольную катушку размером 1,00 на 3,00 см в поле 0,640 Тл. Сколько витков в катушке? (b) Практично ли такое количество витков провода для катушки размером 1,00 на 3,00 см?

        6. Интегрированные понятия Эта задача относится к велосипедному генератору, рассмотренному в предыдущей задаче. Он приводится в движение колесом диаметром 1,60 см, которое катится по внешнему ободу велосипедной шины. а) Какова скорость велосипеда, если угловая скорость генератора равна 1875 рад/с? б) Какова максимальная ЭДС генератора, когда велосипед движется со скоростью 10,0 м/с, учитывая, что в первоначальных условиях она составляла 18,0 В? (c) Если сложный генератор может изменять свое собственное магнитное поле, какая напряженность поля ему потребуется при скорости 5,00 м/с, чтобы произвести 90,00 В максимальная ЭДС?

        7. (a) Автомобильный генератор вращается со скоростью 400 об/мин, когда двигатель работает на холостом ходу. Его 300-витковая прямоугольная катушка размером 5,00 на 8,00 см вращается в регулируемом магнитном поле, так что она может создавать достаточное напряжение даже при низких оборотах. Какая напряженность поля необходима для создания пиковой ЭДС 24,0 В? (b) Обсудите, как эта требуемая напряженность поля соотносится с напряженностью поля, доступной для постоянных и электромагнитов.

        8. Покажите, что если катушка вращается с угловой скоростью ω , период ее выхода переменного тока равен 2π/ ω .

        9. Катушка диаметром 10,0 см из 75 витков вращается с угловой скоростью 8,00 рад/с в поле 1,25 Тл, начиная с плоскости катушки, параллельной полю. а) Чему равна пиковая ЭДС? б) В какой момент времени достигается максимальная ЭДС? в) В какой момент ЭДС достигает своего максимального отрицательного значения? (d) Каков период выходного напряжения переменного тока?

        10. а) Если ЭДС катушки, вращающейся в магнитном поле, равна нулю при t = 0 и возрастает до своего первого максимума при t = 0,100 мс, какова угловая скорость катушки? б) В какое время произойдет ее следующий максимум? в) Каков период выпуска продукции? (d) Когда объем выпуска составляет первую четверть своего максимума? (e) Когда она составляет следующую четверть своего максимума?

        11. Необоснованные результаты 500-витковая катушка площадью 0,250 м 2 вращается в поле Земли 5,00 × 10 −5 Тл, производя максимальную ЭДС 12,0 кВ. а) С какой угловой скоростью должна вращаться катушка? б) Что неразумного в этом результате? (c) Какое предположение или предпосылка являются ответственными?

        Глоссарий

        электрогенератор:
        Устройство для преобразования механической работы в электрическую энергию; он индуцирует ЭДС, вращая катушку в магнитном поле
        ЭДС, индуцированная в катушке генератора:
        эдс = NAB ω sin ωt , где A – площадь витковой катушки N , вращаемой с постоянной угловой скоростью ω в течение периода 280 однородного магнитного поля. времени т
        пиковая ЭДС:
        ЭДС = NABω

        Избранные решения задач и упражнений

        1. 474 В

        3. 0,247 В

        5. (а) 50 (б) да

        7. (а) 0,477 Тл (б) Эта напряженность поля достаточно мала, чтобы ее можно было получить с помощью постоянного магнит или электромагнит.

      Оставить комментарий