Формула мощности физика: Недопустимое название — Викиверситет

Содержание

Мощность | Физика

Одна и та же работа может быть совершена за разное время. Если, например, требуется перенести на какое-то расстояние мешок с песком, то человек это может сделать за несколько минут, а муравью, таскающему по одной песчинке, для этого потребуется несколько лет.

Быстроту совершения работы характеризуют мощностью. Мощность показывает, какая работа совершается за единицу времени (в СИ — за 1 с). Если, например, за 2 с была совершена работа 6 Дж, то за 1 с была совершена работа, в 2 раза меньшая. Разделив 6 Дж на 2 с, мы получим 3 Дж/с. Это и есть мощность.

Итак, чтобы найти мощность, надо работу разделить на время, в течение которого совершалась эта работа:

,

или

(19.1)

где

N — мощность, А — работа, t — время.

Единицей мощности в СИ является ватт (1 Вт). 1 Вт — это такая мощность, при которой за 1 с совершается работа 1 Дж:

1 Вт = 1 Дж/с.

Эта единица названа в честь английского изобретателя Дж.

Ватта (Уатта), построившего первую паровую машину. Сам Уатт (1736—1819) пользовался другой единицей мощности — лошадиной силой (1 л. с.), которую он ввел с целью возможности сравнения работоспособности паровой машины и лошади:

1 л. с. = 735,5 Вт.

В технике часто применяют более крупные единицы мощности — киловатт и мегаватт:

1 кВт = 1000 Вт, 1 МВт = 1000000 Вт.

Мощность является важной характеристикой любого двигателя. Различные двигатели имеют мощности от сотых и десятых долей киловатта (двигатель электрической бритвы, швейной машины) до миллионов киловатт (двигатели ракет-носителей космических кораблей).

Средняя мощность, развиваемая сердцем, равна 2,2 Вт. А при прыжке с места или рывке при поднятии тяжести человек может развить мощность в тысячу раз больше.
Зная мощность, можно рассчитать работу. Из формулы (19.1) следует, что

    A = Nt.      (19.2)

Чтобы найти работу, надо мощность умножить на время, в течение которого совершалась работа.

I. Что характеризует мощность? 2. Что показывает мощность? 3. Как находится мощность? 4. Как называется единица мощности в СИ? 5. Как, зная мощность и время, можно рассчитать работу?

формула и применение в физике

Для того, чтобы перетащить 10 мешков картошки с огорода, расположенного в паре километров от дома, вам потребуется целый день носиться с ведром туда-обратно. Если вы возьмете тележку, рассчитанную на один мешок, то справитесь за два-три часа.

Ну а если закинуть все мешки в телегу, запряженную лошадью, то через полчаса ваш урожай благополучно перекочует в ваш погреб. В чем разница? Разница в быстроте выполнения работы. Быстроту совершения механической работы характеризуют физической величиной, изучаемой в курсе физики седьмого класса. Называется эта величина мощностью. Мощность показывает, какая работа совершается за единицу времени. То есть, чтобы найти мощность, надо совершенную работу разделить на затраченное время.

Формула расчета мощности

И в таком случае, формула расчета мощности принимает следующий вид: мощность= работа/время , или

N=A/t,

где N – мощность,
A – работа,
t – время. 

Единицей мощности является ватт (1 Вт). 1 Вт – это такая мощность, при которой за 1 секунду совершается работа в 1 джоуль. Единица эта названа в честь английского изобретателя Дж. Уатта, который построил первую паровую машину. Любопытно, что сам Уатт пользовался другой единицей мощности – лошадиная сила, и формулу мощности в физике в том виде, в котором мы ее знаем сегодня, ввели позже. Измерение мощности в лошадиных силах используют и сегодня, например, когда говорят о мощности легкового автомобиля или грузовика.

Одна лошадиная сила равна примерно 735,5 Вт.

Применение мощности в физике

Мощность является важнейшей характеристикой любого двигателя. Различные двигатели развивают совершенно разную мощность. Это могут быть как сотые доли киловатта, например, двигатель электробритвы, так и миллионы киловатт, например, двигатель ракеты-носителя космического корабля. При различной нагрузке двигатель автомобиля вырабатывает разную мощность, чтобы продолжать движение с одинаковой скоростью. Например, при увеличении массы груза, вес машины увеличивается, соответственно, возрастает сила трения о поверхность дороги, и для поддержания такой же скорости, как и без груза, двигатель должен будет совершать большую работу. Соответственно, возрастет вырабатываемая двигателем мощность. Двигатель будет потреблять больше топлива. Это хорошо известно всем шоферам. Однако, на большой скорости свою немалую роль играет и инерция движущегося транспортного средства, которая тем больше, чем больше его масса. Опытные водители грузовиков находят оптимальное сочетание скорости с потребляемым бензином, чтобы машина сжигала меньше топлива.

Нужна помощь в учебе?



Предыдущая тема: Механическая работа: определение и формула
Следующая тема:&nbsp&nbsp&nbspПростые механизмы и их применение: рычаг, равновесие сил на рычаге

Механическая работа.

Мощность. | Объединение учителей Санкт-Петербурга

Механическая работа (А)

Физическая величина, характеризующая результат действия силы и численно равная скалярному произведению вектора силы и вектора перемещения, совершенного под действием этой силы.

A=Fscosα

A=Fscosα

Работа не совершается, если:

1.Сила действует, а тело не перемещается.

Например: мы действуем с силой на шкаф, но не можем сдвинуть.

2.Тело перемещается, а сила равна нулю или все силы скомпенсированы.

Например: при движении по инерции работа не совершается.

3. Угол между векторами силы и перемещения (мгновенной скорости) равен 900(cosα=0).

Например: центростремительная сила работу не совершает.

Если вектора силы и перемещения сонаправлены (α=00, cos0=1), то  A=Fs

Если вектора силы и перемещения направлены противоположно

(α=1800, cos1800 = -1), то A= -Fs  (например, работа силы сопротивления, трения).

Если угол между векторами силы и перемещения 00 < α < 1800, то работа положительна.

Если угол между векторами силы и перемещения 00

 < α < 1800, то работа положительна.

Если на тело действует несколько сил, то полная работа (работа всех сил) равна работе результирующей силы.

 

Если тело движется не по прямой, то можно разбить все движение на бесконечно малые участки, которые можно считать прямолинейными, и просуммировать работы.

Графическое представление работы.

 

 

Рассмотрим движение тела под действием постоянной силы вдоль прямой Ох. График зависимости силы от координаты изображен на рисунке.

Площадь заштрихованного прямоугольника на рисунке численно равна работе силы Fпри перемещении из точки х1 в точку х2.

 

 Если сила меняется с расстоянием (координатой), то необходимо разбить все движение на такие малые участки, на которых силу можно считать неизменной, сосчитать работы на каждом элементарном участке пути, и сложить все элементарные работы.

 Таким образом: работа численно равна площади фигуры под графиком зависимости силы от координаты  F(x).

Единицы работы.

 

В международной системе единиц (СИ):

[А] = Дж = Н • м

Механическая работа равна одному джоулю, если под действием силы в 1 Н оно перемещается на 1 м в направлении действия этой силы.

1Дж = 1Н • 1м

Мощность

Мощность – физическая величина, характеризующая скорость совершения работы и численно равная отношению работы к интервалу времени, за который эта работа совершена.

Мощность показывает, какая  работа совершается за единицу времени.

 

Единицы мощности

В международной системе единиц (СИ):  

Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.

1 л.с. (лошадиная сила) ≈ 735 Вт

Физика. Механика

Представим снова элементарную работу в виде

Удельная величина, равная отношению работы совершенной за время dt к этому времени, называется мощностью:

Другими словами, мощность, развиваемая некоторой силой, равна скорости, с которой эта сила производит работу. Можно сказать и так: средняя за единицу времени мощность численно равна работе совершенной за единицу времени. Если мощность за выбранную единицу времени практически не меняется, то слово «средняя» можно опустить: мощность численно равна работе за единицу времени.

Как видно из определения, мощность равна скалярному произведению силы на скорость перемещения её точки приложения, поэтому работа силы за время от t1 до t2 может быть вычислена следующим образом:

Средняя мощность за этот же промежуток времени равна

За единицу мощности принимается такая мощность, при которой в единицу времени совершается единица работы.

В системе СИ единицей измерения мощности является ватт (Вт):

Внесистемная единица мощности — лошадиная сила (л.с.) — равна 736 Вт. В быту часто используют единицу энергии — 1 кВт•ч = 103 Вт•3600 с=3.6 МДж.

Пример. Вертолет массой m = 3 m висит в воздухе. Определить мощность, развиваемую мотором вертолета, если диаметр ротора равен d = 8 м. При расчете принять, что ротор отбрасывает вниз цилиндрическую струю воздуха диаметром, равным диаметру ротора. Плотность воздуха 1.29 кг/м3.

При решении этой задачи надо применить все известные нам законы динамики. Поскольку это — не одно- и не двухходовая задача, попробуем сначала найти вид окончательного выражения, пользуясь анализом размерности (см. тему 1.3). Искомая мощность зависит от: 1) веса вертолета mg; 2) диаметра винта d, 3) плотности воздуха , то есть искомая формула должна иметь вид

Размерность мощности будет [N] = [ML2T–3]. Составляем равенство размерностей в обеих частях искомой формулы:

Решая систему уравнений

находим

то есть искомая мощность двигателя вертолета будет

где C — некий числовой коэффициент.

Решим теперь эту же задачу точно. Пусть — скорость струи воздуха, отбрасываемой винтом. За время частицы воздуха проходят расстояние . Иными словами, за время винт вертолета придает скорость всем частицам воздуха, находящимся в цилиндре с площадью основания и высотой . Масса воздуха в этом объеме равна

а его кинетическая энергия дается выражением

Поскольку мотор передает воздуху кинетическую энергию , то такова и совершаемая им работа. Поэтому развиваемая мотором мощность (без учета потерь мощности во всех трансмиссиях на пути от двигателя до винта) равна

В этом выражении нам надо еще найти скорость струи воздуха, отбрасываемой винтом. Импульс , передаваемый частицам воздуха за время , равен

Из второго закона Ньютона следует, что средняя сила, действующая на отбрасываемый вниз воздух равна . По третьему закону Ньютона такая же сила действует на вертолет со стороны воздуха. Эта сила компенсирует вес вертолета:

Отсюда получаем уравнение

позволяющее найти скорость струи воздуха:

Подставляя найденную скорость в выражение для мощности двигателя вертолета, получаем окончательный результат:

Мы видим, что выражение для мощности действительно оказалось таким, каким ожидалось на основе анализа размерностей. Подставляя числовые данные, находим

Рис.4.5. Мощность в природе и технике

Физика 8 класс. Работа и мощность электрического тока :: Класс!ная физика

Физика 8 класс. РАБОТА ЭЛЕКТРИЧЕСКОГО ТОКА

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Зная две формулы:
I = q/t ….. и ….. U = A/q
можно вывести формулу для расчета работы электрического тока:

Работа электрического тока равна произведению силы тока на напряжение
и на время протекания тока в цепи.

Единица измерения работы электрического тока в системе СИ:
[ A ] = 1 Дж = 1A. B . c


НАУЧИСЬ, ПРИГОДИТСЯ !

При расчетах работы электрического тока часто применяется
внесистемная кратная единица работы электрического тока:
1 кВт.ч (киловатт-час).

1 кВт.ч = ………..Вт.с = 3 600 000 Дж

В каждой квартире для учета израсходованной электроэнергии устанавливаются специальные
приборы-счетчики электроэнергии, которые показывают работу электрического тока,
совершенную за какой-то отрезок времени при включении различных бытовых электроприборов.
Эти счетчики показывают работу электрического тока ( расход электроэнергии) в “кВт.ч”.

Необходимо научиться рассчитывать стоимость израсходованной электроэнергии!
Внимательно разбираемся в решении задачи на странице 122 учебника (параграф 52) !

МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

Мощность электрического тока показывает работу тока, совершенную в единицу времени
и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

(мощность в механике принято обозначать буквой N, в электротехнике — буквой Р)
так как А = IUt, то мощность электрического тока равна:

или


Единица мощности электрического тока в системе СИ:

[ P ] = 1 Вт (ватт) = 1 А . B

КНИЖНАЯ ПОЛКА

 

ВАУ, ИНТЕРЕСНЫЕ ЯВЛЕНИЯ !

 

Устали? – Отдыхаем!

Механическая мощность формула и определение. Мощность — физическая величина, формула мощности. Мощность в чем измеряется. Мощность — физическая величина, формула мощности Основная единица измерения мощности

С понятием мощность (М) связана продуктивность работы того или иного механизма, машины или двигателя. М можно определить как объём работы, выполненный в единицу времени. То есть М равна отношению работы к затраченному времени на её выполнение. В общепринятой международной системе единиц (СИ) единой единицей измерения М является ватт. Наряду с этим до сих пор альтернативным показателем М остаётся по-прежнему лошадиная сила (л.с.). Во многих странах мира принято измерять М двигателей внутреннего сгорания в л.с., а М электродвигателей – в ваттах.

Разновидности ЕИМ

По мере развития научно-технического прогресса появлялось большое количество разнообразных единиц измерения мощности (ЕИМ). 91

Измерение М в механике

Все тела в реальном мире приводятся в движение приложенной к ним силой. Воздействие на тело одного или нескольких векторов называют механической работой (Р). Например, сила тяги автомобиля приводит его в движение. Этим самым совершается механическая Р.

С научной точки зрения Р является физическая величина «А», определяемая произведением величины силы «F», расстояния перемещения тела «S» и косинуса угла между векторами этих двух величин.

Формула работы выглядит так:

A = F х S х cos (F, S).

М «N» в данном случае будет определяться отношением величины работы к периоду времени «t», в течение которого силы воздействовали на тело. Следовательно, формула, определяющая М, будет такой:

Механическая М двигателя

Физическая величина М в механике характеризует возможности различных двигателей. В автомобилях М двигателя определяется объёмом камер сгорания жидкого топлива. М мотора – это работа (количество вырабатываемой энергии) в единицу времени. Двигатель во время своего функционирования преобразует один вид энергии в другой потенциал. В данном случае мотор переводит тепловую энергию от сгорания топлива в кинетическую энергию крутящего движения.

Важно знать! Основным показателем М двигателя является максимальный крутящий момент.

Именно крутящий момент создаёт силу тяги мотора. Чем выше этот показатель, тем больше М агрегата.

В нашей стране М силовых агрегатов рассчитывают в лошадиных силах. Во всём мире происходит тенденция расчёта М в Вт. Сейчас уже силовую характеристику указывают в документации сразу в двух измерениях в л.с. и киловаттах. В какой единице измерять М, определяет сам производитель силовых электрических и механических установок.

М электричества

Электрическая М характеризуется скоростью преобразования электрической энергии в механическую, тепловую или световую энергию. Согласно Международной системе СИ, ватт – эта ЕИМ, в чём измеряется полная мощность электричества.

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок – см. приложения ниже.

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P , единица измерения: Ватт
  2. Реактивная мощность: обозначение Q , единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S , единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ , единица измерения: безразмерная величина

Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S

Также cosФ называется коэффициентом мощности (Power Factor PF )

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) – в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. – М.: Издательский центр “Академия”, 2004.

2. Немцов М. В. Электротехника и электроника. – М.: Издательский центр “Академия”, 2007.

3. Частоедов Л. А. Электротехника. – М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

Приложение

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)


АОСН-2-220-82
Латр 1.25АОСН-4-220-82
Латр 2.5АОСН-8-220-82





АОСН-20-220



АОМН-40-220




http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)


http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. – в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности) .

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

– (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

Дополнение 6

Дополнительные вопросы

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными .

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e”+ie”
  4. Магнитная проницаемость m=m”+im”
  5. и др.

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

См. дополнительную литературу, например:

Евдокимов Ф. Е. Теоретические основы электротехники. – М.: Издательский центр “Академия”, 2004.

Немцов М. В. Электротехника и электроника. – М.: Издательский центр “Академия”, 2007.

Частоедов Л. А. Электротехника. – М.: Высшая школа, 1989.

AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

Если вам нужно единицы измерения мощности привести в одну систему, вам пригодится наш перевод мощности – конвертер онлайн. А ниже вы сможете почитать, в чем измеряется мощность.

Мощность – физическая величина , равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

В чем измеряется мощность?

Единицы измерения мощности, которые известны каждому школьнику и являются принятыми в международном сообществе – ватты. Названы так в честь ученого Дж. Уатта. Обозначаются латинской W или вт.

1 Ватт – единица измерения мощности, при которой за секунду происходит работа, равная 1 джоулю. Ватт равен мощности тока, сила которого 1 ампер, а напряжение – 1 вольт. В технике, как правило, применяются мегаватты и киловатты. 1 киловатт равен 1000 ватт.
Измеряется мощность и в эрг в секунду. 1 эрг в сек. Равен 10 в минус седьмой степени ватт. Соответственно, 1 ватт равен 10 в седьмой степени эрг/сек.

А еще единицей измерения мощности считается внесистемная «лошадиная сила». Она была введена в оборот еще в восемнадцатом веке и продолжает до сих пор применяться в автомобилестроении. Обозначается она так:

  • Л.С. (в русском),
  • HP (в английском).
  • PS (в немецком),
  • CV (во французском).

При переводе мощности помните, что в рунете существует невообразимая путаница при конверте лошадиных сил в ватты. В России, странах СНГ и некоторых других государствах 1 л.с. равняется 735, 5 ватт. В Англии и Америке 1 hp равняется 745, 7 ватт.

Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину – работу делят на время, за которое эта работа производилась.

Выглядит она так:

P, W, N=A/t, (Вт=Дж/с).

В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.

Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.

Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт – watt, международное обозначение – W, русское сокращение – Вт. Это важно запомнить, потому что во всех бытовых приборах есть такой параметр.

Мощность – скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:

P=F*s/t, где F=А*s,

Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.

Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок, часто, измеряют в лошадиных силах . Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.

Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность – это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А, а делимое время t. В итоге, имея работу и время, и разделив первое на второе, мы получим долгожданную мощность.

При выборе в магазинах, важно обращать внимание на мощность прибора. Чем мощнее чайник, тем быстрее он погреет воду. Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель. Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество.

В общем случае электрическая мощность определяется формулой:

где I – сила тока, U-напряжение

Иногда даже ее так и измеряют в вольт-амперах, записывая, как В*А. В вольт-амперах меряют полную мощность, а чтобы вычислить активную мощность нужно полную мощность умножить на коэффициент полезного действия(КПД) прибора, тогда получим активную мощность в ваттах.

Часто такие приборы, как кондиционер, холодильник, утюг работают циклически, включаясь и отключаясь от термостата, и их средняя мощность за общее время работы может быть небольшой.

В цепях переменного тока, помимо понятия мгновенной мощности, совпадающей с общефизической, существуют активная, реактивная и полная мощности. Полная мощность равна сумме активной и реактивной мощностей.

Для измерения мощности используют электронные приборы – Ваттметры. Единица измерения Ватт, получила свое название в честь изобретателя усовершенствованной паровой машины , которая произвела революцию среди энергетических установок того времени. Благодаря этому изобретению развитие индустриального общества ускорилось, появились поезда, пароходы, заводы, использующие силу паровой машины для передвижения и производства изделий.

Все мы много раз сталкивались с понятием мощности. Например, разные автомобили характеризуются разной мощностью двигателя. Также, электроприборы могут иметь различную мощность, даже если они имеют одинаковое предназначение.

Мощность – это физическая величина, характеризующая скорость работы.

Соответственно, механическая мощность – это физическая величина, характеризующая скорость механической работы:

Т. е. мощность – это работа в единицу времени.

Мощность в системе СИ измеряется в ваттах: [N ] = [Вт].

1 Вт – это работа в 1 Дж, совершенная за 1 с.

Существуют и другие единицы измерения мощности, например, такие, как лошадиная сила:

Именно в лошадиных силах чаще всего измеряется мощность двигателя автомобилей.

Давайте вернемся к формуле для мощности: Формула, по которой вычисляется работа, нам известна: Поэтому мы можем преобразовать выражение для мощности:

Тогда в формуле у нас образуется отношение модуля перемещения к промежутку времени. Это, как вы знаете, скорость:

Только обратите внимание, что в получившейся формуле мы используем модуль скорости, поскольку на время мы поделили не само перемещение, а его модуль. Итак, мощность равна произведению модуля силы, модуля скорости и косинуса угла между их направлениями.

Это вполне логично: скажем, мощность поршня можно повысить за счет увеличения силы его действия. Прикладывая бо́льшую силу, он будет совершать больше работы за то же время, то есть увеличит мощность. Но даже если оставить силу постоянной, и заставить поршень двигаться быстрее, он, несомненно, увеличит работу, совершаемую в единицу времени. Следовательно, увеличится мощность.

Примеры решения задач.

Задача 1. Мощность мотоцикла равна 80 л.с. Двигаясь по горизонтальному участку, мотоциклист развивает скорость равную 150 км\ч. При этом, двигатель работает на 75% от своей максимальной мощности . Определите силу трения, действующую на мотоцикл.


Задача 2. Истребитель, под действием постоянной силы тяги, направленной под углом 45° к горизонту, разгоняется от 150 м/с до 570 м/с. При этом, вертикальная и горизонтальная скорость истребителя увеличиваются на одинаковое значение в каждый момент времени. Масса истребителя равна 20 т. Если истребитель разгонялся в течение одной минуты, то какова мощность его двигателя?



Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину – работу делят на время, за которое эта работа производилась.

Выглядит она так:

P, W, N=A/t, (Вт=Дж/с).

В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.

Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.

Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт – watt, международное обозначение – W, русское сокращение – Вт. Это важно запомнить, потому что во всех бытовых приборах есть такой параметр.

Мощность – скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:

P=F*s/t, где F=А*s,

Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.

Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок , часто, измеряют в лошадиных сил ах. Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.

Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность – это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А, а делимое время t. В итоге, имея работу и время, и разделив первое на второе, мы получим долгожданную мощность.

При выборе в магазинах, важно обращать внимание на мощность прибора. Чем мощнее чайник, тем быстрее он погреет воду. Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель. Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество.

В общем случае электрическая мощность определяется формулой:

где I – сила тока, U-напряжение

Иногда даже ее так и измеряют в вольт-амперах, записывая, как В*А. В вольт-амперах меряют полную мощность, а чтобы вычислить активную мощность нужно полную мощность умножить на коэффициент полезного действия(КПД) прибора, тогда получим активную мощность в ваттах.

Часто такие приборы, как кондиционер, холодильник, утюг работают циклически, включаясь и отключаясь от термостата, и их средняя мощность за общее время работы может быть небольшой.

В цепях переменного тока , помимо понятия мгновенной мощности, совпадающей с общефизической, существуют активная, реактивная и полная мощности. Полная мощность равна сумме активной и реактивной мощностей.

Для измерения мощности используют электронные приборы – Ваттметры. Единица измерения Ватт, получила свое название в честь изобретателя усовершенствованной паровой машины, которая произвела революцию среди энергетических установок того времени. Благодаря этому изобретению развитие индустриального общества ускорилось, появились поезда, пароходы, заводы, использующие силу паровой машины для передвижения и производства изделий.

Все мы много раз сталкивались с понятием мощности. Например, разные автомобили характеризуются разной мощностью двигателя. Также, электроприборы могут иметь различную мощность , даже если они имеют одинаковое предназначение.

Мощность – это физическая величина , характеризующая скорость работы.

Соответственно, механическая мощность – это физическая величина, характеризующая скорость механической работы:

Т. е. мощность – это работа в единицу времени.

Мощность в системе СИ измеряется в ваттах: [N ] = [Вт].

1 Вт – это работа в 1 Дж, совершенная за 1 с.

Существуют и другие единицы измерения мощности, например, такие, как лошадиная сила:

Именно в лошадиных силах чаще всего измеряется мощность двигателя автомобилей.

Давайте вернемся к формуле для мощности: Формула, по которой вычисляется работа, нам известна: Поэтому мы можем преобразовать выражение для мощности:

Тогда в формуле у нас образуется отношение модуля перемещения к промежутку времени. Это, как вы знаете, скорость:

Только обратите внимание, что в получившейся формуле мы используем модуль скорости, поскольку на время мы поделили не само перемещение, а его модуль. Итак, мощность равна произведению модуля силы, модуля скорости и косинуса угла между их направлениями.

Это вполне логично: скажем, мощность поршня можно повысить за счет увеличения силы его действия. Прикладывая бо́льшую силу, он будет совершать больше работы за то же время, то есть увеличит мощность. Но даже если оставить силу постоянной, и заставить поршень двигаться быстрее, он, несомненно, увеличит работу, совершаемую в единицу времени. Следовательно, увеличится мощность.

Примеры решения задач.

Задача 1. Мощность мотоцикла равна 80 л.с. Двигаясь по горизонтальному участку, мотоциклист развивает скорость равную 150 км\ч. При этом, двигатель работает на 75% от своей максимальной мощности. Определите силу трения, действующую на мотоцикл.


Задача 2. Истребитель, под действием постоянной силы тяги, направленной под углом 45° к горизонту, разгоняется от 150 м/с до 570 м/с. При этом, вертикальная и горизонтальная скорость истребителя увеличиваются на одинаковое значение в каждый момент времени. Масса истребителя равна 20 т. Если истребитель разгонялся в течение одной минуты, то какова мощность его двигателя?




Если вам нужно единицы измерения мощности привести в одну систему, вам пригодится наш перевод мощности – конвертер онлайн. А ниже вы сможете почитать, в чем измеряется мощность.

то есть произведение векторов силы на скорость движения – и есть мощность. В чем измеряется она? По международной системе СИ, единицей измерения данной величины является 1 Ватт.

Ватт и другие единицы измерения мощности

Ватт означает мощность, где за одну секунду производится работа в один джоуль. Последнюю единицу назвали так в честь англичанина Дж.Уатта, который изобрел и соорудил первую паровую машину. Но он при этом использовал другую величину – лошадиную силу, каковая применяется и по сей день. Одна лошадиная сила приблизительно равна 735,5 Ватт.

Таким образом, кроме Ватта, мощность измеряют в метрической лошадиной силе. А при очень малом значении также используют Эрг, равный десяти в минус седьмой степени Ватт. Возможно и измерение в одной единице массы/силы/метров в секунду, что равно 9,81 Ватт.

Мощность в двигателе

Названная величина является одной из самых важных в любом моторе, который бывает самой разной мощности. Например, электрическая бритва имеет сотые доли киловатта, а ракета космического корабля насчитывает миллионы.

Для разной нагрузки необходима различная мощность для сохранения определенной скорости. Например, машина станет тяжелее, если в нее поместить больше груза. Тогда сила трения о дорогу увеличится. Поэтому, чтобы поддерживать ту же скорость, что и в ненагруженном состоянии, потребуется большая мощность. Соответственно, мотор будет съедать больше топлива. Об этом факте известно всем водителям.

Но при большой скорости важна и инерция машины, которая прямо пропорциональна ее массе. Бывалые водители, знающие об этом факте, находят при езде лучшее сочетание топлива и скорости, чтобы бензина уходило меньше.

Мощность тока

В чем измеряется мощность тока? В той же самой единице по системе СИ. Она может быть измерена прямым или косвенным методом.

Первый способ реализуется при помощи ваттметра, потребляющего существенную энергию и сильно нагружающего источник тока. С его помощью измеряется от десяти Ватт и более. Косвенный метод используют при необходимости измерить малые значения. Приборами для этого служат амперметр и вольтметр, подсоединенные к потребителю. Формула в данном случае будет иметь такой вид:

При известном сопротивлении нагрузки, измеряем протекающую через нее величину тока и находим мощность так:

P = I 2 ∙ R н.

По формуле P = I 2 /R н также может быть вычеслена мощность тока.

В чем измеряется она в сети трехфазного тока, тоже не секрет. Для этого применяют уже знакомый прибор – ваттметр. Причем решить задачу, чем измеряется электрическая мощность, можно с помощью одного, двух или даже трех приборов. Например, для четырехпроводной установки потребуется три устройства. А для трехпроводной при несимметричной нагрузке — два.

Механическая работа и мощность

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Другими словами, работа – мера воздействия силы.

Определение механической работы

Определение 1

Работа А, совершаемая постоянной силой F→, – это физическая скалярная величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F→ и перемещением s→.

Данное определение рассматривается на рисунке 1.

Формула работы записывается как,

A=Fs cos α.

Работа – это скалярная величина. Единица измерения работы по системе СИ – Джоуль (Дж).

Джоуль равняется работе, совершаемой силой в 1 Н на перемещение 1 м по направлению действия силы.

Рисунок 1. Работа силы F→: A=Fs cos α=Fss

При проекции Fs→ силы F→ на направление перемещения s→ сила не остается постоянной, а вычисление работы для малых перемещений Δsiсуммируется и производится по формуле:

A=∑∆Ai=∑Fsi∆si.

Данная сумма работы вычисляется из предела (Δsi→0), после чего переходит в интеграл.

Графическое изображение работы определяют из площади криволинейной фигуры, располагаемой под графиком Fs(x)рисунка 2.

Рисунок 2. Графическое определение работы ΔAi=FsiΔsi.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Примером силы, зависящей от координаты, считается сила упругости пружины, которая подчиняется закону Гука. Чтобы произвести растяжение пружины, необходимо приложить силу F→, модуль которой пропорционален удлинению пружины. Это видно на рисунке 3.

Рисунок 3. Растянутая пружина. Направление внешней силы F→ совпадает с направлением перемещения s→. Fs=kx, где k обозначает жесткость пружины.

F→упр=-F→

Зависимость модуля внешней силы от координат x можно изобразить на графике с помощью прямой линии.

Рисунок 4. Зависимость модуля внешней силы от координаты при растяжении пружины.

Из выше указанного рисунка возможно нахождение работы над внешней силой правого свободного конца пружины, задействовав площадь треугольника. Формула примет вид

A=kx22.

Данная формула применима для выражения работы, совершаемой внешней силой при сжатии пружины. Оба случая показывают, что сила упругости F→упр равняется работе внешней силы F→, но с противоположным знаком.

Определение 2

Если на тело действует несколько сил, то их общая работа равняется сумме всех работ, совершаемых над телом. Когда тело движется поступательно, точки приложения сил перемещаются одинаково, то есть общая работа всех сил будет равна работе равнодействующей приложенных сил.

Мощность

Определение 3

Мощностью называют работу силы, совершаемую в единицу времени.

Запись физической величины мощности, обозначаемой N, принимает вид отношения работы А к промежутку времени t совершаемой работы, то есть:

N=At.

Определение 4

Система СИ использует в качестве единицы мощности ватт (Вт). 1 Ватт – это мощность, которую совершает работу в 1 Дж за время 1 с.

Помимо Ватта, существуют и внесистемные единицы измерения мощности. Например, 1 лошадиная сила примерна равна 745 Ваттам.  

Power – The Physics Hypertextbook

Обсуждение

Введение

Мощность – это скорость, с которой выполняется работа, или скорость, с которой энергия передается из одного места в другое или преобразуется из одного типа в другой.

P = Fv cos θ P = F · v
долларов США Шаттл
Сила некоторых вещей
мощность (Вт) устройство, событие, явление, процесс
гамма-всплеск
3.6 × 10 39 типичный квазар
3,6 × 10 26 Солнце
1,25 × 10 15 Самый мощный лазер, 1999 (Петаватт)
1,07 × 10 15 Самый мощный лазер, 2017 г. (LFEX)
1,3 × 10 13 общее потребление человеком, в мире
3.2 × 10 12 общее потребление человеком,
1,2 × 10 10 при запуске
10 9 ~ 10 10 крупная коммерческая электростанция
4,700,000 Самый мощный тепловоз (GE AC6000 CW)
2 610 000 Самый мощный грузовик (Komatsu 980E-4)
1,800,000 Самый мощный радиопередатчик (VLF Cutler, Maine)
1,550,000 Самый мощный автомобиль (Араш AF10)
10 000 Паровая машина Ватта 1778 г.
746 1 л.с.
100 человек, в среднем
1 1 ватт
0.293 1 БТЕ / ч
10 −5 человек, звуки, издаваемые при нормальной речи

шт.

Исходя из основного определения…

любые единицы работы (или энергии) и время могут быть использованы для выработки единицы мощности. В Международной системе для этого используются джоули [Дж] и секунды [с] соответственно.



Вт = Дж

с

Джоуль в секунду называется Вт [Вт] в честь шотландского инженера-механика Джеймса Ватта.Ватт наиболее известен тем, что изобрел улучшенный паровой двигатель примерно в 1770 году, и немного менее известен тем, что вскоре после этого изобрел концепцию мощности. Мощность была новым способом сравнить его двигатели с машинами, которые они должны были заменить – лошадьми. (Подробнее об этом позже.)

Ватт не подумали бы о мощности так же, как мы сегодня. Концепция энергии была изобретена только после его смерти. Для него сила была продуктом силы и скорости.

P = Fv

В системе СИ единицы, конечно, работают точно так же.Напомним, что джоуль – это произведение ньютона на метр.



Вт = Дж = Н м = Н м / с

с с

Но, конечно, Ватт не использовал систему СИ или даже ее предшественницу, метрическую систему. До 1795 года не было килограммов. Ньютон не становился единицей до 1948 года.Когда Ватт был жив, в мире единиц джоулей не было, потому что, по сути, в мире людей не было джоулей. (Джеймсу Джоулю было восемь месяцев, когда умер Джеймс Ватт.)

Джеймс Ватт использовал фунты для силы и различные английские единицы для скорости – дюймы в секунду, футы в минуту, мили в час и т. Д.

  • Киловатт-час – это единица энергии, используемая электроэнергетическими предприятиями.
  • Британские тепловые единицы в час (часто ошибочно сокращается до британских тепловых единиц) – это единица измерения мощности, используемая в сфере отопления, вентиляции и охлаждения (HVAC).
  • Лошадиная сила – это единица мощности, достаточная для подъема 33000 фунтов на 1 фут каждую 1 минуту (550 фунтов, 1 фут, 1 секунду), что эквивалентно примерно 745,70 Вт
  • https://www.google.com/search?q=33000+lbf*1+foot/1+minute

лошадиных сил и

лошадиных сил

Джеймс Ватт был шотландским инженером-механиком, наиболее известным своими усовершенствованиями в конструкции паровых двигателей. Хотя считается, что Томас Ньюкомен изобрел паровой двигатель примерно в 1698 году, усовершенствованная конструкция Ватта, запатентованная в 1769 году, стала отраслевым стандартом, приведшим в действие Промышленную революцию в Великобритании и других странах.

Один из первых коммерческих двигателей, построенных Уаттом, был продан медному руднику в Корнуолле, регионе Англии, где уголь был дорогим. Ватт руководил строительством специально построенных паровых двигателей на шахтах, а затем взимал лицензионный сбор, равный доле денег, сэкономленных за счет перехода на его улучшенную конструкцию.

Двигатели

Newcomen и Watt являются примерами поршневых двигателей . То же самое с двигателями большинства легковых и грузовых автомобилей. Пар нагнетается в вертикальный цилиндр, поднимая поршень.Пар конденсируется, и атмосферное давление опускает поршень. В двигателе с более чем одним цилиндром, когда один из поршней движется вверх, другой движется вниз. Движение одного возвратно-поступательно движением другого. (Странно, но поршневой двигатель даже с одним цилиндром до сих пор называют поршневым двигателем.) Поршни Ватта изначально были прикреплены к качающейся балке, которая идеально подходила для привода подъемного насоса. Это классический старинный насос с ручкой, который наверняка видел каждый – по крайней мере на фотографиях, если не лично.Более поздние механические дополнения позволили Ватту преобразовать возвратно-поступательное движение балки во вращательное движение оси. Это открыло для паровой машины новые возможности.

Самым сильным конкурентом паровой машины на момент ее изобретения была лошадь. Одним из наиболее изобретательных способов использования силы лошади была конная мельница (также известная как конский джин) – конструкция с большими спицами и осью, похожая на колесо телеги без обода, которое можно было вращать в горизонтальном направлении.Лошадей пристегивали к концам спиц (от четырех до шести за раз, для больших приложений) и заставляли ходить по кругу вокруг центрального приводного вала в течение нескольких часов. Эквивалент конной мельницы, приводимый в движение человеком, называется беговой дорожкой. Беговые дорожки 18-го века совсем не походили на тренажеры, впервые продаваемые в 20-м веке. Конные мельницы и беговые дорожки были доиндустриальными машинами для выполнения работы – не абстрактной математической работой силы, умноженной на смещение, а настоящим каторжным трудом.

Гравюра конной мельницы (1624) Гравюра конной мельницы (1851 г.)

Чтобы Ватт взимал лицензионный сбор за свои «вращающиеся» паровые машины, ему требовался экономический эквивалент – то, с чем он мог бы их сравнить. Лошади были естественным выбором, но сколько работы делает лошадь? Работа даже не подходящая концепция. Одна лошадь может сделать столько работы, но две лошади сделают это в два раза быстрее. Важен не объем работы, которую выполняет лошадь, а скорость, с которой она ее выполняет.

Ватт определил пивоварню Whitbread в Лондоне в качестве потенциального покупателя. Крупные лондонские пивоварни, такие как Whitbread’s, использовали в среднем 20 лошадей одновременно. Лошадей Уитбреда привязали к мельнице по шесть ремней и заставили ходить по кругу диаметром 24 фута 144 раза в час, измельчая солодовый ячмень в порошок с усилием 180 фунтов. Полученное число было округлено до двух значащих цифр для удобства.

P = Fv
п. = F с / ∆ t = F ( n r / t )
п. = (180 фунтов) (144 × 2π × 12 футов) / (60 мин)
п. = 32 572.03263… фунт-фут / мин
п. = 33000 фунт · фут / мин

До того, как мистер Ватт применил паровую машину для создания вращательного движения, на крупных мануфактурах королевства мельницы приводились в движение с помощью воды, ветра или лошадей; а последние в течение многих лет почти исключительно работали на пивоварнях и ликероводочных заводах мегаполиса. Поэтому для того, кто хотел заменить мощность лошадей мощностью пара, было естественно указать число последних, которому новая мощность при данных условиях будет эквивалентна; и вполне вероятно, что Боултон и Ватт считали, что такой способ сравнения будет более понятным для обычных опасений, чем более точная и научная формула.Это дало мощность двигателя, выраженную в числах, из которых , обычная сила лошади – это единица ….

Бултон и Ватт, однако, не оставили вопрос в состоянии, которое в любом случае можно считать неправильным, но придали ему всю точность, которая может потребоваться, когда по результатам экспериментов, проведенных с использованием сильных лошадей. лондонские пивовары приняли за норму лошадиных сил , то есть силу, способную поднять 33000 либов.один фут в минуту ; и это, без сомнения, должно было включать допуск мощности, достаточно достаточный, чтобы покрыть обычные вариации силы лошадей и другие обстоятельства, которые могут повлиять на точность результата.

Олинтус Грегори, 1809

физиология

Сила различных видов деятельности человека Источник: Physics of the Body (платная ссылка)
мощность (Вт) активность
800 играет в баскетбол
700 на велосипеде (21 км / ч)
685 подъем по лестнице (116 ступенек / мин)
545 коньки (15 км / ч)
475 плавательный (1.6 км / ч)
440 играет в теннис
400 на велосипеде (15 км / ч)
265 пешком (5 км / ч)
210 сидит с сосредоточенным вниманием
125 стоя в состоянии покоя
120 сидя в состоянии покоя
83 спальный
Энергия различных органов человека Источник: Physics of the Body (платная ссылка)
орган
Масса
(кг)
мощность
(Вт)
Плотность мощности
(Вт / кг)
% от общего количества
печень и селезенка 23 27
мозг 1.40 16 11 19
скелетные мышцы 28,00 15 0,55 18
почки 0,30 9,1 30 10
сердце 0,32 5,6 17 7
остаток 16 19
всего 65 85 100

Мощность (физика): определение, формула, единицы измерения, как найти (с примерами)

Обновлено 28 декабря 2020 г.

Эми Дусто

Бодибилдер и пятиклассник могли взять с собой все книги полка вверх по лестнице, но вряд ли они справятся с задачей за то же время.Бодибилдер, вероятно, будет быстрее, потому что у нее более высокий рейтинг силы , чем у пятиклассника.

Точно так же гоночный автомобиль с высокой мощностью лошадиных сил сможет проехать дальше намного быстрее, чем лошадь.

TL; DR (слишком долго; не читал)

Мощность – это мера того, сколько работы выполнено за интервал времени.

Краткое замечание о лошадиных силах: этот термин предназначен для сравнения мощности парового двигателя с мощностью лошади, так как двигатель мощностью 700 лошадиных сил может выполнять примерно в 700 раз больше работы, чем одна лошадь.Это восходит к тому времени, когда паровые двигатели были новыми, и один из самых известных изобретателей, работавших над повышением их эффективности, Джеймс Ватт, придумал этот термин как способ убедить среднего человека в их ценности.

Формулы для мощности

Есть два способа рассчитать мощность, в зависимости от того, какая информация доступна. Кроме того, есть две единицы мощности, которые одинаково действительны.

1. Мощность в терминах работы и времени:

P = \ frac {W} {t}

Где работа W измеряется в Ньютон-метрах (Нм), а время t измеряется в секундах (с).

2. Мощность в единицах силы и скорости:

P = Fv

Где сила F выражается в Ньютонах (Н), а скорость v выражается в метрах в секунду (м / с). .

Эти уравнения не эквивалентны случайным образом. Второе уравнение может быть получено из первого следующим образом:

Обратите внимание, что работа то же самое, что сила на смещение:

W = Fd

Подставьте это в первое уравнение мощности:

Затем, поскольку смещение в любую единицу времени равно скорости (v = d / t), перепишите члены в конце как v , чтобы получить второе уравнение мощности.

Единицы мощности

Единица мощности в системе СИ p обычно представлена ​​как Вт (Вт) , названная в честь того же Джеймса Ватта, который проектировал двигатели и сравнивал их с лошадьми. На бирках лампочек и других бытовых приборов этот блок обычно указывается.

Однако рассмотрение второй формулы мощности приводит к другой единице. Сила, умноженная на скорость, дает измерение в единицах ньютон-метров в секунду (Нм / с). Затем, поскольку единица энергии джоуль также определяется как один ньютон-метр (Нм), первую часть этой величины можно переписать как джоуль, в результате чего получится вторая единица мощности в системе СИ: джоулей в секунду (Дж. / с).

Как стать сильным

Рассмотрение определения силы и двух способов ее найти дает несколько способов увеличить силу чего-то : увеличить его силу (использовать больше силы ) или получить та же работа выполняется быстрее (уменьшение t или увеличение v ). Мощный автомобиль – это сильный и быстрый , а слабый – ни то, ни другое. более легко и быстро может работать , более мощный объект, выполняющий работу.

Это также означает, что очень сильный тренажер, скажем, очень мускулистый бодибилдер, все еще может не обладать мощностью . Человек, который может поднять очень тяжелый груз, но только очень медленно, менее силен, чем тот, кто может поднять его быстро.

Точно так же очень быстрая машина или человек, который мало что делает, кто-то быстро крутится на месте, но ни к чему не стремится, на самом деле не является мощным.

Пример расчета мощности

1. Усэйн Болт выработал около 25 Вт мощности в своем рекордном спринте на 100 м, который занял 9.58 секунд. Сколько работы он проделал?

Поскольку указаны P и t , а W неизвестно, используйте первое уравнение:

P = \ frac {W} {t} \ подразумевает 25 = \ frac { W} {9.58} \ подразумевает W = 239.5 \ text {Nm}

2. С какой средней силой он давил на землю во время бега?

Так как работа в Нм уже известна, как и перемещение в метрах, деление на длину гонки даст усилие (иными словами, работа то же самое, что сила, умноженная на смещение: W = F × d):

\ frac {239.5} {100} = 2.395 \ text {N}

3. Какую мощность вырабатывает человек весом 48 кг, который тратит 6 секунд на подъем по 3-метровой лестнице?

В этой задаче указаны смещение и время, что позволяет быстро вычислить скорость:

v = \ frac {d} {t} = \ frac {3} {6} = 0,5 \ text {м / с}

Второе уравнение мощности учитывает скорость, но также включает силу. Человек, поднимающийся по лестнице, пытается противостоять силе тяжести. Итак, силу в этом случае можно найти, используя их массу и ускорение свободного падения, которое на Земле всегда равно 9.8 м / с 2 .

F_ {grav} = mg = 48 \ times 9,8 = 470,4 \ text {N}

Теперь сила и скорость укладываются во вторую формулу мощности:

= Fv = 470,4 \ times 0,5 = 235,2 \ text {J / s}

Обратите внимание, что решение оставить здесь единицы измерения Дж / с, а не Вт, является произвольным. Столь же приемлемый ответ – 235,2 Вт.

4. Одна лошадиная сила в единицах СИ составляет около 746 Вт, что основано на нагрузке, которую подходящая лошадь могла бы выдержать в течение одной минуты. Сколько работы проделала лошадь-пример за это время?

Единственный шаг перед включением значений мощности и времени в первое уравнение – убедиться, что время указывается в правильных единицах СИ – секундах, переписав одну минуту как 60 секунд.Тогда:

P = \ frac {W} {t} \ подразумевает 746 = \ frac {W} {60} \ implies W = 44,670 \ text {Nm}

Киловатт и электричество

Многие коммунальные предприятия взимают плату с клиентов плата, основанная на их киловатт-часах использования. Чтобы понять значение этой общей единицы электроэнергии, начните с разбивки единиц.

Префикс килограмм означает 1000, поэтому киловатт (кВт) равен 1000 ватт. Таким образом, киловатт-час (кВтч) – это количество киловатт, используемое за один час времени.

Для подсчета киловатт-часов умножьте количество киловатт на использованные часы. Таким образом, если кто-то использует 100-ваттную лампочку в течение 10 часов, он в общей сложности израсходует 1000 ватт-часов или 1 кВт-ч электроэнергии.

Киловатт-час Примеры проблем

1. Электроэнергетика взимает 0,12 доллара за киловатт-час. Очень мощный вакуум 3000 Вт используется в течение 30 минут. Сколько стоит это количество энергии домовладельцам?

3 \ text {кВт} \ times 0.5 \ text {h} = 1,5 \ text {кВтч} \ text {и} 1,5 \ text {кВтч} \ times 0,12 \ text {долларов / кВтч} = \ 0,18 долл. США

2. Та же коммунальная компания кредитует домохозяйству 10 долл. каждые 4 кВтч электроэнергии возвращается в сеть. Солнце дает около 1000 Вт мощности на квадратный метр. Если солнечный элемент площадью два квадратных метра в доме собирает энергию в течение 8 часов, сколько денег он приносит?

Учитывая информацию в задаче, солнечный элемент должен быть способен собирать 2 000 Вт от Солнца или 2 кВт. За 8 часов это 16 кВтч.

\ frac {\ $ 10} {4 \ text {kWh}} \ times 16 \ text {kWh} = \ $ 40

Определение мощности в физике

Мощность – это скорость выполнения работы или передачи энергии за единицу времени. Мощность увеличивается, если работа выполняется быстрее или энергия передается за меньшее время.

Расчетная мощность

Уравнение для мощности P = W / t

  • P означает мощность (в ваттах)
  • Вт – это количество проделанной работы (в Джоулях) или затраченной энергии (в Джоулях)
  • t – количество времени (в секундах)

С точки зрения математики, мощность – это производная работы по времени.Если работа выполняется быстрее, мощность выше. Если работа выполняется медленнее, мощность меньше.

Поскольку работа – это сила, умноженная на смещение (W = F * d), а скорость – это смещение во времени (v = d / t), мощность равна силе, умноженной на скорость: P = F * v. Большая мощность видна, когда система является одновременно мощной и быстрой по скорости.

Ед. Мощности

Мощность измеряется в энергии (джоулях), деленной на время. Единица измерения мощности в системе СИ – ватт (Вт) или джоуль в секунду (Дж / с). Мощность – это скалярная величина, у нее нет направления.

Лошадиная сила часто используется для описания мощности, выдаваемой машиной. Лошадиная сила – это единица мощности в британской системе измерения. Это мощность, необходимая для подъема 550 фунтов на один фут за одну секунду, и составляет около 746 Вт.

Ватт часто используется по отношению к лампочкам. В этом номинальном значении мощности это скорость, с которой лампа преобразует электрическую энергию в свет и тепло. Лампа с большей мощностью потребляет больше электроэнергии в единицу времени.

Если вы знаете мощность системы, вы можете найти объем работы, который будет произведен, как W = Pt.Если лампа имеет номинальную мощность 50 Вт, она будет производить 50 джоулей в секунду. За час (3600 секунд) он произведет 180 000 джоулей.

Работа и сила

Когда вы проходите милю, ваша движущая сила перемещает ваше тело, что измеряется по мере выполнения работы. Когда вы пробегаете одну и ту же милю, вы выполняете такой же объем работы, но за меньшее время. Бегун имеет более высокую мощность, чем ходок, вырабатывая больше ватт. Автомобиль мощностью 80 лошадиных сил может развивать более быстрое ускорение, чем автомобиль мощностью 40 лошадиных сил.В конце концов, обе машины разгоняются до 60 миль в час, но двигатель мощностью 80 л.с. может развивать эту скорость быстрее.

В гонке между черепахой и зайцем заяц обладал большей мощностью и ускорялся быстрее, но черепаха выполняла ту же работу и преодолевала то же расстояние за гораздо большее время. Черепаха показала меньшую мощь.

Средняя мощность

Обсуждая мощность, люди обычно имеют в виду среднюю мощность, P avg . Это объем работы, выполненной за период времени (ΔW / Δt), или количество энергии, переданной за период времени (ΔE / Δt).

Мгновенная мощность

Какая мощность в конкретное время? Когда единица времени приближается к нулю, для получения ответа требуется расчет, но он приближается к силе, умноженной на скорость.

Мощность и энергия | Клуб электроники

Энергетика и энергетика | Клуб электроники

Мощность | Рассчитать | Перегрев | Энергия

Следующая страница: AC, DC и электрические сигналы

См. Также: напряжение и ток

Что такое мощность?

Мощность – это скорость использования или поставки энергии:

Мощность измеряется в ваттах (Вт)
Энергия измеряется в джоулях (Дж)
Время измеряется в секундах (с)

Электроника в основном связана с малым количеством энергии, поэтому мощность часто измеряется в милливаттах (мВт), 1 мВт = 0.001W. Например, светодиод потребляет около 40 мВт. а бипер потребляет около 100 мВт, даже лампа, такая как фонарик, потребляет всего около 1 Вт.

Типичная мощность, используемая в электрических цепях сети, намного больше, поэтому эта мощность может быть измеряется в киловаттах (кВт), 1 кВт = 1000 Вт. Например, в обычной сетевой лампе используется 60 Вт, а чайник потребляет около 3 кВт.


Расчет мощности по току и напряжению

Уравнения

Мощность = Ток × Напряжение

Есть три способа написать уравнение для мощности, тока и напряжения:

где:

P = мощность в ваттах (Вт)
V = напряжение в вольтах (В)
I = ток в амперах (A)

или:

P = мощность в милливаттах (мВт)
V = напряжение в вольтах (В)
I = ток в миллиамперах (мА)

Треугольник PIV

Вы можете использовать треугольник PIV, чтобы запомнить эти три уравнения.Используйте его так же, как треугольник закона Ома:

  • Чтобы вычислить мощность , P : поместите палец на P, это оставляет I V, поэтому уравнение P = I × V
  • Чтобы рассчитать ток , I : положите палец на I, это оставляет P над V, поэтому уравнение I = P / V
  • Чтобы рассчитать напряжение , В : поместите палец над V, это оставляет P над I, поэтому уравнение V = P / I

Усилитель довольно большой для электроники, поэтому мы часто измеряем ток в миллиамперах (мА), а мощность в милливаттах (мВт).

1 мА = 0,001 А и 1 мВт = 0,001 Вт.


Расчет мощности с использованием сопротивления

Уравнения

Используя закон Ома V = I × R

мы можем преобразовать P = I × V в:

где:

P = мощность в ваттах (Вт)
I = ток в амперах (A)
R = сопротивление в Ом ()
В = напряжение в вольтах (В)

Треугольники

Для решения этих уравнений также можно использовать треугольники:



Потраченная впустую мощность и перегрев

Обычно используется электроэнергия, например, зажигание лампы или двигателя.Однако электрическая энергия преобразуется в тепло всякий раз, когда ток проходит через сопротивление, и это может быть проблемой, если оно вызывает перегрев устройства или провода. В электроники эффект обычно незначителен, но если сопротивление низкое (провод или резистора номинального значения, например) ток может быть достаточно большим, чтобы вызвать проблему.

Из уравнения P = I² × R видно, что для данного Сопротивление мощность зависит от тока в квадрате , поэтому удвоение тока даст в 4 раза большую мощность.

Резисторы рассчитаны на максимальную мощность, которую они могут развить в них без повреждений, но номинальная мощность редко указывается в списках деталей, потому что подходят стандартные значения 0,25 Вт или 0,5 Вт. для большинства схем. Дополнительная информация доступна на странице резисторов.

Провода и кабели рассчитаны на максимальный ток, который они могут пропускать без перегрева. У них очень низкое сопротивление, поэтому максимальный ток относительно велик. Для получения дополнительной информации о текущий рейтинг см. на странице кабелей.


Энергия

Количество потребляемой (или поставляемой) энергии зависит от мощности и времени, в течение которого она используется:

Устройство малой мощности, работающее в течение длительного времени, может потреблять больше энергии, чем устройство высокой мощности работает непродолжительное время.

Например:
  • Лампа мощностью 60 Вт, включенная на 8 часов, потребляет 60 Вт × 8 × 3600 с = 1728 кДж.
  • Чайник мощностью 3 кВт, включенный на 5 минут, потребляет 3000 Вт × 5 × 60 с = 900 кДж.

Стандартной единицей измерения энергии является джоуль (Дж), но 1Дж – очень небольшое количество энергии для электросети. поэтому в научной работе иногда используются килоджоуль (кДж) или мегаджоуль (МДж).

Дома мы измеряем электрическую энергию в киловатт-часах (кВтч), которые часто называют просто «единицей». электричества, когда контекст ясен. 1 кВт · ч – это энергия, потребляемая электроприбором мощностью 1 кВт при включении на 1 час:

Например:
  • Лампа мощностью 60 Вт, включенная на 8 часов, потребляет 0,06 кВт × 8 = 0,48 кВт · ч.
  • Чайник мощностью 3 кВт, включенный на 5 минут, потребляет 3 кВт × 5 / 60 = 0,25 кВтч.

Возможно, вам потребуется преобразовать бытовую единицу кВтч в научную единицу энергии, джоуль (Дж):

1 кВтч = 1 кВт × 1 час = 1000 Вт × 3600 с = 3.6MJ


Следующая страница: Сигналы переменного и постоянного тока | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

energy – Различные формулы для расчета мощности

Мощность обычно указывается как энергия / время, но на самом деле это немного расплывчато: какая энергия и в какое время?

Говоря об энергии, мы либо ссылаемся на систему / физический объект, для которого энергия является свойством, либо говорим об обмене энергией между двумя системами.

Время, когда говорят о власти, подразумевает процесс, происходящий в течение некоторого промежутка времени; например энергия системы изменяется в течение некоторого времени или, когда она доведена до мгновенного предела, мощность приближается к некоторому значению.

Уравнение

$ P = VI $

предполагает, что существует некоторый путь, по которому проходит ток; ток на пути равен $ I $, а разница напряжений на пути равна $ V $. Ток течет от высокого к низкому напряжению, поэтому мощность $ P $ – это потенциальная энергия движущихся зарядов (т.е.е. текущий) проигрывают, пересекая путь.

В отсутствие трения / тепла / других сил это привело бы к добавлению кинетической энергии к движущимся зарядам со скоростью $ -P $. Однако: всякий раз, когда мы делаем что-то интересное с электричеством (например, лампочки, компьютеры, запуск автомобиля), эта энергия, добавляемая к зарядам, забирается тем, для чего мы ее используем.

Это подводит нас к другим вашим уравнениям.

Если у нас есть резисторный элемент, подчиняющийся закону Ома **, то

$ V = I R $.2 / R $.

Теперь: чтобы перейти к другим полезным вопросам, например, сколько энергии потребляет лампочка, мы должны сделать некоторые предположения о том, как работает устройство. Обычно мы предполагаем, что установившееся состояние , то есть ток / напряжение не меняются с течением времени, что означает, что вся энергия, которую получают заряды, расходуется любым устройством, через которое мы пропускаем ток.

Другими словами, предположение, что мощность из этих формул – это мощность, используемая устройством, обычно безопасно, но только когда речь идет о системах в установившемся режиме.Исключение составляют случаи, когда мы говорим об источнике питания; в этом случае сохранение энергии говорит нам, что энергия, которую получают заряды, должна исходить от источника энергии.

Итак, вкратце: $ P = VI $ всегда действителен при условии, что вы говорите о мощности, отдаваемой зарядам / взятой от источника питания, а два других уравнения справедливы только для резисторных элементов, которые подчиняются закону Ома (с тем же определение власти). Однако вы можете использовать их для других величин, если вам предоставлены правильные допущения, такие как системы устойчивого состояния.

** Обратите внимание, что для выполнения закона Ома не обязательно; сопротивление можно рассматривать как функцию, а не просто постоянное значение, и если вы знаете эту функцию, вы можете безопасно использовать формулы в любое время.

Power – Высшая школа физики

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или больше ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например, мы требуем а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса – изображению, ссылке, тексту и т. д. – относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Работа, энергия и сила – IB Physics Stuff

2.5.1 Определение работы

Работа – это не энергия, это средство передачи энергии посредством силы, приложенной к движущемуся объекту.Если объект не движется или сила направлена ​​не в направлении движения, то сила не передает энергию объекту, или мы говорим «сила не выполняет работу с объектом». Математически мы определяем работу как:

(1)

\ begin {align} W = \ vec F \ bullet s \ end {align}

Или в мире IB:

(2)

\ begin {align} W = Fs \ cos {\ theta} \ end {align}

Где W – работа, F – сила, s – смещение, а θ – угол между силой и смещением.Вторая формула – это формула, которую дает IB, и вы должны ее понять. Первое – это «реальное» уравнение, это векторное скалярное произведение, но его можно упростить до второго уравнения.

Обратите внимание, что если сила и смещение перпендикулярны, то сила не совершает никакой работы. Если угол 180 °, сила выполняет отрицательную работу, примером этого может быть автомобиль, движущийся вперед, в то время как водитель нажимает на тормоза…

2.5.2 Определите работу, совершаемую непостоянной силой, интерпретируя график силы смещения

Приведенное выше уравнение хорошо работает, если сила постоянна, но в большинстве случаев сила непостоянна… Таким образом, мы можем либо выполнить некоторые вычисления, либо посмотреть на график (фактически, все еще выполняя вычисления). 2

Последнее выражение определяется как кинетическая энергия.2 \ end {align}

Первый член справа – это начальная кинетическая энергия, а последний член – конечная кинетическая энергия. Таким образом, работа, выполняемая при ускорении объекта, равна изменению кинетической энергии.

2.5.5 Опишите концепции гравитационной потенциальной энергии и упругой потенциальной энергии

Если объект массы m поднимается вертикально на расстояние h, то работа, выполненная над объектом, составляет:

(9)

\ begin {уравнение} W = Fs \ end {уравнение}

(10)

\ begin {уравнение} W = Fh \ end {уравнение}

Сила, необходимая для подъема объекта:

(11)

\ begin {уравнение} F = мг \ end {уравнение}

Или вес объекта, мы можем описать проделанную работу как:

(12)

\ begin {уравнение} W = mgh \ end {уравнение}

Последнее выражение – это гравитационная потенциальная энергия объекта.Потенциальная энергия – это энергия, которую объект имеет исключительно из-за его положения или конфигурации.

Если объект поднимается с начальной высоты hI до конечной высоты hf. Тогда смещение будет:

(13)

\ begin {уравнение} s = h_f – h_i \ end {уравнение}

А по объекту выполнено работ:

(14)

\ begin {уравнение} W = мг (h_f – h_i) \ end {уравнение}

(15)

\ begin {уравнение} W = mgh_f – mgh_i \ end {уравнение}

Другими словами, работа, выполняемая при поднятии объекта, равна изменению потенциальной энергии.2 \ end {формула}

Это также потенциальная энергия растяжения пружины.

2.5.6 Изложить принцип сохранения энергии

Энергосбережение – это принцип, согласно которому в замкнутой системе энергия не приобретается и не теряется. В открытой системе энергия может добавляться или теряться. Это определение также можно перевернуть. Если система набирает или теряет энергию, то это открытая система. Единственная действительно открытая система во Вселенной, Земля постоянно получает энергию от Солнца в течение дня и излучает энергию обратно ночью.

Можно сказать, что полная энергия перед событием равна полной энергии после события или:

(18)

\ begin {формула} Начальная энергия = Конечная энергия \ end {формула}

По кинетической и потенциальной энергии:

(19)

\ begin {уравнение} KE_i + PE_i = KE_f + PE_f \ end {уравнение}

Итак, для закрытой системы падающий шар является хорошим приближением, поскольку по мере падения шара его потенциальная энергия уменьшается, но его кинетическая энергия увеличивается с той же, но противоположной скоростью.

Примечание: потенциальная и кинетическая энергия являются примерами механической энергии, они не единственные типы энергии.

Это видео показывает два пути (или пути) преобразования потенциальной энергии в кинетическую. Начальные потенциальные энергии одинаковы, поскольку оба шара падают с одинаковой высоты. Конечная кинетическая энергия “отображается” временем, когда мяч прошел через фотозатвор. Время, необходимое для прохождения фотозатвора, зависит только от скорости и, следовательно, от кинетической энергии.Поскольку два времени одинаковы, две конечные кинетические энергии одинаковы.

2.5.7 Перечислите различные формы энергии и опишите примеры преобразования энергии из одной формы в другую

Украдено из Advanced Physics, Стив Адамс и Джонатан Аллдей

2.5.8 Определить мощность

Мощность – это скорость выполнения работы или скорость передачи энергии.

(20)

\ begin {align} P = {W \ over t} \ end {align}

Единица измерения мощности – Ватты, $ Ватт = {Нм \ over s} $.Это тот же блок, что и у ваших лампочек и электроприборов.

Мы также можем переписать мощность как:

(21)

\ begin {align} P = {Fs \ over t} = Fv \ end {align}

Где F – приложенная сила, s – смещение, t – время, а v – скорость.

2.5.9 Определите и примените понятие эффективности

Когда работа выполняется с объектом, иногда энергия преобразуется в нежелательную или бесполезную форму (часто в тепло). Отношение полезной энергии к количеству приложенной энергии – это КПД, его также можно определить в единицах мощности:

(22)

\ begin {align} КПД \% = {Полезная энергия \ над общей энергией} \ times 100 \% = {Полезная мощность \ над общей мощностью} \ times 100 \% \ end {align}


Хотите добавить или прокомментировать эти заметки? Сделайте это ниже.

Оставить комментарий