Расчет количества теплоты, необходимого для нагревания тела и выделяемого им при охлаждении
Чтобы научиться рассчитывать количество теплоты, которое необходимо для нагревания тела, установим сначала, от каких величин оно зависит.
Из предыдущего параграфа мы уже знаем, что это количество теплоты зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости):
Q зависит от c.
Но это еще не все.
Если мы хотим подогреть воду в чайнике так, чтобы она стала лишь теплой, то мы недолго будем нагревать ее. А для того чтобы вода стала горячей, мы будем нагревать ее дольше. Но чем дольше чайник будет соприкасаться с нагревателем, тем большее количество теплоты он от него получит. Следовательно, чем сильнее при нагревании изменяется температура тела, тем большее количество теплоты необходимо ему передать.
Пусть начальная температура тела равна tнач, а конечная температура — tкон. Тогда изменение температуры тела будет выражаться разностью
Δt = tкон – tнач,
и количество теплоты будет зависеть от этой величины:
Q зависит от Δt.
Наконец, всем известно, что для нагревания, например, 2 кг воды требуется большее время (и, следовательно, большее количество теплоты), чем для нагревания 1 кг воды. Это означает, что количество теплоты, необходимое для нагревания тела, зависит от массы этого тела:
Q зависит от m.
Итак, для расчета количества теплоты нужно знать удельную теплоемкость вещества, из которого изготовлено тело, массу этого тела и разность между его конечной и начальной температурами.
Пусть, например, требуется определить, какое количество теплоты необходимо для нагревания железной детали массой 5 кг при условии, что ее начальная температура равна 20 °С, а конечная должна стать равной 620 °С.
Из таблицы 8 находим, что удельная теплоемкость железа с = 460 Дж/(кг*°С). Это означает, что для нагревания 1 кг железа на 1 °С требуется 460 Дж.
Для нагревания 5 кг железа на 1 °С потребуется в 5 раз больше количества теплоты, т. е. 460 Дж*5 = 2300 Дж.
Для нагревания железа не на 1 °С, а на Δt = 600 °С потребуется еще в 600 раз больше количества теплоты, т. е. 2300 Дж * 600 = 1 380 000 Дж. Точно такое же (по модулю) количество теплоты выделится и при остывании этого железа от 620 до 20 °С.
Итак, чтобы найти количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:
При нагревании тела tкон> tнач и, следовательно, Q > 0. При охлаждении тела tкон < tнач и, следовательно, Q < 0.
1. Приведите примеры, показывающие, что количество теплоты, получаемое телом при нагревании, зависит от его массы и изменения температуры. 2. По какой формуле рассчитывается количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении?
Расчет количества теплоты. Теплота сгорания топлива. 8-й класс
Задачи урока:
Обучающая: закрепление знаний по
данным темам; формирование умений учащихся
применять полученные знания при решении задач
различного типа (графические, качественные,
количественные,
экспериментально-исследовательские).
Развивающая: развивать смекалку, творческие способности, интерес к получаемым знаниям по предмету; развитие компетентности в сфере самостоятельной познавательной деятельности, критического мышления; навыков работы в команде; умения применять полученные знания на практике.
Воспитательная: воспитывать внимательность, бережное отношение к природе.
Оборудование: мензурки, термометры, вода, кубики (имитация видов топлива), линейки, табличный материал, сборники задач В.И. Лукашика, кроссворды “Тепловые явления”, тесты по физике 8 класс, модель молекулы СО2.
Девиз урока: Три года на камне просидишь – и камень нагреется (японская пословица).
Ход урока
- Приветствие. Актуализация темы урока.
- Проверка знаний учащихся (фронтальный опрос).
- Решение задач.
- Закрепление знаний.
- Подведение итогов.
- Задание на дом.
Ход урока
Учитель. Сегодня на уроке мы будем решать задачи на пройденные нами темы: “Расчет количества теплоты”, “Теплота сгорания топлива”.
Очень часто в жизни требуется уметь пользоваться тепловыми расчетами. Например, при строительстве зданий учитывается, какое количество теплоты должна отдавать зданию вся система отопления. Какое топливо и в каком количестве надо использовать, чтобы получить максимальное Q при наименьших затратах, то есть надо уметь рассчитывать Q, а значит решать задачи.
2. Проверка знаний учащихся.
Вопросы для фронтального опроса:
- Что называется количеством теплоты?
- По какой формуле его можно найти? (Q = сm·(t2° – t1°)) Единица измерения? (Дж)
- От каких величин зависит Q? (Масса, температура, удельная теплоемкость)
- Каков физический смысл С? Назовите единицы
измерения её.
- Какие вещества можно отнести к топливу? (Дрова, уголь, торф…)
- Источником этой энергии является… (Соединение атомов в молекулы) – демонстрация на модели молекулы СО2 ).
- Чем характеризуется топливо? (Удельной теплотой сгорания)
- Дать определение удельной теплоты сгорания. Назвать единицу измерения. ( Дж/кг)
- Значит, чтобы сравнивать топливо надо знать … (Удельную теплоту сгорания).
3. Решение задач.
а) качественные задачи.
1) На что больше расходуется энергии: на
нагревание чугунного горшка или воды, налитой в
него, если их массы одинаковы?
3) Алюминиевую и серебряную ложки одинаковой массы опустили в кипяток.

4) Почему в пустынях днем жарко, а ночью температура падает ниже 0°С?
б) графические задачи.
1) В алюминиевом чайнике нагрелась вода. Построен график зависимости количества теплоты, полученной телом, от времени. Укажите, какой из графиков построен для воды, а какой для чайника?
Рис. 1.
2) На одинаковых горелках нагревались вода, медь и железо равной массы. Укажите, какой график построен для воды, какой для меди, какой для железа. Ответ обоснуйте. (Потери некоторого количества теплоты в пространство не учитывать)
Рис. 2.
в) экспериментальные задачи.
1) Даны: сосуд с холодной водой,
термометр, мензурка. Определите количество
теплоты, которое потребуется для нагревания этой
воды до температуры 80°С.
Решение: начальную температуру воды можно определить термометром, а объем воды – мензуркой. Запишем данные задачи.
2) Даны кубики одинакового размера из сосны и березы. Нужно определить количество теплоты, которое выделится при полном сгорании этих видов топлива.
Решение: количество теплоты, выделяемое при сгорании топлива, определяется по формуле
Q = q·m, где q – удельная теплота сгорания
топлива (эту величину находим по таблице). Массу
топлива определяем по формуле m = ·v. Плотность березы и сосны
найдем по таблице, а объем с помощью
математических расчетов: V=a·b·c=а
Рис. 3.
Отсюда можно сделать вывод, что березовые дрова
дают больше тепла, чем сосновые при одинаковой
массе. Это обстоятельство было замечено людьми
давно. Так под Гурьевском в Кемеровской области
было столько берез, что его называли “гнездом
берез”. В этом городе был металлургический
завод, а тепло получали за счет сжигания берез,
которые рубили в округе 100 лет, и до сих пор в этом
месте березы мало. Надо помнить о бережном
отношении к природе.
г) количественные задачи.
1) Определите удельную теплоёмкость металла, если на нагревание бруска массой 100 г, сделанного из этого металла, от 20°С до 24°С потребовалось 152 Дж теплоты.
Ответ: 380 Дж/кг·°С, по таблице находим, что это латунь.
2) На сколько градусов нагреется кусок алюминия массой 2 кг, если ему сообщить такое количество теплоты, какое идет на нагревание воды массой 880 г от 0°С до 100°С?
Ответ: 200° С.
4. Подведение итогов урока:
1) комментирование оценок;
2) домашнее задание: решить задачи №№ 1002, 1004, 1044.
Изменение температуры и теплоемкость
Цели обучения
К концу этого раздела вы сможете:
- Наблюдать теплопередачу и изменение температуры и массы.
- Рассчитать конечную температуру после теплопередачи между двумя объектами.
Одним из основных эффектов теплопередачи является изменение температуры: при нагревании температура повышается, а при охлаждении снижается. Мы предполагаем, что фазового перехода нет и что над системой или системой не совершается никакой работы. Опыты показывают, что передаваемое тепло зависит от трех факторов — изменения температуры, массы системы, вещества и фазы вещества.
Рис. 1. Теплота Q , переданная для изменения температуры, зависит от величины изменения температуры, массы системы, а также вовлеченного вещества и фазы. а) Количество переданного тепла прямо пропорционально изменению температуры. Чтобы удвоить изменение температуры массы m, нужно добавить удвоенное количество теплоты. б) Количество переданного тепла также прямо пропорционально массе. Чтобы вызвать эквивалентное изменение температуры в удвоенной массе, нужно добавить в два раза больше тепла. в) Количество переданного тепла зависит от вещества и его фазы. Если требуется сумма
Зависимость от изменения температуры и массы легко понять. Благодаря тому, что (средняя) кинетическая энергия атома или молекулы пропорциональна абсолютной температуре, внутренняя энергия системы пропорциональна абсолютной температуре и числу атомов или молекул. Благодаря тому, что переданное тепло равно изменению внутренней энергии, теплота пропорциональна массе вещества и изменению температуры. Переносимое тепло также зависит от вещества, так что, например, теплота, необходимая для повышения температуры, для спирта меньше, чем для воды.
Теплопередача и изменение температуры
Количественная связь между теплопередачей и изменением температуры содержит все три фактора: Q = mc Δ T , где Q — символ теплопередачи, м — масса вещества, а Δ T — изменение температуры. Символ c означает удельную теплоемкость и зависит от материала и фазы. Удельная теплоемкость – это количество теплоты, необходимое для изменения температуры 1,00 кг массы на 1,00°С. Удельная теплоемкость c — свойство вещества; его единица СИ – Дж / (кг ⋅ K) или Дж / (кг ⋅ ºC). Напомним, что изменение температуры (Δ T ) одинаково в единицах кельвина и градусах Цельсия. Если теплопередача измеряется в килокалориях, то единицей удельной теплоемкости является ккал/(кг ⋅ ºC).
Значения удельной теплоемкости обычно нужно искать в таблицах, потому что нет простого способа их расчета. В общем случае удельная теплоемкость также зависит от температуры. В таблице 1 перечислены репрезентативные значения удельной теплоемкости для различных веществ. За исключением газов, зависимость теплоемкости большинства веществ от температуры и объема слабая. Из этой таблицы мы видим, что удельная теплоемкость воды в пять раз больше, чем у стекла, и в десять раз больше, чем у железа, а это значит, что требуется в пять раз больше теплоты, чтобы поднять температуру воды на ту же величину, что и для стекла, и в десять раз больше, чем для стекла. много тепла, чтобы поднять температуру воды, как для железа. На самом деле вода имеет одну из самых больших удельных теплоемкостей среди всех материалов, что важно для поддержания жизни на Земле.
Пример 1. Расчет необходимого количества тепла: нагрев воды в алюминиевой кастрюле
Алюминиевая кастрюля весом 0,500 кг на плите используется для нагрева 0,250 л воды с 20,0°C до 80,0°C. а) Какое количество тепла потребуется? Какой процент тепла используется для повышения температуры (b) кастрюли и (c) воды?
Стратегия
Посуда и вода всегда имеют одинаковую температуру. Когда вы ставите кастрюлю на плиту, температура воды и сковороды увеличивается на одинаковую величину. Воспользуемся уравнением теплообмена при заданном изменении температуры и массы воды и алюминия. Удельные теплоемкости воды и алюминия приведены в табл. 1.
Решение
Поскольку вода находится в тепловом контакте с алюминием, кастрюля и вода имеют одинаковую температуру.
Рассчитайте разницу температур:
Δ T = T f − T i = 60,0ºC.
Рассчитайте массу воды. Поскольку плотность воды 1000 кг/м 3 , один литр воды имеет массу 1 кг, а масса 0,250 л воды равна м w = 0,250 кг.
Рассчитайте теплоту, переданную воде. Используйте удельное тепло воды в Таблице 1:
Q W = M W C W δ T = (0,250 кг) (4186 J/KGºC) (60,0,016C) (60,0,016C) (60,0,016C) (60,0,016C) (60,0,016C) (60,0,016C) (60,0,016 = (0,250 кг) (4186 J/кг. = 62,8 кДж.
Рассчитайте тепло, переданное алюминию. Используйте удельную теплоемкость алюминия из таблицы 1:
Q Al = m Al c Al Δ T = (0,500 кг)(900 Дж/кгºC)(60,0ºC) = 27,0 × 10 4 Дж = 27,0 кДж. вода. Сначала найдем общее переданное тепло:
Q Всего = Q w + Q Al = 62,8 кДж + 27,8 кДж + 27,8 кДж + 27,8 кДж + 27,8 кДж
Таким образом, количество тепла, идущее на нагрев сковороды, равно
[латекс]\frac{27.0\text{ кДж}}{89.8\text{ кДж}}\times100\%=30,1\%\\[/латекс]
и количество, идущее на нагрев воды, составляет
[латекс]\фрак{62,8\текст{ кДж}}{89,8 \text{ кДж}}\times100\%=69,9\%\\[/latex].
Обсуждение
В этом примере тепло, переданное контейнеру, составляет значительную долю от общего количества переданного тепла. Хотя масса кастрюли в два раза больше массы воды, удельная теплоемкость воды более чем в четыре раза больше, чем у алюминия. Следовательно, для достижения заданного изменения температуры воды требуется чуть более чем в два раза больше тепла по сравнению с алюминиевой кастрюлей.
Пример 2. Расчет повышения температуры по работе, совершаемой над веществом: перегрев тормозов грузовика при движении под гору
Рис. 2. Дымящиеся тормоза на этом грузовике являются видимым свидетельством механического эквивалента тепла.
Тормоза грузовиков, используемые для контроля скорости на спуске, работают, преобразовывая потенциальную энергию гравитации в повышенную внутреннюю энергию (более высокую температуру) тормозного материала. Это преобразование предотвращает преобразование потенциальной энергии гравитации в кинетическую энергию грузовика. Проблема заключается в том, что масса грузовика велика по сравнению с массой тормозного материала, поглощающего энергию, и повышение температуры может происходить слишком быстро, чтобы достаточное количество тепла передавалось от тормозов в окружающую среду.
Рассчитайте повышение температуры 100 кг тормозного материала со средней удельной теплоемкостью 800 Дж/кг ⋅ ºC, если материал сохраняет 10 % энергии от 10 000-килограммового грузовика, спускающегося с высоты 75,0 м (при вертикальном перемещении) при постоянном скорость.
Стратегия
Если тормоза не задействованы, гравитационная потенциальная энергия преобразуется в кинетическую энергию. При торможении потенциальная энергия гравитации преобразуется во внутреннюю энергию тормозного материала. Сначала вычислим гравитационную потенциальную энергию ( Mgh ), что весь грузовик теряет при спуске, а затем найти повышение температуры только в тормозном материале.
Решение
- Рассчитайте изменение потенциальной энергии гравитации при движении грузовика под гору
- Рассчитайте температуру по переданному теплу, используя Q = Mgh и [латекс]\Delta{T}=\frac{Q}{mc}\\[/latex], где 9{\ circ} C \\ [/латекс].
Обсуждение
Эта температура близка к температуре кипения воды. Если бы грузовик какое-то время ехал, то непосредственно перед спуском температура тормозов, вероятно, была бы выше температуры окружающей среды. Повышение температуры при спуске, вероятно, повысит температуру тормозного материала выше точки кипения воды, поэтому этот метод нецелесообразен. Однако та же идея лежит в основе недавней гибридной технологии автомобилей, где механическая энергия (потенциальная энергия гравитации) преобразуется тормозами в электрическую энергию (аккумулятор).
Таблица 1. Удельная теплоемкость [1] различных веществ | ||
---|---|---|
Вещества | Удельная теплоемкость ( c ) | |
Твердые вещества | Дж/кг ⋅ ºC | ккал/кг ⋅ ºC [2] |
Алюминий | 900 | 0,215 |
Асбест | 800 | 0,19 |
Бетон, гранит (средний) | 840 | 0,20 |
Медь | 387 | 0,0924 |
Стекло | 840 | 0,20 |
Золото | 129 | 0,0308 |
Тело человека (в среднем при 37 °C) | 3500 | 0,83 |
Лед (средний, от −50°C до 0°C) | 2090 | 0,50 |
Железо, сталь | 452 | 0,108 |
Свинец | 128 | 0,0305 |
Серебро | 235 | 0,0562 |
Дерево | 1700 | 0,4 |
Жидкости | ||
Бензол | 1740 | 0,415 |
Этанол | 2450 | 0,586 |
Глицерин | 2410 | 0,576 |
Меркурий | 139 | 0,0333 |
Вода (15,0 °С) | 4186 | 1.![]() |
Газы [3] | ||
Воздух (сухой) | 721 (1015) | 0,172 (0,242) |
Аммиак | 1670 (2190) | 0,399 (0,523) |
Углекислый газ | 638 (833) | 0,152 (0,199) |
Азот | 739 (1040) | 0,177 (0,248) |
Кислород | 651 (913) | 0,156 (0,218) |
Пар (100°C) | 1520 (2020) | 0,363 (0,482) |
Обратите внимание, что пример 2 является иллюстрацией механического эквивалента тепла. В качестве альтернативы, повышение температуры может быть произведено с помощью паяльной лампы вместо механического.
Пример 3. Расчет конечной температуры при передаче тепла между двумя телами: наливание холодной воды на горячую сковороду
Предположим, вы наливаете 0,250 кг воды температурой 20,0ºC (около чашки) в 0,500-килограммовую алюминиевую кастрюлю с температурой 150ºC, снятую с плиты. Предположим, что кастрюля находится на изолированной подушке и что незначительное количество воды выкипает. При какой температуре вода и кастрюля через короткое время достигают теплового равновесия?
Стратегия
Кастрюля размещена на изолирующей прокладке, чтобы обеспечить небольшой теплообмен с окружающей средой. Первоначально кастрюля и вода не находятся в тепловом равновесии: кастрюля имеет более высокую температуру, чем вода. Затем теплопередача восстанавливает тепловое равновесие, когда вода и кастрюля соприкасаются. Поскольку теплопередача между кастрюлей и водой происходит быстро, масса испаряемой воды пренебрежимо мала, а величина тепла, теряемого кастрюлей, равна теплу, приобретаемому водой. Обмен теплом прекращается, как только достигается тепловое равновесие между чашей и водой. Теплообмен можно записать как | Q горячий |= Q холодный .
Решение
Используйте уравнение теплопередачи Q = mc Δ T , чтобы выразить потери тепла алюминиевой кастрюлей через массу кастрюли, удельную теплоемкость алюминия, начальную температуру сковороде и конечная температура: Q горячий = m Al c Al ( T f − 150ºC).
Выразите тепло, полученное водой, через массу воды, удельную теплоемкость воды, начальную температуру воды и конечную температуру: Q холод = m W c W ( T f – 20,0ºC).
Обратите внимание, что Q горячая <0 и Q холодная >0 и что их сумма должна равняться нулю, поскольку тепло, отводимое горячей кастрюлей, должно быть таким же, как тепло, полученное холодной водой: 9{\circ}\text{C}\end{array}\\[/latex]
Обсуждение
Это типичная задача калориметрии : два тела при разных температурах соприкасаются друг с другом и обмениваются нагревать до достижения общей температуры. Почему конечная температура намного ближе к 20,0ºC, чем к 150ºC? Причина в том, что вода имеет большую удельную теплоемкость, чем большинство обычных веществ, и, таким образом, претерпевает небольшое изменение температуры при заданной теплопередаче. Большому водоему, такому как озеро, требуется большое количество тепла, чтобы заметно повысить его температуру. Это объясняет, почему температура озера остается относительно постоянной в течение дня даже при больших изменениях температуры воздуха. Однако температура воды меняется в течение более длительного времени (например, с лета на зиму).
Самостоятельный эксперимент: изменение температуры земли и воды
Что нагревается быстрее, земля или вода?
Для изучения различий в теплоемкости:
- Поместите равные массы сухого песка (или почвы) и воды одинаковой температуры в два небольших сосуда. (Средняя плотность почвы или песка примерно в 1,6 раза выше, чем у воды, поэтому вы можете получить примерно равные массы, используя на 50% больше воды по объему.)
- Нагревайте оба (используя духовку или нагревательную лампу) в течение одинакового времени.
- Запишите конечную температуру двух масс.
- Теперь доведите обе банки до одинаковой температуры, нагревая их в течение более длительного периода времени.
- Снимите банки с источника тепла и измеряйте их температуру каждые 5 минут в течение примерно 30 минут.
Какой образец остывает быстрее? Эта деятельность воспроизводит явления, ответственные за наземные и морские бризы.
Проверьте свое понимание
Если для повышения температуры блока с 25°C до 30°C необходимо 25 кДж, то какое количество теплоты необходимо для нагрева блока с 45°C до 50°C?
Решение
Теплопередача зависит только от разницы температур. Так как разность температур одинакова в обоих случаях, то и во втором случае необходимы одни и те же 25 кДж.
Резюме секции
- Передача HEAT Q , которая приводит к изменению T в температуре тела с массой M – Q = MC Δ T , где C MC Δ T , где C C Δ T , где C, MC Δ T , C, MC . – удельная теплоемкость материала.
Это соотношение также можно рассматривать как определение удельной теплоемкости.
Концептуальные вопросы
- Какие три фактора влияют на теплопередачу, необходимую для изменения температуры объекта?
- Температура тормозов автомобиля повышается на Δ T при остановке автомобиля со скорости v . Насколько больше было бы Δ T , если бы скорость автомобиля изначально была вдвое больше? Вы можете предположить, что автомобиль останавливается достаточно быстро, чтобы тепло от тормозов не отводилось.
Задачи и упражнения
- В жаркий день температура в бассейне объемом 80 000 литров повышается на 1,50ºC. Какова чистая теплопередача при этом нагреве? Игнорируйте любые осложнения, такие как потеря воды в результате испарения.
- Показать, что 1 кал/г · ºC = 1 ккал/кг · ºC.
- Чтобы стерилизовать стеклянную детскую бутылочку весом 50,0 г, мы должны поднять ее температуру с 22,0ºC до 95,0ºC.
Какая теплопередача требуется?
- Одинаковая передача тепла одинаковым массам различных веществ вызывает различные изменения температуры. Рассчитайте конечную температуру, когда 1,00 ккал теплоты переходит в 1,00 кг следующих веществ при исходной температуре 20,0ºC: (a) вода; (б) бетон; (в) сталь; и d) ртуть.
- Потирание рук согревает их, превращая работу в тепловую энергию. Если женщина потирает руки взад-вперед, совершая в общей сложности 20 движений, на расстоянии 7,50 см за одно движение и со средней силой трения 40,0 Н, на сколько повысится температура? Масса согреваемых тканей составляет всего 0,100 кг, преимущественно в ладонях и пальцах.
- Блок чистого материала массой 0,250 кг нагревается с 20,0ºC до 65,0ºC за счет добавления 4,35 кДж энергии. Рассчитайте его удельную теплоемкость и определите вещество, из которого он, скорее всего, состоит.
- Предположим, что одинаковые количества тепла передаются разным массам меди и воды, вызывая одинаковые изменения температуры.
Каково отношение массы меди к воде?
- (a) Количество килокалорий в пище определяется методами калориметрии, при которых пища сжигается и измеряется количество теплопередачи. Сколько килокалорий на грамм содержится в 5,00 г арахиса, если энергия его сжигания передается 0,500 кг воды, находящейся в алюминиевом стакане весом 0,100 кг, вызывая 54,9ºC повышение температуры? (б) Сравните свой ответ с информацией на этикетке на упаковке арахиса и прокомментируйте, совпадают ли значения.
- После интенсивной физической нагрузки температура тела человека массой 80,0 кг составляет 40,0ºC. С какой скоростью в ваттах человек должен передать тепловую энергию, чтобы снизить температуру тела до 37,0 ºC за 30,0 мин, если предположить, что тело продолжает производить энергию мощностью 150 Вт? 1 Вт = 1 Дж/сек или 1 Вт = 1 Дж/сек.
- Даже при остановке после периода нормальной эксплуатации большой коммерческий ядерный реактор передает тепловую энергию со скоростью 150 МВт за счет радиоактивного распада продуктов деления.
Этот теплообмен вызывает быстрое повышение температуры в случае отказа системы охлаждения (1 Вт = 1 Дж/сек или 1 Вт = 1 Дж/сек и 1 МВт = 1 мегаватт). (a) Рассчитайте скорость повышения температуры в градусах Цельсия в секунду (ºC/с), если масса активной зоны реактора составляет 1,60 × 10 5 кг и имеет среднюю удельную теплоемкость 0,3349 кДж/кг ⋅ ºC. (б) Сколько времени потребуется, чтобы получить повышение температуры на 2000ºC, что может привести к плавлению некоторых металлов, содержащих радиоактивные материалы? (Начальная скорость повышения температуры будет больше рассчитанной здесь, поскольку теплопередача сосредоточена в меньшей массе. Однако позже рост температуры замедлится, поскольку стальная защитная оболочка массой 5 × 10 5 кг также начинают нагреваться.)
Рис. 3. Бассейн с радиоактивным отработавшим топливом на атомной электростанции. Отработавшее топливо долго остается горячим. (кредит: Министерство энергетики США)
Глоссарий
удельная теплоемкость: количество теплоты, необходимое для изменения температуры 1,00 кг вещества на 1,00 ºC
Избранные решения задач и упражнений
× 2. 10 8 J
3. 3,07 × 10 3 J
5. 0,171ºC
7. 10,8
9. 617 Вт
- Значения для твердых и жидких веществ даны при постоянном объеме и температуре 25ºC, если не указано иное. ↵
- Эти значения идентичны в единицах кал/г ⋅ ºC. ↵
- c v при постоянном объеме и температуре 20,0ºC, если не указано иное, и среднем давлении 1,00 атм. В скобках указаны значения c p при постоянном давлении 1,00 атм. ↵
1.4 Теплопередача, удельная теплоемкость и калориметрия – University Physics Volume 2
Цели обучения
К концу этого раздела вы сможете:
- Объяснять явления, связанные с теплом как формой передачи энергии
- Решение задач, связанных с теплопередачей
В предыдущих главах мы видели, что энергия является одним из фундаментальных понятий физики. Тепло — это тип передачи энергии, вызванный разницей температур, который может изменить температуру объекта. Как мы узнали ранее в этой главе, теплопередача — это перемещение энергии из одного места или материала в другое в результате разницы температур. Теплопередача имеет основополагающее значение для таких повседневных действий, как отопление дома и приготовление пищи, а также для многих промышленных процессов. Он также формирует основу для тем в оставшейся части этой главы.
Мы также вводим понятие внутренней энергии, которая может быть увеличена или уменьшена за счет передачи тепла. Обсудим еще один способ изменения внутренней энергии системы, а именно совершение над ней работы. Таким образом, мы начинаем изучение взаимосвязи теплоты и работы, лежащей в основе двигателей и холодильников и центральной темы (и происхождения названия) термодинамики.
Внутренняя энергия и тепло
Тепловая система имеет внутреннюю энергию (также называемую тепловой энергией ) , что представляет собой сумму механических энергий его молекул. Внутренняя энергия системы пропорциональна ее температуре. Как мы видели ранее в этой главе, если два объекта с разными температурами соприкасаются друг с другом, энергия передается от более горячего объекта к более холодному до тех пор, пока тела не достигнут теплового равновесия (то есть они не будут иметь одинаковую температуру). Ни один из объектов не совершает никакой работы, потому что никакая сила не действует на расстоянии (как мы обсуждали в разделе «Работа и кинетическая энергия»). Эти наблюдения показывают, что тепло передается спонтанно из-за разницы температур. Рисунок 1.9показывает пример теплопередачи.
Рисунок
1,9
(а) Здесь безалкогольный напиток имеет более высокую температуру, чем лед, поэтому они не находятся в тепловом равновесии. (b) Когда безалкогольному напитку и льду дают возможность взаимодействовать, тепло передается от напитка ко льду из-за разницы температур до тех пор, пока они не достигнут одной и той же температуры, T’T’, достигая равновесия. Фактически, поскольку безалкогольный напиток и лед находятся в контакте с окружающим воздухом и скамейкой, конечная равновесная температура будет такой же, как и температура окружающей среды.
Значение слова «тепло» в физике отличается от его обычного значения. Например, в разговоре мы можем сказать «жара была невыносимой», но в физике мы бы сказали, что температура была высокой. Тепло — это форма потока энергии, а температура — нет. Между прочим, люди чувствительны к тепловому потоку , а не к температуре.
Поскольку теплота является формой энергии, ее единицей в системе СИ является джоуль (Дж). Другой распространенной единицей энергии, часто используемой для обозначения тепла, является калория (кал), определяемая как энергия, необходимая для изменения температуры 1,00 г воды на 1,00°C1,00°C, в частности, между 14,5°C14,5°C и 15,5°С15,5°С, так как есть небольшая зависимость от температуры. Также широко используется килокалория (ккал), которая представляет собой энергию, необходимую для изменения температуры 1,00 кг воды на 1,00°C1,00°C. Поскольку массу чаще всего указывают в килограммах, удобно использовать килокалории. Как ни странно, пищевые калории (иногда называемые «большими калориями», сокращенно Cal) на самом деле являются килокалориями, и этот факт нелегко определить по маркировке на упаковке.
Механический эквивалент тепла
Также можно изменить температуру вещества, совершая работу, которая передает энергию в систему или из нее. Это осознание помогло установить, что тепло является формой энергии. Джеймс Прескотт Джоуль (1818–1889) провел множество экспериментов, чтобы установить механический эквивалент тепла — 90 682 работы, необходимой для получения тех же эффектов, что и передача тепла 90 016 . В единицах, используемых для этих двух величин, значение этой эквивалентности равно 9.0005
1.000ккал=4186Дж. 1.000ккал=4186Дж.
Мы считаем, что это уравнение представляет преобразование между двумя единицами энергии. (Другие числа, которые вы можете увидеть, относятся к калориям, определенным для температурных диапазонов, отличных от 14,5°C14,5°C до 15,5°C15,5°C. )
На рис. 1.10 показана одна из самых известных экспериментальных установок Джоуля для демонстрации того, что работа и теплота могут производить одинаковые эффекты, и для измерения механического эквивалента теплоты. Это помогло установить принцип сохранения энергии. Гравитационная потенциальная энергия ( U ) преобразуется в кинетическую энергию ( K ), а затем рандомизируется за счет вязкости и турбулентности в увеличенную среднюю кинетическую энергию атомов и молекул в системе, вызывая повышение температуры. Вклад Джоуля в термодинамику был настолько значителен, что его именем была названа единица измерения энергии в системе СИ.
Рисунок
1.10
Опыт Джоуля установил эквивалентность теплоты и работы. Когда массы опускались, они заставляли лопасти совершать работу W=mghW=mgh на воде. Результатом было повышение температуры, ΔTΔT, измеренное термометром. Джоуль обнаружил, что ΔTΔT пропорционально Вт и таким образом определили механический эквивалент тепла.
Увеличение внутренней энергии за счет теплопередачи дает тот же результат, что и увеличение ее за счет совершения работы. Поэтому, хотя система имеет вполне определенную внутреннюю энергию, мы не можем сказать, что она имеет определенное «теплосодержание» или «содержание работы». Четко определенная величина, которая зависит только от текущего состояния системы, а не от истории этой системы, известна как переменная состояния . Температура и внутренняя энергия являются переменными состояния. Подводя итог этому абзацу, теплота и работа не являются переменными состояния .
Между прочим, увеличение внутренней энергии системы не обязательно приводит к увеличению ее температуры. Как мы увидим в следующем разделе, температура не меняется при переходе вещества из одной фазы в другую. Примером может служить таяние льда, которое может быть достигнуто за счет добавления тепла или выполнения работы трения, например, когда кубик льда трется о шероховатую поверхность.
Изменение температуры и теплоемкость
Мы отметили, что теплообмен часто вызывает изменение температуры. Эксперименты показывают, что без фазового перехода и без работы, совершаемой системой или системой, переданное тепло обычно прямо пропорционально изменению температуры и массе системы в хорошем приближении. (Ниже мы покажем, как поступать в ситуациях, когда аппроксимация недействительна.) Константа пропорциональности зависит от вещества и его фазы, которая может быть газом, жидкостью или твердым телом. Мы опускаем обсуждение четвертой фазы, плазмы, потому что, хотя это самая распространенная фаза во Вселенной, она редка и недолговечна на Земле.
Мы можем понять экспериментальные факты, заметив, что переданное тепло есть изменение внутренней энергии, которая представляет собой полную энергию молекул. В типичных условиях полная кинетическая энергия молекул KtotalKtotal представляет собой постоянную долю внутренней энергии (по причинам и за исключениями, которые мы увидим в следующей главе). Средняя кинетическая энергия молекулы КавеКаве пропорциональна абсолютной температуре. Поэтому изменение внутренней энергии системы обычно пропорционально изменению температуры и количеству молекул 9.0682 Н . Математически ΔU∝ΔKtotal=NKave∝NΔTΔU∝ΔKtotal=NKave∝NΔT Зависимость от вещества возникает в значительной степени из-за различных масс атомов и молекул. Мы рассматриваем его теплоемкость с точки зрения массы, но, как мы увидим в следующей главе, в некоторых случаях теплоемкости на молекулу одинаковы для разных веществ. Зависимость от вещества и фазы возникает также из-за различий в потенциальной энергии, связанных с взаимодействиями между атомами и молекулами.
Теплопередача и изменение температуры
Практическая аппроксимация взаимосвязи между теплопередачей и изменением температуры:
Q=mcΔT, Q=mcΔT,
1,5
где Q — символ теплопередачи («количество теплоты»), m — масса вещества, ΔTΔT — изменение температуры. Символ c обозначает удельную теплоемкость (также называемую « удельная теплоемкость ») и зависит от материала и фазы. Удельная теплоемкость численно равна количеству теплоты, необходимому для изменения температуры 1,001,00 кг массы на 1,00°С1,00°С. Единицей СИ для удельной теплоемкости является Дж/(кг×К)Дж/(кг×К) или Дж/(кг×°С)Дж/(кг×°С). (Напомним, что изменение температуры ΔTΔT одинаково в единицах кельвина и градусах Цельсия.)
Значения удельной теплоемкости, как правило, должны быть измерены, поскольку не существует простого способа их точного расчета. В таблице 1.3 приведены репрезентативные значения удельной теплоемкости для различных веществ. Из этой таблицы мы видим, что удельная теплоемкость воды в пять раз больше, чем у стекла, и в 10 раз больше, чем у железа, значит, для повышения температуры воды на заданную величину требуется в пять раз больше теплоты, чем для стекла, и в 10 раз столько же, сколько и для железа. На самом деле вода имеет одну из самых больших удельных теплоемкостей среди всех материалов, что важно для поддержания жизни на Земле.
Удельная теплоемкость газов зависит от того, что поддерживается постоянным во время нагревания — обычно либо объем, либо давление. В таблице первая удельная теплоемкость каждого газа измерена при постоянном объеме, а вторая (в скобках) измерена при постоянном давлении. Мы вернемся к этой теме в главе о кинетической теории газов.
Вещества | Удельная теплоемкость ( c ) | |
---|---|---|
Твердые вещества | Дж/(кг·°C)Дж/(кг·°C) | ккал/(кг·°C)[2] ккал/(кг·°C)[2] |
Алюминий | 900 | 0,215 |
Асбест | 800 | 0,19 |
Бетон, гранит (средний) | 840 | 0,20 |
Медь | 387 | 0,0924 |
Стекло | 840 | 0,20 |
Золото | 129 | 0,0308 |
Тело человека (в среднем при 37°C37°C) | 3500 | 0,83 |
Лед (средний, от −50°C до 0°C − 50°C до 0°C) | 2090 | 0,50 |
Железо, сталь | 452 | 0,108 |
Свинец | 128 | 0,0305 |
Серебро | 235 | 0,0562 |
Дерево | 1700 | 0,40 |
Жидкости | ||
Бензол | 1740 | 0,415 |
Этанол | 2450 | 0,586 |
Глицерин | 2410 | 0,576 |
Меркурий | 139 | 0,0333 |
Вода (15,0°С)(15,0°С) | 4186 | 1.![]() |
Газы [3] | ||
Воздух (сухой) | 721 (1015) | 0,172 (0,242) |
Аммиак | 1670 (2190) | 0,399 (0,523) |
Углекислый газ | 638 (833) | 0,152 (0,199) |
Азот | 739 (1040) | 0,177 (0,248) |
Кислород | 651 (913) | 0,156 (0,218) |
Пар (100°C)(100°C) | 1520 (2020) | 0,363 (0,482) |
Стол
1,3
Удельная теплоемкость различных веществ [1] [1] Значения для твердых и жидких тел даны при постоянном объеме и температуре 25°C25°C, если не указано иное. [2] Эти значения идентичны в единицах кал/г·°C. кал/г·°C. [3] Удельная теплоемкость при постоянном объеме и при 20,0°C20,0°C, если не указано иное, и при давлении 1,00 атм. В скобках указаны удельные теплоемкости при постоянном давлении 1,00 атм.
Как правило, удельная теплоемкость также зависит от температуры. Таким образом, точное определение c для вещества должно быть дано в терминах бесконечно малого изменения температуры. Для этого заметим, что c=1mΔQΔTc=1mΔQΔT и заменим ΔΔ на d :
с=1mdQdT.c=1mdQdT.
За исключением газов, зависимость удельной теплоемкости большинства веществ от температуры и объема при нормальных температурах слабая. Поэтому, как правило, удельные теплоемкости будем считать постоянными при значениях, приведенных в таблице.
Пример 1,5
Расчет необходимого тепла
Алюминиевую кастрюлю массой 0,500 кг на плите и 0,250 л воды в ней нагревают с 20,0°С20,0°С до 80,0°С80,0°С. а) Какое количество тепла потребуется? Какой процент тепла используется для повышения температуры (b) кастрюли и (c) воды?
Стратегия
Можно предположить, что кастрюля и вода всегда имеют одинаковую температуру. Когда вы ставите кастрюлю на плиту, температура воды и сковороды повышается на одинаковую величину. Воспользуемся уравнением теплообмена при заданном изменении температуры и массы воды и алюминия. Удельные теплоемкости воды и алюминия приведены в табл. 1.3.
Решение
- Рассчитайте разницу температур:
ΔT=Tf-Ti=60,0°C. ΔT=Tf-Ti=60,0°C.
- Рассчитайте массу воды. Поскольку плотность воды 1000 кг/м31000 кг/м3, 1 л воды имеет массу 1 кг, а масса 0,250 л воды mw=0,250 кгmw=0,250 кг.
- Рассчитайте теплоту, переданную воде. Используйте удельную теплоемкость воды из таблицы 1.3:
Qw=mwcwΔT=(0,250 кг)(4186 Дж/кг°C)(60,0°C)=62,8 кДж. Qw=mwcwΔT=(0,250 кг)(4186 Дж/кг°C)(60,0°C)=62,8 кДж.
- Рассчитайте тепло, переданное алюминию. Используйте удельную теплоемкость алюминия из таблицы 1.3:
QAl=mA1cA1ΔT=(0,500 кг)(900 Дж/кг°C)(60,0°C)=27,0 кДж. QAl=mA1cA1ΔT=(0,500 кг)(900 Дж/кг°C)(60,0°C)=27,0 кДж.
- Найдите общее переданное тепло:
QTotal=QW+QAl=89,8 кДж. QTotal=QW+QAl=89,8 кДж.
Значение
В этом примере тепло передается воде больше, чем алюминиевой кастрюле. Хотя масса кастрюли в два раза больше массы воды, удельная теплоемкость воды более чем в четыре раза больше, чем у алюминия. Следовательно, для достижения заданного изменения температуры воды требуется чуть более чем в два раза больше тепла, чем для алюминиевой кастрюли.
Пример 1.6 иллюстрирует повышение температуры, вызванное выполнением работы. (Результат такой же, как если бы такое же количество энергии было добавлено с помощью паяльной лампы, а не механически.)
Пример 1,6
Расчет прироста температуры по работе, выполненной над веществом
Тормоза грузовиков, используемые для контроля скорости на спуске, работают, преобразуя потенциальную энергию гравитации в повышенную внутреннюю энергию (более высокую температуру) тормозного материала (рис. 1.11). Это преобразование предотвращает преобразование потенциальной энергии гравитации в кинетическую энергию грузовика. Поскольку масса грузовика намного больше, чем масса тормозного материала, поглощающего энергию, повышение температуры может происходить слишком быстро для передачи достаточного количества тепла от тормозов в окружающую среду; другими словами, тормоза могут перегреться.
Рисунок 1.11 Дымящиеся тормоза тормозящего грузовика — видимое свидетельство механического эквивалента тепла.
Рассчитайте повышение температуры 10 кг тормозного материала со средней удельной теплоемкостью 800 Дж/кг·°C800 Дж/кг·°C, если материал сохраняет 10 % энергии от 10 000-килограммового грузовика, спускающегося с высоты 75,0 м (в вертикальном направлении). перемещение) с постоянной скоростью.
Стратегия
Мы вычисляем гравитационную потенциальную энергию ( Mgh ), которую теряет весь грузовик при спуске, приравниваем ее к увеличению внутренней энергии тормозов, а затем находим повышение температуры только в тормозном материале.
Решение
Сначала рассчитаем изменение потенциальной энергии гравитации при движении грузовика под уклон:
Mgh=(10 000 кг)(9,80 м/с2)(75,0 м)=7,35×106 Дж. Mgh=(10 000 кг)(9,80 м/с2)(75,0 м)=7,35×106 Дж.
Поскольку кинетическая энергия грузовика не меняется, закон сохранения энергии говорит нам о том, что потерянная потенциальная энергия рассеивается, и мы предполагаем, что 10% ее передается внутренней энергии тормозов, поэтому примем Q=Mgh/10Q= мг/10. Затем вычисляем изменение температуры по переданному теплу, используя
ΔT=Qmc, ΔT=Qmc,
где m — масса тормозного материала. Вставьте данные значения, чтобы найти
ΔT=7,35×105 Дж(10 кг)(800 Дж/кг°C)=92°C. ΔT=7,35×105 Дж(10 кг)(800 Дж/кг°C)=92°C.
Значение
Если бы грузовик какое-то время ехал, то непосредственно перед спуском температура тормозов, вероятно, была бы выше температуры окружающей среды. Повышение температуры при спуске, вероятно, очень сильно повысит температуру тормозного материала, поэтому этот метод нецелесообразен. Вместо этого грузовик будет использовать технику торможения двигателем. Другая идея лежит в основе новейших технологий гибридных и электрических автомобилей, в которых механическая энергия (кинетическая и гравитационная потенциальная энергия) преобразуется тормозами в электрическую энергию в аккумуляторе. Этот процесс называется рекуперативным торможением.
В обычной задаче объекты с разной температурой соприкасаются друг с другом, но изолированы от всего остального, и им позволяют прийти в равновесие. Контейнер, который предотвращает передачу тепла внутрь или наружу, называется калориметром, а использование калориметра для проведения измерений (обычно теплоты или удельной теплоемкости) называется калориметрией.
Мы будем использовать термин «калориметрическая задача» для обозначения любой задачи, в которой рассматриваемые объекты термически изолированы от своего окружения. Важной идеей при решении задач калориметрии является то, что при теплообмене между объектами, изолированными от окружающей среды, теплота, полученная более холодным объектом, должна равняться теплоте, отдаваемой более горячим объектом, вследствие сохранения энергии:
Qхолодный+Qгорячий=0.Qхолодный+Qгорячий=0.
1,6
Мы выражаем эту идею, написав, что сумма теплот равна нулю, потому что полученное тепло обычно считается положительным; потерянное тепло, отрицательный.
Пример 1,7
Расчет конечной температуры в калориметрии
Предположим, вы наливаете 0,250 кг воды с температурой 20,0–20,0–°C (около чашки) в 0,500-килограммовую алюминиевую кастрюлю, снятую с плиты, с температурой 150–150°C. Предположим, что теплопередача не происходит ни к чему другому: кастрюля помещается на изолированную подушку, а теплопередачей к воздуху пренебрегают в течение короткого времени, необходимого для достижения равновесия. Таким образом, это проблема калориметрии, хотя изолирующий контейнер не указан. Предположим также, что выкипает незначительное количество воды. При какой температуре вода и кастрюля достигают теплового равновесия?
Стратегия
Первоначально кастрюля и вода не находятся в тепловом равновесии: кастрюля имеет более высокую температуру, чем вода. Теплопередача восстанавливает тепловое равновесие, когда вода и кастрюля соприкасаются; он останавливается, как только достигается тепловое равновесие между кастрюлей и водой. Тепло, потерянное кастрюлей, равно теплу, полученному водой — это основной принцип калориметрии.
Решение
- Используйте уравнение теплопередачи Q=mcΔTQ=mcΔT, чтобы выразить потери тепла алюминиевой кастрюлей через массу кастрюли, удельную теплоемкость алюминия, начальную температуру кастрюли и конечная температура:
Qhot=mA1cA1(Tf-150°C).Qhot=mA1cA1(Tf-150°C).
- Выразите тепло, полученное водой, через массу воды, удельную теплоемкость воды, начальную температуру воды и конечную температуру:
Qхолод=mwcw(Tf-20,0°C).Qхолод=mwcw(Tf-20,0°C).
- Обратите внимание, что Qhot<0Qhot<0 и Qcold>0Qcold>0 и что, как указано выше, они должны в сумме равняться нулю:
Qхолодный+Qгорячий=0Qхолодный=-Qhotmwcw(Tf-20,0°C)=-mA1cA1(Tf-150°C).Qхолодный+Qгорячий=0Qхолодный=-Qhotmwcw(Tf-20,0°C)=-mA1cA1(Tf-150° С).
- Перенесите все термины, включающие TfTf, в левую часть, а все остальные термины — в правую. Решение для Tf,Tf,
Tf=mA1cA1(150°C)+mwcw(20,0°C)mA1cA1+mwcw,Tf=mA1cA1(150°C)+mwcw(20,0°C)mA1cA1+mwcw,
и вставьте числовые значения:Tf=(0,500 кг)(900 Дж/кг°C)(150°C)+(0,250 кг)(4186 Дж/кг°C)(20,0°C)(0,500 кг)(900 Дж/кг°C)+(0,250 кг)(4186 Дж/кг°C)=59,1°C.Tf=(0,500 кг)(900 Дж/кг°C)(150°C)+(0,250 кг)(4186 Дж/кг°C)(20,0°C)( 0,500 кг)(900 Дж/кг°С)+(0,250 кг)(4186 Дж/кг°С)=59,1°С.
Значение
Почему конечная температура гораздо ближе к 20,0°C20,0°C, чем к 150°C150°C? Причина в том, что вода имеет большую удельную теплоемкость, чем большинство обычных веществ, и, следовательно, претерпевает меньшее изменение температуры при заданной теплопередаче. Большому водоему, такому как озеро, требуется большое количество тепла, чтобы заметно повысить его температуру. Это объясняет, почему температура озера остается относительно постоянной в течение дня даже при больших изменениях температуры воздуха. Однако температура воды меняется в течение более длительного времени (например, с лета на зиму).
Проверьте свое понимание 1,3
Если для повышения температуры горной породы с 25°С до 30°С, с 25°С до 30°С необходимо 25 кДж, то какое количество теплоты необходимо для нагревания породы с 45°С до 50°С с 45°С до 50°С?
Пример 1,8
Теплоемкость, зависящая от температуры
При низких температурах удельная теплоемкость твердых тел обычно пропорциональна T3T3. Первым пониманием этого поведения стал голландский физик Петер Дебай, который в 1912 рассматривал атомные колебания с помощью квантовой теории, которую Макс Планк недавно применил к излучению. Например, хорошим приближением для удельной теплоемкости соли NaCl является c=3,33×104 Джкг·K(T321K)3.c=3,33×104 Джкг·K(T321K)3. Константа 321 K называется температурой Дебая NaCl, ΘD, ΘD, и формула хорошо работает, когда T<0,04ΘD.T<0,04ΘD. Используя эту формулу, сколько тепла потребуется, чтобы поднять температуру 24,0 г NaCl с 5 до 15 К?
Раствор
Поскольку теплоемкость зависит от температуры, необходимо использовать уравнение
c=1mdQdT.c=1mdQdT.
Мы решаем это уравнение для Q , интегрируя обе части: Q=m∫T1T2cdT.Q=m∫T1T2cdT.
Затем подставляем данные значения в и вычисляем интеграл: =(0,024 кг)∫T1T23,33×10–6 Джкг·K(T321K)3dT=(6,04×10–4JK4)T4|5K15K=0,302 Дж.
Значение
Если бы мы использовали уравнение Q=mcΔTQ=mcΔT и удельную теплоемкость соли при комнатной температуре, 880 Дж/кг·K, 880 Дж/кг·K, мы получили бы совсем другое значение.