Формула напряжение закон ома: Закон Ома онлайн – формулы и калькулятор

Содержание

простыми словами с примерами для “чайников”

Содержание

Закон Ома для участка цепи

Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).

Закон Ома для замкнутой цепи

Если к источнику питания подключить внешнюю цепь сопротивлением R, в цепи пойдёт ток с учётом внутреннего сопротивления источника:

I — Сила тока в цепи. Электродвижущая сила (ЭДС) — величина напряжения источника питания не зависящая от внешней цепи (без нагрузки). Характеризуется потенциальной энергией источника.

r — Внутреннее сопротивление источника питания. Для электродвижущей силы внешнее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I =/(R+r) .

Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR.

Напряжение U, при подключении нагрузки R, всегда будет меньше чем ЭДС на величину произведения I*r, которую называют падением напряжения на внутреннем сопротивлении источника питания. С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы. По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U = — I*r. Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U.

Если ток в цепи равен нулю, следовательно, = U. Цепь разомкнута, ЭДС источника равна напряжению на его выводах. В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС (≈ U ) независимо от сопротивления внешней цепи R. Такой источник питания называют источником напряжения.

Закон Ома для переменного тока

При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление. В таком случае запись Закона Ома будет иметь вид: I = U/Z

Здесь Z — полное (комплексное) сопротивление цепи — импеданс. В него входит активная R и реактивная X составляющие. Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи. Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс.

С учётом сдвига фаз φ, созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме.

Нелинейные элементы и цепи

Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников. Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ).

К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т. д.) и электронные лампы. Такие элементы и цепи, в которых они используются, называют нелинейными.

Определение единицы сопротивления — Ом

1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1(Вольт) протекает ток 1(Ампер).

Напряжение, ток и сопротивление

Электрическая цепь образуется, когда создается проводящий путь, позволяющий электрическому заряду непрерывно перемещаться. Это непрерывное движение электрического заряда по проводникам цепи называется током, и о нем часто говорят как о «потоке», как о потоке жидкости через полую трубу.

Сила, побуждающая носители заряда «течь» по цепи, называется напряжением. Напряжение – это особая мера потенциальной энергии, которая всегда относительна между двумя точками. Когда мы говорим об определенной величине напряжения, присутствующего в цепи, мы имеем в виду измерение потенциальной энергии для перемещения носителей заряда из одной конкретной точки этой цепи в другую конкретную точку. Без упоминания двух конкретных точек термин «напряжение» не имеет значения.

Ток, как правило, проходит через проводники с некоторой степенью трения или противодействия движению. Это противодействие движению правильнее называть сопротивлением. Величина тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующего прохождению тока. Как и напряжение, сопротивление – это величина, измеряемая между двумя точками. По этой причине величины напряжения и сопротивления часто указываются как «между» двумя точками в цепи.

Единицы измерения: вольт, ампер и ом

Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, нам нужно уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любые другие физические величины. Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. В таблице ниже приведены стандартные единицы измерения электрического тока, напряжения и сопротивления:

Единицы измерения тока, напряжения, сопротивления в таблице:

ВеличинаСимволЕдиница измеренияСокращение единицы измерения
ТокIАмперА
НапряжениеVВольтВ
СопротивлениеRОмОм

«Символ», присвоенный каждой величине, представляет собой стандартную букву латинского алфавита, используемую для представления этой величины в формулах. Подобные стандартизированные буквы распространены во всех физических и технических дисциплинах и признаны во всем мире. «Сокращение единицы измерения» для каждой величины представляет собой алфавитный символ(ы), используемый в качестве сокращенного обозначения конкретной единицы измерения.

Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта, а ом в честь немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I». Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»). Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени. Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.

Кулон и электрический заряд

Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.

Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией».

Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.

Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.

Формула закона Ома

Основное открытие Ома заключалось в том, что величина электрического тока, протекающего через металлический проводник в цепи, при любой заданной температуре прямо пропорциональна напряжению, приложенному к нему. Ом выразил свое открытие в виде простого уравнения, описывающего взаимосвязь напряжения, тока и сопротивления:

[E=IR]

В этом алгебраическом выражении напряжение (E) равно току (I), умноженному на сопротивление (R). Используя алгебру, мы можем преобразовать это уравнение в других два варианта, решая его для I и R соответственно:

[I = frac{E}{R}]

[R = frac{E}{I}]

Сила тока, Закон Ома, формула.

Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

[I=frac{U}{R}]

Сила тока, Закон Ома, формула.

Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

[I=frac{U}{R}]

Напряжение, Закон Ома, формула

Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.

[U = IR]

Напряжение, Закон Ома, формула.

Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.

Анализ простых схем с помощью закона Ома

Давайте посмотрим, как эти формулы работают, чтобы помочь нам анализировать простые схемы:


Рисунок 1 – Пример простой схемы

В приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа). Это позволяет очень легко применить закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

В этом первом примере мы вычислим величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):


Рисунок 2 – Пример 1. Известны напряжение источника и сопротивление лампы

Какая величина тока (I) в этой цепи?

[I = frac{E}{R} = frac{12 В}{3 Ом} = 4 А]

Во втором примере мы вычислим величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):


Рисунок 3 – Пример 2. Известны напряжение источника и ток в цепи

Какое сопротивление (R) оказывает лампа?

[R = frac{E}{I} = frac{36 В}{4 А} = 9 Ом]

В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):


Рисунок 4 – Пример 3. Известны ток в цепи и сопротивление лампы

Какое напряжение обеспечивает батарея?

[E = IR = (2 А)(7 Ом) = 14 В]

Метода треугольника закона Ома

Закон Ома – очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что студент должен запомнить его. Если вы не очень хорошо умеете работать с формулами, то для его запоминания существует простой прием, помогающий использовать его для любой величины, зная две других. Сначала расположите буквы E, I и R в виде треугольника следующим образом:


Рисунок 5 – Треугольник закона Ома

Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:


Рисунок 6 – Закон Ома для определения R

Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:


Рисунок 7 – Закон Ома для определения I

Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:


Рисунок 8 – Закон Ома для определения E

В конце концов, вам придется научиться работать с формулами, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений. Если вам удобно работать с формулами, всё, что вам нужно сделать, это зафиксировать в памяти E = IR и вывести из нее две другие формулы, когда они вам понадобятся!

Что дает параллельное и последовательное соединение

Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:

В общем, это наиболее распространенные варианты использования этих соединений.

Параллельное и последовательное соединение

В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.

Закон Ома для параллельного и последовательного соединения

Параллельное соединение

Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.

Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.

Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.

Законы для параллельного соединения

Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.

Теперь можем перейти к сопротивлению. Так как проводимость — обратная к сопротивлению величина, можем получить следующую формулу: 1/R = 1/R1 + 1/R2 + 1/R3.

Последовательное соединение

Как работает закон Ома для этих случаев? При последовательном соединении сила тока, протекающая через цепочку элементов, будет одинаковой. Напряжение участка цепи с последовательно подключенными элементами считается как сумма напряжений на каждом участке. Как можно это объяснить? Протекание тока через элемент — это перенос части заряда с одной его части в другую. То есть, это определенная работа. Величина этой работы и есть напряжение. Это физический смысл напряжения. Если с этим понятно, двигаемся дальше.

При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.

Последовательное соединение и параметры этого участка цепи.

Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.

Практическое использование

Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.


Применяем закон к любому участку цепи.

Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.

Находим силу тока

Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

  • R=0,2 МОм;
  • U=400 В.

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

  • R=20 кОм;
  • I=10 мА.

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим. Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом


Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Видео: Закон Ома для участка цепи — практика расчета цепей

Источники

  • https://poschitat.online/zakon-oma
  • https://tel-spb.ru/ohm/
  • https://radioprog.ru/post/920
  • https://elektroznatok.ru/info/teoriya/zakon-oma
  • https://www. asutpp.ru/zakon-oma-dlya-uchastka-cepi.html

Закон Ома – Learn

Закон Ома

«Не знаешь закон Ома – сиди дома»

Георг Симон Ом

Закон Ома – полученный экспериментальным путём закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

Формула закона Ома записывается в следующем виде:

где:

I – сила тока в проводнике, единица измерения силы тока – ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления – ом [Ом]

Электрическая цепь

 

Чтобы лучше понять смысл закона Ома, нужно представлять, как устроена электрическая цепь.

Что такое электрическая цепь? Это путь, который проходят электрически заряженные частицы (электроны) в электрической схеме.

Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока, а силы – сторонними силами.

Электрическую цепь, в которой находится источник тока, называют полной электрической цепью. Источник тока в такой цепи выполняет примерно такую же функцию, что и насос, перекачивающий жидкость в замкнутой гидравлической системе.

Простейшая замкнутая электрическая цепь состоит из одного источника и одного потребителя электрической энергии, соединённых между собой проводниками.

 

Параметры электрической цепи

Электрический ток в такой цепи представляет собой движение электронов в проводнике. И хотя в действительности они движутся по направлению к положительному полюсу источника, в физике направлением тока принято считать движение от положительного полюса к отрицательному.

Количество заряженных частиц, протекающих через поперечное сечение проводника, называется силой тока. Обозначается эта величина буквой I  и измеряется в амперах.

Но проводник оказывает сопротивление движению электронов. Величину, характеризующую противодействие электрической цепи или её участка электрическому току, называют электрическим сопротивлением. Его величина называется омом в честь знаменитого физика и обозначается буквой R.

Величина, равная разности потенциалов источника электрического тока, называется электрическим напряжением. Обозначается буквой U. Измеряется в вольтах.

Участок цепи без источника тока называют внешней цепью. Её сопротивление обозначают буквой R, а внутреннее сопротивление источника – r. ЭДС источника обозначается символом ε. ЭДС источника состоит из падения напряжения U во внешней цепи и падения напряжения Uна самом источнике.

ε = U +U1,

Внешняя цепь рассматривается как участок цепи. Вообще, любую электрическую цепь можно представить в виде участков, между двумя точками которых течёт электрический ток. Каждый участок можно охарактеризовать падением напряжения U, сопротивлением R и силой тока I.

Опытным путём Ом установил взаимосвязь между этими основными параметрами электрической цепи: «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению на этом участке».

I = U/R

Это и есть формула закона Ома для участка цепи.

Опыт Ома

 

Свой знаменитый закон Ом вывел экспериментальным путём.

Проведём несложный опыт.

Соберём электрическую цепь, в которой источником тока будет аккумулятор, а прибором для измерения тока – последовательно включенный в цепь амперметр. Нагрузкой служит спираль из проволоки. Напряжение будем измерять с помощью вольтметра, включенного параллельно спирали. Замкнём с помощью ключа электрическую цепь и запишем показания приборов.

Подключим к первому аккумулятору второй с точно таким же параметрами (последовательно). Снова замкнём цепь. Приборы покажут, что и сила тока, и напряжение увеличились в 2 раза.

Вывод очевиден: сила тока в проводнике прямо пропорциональна напряжению, приложенному к концам проводника.

В нашем опыте величина сопротивления оставалась постоянной. Мы меняли лишь величину тока и напряжения на участке проводника. Оставим лишь один аккумулятор. Но в качестве нагрузки будем использовать спирали из разных материалов. Их сопротивления отличаются. Поочерёдно подключая их, также запишем показания приборов. Мы увидим, что здесь всё наоборот. Чем больше величина сопротивления, тем меньше сила тока. Сила тока в цепи обратно пропорциональна сопротивлению.

Итак, наш опыт позволил нам установить зависимость силы тока от величины напряжения и сопротивления.

Шпаргалка для запоминания

Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Для наглядного объяснения своего закона Георг Ом течение тока сравнивал с течением воды по трубе, чем тоньше труба – тем больше сопротивление и меньше ток. Чем больше воды подаётся в трубу, тем выше ток.

Мне нравится такое сравнение как на картинке ниже:

 

Короткое замыкание

А что произойдёт, если сопротивление внешней цепи вдруг станет равно нулю? В повседневной жизни мы можем наблюдать это, если, например, повреждается электрическая изоляция проводов, и они замыкаются между собой. Возникает явление, которое называется коротким замыканием. Ток, называемый током короткого замыкания, будет чрезвычайно большим. При этом выделится большое количество теплоты, которое может привести к пожару. Чтобы этого не случилось, в цепи ставят устройства, называемые предохранителями. Они устроены так, что способны разорвать электрическую цепь в момент короткого замыкания.

Закон Ома для переменного тока

В цепи переменного напряжения кроме обычного активного сопротивления встречается реактивное сопротивление (ёмкости, индуктивности).

Для таких цепей U = I · Z, где Z – полное сопротивление, включающее в себя активную и реактивную составляющие.

Но большим реактивным сопротивлением обладают мощные электрические машины и силовые установки. В бытовых приборах, окружающих нас, реактивная составляющая настолько мала, что её можно не учитывать, а для расчётов использовать простую форму записи закона Ома:

I = U/R

С помощью закона Ома можно рассчитать параметры любой электрической цепи.

Мощность и закон Ома

 

Ом не только установил зависимость между напряжением, током и сопротивлением электрической цепи, но и вывел уравнение для определения мощности:

P = U · I = I2 · R

Как видим, чем больше ток или напряжение, тем больше мощность. Так как проводник или резистор не является полезной нагрузкой, то мощность, которая приходится на него, считается мощностью потерь. Она идёт на нагревание проводника. И чем больше сопротивление такого проводника, тем больше теряется на нём мощности. Чтобы уменьшить потери от нагревания, в цепи используют проводники с меньшим сопротивлением. Так делают, например, в мощных звуковых установках.

Движение тока в цепи постоянного тока

Считалось, что ток движется от + к – до тех пор, пока не открыли электрон. Оказалось, что электроны двигаются от минуса к плюсу. Решили оставить предположение как есть. Путаницу может внести и то, что, если в металлах двигаются отрицательно заряженные электроны, то в электролитах присутствуют и положительные ионы, и отрицательные.

Понимание колеса закона Ома в 2022 году: бесплатный калькулятор закона Ома!

Если вы электрик или специалист по системам вентиляции и кондиционирования , вам необходимо четко понимать закон Ома.

Помогает описать электрические цепи и взаимосвязь между напряжением и током.

Понимание закона Ома позволит вам контролировать ток в цепи и знать, когда добавлять резисторы.

Все равно? Просто нажмите здесь для нашего бесплатного калькулятора колеса закона Ома.   Вот здесь!

✅ Как использовать закон Ома

Закон Ома гласит, что ток между двумя точками прямо пропорционален напряжению в двух точках электрического проводника.

Лучший способ узнать этот закон — использовать круговую диаграмму закона Ома.

В нем используется простая формула с тремя электрическими переменными: напряжением, током и сопротивлением.

R — сопротивление, измеренное в омах, Ом
I — ток, измеренный в амперах или амперах
В измеряется в вольтах = иногда известно как E (вольты)

Представьте себе каждую букву (R, I, V) в углу треугольника с V наверху.

Эта визуализация демонстрирует взаимосвязь между переменными .

Он также может помочь вам определить, сколько ампер будет потреблять цепь, если вы не можете использовать амперметр.

Схема закона Ома

Поместите палец на единицу , которую вы хотите рассчитать, будь то сопротивление, напряжение или ток.

Об остальном позаботится формула закона Ома.

Это потому, что ток через две точки проводника прямо пропорционален его напряжению.

При этом электрический ток обратно пропорционален сопротивлению.

Колесо закона Ома можно представить с помощью следующих математических уравнений:

  • I (ток) x R (сопротивление) = V (напряжение)
  • В (напряжение) / I (ток) = R ( сопротивление)
  • В (напряжение) / R (сопротивление) = I (ток)

Если у вас есть два известных значения, вы можете рассчитать оставшуюся единицу, используя эти формулы.

Сначала подставьте известные значения в формулу.

Во-вторых, умножьте или разделите их (или используйте калькулятор) в зависимости от других значений. Это так просто. 😉

Примеры закона Ома

Мы хотим найти сопротивление электрической цепи, измеренное в омах.

Мы знаем, что напряжение составляет 24 вольта, а сопротивление цепи равно шести омам.

Как рассчитать электрический ток? Поместив известные значения в формулу закона Ома:

  • 24 вольта / 6 Ом = 4 ампера

Теперь вы  знаете значение отсутствующей переменной .

Вы можете использовать закон Ома, если в формуле известны две единичные переменные.

Вот еще один пример, в котором у вас есть 200 вольт и 20 ампер:

  • 200 вольт / 20 ампер = 10 Ом

ООМ ФОРМУЛА ФОРМУЛА ОХМ ЗАКОН

ООМ ФОРМАЛЬНЫЙ КОЛЕСНЫЙ КОЛЕСКОЙ ДЛЯ ДОЛГОДА: Power (P) измеряется в Watts .

В этом случае мощность определяется как скорость передачи энергии по цепи в единицу времени, выраженная в ваттах.

Колесо формул объединяет круговую диаграмму с законом Ома. Он содержит четыре единицы.

Хотя колесо формул может показаться сложным, им так же легко пользоваться, как круговой диаграммой.

Каждый квадрант диаграммы  содержит формулы, выражающие взаимосвязь между двумя переменными, независимо от того, прямо пропорциональны они или нет.

В каждом квадранте вы найдете по три формулы.

📋

Вот четыре шага, которые необходимо выполнить при использовании колеса закона Ома.

1) Определите, для какой переменной вам нужно найти: мощность (P), сопротивление (R), ампер (I) и вольт (E или V).

2) Определите, какие переменные вы уже знаете: мощность (P), сопротивление (R), амперы (I) и вольты (E или V).

3) Найдите формулу, в которую можно подставить два ваших значения.

4) Решить уравнение.

При решении формулы используйте совместимые единицы измерения.  Если вы используете омы и амперы, это нормально, потому что они работают вместе.

Однако, если у вас есть килоомы, вы должны преобразовать число в омы, прежде чем вычислять ответ.

В противном случае вы получите гораздо меньший результат, чем ожидали.

То же самое применимо, если вы используете киловатты вместо ватт или миллиамперы вместо ампер.

Принципы закона Ома

Закон Ома предлагает полезный способ изучения взаимосвязи между переменными.

Все, что вам нужно сделать, это изменить значение одной переменной в формуле.

В результате вы увидите пропорциональное увеличение или уменьшение ответа.

Допустим, вы хотите увеличить сопротивление. Это повлияет на другие компоненты в уравнениях.

Вот три примера, иллюстрирующие эту динамику:

  • 240 вольт / 5 Ом = 48 ампер
  • 240 вольт / 10 Ом = 24 ампер
  • 240 вольт / 20 Ом = 12 ампер

. Эти форма, показывают сопротивление.

Что происходит в результате?

Напряжение тоже растет, при условии, что сопротивление цепей не меняется.

Давайте попробуем снова этот пример, изменяя напряжение:

  • 240 вольт / 10 Ом = 24 ампер
  • 480 вольт / 10 Ом = 48 А.
  • 960 Вольт / 10 Ом = 96 А.

. Напряжение в этих уравнениях устойчиво увеличивается.

При этом сопротивление остается прежним.

Следовательно, электрическая энергия тока увеличивается пропорционально напряжению.

Когда использовать колесо закона Ома

У закона Ома нет недостатка в реальных приложениях .

Вы можете использовать формулы для решения широкого круга проблем в мире HVAC.

Например, это удобный вариант при работе с рабочей схемой.

Допустим, вы не можете измерить сопротивление рабочей цепи .

Одним из вариантов было бы отключить цепь и таким образом измерить сопротивление.

Однако этот вариант требует ненужного количества времени и усилий.

Колесо закона Ома позволяет рассчитать значение сопротивления в секундах.

Закон Ома также часто сочетается с Законом Джоуля  (в котором используется формула P (мощность) = IV для расчета мощности резистивных элементов, когда переменная неизвестна.

Например, если вы знаете ток (I) и сопротивление (R), но не напряжение, вы можете заменить V в законе Джоуля на закон Ома, чтобы найти мощность в ваттах. Вы получите P = I (IR). постоянное управляющее напряжение или ток .

Цепи постоянного тока (DC) имеют устойчивый поток электричества, который легко измерить.

Если у вас нет этой стабильности, определение напряжения и тока становится сложнее.

Например, вы не можете применять формулы при работе с цепями переменного тока, также известными как изменяющиеся во времени цепи .

Это потому, что они  не учитывают реактивное сопротивление , которое вы найдете в этом типе схемы.

Обратите внимание, что вы можете настроить формулы для учета импеданса (Z) , но это урок для другой статьи.

Калькулятор закона Ома

Вам нужно рассчитать электрический ток в крайнем случае?  

Мы подготовили для вас калькулятор закона Ома.

Калькулятор может работать с уравнениями, в которых используются мощность, напряжение, ток и сопротивление.

Введите два значения и нажмите «Ввод», чтобы решить формулу.

Хотя этот калькулятор облегчит вашу работу, закон Ома служит основой для работы с электричеством наряду с другими важными формулами.

Независимо от того, являетесь ли вы учеником HVAC или опытным техником, вам необходимо четко понимать эти концепции.

Вы можете  использовать формулы для решения различных задач  при работе с электроэнергией, резистивными элементами, напряжением, током и т. д., и у вас не всегда может быть доступ к калькулятору!

Посетите наш блог, чтобы узнать больше советов, рекомендаций и идей.

Использование закона Ома | LEARN.PARALLAX.COM

Знаете ли вы?

Различные формы уравнений закона Ома используются по-разному. В этом разделе вы увидите:

  • Быстрый математический трюк, позволяющий запомнить только одну версию уравнения
  • Пример использования в электронной конструкции
  • Как он определяет соотношение единиц измерения В, А и Ом

Уловка для запоминания уравнения закона Ома

Хотя существует множество уловок для запоминания версий, которые решают I и R, вы также можете просто запомнить V = I x R, а затем разделить на обе части, чтобы выделить I или R. Другими словами, если вы решаете для I, разделите R на обе части V = I x R, и результат будет I = V / R. Или, если вы решаете для R, разделите обе части на I для R = В / И.

(Показать в полном размере: ol-solve-for-i-or-r.mp4)


Закон Ома: «Ток в проводнике между двумя точками прямо пропорционален напряжению в двух точках.  
Это напрямую переводится как I = V / R, где (1 / R) — «прямо пропорциональная» константа, которую можно умножить на напряжение для расчета тока. Закон Ома использует термин «две точки», чтобы сделать его более общим. Конечно, точка на каждом выводе резистора — это две точки, но это также может относиться к точкам на длинных проводах. Длинный провод, как и линия электропередач, имеет очень малое сопротивление на единицу длины. Чем длиннее провод, тем больше сопротивление.

Рассчитайте сопротивление, чтобы получить максимальный ток

Ранее вы экспериментировали с заменой резисторов, чтобы сделать свет тусклее или ярче. Меньшие резисторы позволяют большему току течь по цепи, делая свет ярче. Одна из целей прототипа или проекта может состоять в том, чтобы сделать свет настолько ярким, насколько это возможно. Это можно сделать, проверив ограничения по току, а затем выбрав резистор, который заставит цепь проводить наибольший ток в пределах этих ограничений.

В соответствии с распиновкой Edge Connector и micro:bit питание 3,3 В модуля V2 может обеспечивать ток до 270 мА. Но максимальный ток светодиода составляет 20 мА, так что это ограничивающий фактор. Итак, если вы проектируете устройство и вам нужен максимально яркий свет, вот как вы использовали бы закон Ома для расчета наименьшего резистора, который вы можете безопасно использовать (без повреждения светодиода из-за превышения его спецификации по току).

Светодиоды имеют свойство, называемое прямым напряжением, и оно немного меняется с током, но незначительно. Итак, давайте предположим, что падение напряжения на нем при 20 мА все равно будет около 2,1 В, как мы тестировали в разделе «Измерение напряжения». Это означает, что напряжение на резисторе по-прежнему будет составлять около 1,2 В, потому что они должны в сумме составлять 3,3 В. Опять же, это потому, что закон напряжения Кирхгофа (KVL) гласит, что напряжения на компонентах должны составлять напряжение питания.

R = V / I
  = 1,2 В / 0,020 A
  = 60 Ом

Важно! Используйте в цепи светодиодов резистор только такого малого размера, если вы получаете питание от шин 3,3 В и GND на макетной плате.

Оставить комментарий