Всемирный закон тяготения: точная формула силы всемирного притяжения, определение гравитации
Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к движению тел….
Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.
Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу, остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.
В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.
Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции.
Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.
Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к Солнцу, но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.
Содержание
Задача движения
Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз.
Левый при этом остается в руке, он по-прежнему недвижим.
Остановим мысленно ход времени. Падающий правый шарик зависает в воздухе, левый все также остается в руке. Правый шарик наделен энергией движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?
Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает потенциальной энергией? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?
Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.
Гравитация Ньютона
В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу.
Это явление получило название всемирное тяготение. Когда вас просят: Сформулируйте закон всемирного тяготения, ваш ответ должен звучать так:
Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.
Важно! В законе притяжения Ньютона используется термин расстояние. Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.
Для закона тяготения формула выглядит следующим образом:
,
где:
- F – сила притяжения,
- – массы,
- r – расстояние,
- G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).
Что же представляет собой вес, если только что мы рассмотрели силу притяжения?
Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:
.
Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:
.
Закон гравитационного взаимодействия
Вес и гравитация
Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное. Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас.
Земля тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.
Насколько нам известно, сила тяжести равна:
P = mg,
где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с2).
Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.
Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:
.
Таким образом, поскольку F = mg:
.
Массы m сокращаются, и остается выражение для ускорения свободного падения:
.
Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные радиус, масса Земли и гравитационная постоянная.
Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с2.
На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.
Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.
Примем для удобства массу человека: m = 100 кг. Тогда:
- Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙106 м.
- Масса Земли равна: M ≈ 6∙1024 кг.
- Масса Солнца равна: Mc ≈ 2∙1030 кг.
- Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙1010 м.
Гравитационное притяжение между человеком и Землей:
.
Данный результат довольно очевиден из более простого выражения для веса (P = mg).
Сила гравитационного притяжения между человеком и Солнцем:
.
Как видим, наша планета притягивает нас почти в 2000 раз сильнее.
Как найти силу притяжения между Землей и Солнцем? Следующим образом:
.
Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.
Первая космическая скорость
После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.
Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше.
Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с2, а почти м/с2. Именно по этой причине там настолько разряженный воздух, частицы воздуха уже не так привязаны к гравитации, как те, которые упали к поверхности.
Постараемся узнать, что такое космическая скорость.
Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.
Постараемся узнать численной значение этой величины для нашей планеты.
Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:
,
где h высота тела над поверхностью, R радиус Земли.
На орбите на тело действует центробежное ускорение , таким образом:
.
Массы сокращаются, получаем:
,
.
Данная скорость называется первой космической скоростью:
Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.
Первая космическая скорость
Вторая космическая скорость
Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей.
Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.
Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва разъединиться с гравитационным полем планеты. Это не так: пара Земля Луна находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.
Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету.
Вторая космическая скорость
Запишем закон сохранения энергии:
,
где в правой части равенства стоит работа силы тяжести: A = Fs.
Отсюда получаем, что вторая космическая скорость равна:
Таким образом, вторая космическая скорость в раз больше первой:
.
Закон всемирного тяготения. Физика 9 класс
Закон Всемирного тяготения.
Вывод
Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.
просто и понятно о значении в физике
5 комментариев
Содержание:
Открытие
Ни для кого не секрет, что закон всемирного тяготения был открыт великим английским ученым Исааком Ньютоном, по легенде гуляющим в вечернем саду и раздумывающем над проблемами физики.
В этот момент с дерева упало яблоко (по одной версии прямо на голову физику, по другой просто упало), ставшее впоследствии знаменитым яблоком Ньютона, так как привело ученого к озарению, эврике. Яблоко, упавшее на голову Ньютону и вдохновило того к открытию закона всемирного тяготения, ведь Луна в ночном небе оставалась не подвижной, яблоко же упало, возможно, подумал ученый, что какая-то сила воздействует как на Луну (заставляя ее вращаться по орбите), так и на яблоко, заставляя его падать на землю.
Сейчас по заверениям некоторых историков науки вся эта история про яблоко лишь красивая выдумка. На самом деле падало яблоко или нет, не столь уж важно, важно, что ученый таки действительно открыл и сформулировал закон всемирного тяготения, который ныне является одним из краеугольных камней, как физики, так и астрономии.
Разумеется, и задолго до Ньютона люди наблюдали, как падающие на землю вещи, так и звезды в небе, но до него они полагали, что существует два типа гравитации: земная (действующая исключительно в пределах Земли, заставляющая тела падать) и небесная (действующая на звезды и Луну).
Определение закона
Согласно этому закону, все материальные тела притягивают друг друга, при этом сила притяжения не зависит от физических или химических свойств тел. Зависит она, если все максимально упростить, лишь от веса тел и расстояния между ними. Также дополнительно нужно принять во внимание тот факт, что на все тела находящиеся на Земле действует сила притяжения самой нашей планеты, получившая название – гравитация (с латыни слово «gravitas» переводиться как тяжесть).
Попробуем же теперь сформулировать и записать закон всемирного тяготения максимально кратко: сила притяжения между двумя телами с массами m1 и m2 и разделенными расстоянием R прямо пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.
Формула
Ниже представляем вашему вниманию формулу закона всемирного тяготения.
G в этой формуле это гравитационная постоянная, равная 6,67408(31)•10−11 эта величина воздействия на любой материальный объект силы гравитации нашей планеты.
Невесомость тел
Открытый Ньютоном закон всемирного тяготения, а также сопутствующий математический аппарат позже легли в основу небесной механики и астрономии, ведь с помощью него можно объяснить природу движения небесных тел, равно как и явление невесомости. Находясь в космическом пространстве на значительном удалении от силы притяжения-гравитации такого большого тела как планета, любой материальный объект (например, космический корабль с астронавтами на борту) окажется в состоянии невесомости, так как сила гравитационного воздействия Земли (G в формуле закона тяготения) или какой-нибудь другой планеты, больше не будет на него влиять.
Видео
И в завершение поучительное видео об открытии закона всемирного тяготения.
Автор: Павел Чайка, главный редактор журнала Познавайка
При написании статьи старался сделать ее максимально интересной, полезной и качественной.
Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.
Страница про автора
Схожі записи:
Формула силы тяжести с примерами решений
Формула силы тяжести
Все, что вам нужно знать о формуле силы тяжести, приведено ниже. Пожалуйста, продолжайте внимательно читать весь документ, чтобы полностью понять тему.
В физике гравитация — это основное взаимодействие, которое приводит к взаимному притяжению между всеми объектами масс или энергии.
Гравитация, также называемая гравитацией, представляет собой силу, которая существует среди всех материальных вещей во Вселенной. В любых двух объектах или единицах веса, отличного от нуля, сила тяжести имеет тенденцию притягиваться друг к другу.

Закон Ньютона о всемирном тяготении гласит:
«Каждая частица притягивает все другие частицы во Вселенной с равной силой непосредственно с массовым производством и пропорционально квадрату расстояния между ними».
Однако гравитация является наиболее важным взаимодействием между объектами в массовом масштабе и определяет движение планет, звезд, галактик и даже света.
Формула
Если две массы m 1 и m 2 находятся на расстоянии r друг от друга, формула силы тяжести рассчитывается как;
F = GM 1 M 2 / R 2
, где
F = сила из -за гравита /кг 2
m 1 = масса 1 st корпуса
m 2 = масса 2 nd body
r = расстояние между двумя телами
Проще говоря,
Гравитационная сила = (гравитационная постоянная × масса первого объекта × масса второго объекта) / (расстояние между центрами двух тел)2 .
Решенные примеры
1. Рассчитайте силу гравитации, действующую на два тела массами 2 кг и 5 кг, находящиеся на расстоянии 5 см?
Раствор. Масса тела 1 = 2 кг
Масса 2-го тела = 5 кг
Расстояние между ними = 5 см
Гравитационная постоянная = 6,67 x 10 -11 Н-м 2 /кг 2
5 900 Поместите все значения гравитационной силы в приведенные выше значения формула;
F = GM 1 M 2 / R 2
F = 6,67 x 10 -11 x 2 x 5 / (5 x 10 -2 ) 2
F = 2.6668) x 10 -7 N
2. Объект массой 40 кг передает центру планеты 200 Н энергии с расстояния 20 000 м. Найдите размер или массу планеты.
Раствор.
Масса планеты = m 1
Масса объекта (m 2 ) = 40 кг
Расстояние между обоими ® = 20 000 м уравнение;
F = GM 1 M 2 / R 2
200 = 6,67 x 10 -11 x M 1 x 40 / (20 000) 2
M 1 = 2.9999999999999999999999999999999999999999 2
M 1 = 2.99999 2
M 1 = 2.99999 2
M 1 = 2.99992 2
M 1 = 2.99992 2
M 1 = 2.9999 10 19 кг
Следовательно, Масса планеты (m 1 ) равна 2,997 x 10 19 кг.
SCIRP Открытый доступ
Издательство научных исследований
Журналы от A до Z
Журналы по темам
- Биомедицинские и биологические науки.

- Бизнес и экономика
- Химия и материаловедение.
- Информатика. и общ.
- Науки о Земле и окружающей среде.
- Машиностроение
- Медицина и здравоохранение
- Физика и математика
- Социальные науки. и гуманитарные науки
Журналы по тематике
- Биомедицина и науки о жизни
- Бизнес и экономика
- Химия и материаловедение
- Информатика и связь
- Науки о Земле и окружающей среде
- Машиностроение
- Медицина и здравоохранение
- Физика и математика
- Социальные и гуманитарные науки
Публикация у нас
- Подача статьи
- Информация для авторов
- Ресурсы для экспертной оценки
- Открытые специальные выпуски
- Заявление об открытом доступе
- Часто задаваемые вопросы
Публикуйте у нас
- Представление статьи
- Информация для авторов
- Ресурсы для экспертной оценки
- Открытые специальные выпуски
- Заявление об открытом доступе
- Часто задаваемые вопросы
Подпишитесь на SCIRP
Свяжитесь с нами
клиент@scirp. org | |
| +86 18163351462 (WhatsApp) | |
| 1655362766 | |
| Публикация бумаги WeChat |
| Недавно опубликованные статьи |
| Недавно опубликованные статьи |
Подпишитесь на SCIRP
Свяжитесь с нами
клиент@scirp. |



org