Закон архимеда в чем измеряется. Закон Архимеда: определение и формула
Несмотря на явные различия свойств жидкостей и газов, во многих случаях их поведение определяется одними и теми же параметрами и уравнениями, что позволяет использовать единый подход к изучению свойств этих веществ.
В механике газы и жидкости рассматривают как сплошные среды. Предполагается, что молекулы вещества распределены непрерывно в занимаемой ими части пространства. При этом плотность газа значительно зависит от давления, в то время как для жидкости ситуация иная. Обычно при решении задач этим фактом пренебрегают, используя обобщенное понятие несжимаемой жидкости, плотность которой равномерна и постоянна.
Определение 1
Давление определяется как нормальная сила $F$, действующая со стороны жидкости на единицу площади $S$.
$ρ = \frac{\Delta P}{\Delta S}$.
Замечание 1
Давление измеряется в паскалях. Один Па равен силе в 1 Н, действующей на единицу площади 1 кв. м.
В состояние равновесия давление жидкости или газа описывается законом Паскаля, согласно которому давление на поверхность жидкости, производимое внешними силами, передается жидкостью одинаково во всех направлениях.
При механическом равновесии, давление жидкости по горизонтали всегда одинаково; следовательно, свободная поверхность статичной жидкости всегда горизонтальна (кроме случаев соприкосновения со стенками сосуда). Если принять во внимание условие несжимаемости жидкости, то плотность рассматриваемой среды не зависит от давления.
Представим некоторый объем жидкости, ограниченный вертикальным цилиндром. Поперечное сечение столба жидкости обозначим $S$, его высоту $h$, плотность жидкости $ρ$, вес $P=ρgSh$. Тогда справедливо следующее:
$p = \frac{P}{S} = \frac{ρgSh}{S} = ρgh$,
где $p$ – давление на дно сосуда.
Отсюда следует, что давление меняется линейно, в зависимости от высоты. При этом $ρgh$ – гидростатическое давление, изменением которого и объясняется возникновение силы Архимеда.
Формулировка закона Архимеда
Закон Архимеда, один из основных законов гидростатики и аэростатики, гласит: на тело, погруженное в жидкость или газ, действует выталкивающая или подъемная сила, равная весу объема жидкости или газа, вытесненного частью тела, погруженной в жидкость или газ.
Замечание 2
Возникновение Архимедовой силы связано с тем, что среда – жидкость или газ – стремится занять пространство, отнятое погруженным в нее телом; при этом тело выталкивается из среды.
Отсюда и второе название для этого явление – выталкивающая или гидростатическая подъемная сила.
Выталкивающая сила не зависит от формы тела, также как и от состава тела и прочих его характеристик.
Возникновение Архимедовой силы обусловлено разностью давления среды на разных глубинах. Например, давление на нижние слои воды всегда больше, чем на верхние слои.
Проявление силы Архимеда возможно лишь при наличии тяжести. Так, например, на Луне выталкивающая сила будет в шесть раз меньше, чем на Земле для тел равных объемов.
Возникновение Силы Архимеда
Представим себе любую жидкую среду, например, обычную воду. Мысленно выделим произвольный объем воды замкнутой поверхностью $S$. Поскольку вся жидкость по условию находится в механическом равновесии, выделенный нами объем также статичен.
Теперь обозначим, что вместо этой условного ограниченной жидкости в среду было помещено любое твердое тело соответствующего объема. Если соблюдается условие механического равновесия, то со стороны окружающей среды никаких изменений не произойдет, в том числе останется прежним давление, действующее на поверхность $S$. Таким образом мы можем дать более точную формулировку закона Архимеда:
Замечание 3
Если тело, погруженное в жидкость, находится в механическом равновесии, то со стороны окружающей его среды на него действует выталкивающая сила гидростатического давления, численно равная весу среды в объеме, вытесненным телом.
Выталкивающая сила, действующая на тело, противоположна по направлению силе тяжести, поэтому поведение погруженного тела в среде зависит от соотношения модулей силы тяжести $F_T$ и Архимедовой силы $F_A$. Здесь возможны три случая:
- $F_T$ > $F_A$. Сила тяжести превышает выталкивающую силу, следовательно, тело тонет/падает;
- $F_T$ = $F_A$. Сила тяжести уравнивается с выталкивающей силой, поэтому тело «зависает» в жидкости;
- $F_T$
ЗАКОН АРХИМЕДА –закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.
Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается можем поднять на суше; то же явление наблюдается, когда по каким-либо причинам выброшенным на берегу оказывается кит – вне водной среды животное не может передвигаться – его вес превосходит возможности его мышечной системы.
Кубик с ребром a погружен в воду, причем и вода, и кубик неподвижны. Известно, что давление в тяжелой жидкости увеличивается пропорционально глубине – очевидно, что более высокий столбик жидкости более сильно давит на основание. Гораздо менее очевидно (или совсем не очевидно), что это давление действует не только вниз, но и в стороны, и вверх с той же интенсивностью – это закон Паскаля.
Если рассмотреть силы, действующие на кубик (рис. 1), то в силу очевидной симметрии силы, действующие на противоположные боковые грани, равны и противоположно направлены – они стараются сжать кубик, но не могут влиять на его равновесие или движение. Остаются силы, действующие на верхнюю и на нижнюю грани. Пусть h – глубина погружения верхней грани, r – плотность жидкости, g – ускорение силы тяжести; тогда давление на верхнюю грань равно
r · g
а на нижнюю
r · g (h+a ) = p 2
Сила давления равна давлению, умноженному на площадь, т.е.
F 1 = p 1 · a \up122, F 2 = p 2 · a \up122 , где a – ребро кубика,
причем сила F 1 направлена вниз, а сила F 2 – вверх. Таким образом, действие жидкости на кубик сводится к двум силам – F 1 и F 2 и определяется их разностью, которая и является выталкивающей силой:
F 2 – F 1 =r · g · (h+a ) a \up122 – r gha ·a 2 = pga 2
Сила – выталкивающая, так как нижняя грань, естественно, расположена ниже верхней и сила, действующая вверх, больше, чем сила, действующая вниз.
Если тело произвольной формы (рис. 2) занимает внутри жидкости объем V , то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела – («жидкости все равно на что давить»).
Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V – тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V . Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V , т.е.
Сделав мысленно обратную замену – поместив в объеме V данное тело и отметив, что эта замена никак не скажется на распределении сил давления на поверхность объема V , можно сделать вывод: на погруженное в покоящуюся тяжелую жидкость тело действуют направленная вверх сила (архимедова сила), равная весу жидкости в объеме данного тела.
Аналогично можно показать, что если тело частично погружено в жидкость, то архимедова сила равна весу жидкости в объеме погруженной части тела. Если в этом случае архимедова сила равна весу, то тело плавает на поверхности жидкости. Очевидно, что если при полном погружении архимедова сила окажется меньше веса тела, то оно утонет. Архимед ввел понятие «удельного веса» g , т.е. веса единицы объема вещества: g = pg ; если принять, что для воды g = 1 , то сплошное тело из вещества, у которого g > 1 утонет, а при g g = 1 тело может плавать (зависать) внутри жидкости. В заключение заметим, что закон Архимеда описывает поведение аэростатов в воздухе (в покое при малых скоростях движения).
Владимир Кузнецов
Жидкостей и газов, согласно которому на всякое тело, пог-руженное в жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа) и направленная по вертикали вверх.
Этот закон был открыт древнегреческим ученым Архимедом в III в. до н. э. Свои исследования Архимед описал в трактате «О плавающих телах», который считается одним из последних его научных трудов.
Ниже приведены выводы, следующие из закона Архимеда .
Действие жидкости и газа на погруженное в них тело.
Если погрузить в воду мячик, наполненный воздухом, и отпустить его, то он всплывет. То же самое произойдет со щепкой, с пробкой и многими другими телами. Какая же сила заставляет их всплывать?
На тело, погруженное в воду, со всех сторон действуют силы давления воды (рис. а ). В каж-дой точке тела эти силы направлены перпендикулярно его поверхности. Если бы все эти силы были одинаковы, тело испытывало бы лишь всестороннее сжатие. Но на разных глубинах гидростати-ческое давление различно: оно возрастает с увеличением глубины. Поэтому силы давления, приложенные к нижним участкам тела, оказываются больше сил давления, действующих иа тело сверху.
Если заменить все силы давления , приложенные к погруженному в воду телу, одной (резуль-тирующей или равнодействующей) силой, оказывающей на тело то же самое действие, что и все эти отдельные силы вместе, то результирующая сила будет направлена вверх. Это и заставляет тело всплывать. Эта сила называется выталкивающей силой, или архимедовой силой (по имени Архимеда, который впервые указал на ее существование и установил, от чего она зависит). На рисунке б она обозначена как F A .
Архимедова (выталкивающая) сила действует на тело не только в воде, но и в любой другой жидкости, т. к. в любой жидкости существует гидростатическое давление, разное на разных глу-бинах. Эта сила действует и в газах, благодаря чему летают воздушные шары и дирижабли.
Благодаря выталкивающей силе вес любого тела, находящегося в воде (или в любой другой жидкости), оказывается меньше, чем в воздухе, а в воздухе меньше, чем в безвоздушном про-странстве. В этом легко убедиться, взвесив гирю с помощью учебного пружинного динамометра сначала в воздухе, а затем опустив ее в сосуд с водой.
Уменьшение веса происходит и при переносе тела из вакуума в воздух (или какой-либо другой газ).
Если вес тела в вакууме (например, в сосуде, из которого откачан воздух) равен P 0 , то его вес в воздухе равен:
,
где F´ A — архимедова сила, действующая на данное тело в воздухе. Для большинства тел эта сила ничтожно мала и ею можно пренебречь, т. е. можно считать, что P возд. =P 0 =mg .
Вес тела в жидкости уменьшается значительно сильнее, чем в воздухе. Если вес тела в воздухе P возд. =P 0 , то вес тела в жидкости равен P жидк = Р 0 — F A . Здесь F A — архимедова сила, действующая в жидкости. Отсюда следует, что
Поэтому чтобы найти архимедову силу, действующую на тело в какой-либо жидкости, нужно это тело взвесить в воздухе и в жидкости. Разность полученных значений и будет архимедовой (выталкивающей) силой.
Другими словами, учитывая формулу (1.32), можно сказать:
Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу жидкости, вытесненной этим телом.
Определить архимедову силу можно также теоретически. Для этого предположим, что тело, погруженное в жидкость, состоит из той же жидкости, в которую оно погружено. Мы имеем пра-во это предположить, так как силы давления, действующие на тело, погруженное в жидкость, не зависят от вещества, из которого оно сделано. Тогда приложенная к такому телу архимедова сила F A будет уравновешена действующей вниз силой тяжести m ж g (где m ж — масса жидкости в объеме данного тела):
Но сила тяжести равна весу вытесненной жидкости Р ж . Таким образом.
Учитывая, что масса жидкости равна произведению ее плотности ρ ж на объем, формулу (1.33) можно записать в виде:
где V ж — объем вытесненной жидкости. Этот объем равен объему той части тела, которая погру-жена в жидкость. Если тело погружено в жидкость целиком, то он совпадает с объемом V всего тела; если же тело погружено в жидкость частично, то объем V ж вытесненной жидкости меньше объема V тела (рис. 1.39).
Формула (1.33) справедлива и для архимедовой силы, действующей в газе. Только в этом слу-чае в нее следует подставлять плотность газа и объем вытесненного газа, а не жидкости.
С учетом вышеизложенного закон Архимеда можно сформулировать так:
На всякое тело, погруженное в покоящуюся жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная произведению плотности жидкости (или га-за), ускорения свободного падения и объема той части тела, которая погружена в жидкость (или газ).
Один из первых физических законов, изучаемых учениками средней школы. Хотя бы примерно этот закон помнит любой взрослый человек, как бы далек он ни был от физики. Но иногда полезно вернуться к точным определениям и формулировкам – и разобраться в деталях этого закона, которые могли позабыться.
О чем говорит закон Архимеда?
Существует легенда, что свой знаменитый закон древнегреческий ученый открыл, принимая ванну. Погрузившись в емкость, наполненную водой до краев, Архимед обратил внимание, что вода при этом выплеснулась наружу – и испытал озарение, мгновенно сформулировав суть открытия.
Скорее всего, в реальности дело обстояло иначе, и открытию предшествовали долгие наблюдения. Но это не столь важно, потому что в любом случае Архимеду удалось открыть следующую закономерность:
- погружаясь в любую жидкость, тела и объекты испытывают на себе сразу несколько разнонаправленных, но направленных перпендикулярно по отношению к их поверхности сил;
- итоговый вектор этих сил направлен вверх, поэтому любой объект или тело, оказавшись в жидкости в состоянии покоя, испытывает на себе выталкивание;
- при этом сила выталкивания в точности равна коэффициенту, который получится, если умножить на ускорение свободного падения произведение объема предмета и плотности жидкости.
Итак, Архимед установил, что тело, погружённое в жидкость, вытесняет такой объём жидкости, который равен объёму самого тела. Если в жидкость погружается только часть тела, то оно вытеснит жидкость, объём которой будет равен объёму только той части, которая погружается.
Та же самая закономерность действует и для газов – только здесь объем тела необходимо соотносить с плотностью газа.
Можно сформулировать физический закон и немного проще – сила, которая выталкивает из жидкости или газа некий предмет, в точности равна весу жидкости или газа, вытесненных этим предметом при погружении.
Закон записывается в виде следующей формулы:
Какое значение имеет закон Архимеда?
Закономерность, открытая древнегреческим ученым, проста и совершенно очевидна. Но при этом ее значение для повседневной жизни невозможно переоценить.
Именно благодаря познаниям о выталкивании тел жидкостями и газами мы можем строить речные и морские суда, а также дирижабли и воздушные шары для воздухоплавания. Тяжелые металлические корабли не тонут благодаря тому, что их конструкция учитывает закон Архимеда и многочисленные следствия из него – они построены так, что могут удерживаться на поверхности воды, а не идут ко дну. По аналогичному принципу действуют воздухоплавательные средства – они используют выталкивающие способности воздуха, в процессе полета становясь как бы легче него.
На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу вытесненной этим телом жидкости или газа.
В интегральной форме
Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.
Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой ) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.
Что касается тел, которые находятся в газе, например в воздухе, то для нахождения подъёмной силы (Силы Архимеда) нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.
В отсутствие гравитационного поля (Сила тяготения), то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление конвекции (естественное перемещение воздуха в пространстве), поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами
В формуле мы использовали:
Сила Архимеда
Плотность жидкости
Закон Архимеда: формула и примеры решений
Закон Архимеда представляет собой физический принцип, который гласит, что на тело, которое погружено полностью или частично в жидкость, в покое действует вертикально направленная сила, которая по своей величине равна весу жидкости, вытесненной этим телом. Эта сила называется гидростатической или архимедовой. Как и любая сила в физике, она измеряется в ньютонах.
Греческий ученый Архимед
Архимед вырос в семье, которая была связана с наукой, поскольку его отец, Фидий, был великим астрономом своего времени. С раннего детства Архимед стал проявлять интерес к наукам. Учился он в Александрии, где завел дружбу с Эратосфеном из Кирены. Вместе с ним Архимед впервые измерил окружность земного шара. Благодаря влиянию Эратосфена, в юном Архимеде также появился интерес к астрономии.
После возвращения в свой родной город Сиракузы ученый посвящает большое количество времени изучению математики, физики, геометрии, механики, оптики и астрономии. Во всех этих областях науки Архимед совершил различные открытия, понимание которых оказывается трудным даже для современного образованного человека.
Открытие Архимедом своего закона
Согласно исторической справке свой закон Архимед открыл интересным образом. Витрувий в своих трудах описывает, что сиракузский тиран Гиерон Второй поручил одному из мастеров отлить ему золотую корону. После того как корона была готова, он решил проверить, не обманул ли его мастер, и не добавил ли в золото более дешевое серебро, которое имеет меньшую плотность, чем царь металлов. Эту задачу он задал решить Архимеду. Ученому нельзя было нарушать целостность короны.
Однажды принимая ванну, Архимед обратил внимание, что уровень воды в ней поднимается. Этот эффект он решил использовать для вычисления объема короны, знание которого, а также массы короны, позволяло ему вычислить плотность предмета. Это открытие сильно поразило Архимеда. Витрувий описал его состояние так: он бежал по улице абсолютно раздетым, и кричал “Эврика!”, что с древнегреческого переводится “Я нашел!”. В итоге плотность короны оказалась меньше, чем чистого золота, и мастер был казнен.
Архимед создал труд, который называется “О плавающих телах”, где впервые подробно описывает открытый им закон. Отметим, что формулировка закона Архимеда, которую сделал сам ученый, практически не изменилась.
Объем жидкости, находящийся в равновесии с остальной жидкостью
В школе в 7 классе закон Архимеда начинают изучать. Чтобы понять смысл этого закона, следует сначала рассмотреть силы, которые действуют на определенный объем жидкости, находящейся в равновесии в толще остальной жидкости.
Сила, действующая на какую-либо поверхность рассматриваемого объема жидкости, равна p*dS, где p – давление, которое зависит только от глубины, dS – площадь этой поверхности.
Поскольку выделенный объем жидкости находится в равновесии, значит результирующая сила, действующая на поверхности этого объема, и связанная с давлением, должна уравновешиваться весом этого объема жидкости. Эта результирующая сила называется силой выталкивания. Точка приложения ее находится в центре тяжести этого объема жидкости.
Поскольку давление в жидкости вычисляется по формуле p =ro*g*h, где ro – плотность жидкости, g – ускорение свободного падения, h – глубина, то равновесие рассматриваемого объема жидкости определяется уравнением: вес тела = ro*g*V, где V – объем рассматриваемой части жидкости.
Замещение жидкости твердым телом
Рассматривая далее закон Архимеда в физике 7 класса, уберем рассматриваемый объем жидкости из ее толщи, а на свободное место поместим твердое тело того же объема и той же формы.
При этом результирующая сила выталкивания, которая зависит только от плотности жидкости и ее объема, останется прежней. Вес же тела, а также центр его тяжести в общем случае изменятся. В итоге на тело будут действовать изначально две силы:
- Сила выталкивания ro*g*V.
- Вес тела m*g.
В самом простом случае, если тело является однородным, тогда его центр тяжести совпадает с точкой приложения силы выталкивания.
Природа закона Архимеда и пример решения для полностью погруженного в жидкость тела
Предположим, что однородное тело массой m погрузили в жидкость с плотностью ro. При этом тело имеет форму параллелепипеда с площадью основания S и высотой h.
Согласно закону Архимеда на тело будут действовать следующие силы:
- Сила ro*g*x*S, которая обусловлена давлением, приложенным к верхней поверхности тела, где x – расстояние от верхней поверхности тела до поверхности жидкости. Эта сила направлена вертикально вниз.
- Сила ro*g*(h+x)*S, которая связана с давлением, действующим на нижнюю поверхность параллелепипеда. Она направлена вертикально вверх.
- Вес тела m*g, который действует вертикально вниз.
Давление, которое создает жидкость на боковые поверхности погруженного тела, равны друг другу по модулю и противоположны по направлению, поэтому в сумме дают нулевую силу.
В случае равновесия имеем: m*g + ro*g*x*S = ro*g*(h+x)*S, или m*g = ro*g*h*S.
Таким образом, природа выталкивающей силы или силы Архимеда заключается в разнице давлений, которые оказывает жидкость на верхнюю и нижнюю поверхности погруженного в нее тела.
Замечания к закону Архимеда
Природа выталкивающей силы позволяет сделать некоторые выводы из данного закона. Приведем важные выводы и замечания:
- Если плотность твердого тела будет больше плотности жидкости, в которую оно погружается, то архимедовой силы будет недостаточно, чтобы вытолкнуть это тело из толщи жидкости, и тело будет тонуть. Наоборот, тело будет плавать на поверхности жидкости только в том случае, если его плотность меньше плотности этой жидкости.
- В условиях невесомости для объемов жидкости, которые не могут создавать ощутимое гравитационное поле самостоятельно, не существует градиентов давления в толще этих объемов. В таком случае понятие о выталкивающей силе перестает существовать, и закон Архимеда оказывается неприменимым.
- Сумму всех гидростатических сил, действующих на погруженное в жидкость тело произвольной формы, можно свести к одной силе, которая направлена вертикально вверх и приложена к центру тяжести тела. Таким образом, в действительности не существует единой силы, приложенной к центру тяжести, такое представления является лишь математическим упрощением.
Плавучесть и формула принципа Архимеда с примерами
Механика
Принцип Архимеда гласит, что когда объект полностью или частично погружен в жидкость, на него действует выталкивающая сила, равная весу жидкости, которую он вытесняет. Лодки и корабли, плавающие на поверхности воды, являются примерами закона Архимеда. Суда работают по принципу плавучести.
Наполненный воздухом воздушный шар мгновенно взлетает на поверхность, если его отпустить под воду. То же самое произойдет, если кусок дерева выпустить под воду. Мы могли заметить, что кружка, наполненная водой, кажется легкой под водой, но становится тяжелой, как только мы вынимаем ее из воды.
Более двух тысяч лет назад греческий ученый Архимед заметил, что существует направленная вверх сила, действующая на объект, находящийся внутри жидкости. В результате в объекте наблюдается кажущаяся потеря веса, называемая выталкиванием жидкости.
См. также : Закон Паскаля
Формула принципа Архимеда
Рассмотрим твердый цилиндр с площадью поперечного сечения A и высотой h , погруженный в жидкость. Пусть h 1 и h 2 — глубины верхней и нижней граней цилиндра соответственно от поверхности жидкости.
Тогда h 2 – h 2 = h
Если P 1 и P 2 – давление жидкости на глубинах h 1 и h 2 соответственно, а ρ – плотность согласно уравнению, а (2):
P 1 = ρ g h 1
P 2 = ρ g h 2
Тогда сила F 1 на верхнюю часть цилиндра действует жидкость из-за давления P 1 , а сила F 2 действует на дно цилиндра со стороны жидкости из-за P 2 .
F 1 = P 1 A = ρ g h 1 A
and F 2 = P 2 A = ρ g h 2 A
F 1 and F 2 действуют на противоположные стороны цилиндра. Следовательно, результирующая сила F будет равна F 2 – Ф 1 в направлении Ф 2 . Эта результирующая сила F, действующая на цилиндр, называется выталкиванием жидкости.
F 2 – F 1 = ρ G H 2 A – ρ G H 1 A
= ρ GA (H 2 – H 1 )
UPTHRUST of Liquid = rah 1 )
UPTRORS
или =ρ gV
Здесь Ah – объем V цилиндра, равный объему жидкости, вытесняемой цилиндром. Следовательно, ρ g V — вес вытесненной жидкости. В уравнении на тело, погруженное в жидкость, действует взброс, равный весу вытесненной жидкости, что соответствует закону Архимеда.
Плотность объекта по закону Архимеда
Закон Архимеда также полезен для определения плотности объекта. Соотношение весов тела с равным объемом жидкости такое же, как и их плотностей.
Пусть Плотность объекта = D
Плотность жидкости = ρ
Вес объекта = w 1
Масса равного объема жидкости = w = w 1 – w 2
Здесь w 2 – вес твердых веществ в жидкости. По закону Архимеда w 2 меньше фактического веса w 1 на величину w.
Таким образом, найдя вес твердого тела в воздухе w и его вес в воде w 2, , мы можем рассчитать плотность твердого тела по приведенному выше уравнению.
смотрите также видео
Принцип плавучести
Плавающий объект вытесняет жидкость, вес которой равен весу объекта.
Объект тонет, если его вес превышает действующую на него тягу. Объект плавает, если его вес равен или меньше выталкивания. Когда объект плавает в жидкости, действующая на него тяга равна весу объекта. В случае плавучего объекта объект может быть частично погружен. Напор всегда равен весу жидкости, вытесненной объектом. Это принцип плавучести.
Статьи по теме
Проверить также
Закрыть
Диаграмма свободного тела – Принцип Архимеда $\Delta M$ формула
спросил
Изменено 4 года, 2 месяца назад
Просмотрено 561 раз
$\begingroup$
Я пытаюсь определить формулу для $\Delta M=M-M_{apparent}$ в терминах $\rho_o , \rho_w , M$ для полностью погруженного объекта и понятия не имею, с чего начать. Я попытался нарисовать силовую диаграмму, но это не помогло.
- диаграмма свободного тела
- плотность
- гидростатика
$\endgroup$
$\begingroup$
Используйте плотность = масса/объем
Самое главное здесь найти объем объекта, который равен массе объекта, деленной на плотность объекта.
Я думаю, теперь вы можете найти ответ, вам нужно поработать над ним. Решение всех проблем недопустимо и нехорошо для вас.
$\endgroup$
$\begingroup$
Поправлю вас, кажущейся массы не существует. Масса здесь постоянна. Правильным термином должен быть вес.
Пусть масса равна $M$. Тогда вес будет $Mg$, а кажущийся вес $Mg-\rho_{w}Vg$, где $V$ — объем воды, вытесненной телом.
Взгляните на следующую схему. Изображение здесь показывает, как действуют силы.