13-б. Первый закон Ньютона
- Главная
- Справочник
- Физика
- Книги, лекции и конспекты по физике
- Физика 9 класс
- Введение в динамику
- 13-б. Первый закон Ньютона
§ 13-б. Первый закон Ньютона
В предыдущей теме мы изучали движение тел без рассмотрения причин, его вызывающих или ему препятствующих. Теперь изучим движение с учётом таких причин – влиянием других тел. Проделаем опыт (см. рисунок).
Позволим тележке скатиться на стол с горкой песка. Въехав в песок, тележка увязнет в нём и остановится. Затем разровняем песок и вновь пустим тележку. На этот раз её скорость будет уменьшаться заметно медленнее. Если же совсем убрать песок, то уменьшение скорости тележки будет едва заметно.
На тележку перестал действовать песок, однако по-прежнему действует сила тяготения Земли и сила упругости стола. Чтобы уменьшить их влияние, поместим тележку в космический корабль и перелетим на Марс, где сила тяжести слабее (см.
Если сила тяжести станет нулевой, то исчезнет и «ответная» сила упругости. Тогда тележка, как и любое свободное тело, на которое не действуют другие тела, будет двигаться с постоянной скоростью бесконечно долго. Итак, всякое тело, свободное от действия других тел, сохраняет свою скорость неизменной – гласит первый закон Ньютона.
Он указывает нам, что если тело движется с некоторой скоростью, то оно и будет продолжать двигаться с той же скоростью, пока действие другого тела не заставит его изменить быстроту и/или направление движения. Кроме того, если тело покоится (то есть скорость равна нулю), то оно и будет продолжать покоиться (то есть скорость останется прежней) до тех пор, пока действие другого тела не приведёт его в движение.
Движение свободного тела называют движением по инерции, а сохранение им скорости называют инерцией. Это явление сохранения скорости свободным телом не следует путать со свойством инертности. Оно относится к несвободным телам, то есть таким, на которые действуют другие тела, и заключается в том, что для изменения скорости тела всегда требуется а) другое тело, действующее на изучаемое тело, и б) время, причём, тем большее, чем больше масса изучаемого тела (см. § 2-б).
Вспомним, что скорость одного и того же тела может быть разной с точки зрения разных наблюдателей (см. § 12-б). Другими словами, можно найти такую систему отсчёта, в которой свободное тело не будет сохранять свою скорость постоянной. Например, если в момент, когда тележка едет вперёд по столу в стоящем поезде, он начнёт движение вперёд, то тележка «ни с того ни с сего» покатится назад (см. рисунок). То есть, первый закон Ньютона выполняется не всегда – не во всех системах отсчёта.
Забегая вперёд, скажем, что в таких системах отсчёта не выполняются и второй, и третий законы Ньютона, а также и некоторые другие законы.
Системы отсчёта, в которых справедлив первый закон Ньютона, называют инерциальными системами отсчёта. Поэтому первый закон Ньютона называют законом инерции и формулируют так: существуют инерциальные системы отсчёта, относительно которых тела сохраняют скорость постоянной, если на них не действуют другие тела.
Для изучения движений земных тел систему отсчёта «наблюдатель на Земле» вполне можно считать инерциальной. Расчёты, сделанные в ней, довольно точно описывают движения тел. Наблюдения показывают, что если мы выбрали одну инерциальную систему отсчёта, то другие системы, которые покоятся или движутся прямолинейно и равномерно относительно неё, тоже будут инерциальными. Это значит, что и в таких системах все расчёты будут точно описывать наблюдаемые движения тел.
В вашем браузере отключен Javascript.Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Введение в динамику Формулы Физика Теория 9 класс 892
Источник
Заглавная страница
КАТЕГОРИИ: Археология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрации Техника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ? Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
⇐ ПредыдущаяСтр 2 из 10Следующая ⇒ 1. За первый закон движения Ньютон принял закон инерции, высказанный в частной форме еще Галилеем. Согласно этому закону тело, не подверженное внешним воздействиям, либо находится в покое, либо движется прямолинейно и равномерно. Такое тело называется свободным. Свободных тел не существует. Поэтому они являются физическими абстракциями. Однако можно поставить тело в такие условия, когда внешние воздействия на него по возможности устранены или практически компенсируют друг друга. Представив, что эти воздействия беспредельно уменьшаются, мы и приходим в пределе к представлению о свободном теле и свободном движении. 2. Закон инерции не может быть справедлив во всех системах отсчета. Классическая механика постулирует, что существует система отсчета, в которой все свободные тела движутся прямолинейно и равномерно. 3. Земная система отсчета не может быть точно инерциальной, так как Земля испытывает два вращательных движения: вокруг собственной оси и вокруг Солнца. Однако эти движения происходят относительно медленно и для множества движений можно считать, что земная система отсчета инерциальна. Нужны специальные опыты, чтобы вскрыть ее инерциальность. Гелиоцентрическая система отсчета, оси в которой направлены на почти неподвижные удаленные звезды, еще лучше удовлетворяет требованию инерциальности. В этой системе можно изучать движение тел, малых по сравнению с размерами Галактики. 4. То есть, если существует класс движений, который мы желаем изучать, то всегда можно построить систему отсчета, которая будет инерциальной для данного класса движений. 6 Масса. Импульс. Второй закон Ньютона. Сила. 1. Всякое тело оказывает сопротивление при попытках привести его в движение или изменить модуль или направление его скорости. Это свойство называется инертностью. У разных тел оно проявляется в разной степени. Мера инертности называется массой. Для сравнения масс можно применить закон сохранения импульса, который будет сформулирован позднее. Из этого закона можно найти отношение масс. Для перехода от отношения масс к массам как таковым, необходимо выбрать эталон массы. 2. За эталон выбрана масса международного эталона килограмма, хранящегося в Международном бюро мер и весов (расположено в г. Севр близ Парижа) и представляющего собой цилиндр диаметром и высотой 39.17 мм из платино-иридиевого сплава (90 % платины, 10 % иридия). Первоначально килограмм определялся как масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря. 3. Для формулировки второго закона Ньютона введем понятие импульса. Импульсом или количеством движения МТ называется вектор, равный произведению массы точки на ее скорость: . Импульсом или количеством движения системы материальных точек назовем сумму импульсов отдельных материальных точек: Эти формулы годятся для медленных движений ( ). В случае скоростей, близких к скорости света, формула для импульса МТ должна быть изменена. 4. Для формулировки второго закона Ньютона надо ввести понятие силы. Силой в механике считают всякую причину, изменяющую импульс тела. Это качественное определение. Количественное определение: в инерциальной системе отсчета производная импульса МТ по времени представляется уравнением: Отсюда, второй закон Ньютона: в инерциальной системе отсчета производная импульса МТ по времени равна действующей на нее силе. Для медленных движений и постоянной массе эту формулу можно представить в виде: Здесь однозначно определяется свойствами рассматриваемой МТ и окружающих ее тел, а также положениями и скоростями этих тел относительно МТ. Величина называется слой, действующей на рассматриваемую МТ. В частных случаях сила может определяться только положением или только одной ее скоростью, но не может явно зависеть от ускорения этой точки. Из закона следует, что сила – вектор, и сложение сил подчиняется правилу параллелограмма. Это уравнение не есть способ определения силы. Силы должны определятся как-нибудь по-другому. Например, с помощью динамометра. Подробности в учебнике. 3. Рассмотрим соотношение между первым и вторым законами Ньютона. Если положить , то получится . Отсюда следует, что , т.е. импульс, а с ним и скорость свободно движущейся МТ постоянны. Таким образом, формально первый закон Ньютона следует из второго. Однако формула, определяющая второй закон Ньютона, имеет смысл только в инерциальных системах отсчета, а для введения таких систем требуется отдельный, первый закон Ньютона. 4. Второй закон Ньютона позволяет ввести единицу силы. В системе СИ такая единица называется ньютон (Н). Один ньютон = эта сила, которая массе в 1 кг сообщает ускорение в 1 м/с2. Есть другая система, очень любимая физиками, СГС (сантиметр (см), грамм (г), секунда (с)). В этой системе единица силы называется дина (дин). 7 Третий закон Ньютона. Формулирование задачи движения материальных точек. Начальные условия. Рассмотрим замкнутую систему, состоящую из двух взаимодействующих МТ. В этом случае справедлив закон сохранения импульса Дифференцируя это уравнение по времени и использовав второй закон Ньютона, получим: . Где и — силы, с которыми рассматриваемые МТ действуют друг на друга. Привлечем опытный факт, согласно которому силы и направлены вдоль прямой, соединяющей взаимодействующие точки. Тогда мы приходим к третьему закону Ньютона: Силы взаимодействия двух материальных точек равны по величине, противоположно направлены и действуют вдоль прямой, соединяющей эти материальные точки. 2. Аналогично, можно сформулировать третий закон Ньютона, если МТ много. Для этого рассматриваются отдельно силы взаимодействия отдельных точек друг с другом. Пусть — сила, с которой i-я точка действует на k-ю, — сила, с которой k-я точка действует на i-ю. Третий закон утверждает, что обе эти силы направлены вдоль прямой, соединяющей взаимодействующие точки, причем . 3. Векторное уравнение движения МТ можно записать в координатной форме: То есть получили три дифференциальных уравнения. Для их решения необходимо задать либо две векторные, либо шесть числовых постоянных. Обычно берут значения радиус-вектора и скорости в момент времени . Их называют начальными условиями. Пример. Движение в поле силы тяжести. Галилеем было установлено, что все тела в пустоте вблизи Земли падают с одинаковым ускорением. Сила тяжести выражается формулой , и уравнение движения переходит в . Простым дифференцированием можно убедиться, что это уравнение имеет общее решение: при произвольных значениях постоянных векторов и . Эти два вектора должны быть заданы при . 4. Для системы из материальных точек необходимо задать начальный радиус-вектор и начальная скорость, т. е. всего векторов или чисел, определяющих начальные значения координат и скоростей материальных точек системы.
Силы в механике. Гравитационные силы. Закон всемирного тяготения. Принцип суперпозиции. Факты, подтверждающие закон всемирного тяготения. Сила упругости. Закон Гука. Сила трения. Сухое трение. Трение покоя. Трение скольжения. 1. Взаимодействие тел может происходить либо при непосредственном соприкосновении, либо на расстоянии. В первом случае взаимодействующие тела тянут или толкают друг друга. Возникающие при этом силы обычно вызываются деформациями тел. Если деформации малы, то от них можно отвлечься, учтя их влияние введением сил натяжения и давления. 2. Помимо сил, действующих при соприкосновении тел, в природе существуют силы, которые действуют на расстоянии, без участия промежуточной среды. К таким силам относятся гравитационные силы и силы взаимодействия наэлектризованных и намагниченных тел. 3. Согласно основным представлениям механики Ньютона силы, действующие на всякое тело в какой-либо момент времени, зависят от положения и скоростей остальных тел в тот же самый момент времени. Такое представление приводит к бесконечно большой скорости передачи взаимодействий. Опытные же факты привели к заключению, что скорость передачи взаимодействий ограничена скоростью света в вакууме. Отсюда сразу следует, что третий закон Ньютона не выполняется для взаимодействий на расстоянии. Физики нашли выход из этого. Они введи понятие поля. Тело возбуждают в окружающем пространстве силовое поле, которое в месте нахождения тела проявляется в виде действующих на него сил. И обратно. Взаимодействия прикосновением являются частными случаями полевого взаимодействия — через молекулярные поля. 4. Сила упругости. Силами упругости называются силы, возникающие при деформации тел, то есть при изменении их формы и размеров. При этом изменяются расстояния между молекулами внутри тела, и электромагнитные силы пытаются вернуть молекулы обратно. Если после прекращения действия силы, вызвавшей деформацию, тело принимает первоначальную форму и размеры, то деформация называется упругой. Простейшими деформациями являются деформации растяжения и сжатия. Они описываются законом Гука при малых упругих деформациях. На рисунке рассмотрен случай растяжения. Сила, вызывающая растяжения стержня обозначена . Равная ей по величине и противоположно направленная возвращающая сила выражается через экспериментальный закон Гука: . Здесь – размер, на который увеличилась длина стержня, а называется коэффициентом жесткости стержня. Знак минус указывает на то, что сила направлена в сторону, обратную изменения длины стержня. Если разделить силу на площадь сечения стержня , а удлинение на первоначальную длину стержня , то закон Гука преобразуется к виду: . Здесь называется модулем Юнга и зависит только от вещества стержня. Для конкретного стержня величина выражается из формулы . Аналогично представляется другая деформация — сдвига. Ее мы рассматривать не будем. Все малые деформации сводятся к деформациям растяжения и сдвига. 5. Гравитационная сила. Сила тяжести. Исаак Ньютон воспользовался тремя законами астронома Иоганна Кеплера и вывел закон всемирного тяготения, выражающийся формулой: . Здесь и — массы взаимодействующих материальных точек, — расстояние между точками, — сила взаимодействия, — гравитационная постоянная. Сила направлена по прямой, соединяющей МТ и является силой притяжения. В настоящее время этот закон обобщен в общей теории относительности. Как объясняется эта формула изнутри, пока не известно. За последние несколько лет выяснилось, что возможно существует темная материя, в которой предполагается гравитационная сила отталкивания. Вблизи планеты, в том числе вблизи Земли ( ), эта формула преобразуется к виду: , где называется ускорением свободного падения. Эта сила обычно называется силой тяжести. Силы трения. Силы трения действует на поверхности между движущимися телами. Различают сухое трение между твердыми телами и внутреннее трение между отдельными слоями одной и той же жидкости. Сейчас рассмотрим сухое трение, которое в свою очередь подразделяется на трение скольжения и трение качение. Ограничимся трением скольжения, которое представлено на рисунке. Тело расположено поверх тела . Рассмотрим силы, действующие на тело . — вес тела, — сила реакции опоры, — сила, толкающая тело вправо, — сила трения скольжения. В состоянии покоя вес и реакция опоры уравновешены. Если приложить силу , то при небольших ее величинах тело будет неподвижно, то есть сила трения равна по величине этой силе. Такая сила трения называется силой трения покоя. Но она не может быть больше некоторой опытной величины . Для этой величины установлено, что , где — коэффициент трения. Определяется материалами тел. Приближенная зависимость силы трения от скорости движения верхнего тела относительно нижнего представлено на рисунке. Сила внутреннего трения будет рассмотрена в другом месте.
⇐ Предыдущая12345678910Следующая ⇒ Читайте также: Алгоритмические операторы Matlab Конструирование и порядок расчёта дорожной одежды Исследования учёных: почему помогают молитвы? Почему терпят неудачу многие предприниматели? |
Последнее изменение этой страницы: 2016-08-01; просмотров: 591; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia. su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь – 161.97.168.212 (0.004 с.) |
Первый закон Ньютона — Физика
Физика
Наука
- Анатомия и физиология
- астрономия
- Астрофизика
- Биология
- Химия
- науки о Земле
- Наука об окружающей среде
- Органическая химия
- Физика
Математика
- Алгебра
- Исчисление
- Геометрия
- Преалгебра
- Предварительный расчет
- Статистика
- Тригонометрия
Гуманитарные науки
- Английская грамматика
- История США
- Всемирная история
- Сократическая мета
- Избранные ответы
.
.. и не толькоТемы
Первый закон Ньютона: формулировка, примеры и уравнение
Что такое первый закон Ньютона
Первый закон Ньютона гласит, что «Объект в состоянии покоя остается в покое, а объект в движении сохраняет постоянную скорость и движется по прямой, если на него не действует сила» .
Этот закон состоит из двух частей. Одна часть предсказывает поведение объекта в состоянии покоя, а другая часть предсказывает, когда он движется. Согласно первому закону Ньютона
- Покоящийся объект не может двигаться, если на него не действует сила, заставляющая его двигаться.
- Объект, движущийся с постоянной скоростью, не может остановиться или изменить свою скорость или направление, если на него не действует сила.
Сила, действующая на объект, является внешней и неуравновешенной. Уравновешенная сила не влияет на движение объекта. На изображении ниже показана тележка для покупок в состоянии покоя и в движении.
Первый закон НьютонаВажность первого закона Ньютона заключается в том, что он объясняет, как движутся объекты и как силы влияют на их движение. Например, футбольный мяч остается в покое, пока игрок не ударит его с силой. Движущийся мяч не остановится, если ему не помешает нога другого игрока или если вратарь не поймает его.
Почему первый закон Ньютона называется законом инерции
Другое название первого закона Ньютона — закон инерции. Причина в том, что инерция — это свойство объекта оставаться в покое или продолжать двигаться с постоянной скоростью и направлением. Например, движущаяся машина резко останавливается. Пассажиры в машине внезапно толкаются вперед. Это потому, что пассажиры находились в инерции движения, пока автомобиль не остановился. По этой причине рекомендуется пристегиваться ремнями безопасности в движущемся автомобиле.
Масса — еще одно свойство, измеряющее инерцию объекта. Объект с большей массой имеет большую инерцию, и его сложно переместить или остановить. Например, баскетбольный мяч легче сдвинуть, чем большой камень, потому что первый имеет большую массу, чем второй. 1. Книга, лежащая на столе Сила гравитации, известная как вес, и ii. Нормальная сила. Однако обе эти силы уравновешивают друг друга, так что на книгу не действует неуравновешенная сила. Именно по этой причине книга остается неподвижной.
2. Космонавты в космосе
Космонавты чувствуют себя в космосе в невесомости, потому что они далеки от влияния земного притяжения. Теперь рассмотрим астронавтов на Международной космической станции. МКС вращается вокруг Земли так, что ее центростремительная сила уравновешивает силу гравитации Земли. Поскольку силы уравновешены, космонавты внутри него чувствуют себя невесомыми.
Когда объект движется
1. Автомобиль
Автомобиль, движущийся по дороге с постоянной скоростью, останавливается при торможении. Тормоз останавливает вращение колес. Трение между колесами и дорогой развивается и останавливает автомобиль.
2. Воздушный шар
Воздушный шар, движущийся по прямой линии, будет продолжать двигаться в том же направлении, пока ветер не унесет его и не изменит направление. Здесь ветер является силой, ответственной за изменение направления воздушного шара. Воздушный шар может остановиться, если он застрял в дереве. Дерево прикладывает силу, необходимую для прекращения движения воздушного шара.
3. Космический корабль
Рассмотрим космический корабль, запущенный в космос. После выработки последнего ускорителя космический корабль самостоятельно дрейфует в межзвездное пространство с постоянной скоростью. Причина в том, что он не находится под влиянием гравитационной силы какой-либо другой планеты и не ощущает никакой силы. Предположим, он приближается к планете. Затем гравитационная сила планеты изменит курс космического корабля, что приведет к изменению его скорости и направления.
Уравнение первого закона Ньютона
Предположим, что на объект действуют несколько сил. Они векторно представлены как F 1 , F 2 , F 3 и т. д. Тогда результирующая сила на объекте определяется векторной суммой всех этих сил.
F net = F 1 + F 2 + F 3 …
OR, F 3 …
OR, F 9096 …
OR, F 9096 9096 .0131 net = Σ F i
Согласно первому закону результирующая сила, действующая на объект, равна нулю.