Формулы по теме электричество: Ошибка: 404 Категория не найдена

Содержание

Электричество – Основные формулы

1. Электростатика
1.1 Закон Кулона

q1, q2 — величины точечных зарядов,
r — расстояние между зарядами.

1.2 Напряженность поля уединенного точечного заряда

q — величина уединенного точечного заряда,
r — расстояние от заряда.

1.3 Потенциал точки в поле точечного заряда

q — величина уединенного точечного заряда,
r — расстояние от заряда.

1.4 Потенциальная энергия заряда в электростатическом поле

φ — потенциал,
q1 — величина заряда.

1.5 Потенциальная энергия заряда
q1 в поле точечного заряда

q — величина уединенного точечного заряда, который создает поле,

r — расстояние между зарядами.

1.6 Теорема Гаусса

N — поток вектора напряженности электрического поля через замкнутую поверхность,
q — полный заряд, находящийся внутри замкнутой поверхности.

1.7 Напряженность электрического поля вблизи от поверхности проводника

σ — поверхностная плотность заряда.

1.8 Емкость плоского кондесатора

q — заряд конденсатора,
U — модуль разности потенциалов между обкладками.

1.9 Энергия плоского кондесатора

q — заряд конденсатора,
U — модуль разности потенциалов между обкладками.

2. Постоянный электрический ток
2.1 Закон Ома для участка однородной цепи

U — напряжение на концах участка,
R — сопротивление участка цепи.

2.
2 Закон Ома для замкнутой цепи с источником тока

 — ЭДС (электродвижущая сила),
r — внутреннее сопротивление источника ЭДС.

2.3 Работа постоянного тока

U — напряжение на концах участка цепи,
t — время, за которое совершается работа.

2.4 Закон Джоуля-Ленца

Q — теплота,
R — сопротивление проводника,
t — время, за которое выделяется теплота.

2.5 Полная мощность, развиваемая источником тока

 — ЭДС источника тока,
R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.6 Полезная мощность

 — ЭДС источника тока,

R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.7 Коэффициент полезного действия источника тока

R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.8 Первое правило Кирхгофа

n — число проводников, сходящихся в узле;
Ik — сила тока в k-м проводнике.

2.9 Второе правило Кирхгофа

n — число неразветвленных участков в контуре;

m — число ЭДС в контуре.

Основные формулы по физике – ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

 Физические законы, формулы, переменные

 Формулы электричество и магнетизм

Закон Кулона:
где q1 и q2 – величины точечных зарядов, ԑ1  – электрическая постоянная;
ε – диэлектрическая проницаемость изотропной среды (для вакуума ε = 1),
r – расстояние между зарядами.

Напряженность электрического поля:

где Ḟ – сила, действующая на заряд q0 , находящийся в данной точке поля.

Напряженность поля на расстоянии r от источника поля:

1) точечного заряда

2) бесконечно длинной заряженной нити с линейной плотностью заряда τ:

3) равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда σ:

4) между двумя разноименно заряженными плоскостями

Потенциал электрического поля:

где W – потенциальная энергия заряда q0 .

Потенциал поля точечного заряда на расстоянии r от заряда:

По принципу суперпозиции полей, напряженность:

Потенциал:

где Ēiи ϕi – напряженность и потенциал в данной точке поля, создаваемый i-м зарядом.

Работа сил электрического поля по перемещению заряда q из точки с потенциалом ϕ1 в точку с потенциалом ϕ

2 :

Связь между напряженностью и потенциалом

1) для неоднородного поля:

2) для однородного поля:

1) 

 

2) 

 

Электроемкость уединенного проводника:

Электроемкость конденсатора:

где U = ϕ1 – ϕ2 – напряжение.

Электроемкость плоского конденсатора:

где S – площадь пластины (одной) конденсатора,

d – расстояние между пластинами.

Энергия заряженного конденсатора:

Сила тока:

Плотность тока:

где S – площадь поперечного сечения проводника.

Сопротивление проводника:

ρ – удельное сопротивление;

l – длина проводника;

S – площадь поперечного сечения.

Закон Ома

1) для однородного участка цепи:

2) в дифференциальной форме:

3) для участка цепи, содержащего ЭДС:

   где ε – ЭДС источника тока,

   R и r – внешнее и внутреннее сопротивления цепи;

4) для замкнутой цепи:

1)

 

2) 

 

3) 

 

4) 

 

Закон Джоуля-Ленца

 1) для однородного участка цепи постоянного тока:
    где Q – количество тепла, выделяющееся в проводнике с током,
    t – время прохождения тока;

 2) для участка цепи с изменяющимся со временем током:

1)

2)

Мощность тока:

Связь магнитной индукции и напряженности магнитного поля:

где B – вектор магнитной индукции,
μ √ магнитная проницаемость изотропной среды, (для вакуума μ = 1),
µ0 – магнитная постоянная ,
H – напряженность магнитного поля.

Магнитная индукция (индукция магнитного поля):
 1) в центре кругового тока
     где R – радиус кругового тока,

 2) поля бесконечно длинного прямого тока
     где r – кратчайшее расстояние до оси проводника;

 3) поля, созданного отрезком проводника с током
    где ɑ1 и ɑ2 – углы между отрезком проводника и линией, соединяющей концы отрезка и точкой поля;
 4) поля бесконечно длинного соленоида
     где n – число витков на единицу длины соленоида.

1)

 

2) 

 

3) 

 

4) 

 

Сила Лоренца:

по модулю
где F – сила, действующая на заряд, движущийся в магнитном поле,
v – скорость заряда q,
α – угол между векторами v и B.

Поток вектора магнитной индукции (магнитный поток через площадку S):
 1) для однородного магнитного поля ,
    где α – угол между вектором B и нормалью к площадке,
 2) для неоднородного поля

1)

 

2)

 

Потокосцепление (полный поток):
где N – число витков катушки.

Закон Фарадея-Ленца:
где ԑ– ЭДС индукции.

ЭДС самоиндукции:
где L – индуктивность контура.

Индуктивность соленоида:

где n – число витков на единицу длины соленоида,
V – объем соленоида.


Энергия магнитного поля:

Заряд, протекающий по замкнутому контуру при изменении магнитного потока через контур:

где ∆Ф = Ф2 – Ф1 – изменение магнитного потока, R – сопротивление контура.

Работа по перемещению замкнутого контура с током I в магнитном поле:

Тут физики!: Электричество. Формулы.


Электри́чество — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся прежде всего в способности создавать вокруг себяэлектрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела[7]. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплен вполне определенный знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и имеют, таким образом, место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон имеет отрицательный заряд, а протон и позитрон — положительный. Наиболее общая фундаментальная наука, имеющая предметом электрические заряды, их взаимодействие и поля, ими порождаемые и действующие на них (то есть практически полностью покрывающая тему электричества, за исключением таких деталей, как электрические свойства конкретных веществ, как то электропроводность итп) — это электродинамика. Квантовые свойства электромагнитных полей, заряженных частиц итп изучаются наиболее глубоко квантовой электродинамикой, хотя часть из них может быть объяснена более простыми квантовыми теориями.

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Цепь постоянного тока (или, строго говоря, цепь без комплексного сопротивления)

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока.

P = мощность (Ватт)

U = напряжение (Вольт)

I = ток (Ампер)

R = сопротивление (Ом)

r = внутреннее сопротивление источнка ЭДС

ε = ЭДС источника

Тогда для всей цепи:

  • I=ε/(R +r) – закон Ома для всей цепи.

И еще ниже куча формулировок закона Ома для участка цепи :

Электрическое напряжение:

  • U = R* I – Закон Ома для участка цепи
  • U = P / I
  • U = (P*R)1/2

Электрическая мощность:

  • P= U* I
  • P= R* I2
  • P = U 2/ R

Электрический ток:

  • I = U / R
  • I = P/ E
  • I = (P / R)1/2

Электрическое сопротивление:

  • R = U / I
  • R = U 2/ P
  • R = P / I2

НЕ ЗАБЫВАЕМ: Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.

Цепь переменного синусоидального тока c частотой ω.

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока и частоты.

Напомним, что любой сигнал, может быть с любой точностью разложен в ряд Фурье, т.е. в предположении, что параметры сети частотнонезависимы – данная формулировка применима ко всем гармоникам любого сигнала.

Закон Ома для цепей переменного тока:

где:

  • U = U0eiωt  напряжение или разность потенциалов,
  • I  сила тока,
  • Z = Reiφ  комплексное сопротивление (импеданс)
  • R = (Ra2+Rr2)1/2  полное сопротивление,
  • Rr = ωL — 1/ωC  реактивное сопротивление (разность индуктивного и емкостного),
  • Rа  активное (омическое) сопротивление, не зависящее от частоты,
  • φ = arctg Rr/Ra — сдвиг фаз между напряжением и током.
  • Естественно, применительно к цепям переменного тока можно говорить и об активной/реактивной мощности.

Электрические формулы и их описание

Чтобы работать с электричеством, делать разводку по дому, понимать правила ПУЭ и решать различные задачи, нужно знать основные формулы электричества, физические законы, приведенные известными учеными-физиками. Ниже рассмотрены основные теоремы по электрике, выведенные константы, физические правила, которые следует понимать каждому человеку.

Основные формулы электричества

Изучение основ электродинамики, электрики невозможно без определения электрического поля, точных зарядов, сопротивления и прочих явлений.

Формулы электричества

Поэтому важно рассмотреть все основные формулы электричества и примеры решения задач с их использованием.

Закон Кулона

Согласно короткому описанию, это физический закон, который говорит о взаимодействии между прямо стоящими точечными электрозарядами в зависимости от того, на каком расстоянии они находятся. Согласно полному определению, формулировка обозначает, что между двумя точками в виде электрических зарядов формируется вакуум. Там появляется конкретная сила, которая пропорциональна умножению их модульных частиц, поделенных на квадратный показатель расстояния.

Расстояние — длина, которая соединяет заряды. Сила взаимодействия направлена по отрезку. Кулоновская сила — сила, отталкивающая при зарядах минус-минус и плюс-плюс и притягательная при минус-плюс и плюс-минус.

Обратите внимание! Электрическая сила формула выглядит так: F=k⋅|q1|⋅|q2|/r2, где F — сила заряда, q — величина заряда, r — вектор или расстояние между зарядами, а k — коэффициент пропорциональности. Последний равен c2·10−7 Гн/м.

Закон Кулона

Решение задачи с законом Кулона. При наличии заряженных шариков, которые находятся на расстоянии 15 см и отталкиваются с силой 1 Н в поиске начального заряда, выявить неизвестное можно, переведя основные единицы в систему СИ и подставив величины в указанную формулу. Выйдет значение 2 * 5 * 10 (-8) = 10 (-7).

Напряженность поля уединенного точечного заряда

Электрическое поле будучи материей, создаваемой электрическими точечными зарядами, характеризуется разными величинами, в том числе напряженностью. Напряженность выступает векторной величиной или силовой характеристикой поля, которая направлена в сторону электростатического взаимодействия зарядов. Чтобы получить ее, нужно использовать формулу E = k (q / r (2)), где Е — векторное поле.

Напряженность поля уединенного точечного заряда

Согласно данной формулировке, напряженность поля заряда имеет обратную пропорциональность квадратному значению расстояния от заряда. То есть если промежуток увеличивается в несколько раз, показатель напряжения снижается в четыре.

Применить закон можно для решения задач. Например, неизвестен радиус. Тогда нужно преобразовать константу. Нужно решить уравнение E / r (2) = kq, подставив известные числа.

Потенциал точки в поле точечного заряда

Потенциалом в электростатическом поле называется скалярная величина, которая равна делению потенциального показателя энергии заряда на него. Он не зависит от величины q, которая помещена в область. Так как потенциальный показатель энергии зависит от того, какая выбрана система координат, то потенциал определяется с точностью до постоянной. Он равен работе поле, которое смещает единичный положительный заряд в бесконечность. Выражается через ф = W / q =const.

Потенциал точки в поле точечного заряда

Обратите внимание! В задачах можно преобразовывать константу. Если неизвестно W, то можно поделить q на ф, а если q — то, W на ф.

Потенциальная энергия заряда в электростатическом поле

Потенциальная энергия заряда в электростатическом поле

Поскольку работа электрического поля не зависит от выбранного движения заряженной частицы, а от его начального и конечного положения, есть термин потенциальной энергии. Это скалярная величина в координате пространства, которая показывает, как работает сила, когда частица перемещается по произвольному промежутку из одной в другую точку. Она равна разности значений передвижения частиц в этом промежутке. Выражается в следующем виде: А = П1 — П2, где П1 может быть x, y и z, а П2 — x2, y2 и z2. В задачах по физике нужно рисовать график, подставлять в константу известные значения и решать уравнения.

Потенциальная энергия заряда q1 в поле точечного заряда

Во время перемещения заряженных частиц по полю из одной точки в другую они совершают некую работу за определенный временной промежуток. Потенциальная энергия в этих точках не зависит от того, какой путь держат заряженные частицы. Энергия первого заряда пропорциональна его модулю. Выражается это все в формуле, представленной на картинке ниже. Задачи решать можно, используя представленную константу и вставляя известные значения.

Потенциальная энергия заряда q1 в поле точечного заряда

Теорема Гаусса

Основной закон в электродинамике, входящий в уравнения Максвелла. Это следствие из кулоновского умозаключения и принципа суперпозиции. По ней вектор напряжения поля движется сквозь произвольное значение замкнутой поверхности, окруженной зарядами. Он имеет пропорциональность сумме заряженных частиц, которые находятся внутри этого замкнутого пространства. Указанный вектор поделен на е0. Все это выражается формулой, указанной ниже.

Теорема Гаусса

Напряженность электрического поля вблизи от поверхности проводника

Напряженность суммарного пространства заряженных частиц имеет прямую пропорциональность поверхностному показателю их плотности. Если в задаче требуется найти напряженность, а поверхностная заряженная плотность это сигма, то нужно нарисовать цилиндр и обозначить, что поток сквозь его боковую поверхность равен 0. В таком случае линии напряженности будут параллельны боковой поверхности. Получится, что ф = 2ф, осн =2еs, а 2es =q / 2ε0.

Напряженность электрического поля вблизи от поверхности проводника

Емкость плоского конденсатора

Емкостью называется проводниковая характеристика, по которой электрический заряд может накапливать энергию. Плоским конденсатором называются несколько противоположно заряженных пластин, разделенных диэлектрическим тонким слоем. Емкостью плоского конденсатора считается его характеристика, способность к накоплению электрической энергии.

Обратите внимание! Это физическая величина, которая равна делению заряда на разность потенциалов его обкладки. Зарядом при этом служит заряженная одна пластина.

Если в задаче требуется узнать емкость конденсатора из двух пластин с площадью в 10(-2) квадратных метров и в них находится 2*10(-3) метровый лист, εэлектрическая постоянная с 8,85×10-12 фарад на метр и ε=6 — диэлектрическая проницаемость слюды. В таком случае нужно вставить значения в формулу C= ε* εS/d.

Емкость плоского конденсатора

Энергия плоского конденсатора

Поскольку любая частица конденсатора имеет способность запаса энергии, который сохранен на конденсаторной обкладке, вычислить эту самую Е просто, поскольку чтобы элемент зарядился, ему нужно совершить работу. Работа совершается полем. В результате была выведена следующая формула: Еp = А = qEd, где А является работой, d — расстоянием.

Энергия

Формулы для постоянного электрического тока

Постоянный электрический ток не изменяется в величине и направлении. Он используется для расчета замкнутой, однородной цепи, мощности и прочих параметров. Поэтому важно знать формулы для него и основные законы, связанные с ним.

Основной список формул

Закон Ома для участка однородной цепи

Чтобы электрический ток существовал, нужно поле. Для его образования, нужны потенциалы или разность их, выраженная напряжением. Ток будет направлен на снижение потенциалов, а электроны начнут свое передвижение в обратном направлении. В 1826 г. Г. Ом провел исследование и сделал заключение: чем больше показатель напряжения, тем больше ток, который проходит через участок.

К сведению! Смежные проводники при этом проводят электричество по-разному. То есть каждый элемент имеет свою проводимость, электрическое сопротивление.

В результате, согласно теореме Ома, сила тока для участка однородной цепи будет иметь прямую пропорциональность показателю напряжения на нем и обратную пропорциональность проводниковому сопротивлению.

Закон Ома

По формуле I = U / R, где I считается силой тока, U — напряжением, а R — электрическим сопротивлением, последнее значение можно найти, если p * l / S, где p является удельным проводниковым сопротивлением, l — длиной проводника, а S — площадью поперечного проводникового сечения.

Закон Ома для замкнутой цепи с источником тока

Ом сделал формулу и для замкнутой цепи. По ней ток на этом участке из токового источника, имеющего внутреннее и внешнее нагрузочное сопротивление, равен делению электродвижущей силы источника на сумму внутреннего и внешнего сопротивления. Она выглядит так: I = e / R + r, где I является токовой силой, е — ЭДС, R — сопротивлением, а r — внутренней сопротивляемостью источника напряжения.

Обратите внимание! В физическом смысле по этому закону, чем выше показатель ЭДС, тем выше источник энергии, больше скорость движения зарядов. Чем выше сопротивляемость, тем ниже величина тока.

Закон Ома для замкнутой цепи

Работа постоянного тока

Энергия, когда проходит через проводник, упорядоченно двигается в носитель. Во время движения она совершает работу. В результате работой постоянного тока называется деятельность поля, направленная на перенос электрических зарядов по проводнику. Она равна умножению I на совершаемое работой напряжение и время.

Закон Джоуля-Ленца

Когда электричество проходит через какой-то проводник с сопротивляемостью, всегда высвобождается теплота. Количество тепла, которое высвободилось за определенный промежуток времени, определяет закон Джоуля-Ленца. По формуле мощность тепла равняется умножению плотности электричества на напряжение — w =j * E = oE(2).

Обратите внимание! В практическом понимании закон имеет значение для снижения потери электроэнергии, выбора проводника для электроцепи, подбора электронагревательного прибора и использования плавкого предохранителя для защиты сети.

Закон Джоуля-Ленца

Полная мощность, развиваемая источником тока

Мощность — работа, которая совершается за одну секунду времени. Электрическая мощность является физической величиной, которая характеризует скорость передачи с преобразованием электроэнергии.

Работа, которая развивается источником электроэнергии по всей цепи, это полная мощность. Ее можно определить по формуле Р = El, где E считается ЭДС, а I — величиной токовой характеристики.

К сведению! Если есть линейная нагрузка, то полный мощностный показатель равен квадратному корню из квадратов активной и реактивной работы источника. Если есть нелинейная нагрузка, то она равна квадратному корню из квадратов активной и неактивной работы источника.

Полная мощность

В практических измерениях такая работа выражается в киловаттах в час. Используется, чтобы измерять потребление электричества в бытовых и производственных условиях, определять выработанную электрическую энергию в электрическом оборудовании.

Полезная мощность

Максимальная или полезная мощность — та, что выделяется во внешнем промежутке цепи, то есть во время нагрузки резистора. Она может быть применена для выполнения каких-либо задач. Подобное понятие можно применить, чтобы рассчитать, как работает электрический двигатель или трансформатор, который способен на потребление активной и реактивной составляющей.

Полезная мощность

Полезный мощностный показатель можно рассчитать по трем формулам: P = I 2R, P = U2 / r, P = IU, где I является силой тока на определенном участке цепи; U — напряжением на части клемм (зажимов) токового источника, а R — сопротивлением нагрузки или внешней цепью.

Коэффициент полезного действия источника тока

Коэффициентом полезного действия токового источника называется деление полезного мощностного показателя на полный. Если внутреннее сопротивление источника равно внешнему, то половина результатов всей работы будет утеряна в источнике, а другая половина будет выделена на нагрузке. В такой ситуации КПД будет равен 50 %.

Если рассматривать это понятие наиболее полно, то когда электрические заряды перемещаются по замкнутой электрической цепи, источник тока выполняет определенную полезную и полную работу. Совершая первую, он перемещает заряды во внешнюю цепь. Делая вторую работу, заряженные частицы перемещаются по всему участку.

КПД источника тока

Обратите внимание! Полезное действие достигается, когда сопротивление внешней электроцепи будет иметь определенное значение, зависящее от источника и нагрузки. Соотношения полезной работы на полную выражают формулой: η = Аполез / Аполн = Рполез / Рполн = U/ε = R / (R + r).

Первое правило Кирхгофа

Согласно первому закону Кирхгофу, токовая сумма в любом участке электрической цепи равняется нулевому значению. Направленный заряд к узлу положительный, а от него — отрицательный. Алгебраическая токовая сумма зарядов, которые направлены к узлу, равна сумме тех, которые направлены от него. Если перевести это правило, то можно получить следующее определение: сколько тока попадает в узел, столько и выходит из него. Это правило вытекает из закона о сохранности заряженных частиц.

Благодаря решению линейных уравнений на основе кирхгофских правил можно отыскать все токовые значения и напряжения на участках постоянного, переменного и квазистационарного электротоков.

Обратите внимание! В электотехнике правило Кирхгофа имеет особое значение, поскольку оно универсально для решения многих поставленных задач в теории электроцепи. С помощью него можно рассчитать сложные электрические цепи. Применяя его, можно получить систему линейных уравнений относительно токам или напряжениям на всех межузловых ветвях цепей.

Первое правило Кирхгофа

Второе правило Кирхгофа

Второе кирхгофское правило вытекает из первого и третьего максвеллского уравнения. По нему алгебраическая сумма напряжений на резистивных элементах замкнутого участка равна сумме ЭДС, которая входит в него. Если на участке нет ЭДС, то суммарный показатель падения напряжения равен нулевому значению. Если еще проще, то во время полного обхода контура потенциал изменяется. Он возвращается на исходное значение.

Частый случай для участка одного контура — это закон Ома. Составляя уравнения напряжений для контура, требуется подобрать его положительный обход. Чтобы это сделать, нужно знать, что при подборе обхода показатель падения напряжения ветви будет положительным, если обходное направление в ветви совпадает с тем, которое было ранее выбрано. Если оно не совпадает, то показатель напряжения ветви будет отрицательным.

Важно! Второе правило Кирхгофа можно использовать в линейной или нелинейной линеаризованной цепи при любом изменении токов и напряжения.

Второе правило Кирхгофа

В результате, чтобы понять основы физики явлений, электрики, электродинамики и с успехом использовать знания в процессе жизнедеятельности, необходимо знать выведенные теоремы, законы, формулы и правила в области электричества, которые представлены выше. Например, представляя, как выглядит та или иная формула, можно решить любую задачу в учебнике по физике или жизни.

Таблица большая основных формул электричества и магнетизма

 Физические законы, формулы, переменные  Формулы электричество и магнетизм

Закон Кулона:

  • где q1 и q2 – величины точечных зарядов, 
  • ε1  – электрическая постоянная;
  • ε – диэлектрическая проницаемость изотропной среды (для вакуума ε = 1),
  • r – расстояние между зарядами.

Напряженность электрического поля, где:

 F – сила, действующая на заряд q0 , находящийся в данной точке поля.

Напряженность поля на расстоянии r от источника поля:
1) точечного заряда
2) бесконечно длинной заряженной нити с линейной плотностью заряда τ:
3) плоскости с поверхностной плотностью заряда σ (не зависит от расстояния):
4) между двумя разноименно заряженными плоскостями с поверхностной плотностью заряда σ
(во вне такого “суперконденсатора” поле равно нулю по принцину суперпозиции):
Потенциал электрического поля: где W – потенциальная энергия заряда q0 .
Потенциал поля точечного заряда на расстоянии r от заряда:
По принципу суперпозиции полей,
  • Напряженность, принцип суперпозиции: 
  • Εi – напряженность и в данной точке поля, создаваемая i-м зарядом.
  • Потенциал, принцип суперпозиции:
  •  φi – потенциал в данной точке поля, создаваемый i-м зарядом.
Работа сил электрического поля по перемещению заряда q
из точки с потенциалом φ1 в точку с потенциалом φ2 :
Связь между напряженностью и потенциалом
1) для неоднородного поля:
2) для однородного поля:
Электроемкость уединенного проводника, где φ – потенциал проводника:
Электроемкость конденсатора: где U = φ1 – φ2 – напряжение.

Электроемкость плоского конденсатора, где:

S – площадь пластины (одной) конденсатора, d – расстояние между пластинами.

Энергия заряженного конденсатора:
Сила тока:
Плотность тока: где S – площадь поперечного сечения проводника.

Сопротивление проводника:

ρ – удельное сопротивление; l – длина проводника; S – площадь поперечного сечения.

Закон Ома
1) для однородного участка цепи:
2) в дифференциальной форме:

3) для участка цепи, содержащего ЭДС, где:

ε – ЭДС источника тока,    R и r – внешнее и внутреннее сопротивления цепи;

4) для замкнутой цепи:
Закон Джоуля-Ленца
 1) для однородного участка цепи постоянного тока:
    где Q – количество тепла, выделяющееся в проводнике с током,
    t – время прохождения тока;
 2) для однородного участка цепи постоянного тока:
Мощность тока:

Связь магнитной индукции и напряженности магнитного поля: где

B – вектор магнитной индукции,
μ v магнитная проницаемость изотропной среды, (для вакуума μ = 1),
µ0 – магнитная постоянная ,
H – напряженность магнитного поля.

Магнитная индукция (индукция магнитного поля):
 1) в центре кругового тока
     где R – радиус кругового тока,
 2) поля бесконечно длинного прямого тока
     где r – кратчайшее расстояние до оси проводника;
 3) поля, созданного отрезком проводника с током
    где α1 и α2 – углы между отрезком проводника и линией, соединяющей концы отрезка и точкой поля;
4) поля бесконечно длинного соленоида
     где n – число витков на единицу длины соленоида.
Сила Лоренца: по модулю
где F – сила, действующая на заряд, движущийся в магнитном поле,
v – скорость заряда q,
α – угол между векторами v и B.

Поток вектора магнитной индукции (магнитный поток через площадку S):

 1) для однородного магнитного поля ,
    где α – угол между вектором B и нормалью к площадке,

 2) для неоднородного поля
Потокосцепление (полный поток):
где N – число витков катушки.
Закон Фарадея-Ленца:
где ε– ЭДС индукции.
ЭДС самоиндукции:
где L – индуктивность контура.
Индуктивность соленоида: где n – число витков на единицу длины соленоида,
V – объем соленоида.

Энергия магнитного поля:

Заряд, протекающий по замкнутому контуру при изменении магнитного потока через контур, где:

 ΔΦ = Φ2 – Φ1 – изменение магнитного потока, R – сопротивление контура.

Работа по перемещению замкнутого контура с током I в магнитном поле:

формула формула мощности электрического тока

Электрический ток является физическим процессом. Если говорить упрощенно, то это упорядоченное движение заряженных частиц. Его протекание можно измерить и соответственно выразить в символьном и цифровом виде. Формула электрического тока, представляет собой выражение качественных и количественных параметров через сопротивление проводника, напряжение или разность потенциалов, а также через его силу. Так как любое перемещение чего-либо, подразумевает под собой совершение работы, то дополнительно можно вести разговор об электричестве используя формулу мощности электрического тока.

Основные понятия и формулы характеризующие электрический ток

Количественным параметром электрического тока является его сила, представляющая собой скалярную величину и выражающуюся в отношении заряда (принято обозначать буквой q) к периоду времени (t), за которое он пересекает сечение проводника. Следовательно, формула электрического тока, а если говорить правильно его сила, будет выглядеть следующим образом — I=q/t. Измеряется данный параметр в амперах. Так как скалярные величины являются действительными числами и определяются только значением, сила тока не может иметь отрицательный знак. С учетом того, что величина заряда не является постоянным параметром для разных электрических цепей, было введено понятие – плотность электрического тока (j), формула которой выглядят так – j=I/S, где S – площадь, пересекаемая зарядами. Следовательно, при увеличении силы тока и уменьшении поперечного сечения проводника плотность тока возрастает и наоборот. Как отмечалось выше, важными параметрами электричества, вернее электрической цепи являются напряжение в ней и сопротивление проводящих ток элементов.

Формула выражения силы электрического тока через сопротивление и напряжение

В отличие от фундаментальных исследований, в основе которых лежат теоретические выкладки данная зависимость была выведена практическим путем. Автором открытия является физик Ом, в честь которого закон и получил свое имя. По результатам своих опытов и экспериментов Ом пришел к выводу что сила тока (I) напрямую зависит от величины напряжения (U)и имеет обратную зависимость от сопротивления (R) элементов и деталей, включенных в электрическую цепь. Эту связь можно представить в виде – I=U/R. Путем несложных преобразований, формулы сопротивления и напряжения, выраженные через силу тока, будут выглядеть следующим образом – R=U/I и U=IxR, соответственно.


Формула силы электрического тока

Сопротивление электрического тока: формула
Формула напряжения электрического тока

Работа и мощность электрического тока

Формула мощности (Р) электрического тока напрямую зависит от его работы (А). Под работой тока подразумевается преобразование электрической энергии в механический, тепловой, световой или иной ее вид. Величина данного процесса напрямую зависит от времени его протекания, силы тока и напряжения в сети. Это можно выразить следующей формулой – А=IxUxt. Произведение (IxU) является ничем иным как мощностью. Следовательно, чем выше напряжение или сила тока в сети, тем большую мощность имеет электрический ток и большую работу он может совершить за единицу времени. Формула мощности электрического тока имеет следующий вид – Р=А/t или Р=IxU.


Работа электрического тока формула
Формула мощности электрического тока

Поэтому, если необходимо вычислить, какую работу производит ток, протекая по цепи в течение определенного времени, необходимо умножить мощность на временной промежуток, выраженный в секундах. Рассмотрим применение формул расчета работы и мощности электрического тока на примере электрического двигателя, подключенного к сети 220 В, а сила тока, измеренная амперметром для этого участка, составила 10А.

Р (мощность двигателя) = 10А (сила тока) х 220В (напряжение в сети) = 2200 Вт = 2,2 кВт.

Зная данный показатель, а также реальное или предполагаемое время функционирования электродвигателя можно определить какую работу он совершит за этот отрезок времени или другим словами сколько будет потрачено электроэнергии. Если двигатель был включен, например, 1 час, то можно найти искомое значение.

А (работа, совершенная двигателем) = 2,2 кВт (мощность) х 1 (время работы в часах) = 2,2 кВт ч. Именно этот показатель будет отражен на приборе учета расхода электроэнергии.

Исходя из того, что электрический ток является физическим процессом, то какой-либо его неизвестный параметр можно определить, зная его остальные характеристики. Приведем наиболее распространенные формулы для определения характеристик электрической цепи применяемые в электротехнике.

Напряжение или разность потенциалов
  • U = RxI
  • U = P/I
  • U = (P*R)1/2
Сила электрического тока
Сопротивление
  • R = U / I
  • R = U2/ P
  • R = P / I2
Мощность

В заключение отметим, что приведенная информация справедлива для цепей с постоянным электрическим током. Формулы, применяемые для расчета характеристик переменного тока, будут отличаться за счет введения дополнительных переменных и характеристик свойственных данному типу электричества.

Формулы – Электричество и магнетизм

Электростатическое поле в вакууме

Закон Кулона: ,

где

Напряженность электрического поля:

Напряженность поля точечного заряда:

Напряженность поля заряженного шара:

где R — радиус шара.

Принцип суперпозиции электрических полей:

Поток вектора напряженности через поверхность S:

Теорема Гаусса: ,

где ФЕ – поток вектора напряженности через замкнутую поверхность S, q – заряд, заключенный внутри поверхности S.

Линейная плотность заряда:

Поверхностная плотность заряда:

Объемная плотность заряда:

Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью, нитью:

Электрическое смещение:

Потенциал электрического поля:

Потенциал поля точечного заряда:

Потенциал поля заряженного шара:

Работа по перемещению заряда в электрическом поле: А = q (

где ( — разность потенциалов.

Энергия заряженного конденсатора

Энергия системы точечных зарядов:

Электрический момент диполя:

Механический момент, действующий на диполь в электрическом поле:

Поляризованность диэлектрика:

Связь поляризованности и напряженности электрического поля:, где χ – диэлектрическая восприимчивость.

Постоянный ток

Сила тока: .

Плотность тока: , где j=qnV.

Закон Ома для однородного участка цепи:

Сопротивление проводника:

Зависимость удельного сопротивления от температуры:

Закон Ома для неоднородного участка цепи:

Сила тока короткого замыкания:

.

Закон Ома для замкнутой цепи: .

Работа электрического поля на участке цепи:

Закон Джоуля-Ленца:

Мощность тока: P=I . U .

Полная мощность, выделяемая в цепи: P=I .  .

Первый закон Кирхгофа: .

Второй закон Кирхгофа:

Магнитное поле в вакууме и веществе

Закон Био-Савара-Лапласа:

,

где о=410-7Гн/м.

Магнитная индукция в центре кругового тока:

.

Магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током:

Магнитная индукция поля,

создаваемого отрезком проводника:

Связь магнитной индукции с напряженностью магнитного поля:

Магнитная индукция поля, создаваемого соленоидом в средней его части (или тороида на его оси):

Принцип суперпозиции магнитных полей:

Закон Ампера:

Сила взаимодействия двух прямых бесконечно длинных параллельных проводников с токами:

Магнитный момент контура с током:

Pm=I . S .

Механический момент, действующий на контур с током, помещенный в однородное магнитное поле:

M = pm . B sin 

Сила, действующая на заряд, движущийся в магнитном поле (сила Лоренца):

F = q V B sin 

Закон полного тока:

Магнитный поток через плоский контур:

Ф = B S cos  .

Потокосцепление, то есть полный магнитный поток, сцепленный со всеми витками соленоида или тороида:

.

Магнитный поток сквозь тороид, сердечник которого составлен из двух частей, изготовленных из веществ с различными магнитными проницаемостями:

Made in Russia Made by Miha

Электрические формулы

Общие электрические единицы, используемые в формулах и уравнениях:

  • Вольт – единица электрического потенциала или движущей силы – потенциал требуется для передачи одного ампера тока через один ом сопротивления
  • Ом – единица сопротивления – один ом – это сопротивление, обеспечиваемое прохождению одного ампера при подаче одного вольт
  • ампер – единицы тока – один ампер – это ток, который один вольт может передать через сопротивление в один ом
  • Ватт – единица электрической энергии или мощности – один ватт равен произведению одного ампера на один вольт – один ампер тока, протекающего под действием силы одного вольта, дает один ватт энергии
  • вольт ампер – произведение вольт и ампер как показывают вольтметр и амперметр – в системах постоянного тока вольт-ампер равен ваттам или передаваемой энергии – в системах переменного тока – вольт с и амперы могут быть или не быть на 100% синхронными – при синхронности вольт-амперы равны ваттам на ваттметре – когда несинхронные вольт-амперы превышают ватты – реактивная мощность
  • киловольт-ампер – один киловольт-ампер – кВА – равно 1000 вольт-ампер
  • Коэффициент мощности – отношение ватт к вольт-амперам

Электрический потенциал – закон Ома

Закон Ома можно выразить как:

U = RI (1a)

U = P / I (1b)

U = (PR) 1/2 (1c)

Скачать и распечатать закон Ома

Электрический ток – закон Ома

I = U / R (2a)

I = P / U (2b)

I = (P / R) 1/2 (2c)

Электрическое сопротивление – закон Ома

R = U / I (3a)

R = U 2 / P ( 3b)

R = P / I 2 (3c)

Пример – закон Ома

Батарея 12 В обеспечивает питание до сопротивления 18 Ом .

I = (12 В) / (18 Ом )

= 0,67 (A)

Электроэнергия

P = UI (4a)

P = RI 2 (4b)

P = U 2 / R (4c)

где

P = мощность (Вт, Вт, Дж / с )

U = напряжение (вольт, В)

I = ток (амперы, А)

R = сопротивление (Ом, Ом)

Скачать и распечатать закон Ома

Скачать и распечатать Закон Ома

Электроэнергия

Электроэнергия – это мощность, умноженная на время:

Вт = P t (5)

Whe re

Вт = энергия (Вт, Дж)

t = время (с)

Альтернатива – мощность может быть выражена

P = Вт / т (5b)

Мощность потребление энергии потреблением времени.

Пример – потеря энергии в резисторе

Батарея 12 В подключена последовательно с сопротивлением 50 Ом . Мощность, потребляемая резистором, может быть рассчитана как

P = (12 В) 2 / (50 Ом)

= 2,9 Вт

Энергия, рассеиваемая за 60 секунд , может быть рассчитана

Вт = (2,9 Вт) (60 с)

= 174 Вт, Дж

= 0.174 кВт

= 4,8 10 -5 кВтч

Пример – электрическая плита

Электрическая плита потребляет 5 МДж энергии от источника питания 230 В при включении в течение 60 минут .

Номинальная мощность – энергия в единицу времени – печи может быть рассчитана как

P = (5 МДж) (10 6 Дж / МДж) / ((60 мин) (60 с / мин))

= 1389 Вт

= 1.39 кВт

Ток можно рассчитать

I = (1389 Вт) / (230 В)

= 6 ампер

Электродвигатели

КПД электродвигателя

μ = 746 P / P input_w (6)

где

μ = КПД

P л.с. = выходная мощность (л.с.)

P input_w = входная электрическая мощность (Вт) )

или альтернативно

μ = 746 P л.с. / (1.732 VI PF) (6b)

Электродвигатель – мощность

P 3-фазный = (UI PF 1,732) / 1,000 (7)

где

P 3-фазный = электрическая мощность трехфазного двигателя (кВт)

PF = коэффициент мощности электродвигателя

Электродвигатель – ток

I 3-фазный = (746 P л.с. ) / (1 .732 В μ PF) (8)

где

I 3-фазный = электрический ток 3-фазный двигатель (амперы)

PF = коэффициент мощности электродвигателя

Напряжение, сопротивление току и электрическая мощность общие основные электрические формулы математические вычисления формула калькулятора для расчета энергии уравнение работы закон мощности ватт понимание общая электрическая круговая диаграмма расчет электричества электрическая ЭДС напряжение формула мощности уравнение два разных уравнения для расчета мощности общий закон Ома аудио физика электричество электроника формула колеса формулы амперы ватты омы уравнение косинуса звуковая инженерия круговая диаграмма заряд физика мощность звук запись вычисление электротехническая формула мощность математика пи физика взаимосвязь

напряжение ток сопротивление и электрическая мощность общие основные электрические формулы математические вычисления формула калькулятора сил для вычисления энергии уравнение работы закон мощности ватт понимание общая электрическая круговая диаграмма расчет электричества электрическая ЭДС напряжение формула мощности уравнение два разных уравнения для расчета мощности общий закон омов аудио физика электричество формула электроники формулы колеса ампер ватт вольт уравнение косинуса звуковая инженерия пирог диаграмма заряд физика мощность звук запись вычисление электротехника формула мощность математика пи физика отношение отношения – sengpielaudio Sengpiel Берлин

Электрический ток , Электроэнергетика , Электрическое напряжение

Электричество и Электрический заряд

Наиболее распространенные общие формулы, используемые в электротехнике 9404 Основные формулы и Расчеты

Взаимосвязь физических и электрических величин (параметров)
Электрическое напряжение В , ампера 42 удельное сопротивление R , полное сопротивление Z , мощность и мощность P
В В , ампер A, сопротивление и импеданс Ом Ом и Вт Вт

Номинальный импеданс Z = 4, 8 и 16 Ом (для громкоговорителей ) часто принимается сопротивление Р .
Уравнение (формула) закона Ома: V = I × R и уравнение (формула) степенного закона: P = I × V .
P = мощность, I или J = латиница: приток, международный ампер или интенсивность и R = сопротивление.
В = напряжение, разность электрических потенциалов Δ В или E = электродвижущая сила (ЭДС = напряжение).

Введите любые два известных значения и нажмите “вычислить”, чтобы решить для двух других. Пожалуйста, введите только два значения.
Используемый браузер, к сожалению, не поддерживает Javascript.
Программа указана, но фактическая функция отсутствует.


Колесо формул электротехники
В происходит от «напряжения», а E – от «электродвижущей силы (ЭДС)». E означает также энергии , поэтому мы выбираем V .
Энергия = напряжение × заряд. E = V × Q . Некоторым нравится лучше придерживаться E вместо V , так что сделайте это. Для R возьмите Z .
12 самых важных формул:
Напряжение В = I × R = P / I = √ ( P × R ) в вольтах В Ток I = В / R = P / В = √ ( P / R ) в амперах A
Сопротивление R = В / I = P / I 2 = В 2 / P в Ом Ом Мощность P = В × I = R × I 2 = В 2 / R в Вт Вт

См. Также: The Formula Wheel of Acoustics (Audio)

The Big Формулы мощности
Расчет электрической и механической мощности (прочности)

Формула мощности 1 – Уравнение электрической мощности: Мощность P = I × В = R × I 2 = В 2 R
, где мощность P в ваттах, напряжение В в вольтах, а ток I в амперах (постоянный ток).
Если есть переменный ток, посмотрите также на коэффициент мощности PF = cos φ и φ = угол коэффициента мощности
(фазовый угол) между напряжением и силой тока.
Electric Energy – это E = P × t – измеряется в ватт-часах или также в кВтч. 1Дж = 1Н × м = 1Вт × с

Формула мощности 2 – Уравнение механической мощности: Мощность P = E т , где мощность P находится в ватт,
Мощность P = работа / время ( Вт т ). Energy E в джоулях, а время t в секундах. 1 Вт = 1 Дж / с.
Мощность = сила, умноженная на смещение, деленное на время P = F × с / т или
Мощность = сила, умноженная на скорость (скорость) P = F × v.

Неискаженного мощного звука в этих формулах нет. Пожалуйста, берегите уши!
Барабанная перепонка и диафрагмы микрофона действительно двигаются только волнами
. звуковое давление .Это не влияет ни на интенсивность, ни на мощность, ни на энергию.
Если вы занимаетесь звукозаписывающим бизнесом, разумно не особо заботиться об энергии,
мощность и интенсивность, поскольку вызывают , больше заботьтесь об эффекте звукового давления p
и уровень звукового давления в ушах и микрофонах и посмотрите на соответствующий
аудио напряжение В ~ p ; см .: Звуковое давление и звуковая мощность – Последствия и причины
Очень громко звучащие динамики будут обладать большой мощностью, но лучше присмотреться к самому
важно КПД динамиков.Сюда входит типичный вопрос:
Сколько децибел (дБ) на самом деле в два или три раза громче?
Действительно нет мощности RMS. Слова «среднеквадратичная мощность» неверны. Есть расчет
мощности, которая является произведением среднеквадратичного напряжения и среднеквадратичного тока.
Ватт RMS бессмысленно. Фактически, мы используем этот термин как краткое обозначение мощности в
. ватт рассчитывается на основе измерения среднеквадратичного напряжения. Прочтите, пожалуйста, здесь:
Почему не существует таких понятий, как «среднеквадратичная ваттность» или «среднеквадратичная мощность ватт», и никогда не было.
Мощность “RMS” – довольно глупый термин, получивший широкое распространение среди аудиолюбителей.
Мощность – это количество энергии, которое преобразуется в единицу времени. Ожидайте, что заплатите больше, когда
требуя более высокой мощности.


Андр-Мари Ампре был французским физиком и математиком.
Его именем названа единица измерения электрического тока в системе СИ – ампер .
Алессандро Джузеппе Антонио Анастасио Вольта был итальянским физиком.
Его именем названа единица измерения электрического напряжения в системе СИ – вольт .
Георг Симон Ом был немецким физиком и математиком.
Его именем названа единица измерения электрического сопротивления СИ Ом .
Джеймс Ватт был шотландским изобретателем и инженером-механиком.
Единица измерения электрической мощности (мощности) в системе СИ, ватт , была названа его именем.



Мощность, как и все величины энергии, является в первую очередь расчетным значением.


Слово «усилитель мощности» используется неправильно, особенно в аудиотехнике.
Напряжение и ток можно усилить. Странный термин «усилитель мощности»
стал пониматься как усилитель, предназначенный для управления нагрузкой
например, громкоговоритель.
Мы называем произведение усиления по току и усилению по напряжению «усилением мощности».



Совет: треугольник электрического напряжения В = I × R (закон Ома VIR)
Введите два значения , будет рассчитано третье значение. Треугольник мощности P = I × V (степенной закон PIV)
Введите два значения , будет рассчитано третье значение.

С помощью волшебного треугольника можно легко вычислить все формулы. Вы прячетесь с
пальцем значение, которое нужно вычислить. Два других значения показывают, как производить расчет.

Расчеты: Закон Ома – магический треугольник Ома
Измерение входного и выходного сопротивления

ПЕРЕМЕННЫЙ ТОК (AC) ~

В l = линейное напряжение (вольт), В p = фазное напряжение (вольт), I l = линейный ток (амперы), I p = фазный ток ( амперы)
Z = полное сопротивление (Ом), P = мощность (ватты), φ = угол коэффициента мощности, VAR = вольт-амперы (реактивные)

Ток (однофазный): I = P / V p × cos φ Ток (3 фазы): I = P / √3 V l × cos φ или I = P /3 V p × cos φ
Питание (однофазное): P = V p × I p × cos φ Мощность (3 фазы): P = √3 V l × I l × cos φ или P = √3 V p × I p × cos φ
Коэффициент мощности PF = cos φ = R / (R2 + X2) 1/2 , φ = угол коэффициента мощности.Для чисто резистивной схемы PF = 1 (идеально).
Полная мощность S рассчитывается по Пифагору, активная мощность P и реактивная мощность Q . S = √ ( P 2 + Q 2 )
Формулы питания постоянного тока
Напряжение В, дюйма (В) вычисление из тока I дюйма (А) и сопротивления R дюйма (Ом):
В (В) = I (А) × R (Ом)
Мощность P в (Вт) рассчитывается исходя из напряжения В в (В) и тока I в (А):
P (Вт) = В (В) × I (A) = V 2 (V) / R (Ω) = I 2 (A) R (Ω)

Формулы питания переменного тока
Напряжение В, в вольтах (В) равно току I в амперах (А), умноженному на импеданс Z в омах (Ом):
В (В) = I ( A) Z ((Ом) = (| I | × | Z |) и ( θ I + θ Z )
Полная мощность S в вольт-амперах (ВА) равна напряжению В в вольтах (В), умноженному на ток I в амперах (А):
S (ВА) = В (V) I (A) = (| V | × | I |) и ( θ V θ I )
Реальная мощность P в ваттах (Вт) равна напряжению В, в вольтах (В), умноженному на ток I , в амперах (A), умноженному на
коэффициент мощности (cos φ ):
P (Вт) = В (В) × I (A) × cos φ
Реактивная мощность Q в вольт-амперах, реактивная (VAR) равна напряжению V в вольтах (В), умноженному на ток I
в амперах (A) на синус комплексного фазового угла мощности ( φ ):
Q (VAR) = V (V) × I (A) × sin φ
Коэффициент мощности (FP) равен абсолютному значению косинуса комплексного фазового угла мощности ( φ ):
PF = | cos φ |

Фактический коэффициент мощности, а не обычный коэффициент смещаемой мощности 50/60 Гц

Определения электрических измерений
Кол. Акций Имя Определение
частота f герц (Гц) 1 / с
усилие F ньютон (Н) кг · м / с²
давление p паскаль (Па) = Н / м² кг / м · с²
энергия E рабочий джоуль (Дж) = N · м кг · м² / с²
мощность P ватт (Вт) = Дж / с кг · м² / с³
электрический заряд Q кулон (Кл) = A · с A · с
напряжение В вольт (В) = Вт / д кг · м² / A · сек³
ток I ампер (А) = Q / с A
емкость C фарад (Ф) = C / V = ​​A · с / В = с / Ом · с 4 / кг ·
индуктивность L генри (H) = Wb / A = V · s / A кг · м² / A² ·
сопротивление R Ом (Ом) = В / А кг · м²A² ·
проводимость G сименс (S) = A / V · s³ / кг ·
магнитный поток Φ Вебер (Wb) = V · с кг · м² / A · с²
плотность потока B тесла (T) = Вт / м² = V · с / м² кг / А · с²

Поток электрического заряда Q упоминается как электрический ток I. Размер начисления за единицу времени
изменение электрического тока. Ток протекает с постоянной величиной I. за время t , он переносит
заряд Q = I × t . Для временно постоянной мощности соотношение между зарядом и током:
I = Q / t или Q = I × t. Благодаря этой взаимосвязи основные единицы усилителя и второй кулон в
Установлена ​​Международная система единиц.Кулоновскую единицу можно представить как 1 C = 1 A × s.
Заряд Q , (единица измерения в ампер-часах Ач), ток разряда I , (единица измерения в амперах A), время t , (единица измерения часов h).

В акустике мы имеем « Акустический эквивалент закона Ома »

Соотношение акустических размеров, связанных с плоскими прогрессивными звуковыми волнами

Преобразование многих единиц, таких как мощность и энергия

префиксы | длина | площадь | объем | вес | давление | температура | время | энергия | мощность | плотность | скорость | ускорение | сила

[начало страницы]

Основные электрические формулы | Flodraulic Group

Вольт (E):

Вольт = квадратный корень из (Вт x Ом)

Вольт = ватт / ампер

Вольт = амперы x Ом

Ом (R) :

Ом = вольт / ампер

Ом = вольт² / Вт

Ом = Вт / ампер²

Ватт (Вт) :

Вт = вольт² / Ом

Ватт = амперы² x Ом

Ватт = вольт x ампер

Амперы (I) :

Ампер = вольт / Ом

Ампер = ватт / вольт

А = квадратный корень из (Вт / Ом)

Формулы двигателя переменного тока :

E = напряжение / I = амперы / Вт = ватты / PF = коэффициент мощности / Eff = эффективность / HP = мощность

Однофазный :

Ток (амперы) I = л.с. x 746 (где известно hp)
E x Eff x PF
Ток (амперы) I = кВт x 1000 (где известен киловатт)
E x PF
Ток (амперы) I = кВА x 1000 (где известен Ква)
E
Мощность (л.с.) (л.с.) = I x E x Eff x PF
746
киловатт (кВт) (кВт) = I x E x PF
1000
киловольт-ампер (ква) кВА = I x E
1000

Трехфазный :

Ток (амперы) I = л.с. x 746 (где известно hp)
1.73 x E x Eff x PF
Ток (амперы) I = кВт x 1000 (где известен киловатт)
1,73 x E x PF
Ток (амперы) I = кВА x 1000 (где известен Ква)
1.73 x E
Мощность (л.с.) л.с. = 1,73 x I x E x Eff x PF (где известно hp)
746
киловатт (кВт) WK = 1.73 x I x E x PF (где известно hp)
1000
киловольт-ампер (ква) кВА = 1,73 x I x E (где известно hp)
1000

Формулы КПД и коэффициента мощности переменного тока:

Однофазный КПД: 746 x HP
E x I x PF
Коэффициент мощности однофазного двигателя: Потребляемая мощность
В x A
Трехфазный КПД: 746 x HP
E x I x PF x 1.732
Трехфазный коэффициент мощности: Потребляемая мощность
E x I x 1,732

Электрические правила большого пальца:

Скорость синхронизации Прибл. Крутящий момент
об / мин фунт-фут на л.с.
3600 1.4
1800 3
1200 4,5
900 5,8

Номинальная Приблизительный ток в амперах / л. С.
Напряжение Однофазный Трехфазный
115 10
230 5 2.5
460 1,25
575 1

Примечание : Эта информация предоставляется в качестве справочного ресурса и не предназначена для использования вместо квалифицированной инженерной помощи. Несмотря на то, что были предприняты все усилия для обеспечения точности этой информации, могут возникать ошибки. Таким образом, ни Flodraulic, ни любая из ее дочерних компаний, ни ее сотрудники не несут никакой ответственности за ущерб, травмы или неправильное применение в результате использования этого справочного руководства.

Электрический ток – Веб-формулы

Электрический ток определяется по формуле:

I = В / R

Соответствующие единицы:
Ампер (А) = вольт (В) / Ом (Ом)

Эта формула выводится из закона Ома. . Где у нас:
В: напряжение
I: текущий
R: сопротивление

Если электрическая мощность и полное сопротивление известны, то ток можно определить по следующей формуле:

I = √ ( P / R )

Соответствующие единицы:
Ампер (А) = √ (Ватт (Вт) / Ом (Ом))

Где P – электрическая мощность.


Электрический ток
Скорость потока заряда через поперечное сечение некоторой области металлического провода (или электролита) называется током через эту область.

Если скорость потока заряда непостоянна, тогда ток в любой момент задается дифференциальным пределом: I = dQ / dt.

Если заряд Q проходит по цепи в течение времени t, то
I = Q / t.

Единица измерения тока S.I называется ампер (А) (кулон в секунду).
1 ампер = 6,25 × 10 8 электронов / сек

В металлических проводниках ток возникает из-за движения электронов, тогда как в электролитах и ​​ионизированных газах и электроны, и положительные ионы движутся в противоположном направлении. Направление тока принимается за направление движения положительных зарядов.

В проводимости, хотя ток возникает только за счет электронов, ранее предполагалось, что ток возникает из-за положительных зарядов, протекающих от положительного полюса батареи к отрицательному.Поэтому направление тока считается противоположным потоку электронов.

Если ток постоянный: Δq = I.Δt

функция времени:

Заряд = Площадь под графиком = ½ × t 0 × I 0

To Найти ток в электрической цепи
Для простой цепи или одиночного провода мы имеем:

Для сложной цепи с более чем одним проводом мы можем определить ток с помощью двух законов Кирхгофа

Первый закон: Этот закон основан на на принципе сохранения заряда и утверждает, что в электрической цепи (или сети проводов) алгебраическая сумма токов, встречающихся в точке, равна нулю.

Острие стрелки, отмеченное на схеме, представляет направление обычного тока, то есть направление потока положительного заряда, тогда как направление потока электронов дает направление электронного тока, которое противоположно направлению обычного тока.
I 1 + I 4 + I 5 = I 3 + I 2 + I 6

Второй закон: Алгебраическая сумма произведения тока и сопротивление в любом замкнутом контуре цепи равно алгебраической сумме электродвижущих сил, действующих в этом контуре.
Математически.

Электродвижущие силы – ЭДС () источника определяется как работа, совершаемая на единицу заряда при прохождении положительного заряда через гнездо ЭДС от конца с низким потенциалом к ​​концу с высоким потенциалом. Таким образом,
𝜖 = w / Q

Когда ток не течет, ЭДС источника точно равна разности потенциалов между его концами. Единица ЭДС такая же, как и у потенциала, то есть вольт.

Средний поток электронов в проводнике, не подключенном к батарее, равен нулю, т.е. количество свободных электронов, пересекающих любой участок проводника слева направо, равно количеству электронов, пересекающих участок проводника справа налево. Таким образом, ток не течет по проводнику, пока он не будет подключен к батарее.

Скорость дрейфа свободных электронов в металлическом проводнике

В отсутствие электрического поля свободные электроны в металле беспорядочно вращаются во всех направлениях, поэтому их средняя скорость равна нулю.При приложении электрического поля они ускоряются в направлении, противоположном направлению поля, и поэтому имеют общий дрейф в этом направлении. Однако из-за частых столкновений с атомами их средняя скорость очень мала. Эта средняя скорость, с которой электроны движутся в проводнике под действием разности потенциалов, называется дрейфовой скоростью .

Если E – приложенное поле, e – заряд электрона, m – масса электрона и τ – временной интервал между последовательными столкновениями (время релаксации), то ускорение электрона составляет

Поскольку средняя скорость сразу после столкновения равна нулю, а непосредственно перед следующим столкновением это τ, скорость дрейфа должна быть:

Если I – ток через проводник и n – это количество свободных электронов на единицу объема, тогда можно показать, что:

подвижность µ носителя заряда определяется как скорость дрейфа на единицу электрического поля:

Плотность тока (J)
(i)
(ii) S.I Единица J = Am -2 .
(iii) Плотность тока – это векторная величина, ее направление – это направление потока положительного заряда в данной точке внутри проводника.
(iv) Размеры плотности тока = [M 0 L -2 T o A 1 ]

Носители тока: заряженные частицы, поток которых в определенном направлении составляет электрический ток, являются носителями тока. . Носители тока могут иметь положительный или отрицательный заряд.Ток переносится электронами в проводниках, ионами в электролитах, электронами и дырками в полупроводниках.

Пример 1: Частица с зарядом q кулонов описывает круговую орбиту. Если радиус орбиты равен R, а частота орбитального движения частиц равна f, то найти ток на орбите.

Решение: Через любой участок орбиты заряд проходит f раз за одну секунду. Следовательно, через этот участок общий заряд, проходящий за одну секунду, равен fq.По определению i = fq.

Пример 2: Ток в проводе изменяется со временем в соответствии с уравнением I = 4 + 2t, где I в амперах, а t в секундах. Вычислите количество заряда, прошедшего через поперечное сечение провода за время от t = 2 с до t = 6 с.

Решение: Пусть dq будет изменением, которое произошло за небольшой интервал времени dt.
Тогда dq = I dt = (4 + 2t) dt

Следовательно, общий заряд, прошедший за интервал t = 2 с и t = 6, составляет
q = ∫ 6 2 (4 + 2t) dt = 48 кулонов

Пример 3: Дан токоведущий провод неоднородного сечения.Что из следующего является постоянным по всей сети?
(a) Только ток
(b) Ток и скорость дрейфа
(c) Только скорость дрейфа
(d) Ток, скорость дрейфа

Решение : (a)

Пример4 : Когда разность потенциалов на данном медном проводе увеличивается, скорость дрейфа
носители заряда:
(а) Уменьшается
(б) Увеличивается
(в) Остается прежним
(г) Уменьшается до нуля
Решение : (б)

Полезно Таблицы электрических расчетов

Компания Chapman Electric Supply стремится помочь вам выполнять свою работу правильно.Ниже вы найдете различные диаграммы, которые помогут вам рассчитать ваши потребности в широком спектре электрических приложений. Они пригодятся как профессиональным электрикам, так и электрикам-любителям. Вы также можете найти больше статей в нашем разделе ресурсов.

Если у вас остались вопросы, свяжитесь с нами сегодня! Мы готовы помочь вам решить любую проблему. У нас есть ноу-хау и многолетний опыт качественного обслуживания и поставок.

Формулы переменного / постоянного тока

Используйте эти формулы для расчета ампер, киловатт, киловольт и лошадиных сил для разных напряжений и фаз

Найти Постоянный ток AC / 1 фаза
115 В или 120 В
AC / 1 фаза
208,230 или 240 В
3 фазы переменного тока
Все напряжения
А при известной мощности
л.с.
л.с. x 746
E x Eff
л.с. x 746
E x Eff X PF
л.с. x 746
E x Eff x PF
л.с. x 746
1.73 x E x Eff x PF
ампер при известном значении
киловатт
кВт x 1000
E
кВт x 1000
E x PF
кВт x 1000
E x PF
кВт x 1000
1,73 x E x PF
А, если известно
кВА

кВА x 1000
E
кВА x 1000
E
кВА x 1000
1.73 x E
Киловатт I x E
1000
I x E x PF
1000
I x E x PF
1000
I x E x 1,73 PF
1000
Киловольт-ампер I x E
1000
I x E
1000
I x E x 1,73
1000
Мощность
(мощность)
I x E x Eff
746
I x E x Eff x PF
746
I x E x Eff x PF
746
I x E x Eff x 1.73 х ПФ
746

лошадиных сил
Ключ:
E = Напряжение I = Ампер Вт = Ватт
PF = коэффициент мощности Eff = КПД л.с. =

Закон Ома

Закон Ома состоит из математической зависимости между напряжением, током и сопротивлением.Закон Ома гласит, что в электрической цепи ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Круговая диаграмма закона Ома

P = Вт
I = Ампер
R = Ом
E = Вольт

Формулы КПД и коэффициента мощности переменного тока

КПД по переменному току

92
6 x HP
E x I x PF
Найти Однофазный Трехфазный
КПД 746 x HP
E x I x PF x 1.732
Коэффициент мощности Потребляемая мощность
В x A
Потребляемая мощность
E x I x 1,732

Питание – цепи постоянного тока

Вт = E xI
Ампер = Вт / д

лошадиных сил
Ключ:
E = Напряжение I = Ампер Вт = Ватт
PF = коэффициент мощности Eff = КПД л.с. =

Таблица формул падения напряжения

Однофазный
(2- или 3-проводный)
VD = 2 x K x I x L
CM
K = Ом на мил-фут

(Медь = 12.9 при 75 °)

(квасцы = 21,2 при 75 °)
L = длина проводника в футах

I = Ток в проводнике (в амперах)

CM = круглая площадь в миллиметрах кондуктор

СМ = 2K x L x I
VD
Трехфазный VD = 1,73 x K x I x L
CM
СМ = 1,73 x K x L x I
VD

Примечание: K значение изменяется в зависимости от температуры.

CS

Уравнение электрической энергии

Количество электроэнергии, потребляемой электрической энергией, можно легко рассчитать, а также можно рассчитать стоимость электроэнергии, используемой для конкретного устройства

Расчет электроэнергии

Количество электроэнергии, передаваемой прибору, зависит от его мощности и продолжительности включения. Количество передаваемой электрической энергии от сети измеряется в киловатт-часах, кВтч.Одна единица – 1 кВтч.

Формула электрической энергии

E = P × t

  • E – переданная энергия в киловатт-часах, кВтч
  • P – мощность в киловаттах, кВт
  • T – время в часах, ч.

Обратите внимание, что мощность здесь измеряется в киловаттах, а не в обычных ваттах. Чтобы преобразовать Вт в кВт, необходимо разделить на 1000.

Например, 1000 Вт = 1000 ÷ 1000 = 1 кВт.

Также обратите внимание, что здесь время измеряется в часах, а не в секундах.Чтобы перевести секунды в часы, нужно разделить на 3600.

Например, 7200 с = 7200 ÷ 3600 = 2 часа.

Закон Ома

Наиболее важным описанием электрической энергии является закон Ома. В нем говорится, что

«При постоянной температуре ток через проводник прямо пропорционален разности потенциалов в точках»

то есть V α I

А также можно записать как V = IR

Где R – сопротивление проводника

Формула для расчета мощности от электрической энергии

Формула, связывающая энергию и мощность:

Энергия = Мощность x Время.

Единица измерения энергии – джоуль, единица мощности – ватт, единица времени – секунда.

Если мы знаем мощность прибора в ваттах и ​​сколько секунд оно используется, мы можем вычислить количество джоулей электрической энергии, которые были преобразованы в другую форму вылета.

Например, Если лампу на 40 ватт включить на один час, сколько джоулей электрической энергии было преобразовано лампой?

Энергия (Вт) = Мощность x Время

Энергия = 40 x 3600

= 14 400 джоулей

Примеры электроэнергии

Вычислите количество тепла, выделяемого электрическим утюгом с сопротивлением 30 Ом и потребляющим ток 3 ампера при включении в течение 15 секунд.

Энергия = Мощность x Время

Мощность = I2R

= 32 * 30

= 270 Вт

Энергия = Мощность x Время

= 270 х 15

= 4050 джоулей

Важные факты, касающиеся уравнений электрической энергии

  • Мы платим за энергию (не за заряд, ток или напряжение).
  • Электроэнергетические компании используют внесистемную единицу – кВтч для расчета наших счетов.

Что нужно запомнить

Электрическая энергия определяется как общая выполненная работа или энергия, поставленная источником e.м.ф. в поддержании тока в электрической цепи в течение заданного времени:
Электрическая энергия = электрическая мощность × время = P × t.

Таким образом, формула для электрической энергии имеет вид:

Электрическая энергия = P × t = V × I × t = I2 × R × t = V2t / R.

  • S.I единицей электрической энергии является джоуль (обозначается Дж), где 1 джоуль = 1 ватт × 1 секунда = 1 вольт × 1 ампер × 1 секунда.
  • Коммерческой единицей электроэнергии является киловатт-час (кВтч), где 1 кВтч = 1000 Втч = 3.6 × 106Дж = одна единица потребляемой электроэнергии.
  • Количество единиц потребляемой электроэнергии равно n = (общая мощность × время в часе) / 1000.
  • Стоимость потребления электроэнергии в доме = нет. единиц потребляемой электрической энергии × количество на одну единицу электрической энергии.

Электроэнергия прочие

Мощность и энергия | Клуб электроники

Энергетика и энергетика | Клуб электроники

Мощность | Рассчитать | Перегрев | Энергия

Следующая страница: AC, DC и электрические сигналы

См. Также: напряжение и ток

Что такое мощность?

Мощность – это скорость использования или поставки энергии:

Мощность измеряется в ваттах (Вт)
Энергия измеряется в джоулях (Дж)
Время измеряется в секундах (с)

Электроника в основном связана с малым количеством энергии, поэтому мощность часто измеряется в милливаттах (мВт), 1 мВт = 0.001W. Например, светодиод потребляет около 40 мВт. а бипер потребляет около 100 мВт, даже лампа, такая как фонарик, потребляет всего около 1 Вт.

Типичная мощность, используемая в электрических цепях сети, намного больше, поэтому эта мощность может быть измеряется в киловаттах (кВт), 1 кВт = 1000 Вт. Например, в обычной сетевой лампе используется 60 Вт, а чайник потребляет около 3 кВт.


Расчет мощности по току и напряжению

Уравнения

Мощность = Ток × Напряжение

Есть три способа написать уравнение для мощности, тока и напряжения:

где:

P = мощность в ваттах (Вт)
V = напряжение в вольтах (В)
I = ток в амперах (A)

или:

P = мощность в милливаттах (мВт)
V = напряжение в вольтах (В)
I = ток в миллиамперах (мА)

Треугольник PIV

Вы можете использовать треугольник PIV, чтобы запомнить эти три уравнения.Используйте его так же, как треугольник закона Ома:

  • Чтобы вычислить мощность , P : поместите палец на P, это оставляет I V, поэтому уравнение P = I × V
  • Чтобы рассчитать ток , I : положите палец на I, это оставляет P над V, поэтому уравнение I = P / V
  • Для расчета напряжения, В : поместите палец на V, это оставляет P над I, поэтому уравнение V = P / I

Усилитель довольно большой для электроники, поэтому мы часто измеряем ток в миллиамперах (мА), а мощность в милливаттах (мВт).

1 мА = 0,001 А и 1 мВт = 0,001 Вт.


Расчет мощности с использованием сопротивления

Уравнения

Используя закон Ома V = I × R

мы можем преобразовать P = I × V в:

где:

P = мощность в ваттах (Вт)
I = ток в амперах (A)
R = сопротивление в Ом ()
В = напряжение в вольтах (В)

Треугольники

Вы также можете использовать треугольники, чтобы помочь с этими уравнениями:



Потраченная впустую мощность и перегрев

Обычно используется электроэнергия, например, зажигание лампы или двигателя.Однако электрическая энергия преобразуется в тепло всякий раз, когда ток проходит через сопротивление, и это может быть проблемой, если оно вызывает перегрев устройства или провода. В электроники эффект обычно незначителен, но если сопротивление низкое (провод или низкий резистора номинального значения, например) ток может быть достаточно большим, чтобы вызвать проблему.

Из уравнения P = I² × R видно, что для данного сопротивление мощность зависит от тока в квадрате , поэтому удвоение тока даст в 4 раза большую мощность.

Резисторы рассчитаны на максимальную мощность, которую они могут развить в них без повреждений, но номинальная мощность редко указывается в списках деталей, потому что подходят стандартные значения 0,25 Вт или 0,5 Вт. для большинства схем. Дополнительная информация доступна на странице резисторов.

Провода и кабели рассчитаны на максимальный ток, который они могут пропускать без перегрева. У них очень низкое сопротивление, поэтому максимальный ток относительно велик. Для получения дополнительной информации о текущий рейтинг см. на странице кабелей.


Энергия

Количество потребляемой (или подаваемой) энергии зависит от мощности и времени, в течение которого она используется:

Устройство малой мощности, работающее в течение длительного времени, может потреблять больше энергии, чем устройство высокой мощности работает непродолжительное время.

Например:
  • Лампа мощностью 60 Вт, включенная на 8 часов, потребляет 60 Вт × 8 × 3600 с = 1728 кДж.
  • Чайник мощностью 3 кВт, включенный на 5 минут, потребляет 3000 Вт × 5 × 60 с = 900 кДж.

Стандартной единицей измерения энергии является джоуль (Дж), но 1Дж – очень небольшое количество энергии для электросети. поэтому в научной работе иногда используются килоджоуль (кДж) или мегаджоуль (МДж).

Дома мы измеряем электрическую энергию в киловатт-часах (кВтч), которые часто называют просто «единицей». электричества, когда контекст ясен. 1 кВт · ч – это энергия, потребляемая электроприбором мощностью 1 кВт при включении на 1 час:

Например:
  • Лампа мощностью 60 Вт, включенная на 8 часов, потребляет 0,06 кВт × 8 = 0,48 кВт · ч.
  • Чайник мощностью 3 кВт, включенный на 5 минут, потребляет 3 кВт × 5 / 60 = 0,25 кВтч.

Возможно, вам потребуется преобразовать бытовую единицу кВтч в научную единицу энергии, джоуль (Дж):

1 кВтч = 1 кВт × 1 час = 1000 Вт × 3600 с = 3.6MJ


Следующая страница: Сигналы постоянного и переменного тока | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.

Оставить комментарий