Формулы с мощностью: Как найти мощность – формулы для расчета

Как найти мощность – формулы для расчета

Работа электрической цепи определяется многими параметрами, в том числе и мощностью, играющей важную роль наряду с силой тока и напряжением. Данный показатель служит одной из характеристик электрических устройств и оборудования. Поэтому довольно часто возникает вопрос, как найти электрическую мощность того или иного прибора. Это необходимо для того, чтобы знать его энергопотребление и возможности совершения полезной работы.

Содержание

Понятие мощности электрического тока

Понятие мощности тесно связано с количеством работы, которую может выполнить электрический ток в течение установленного периода времени. Работа тока заключается в преобразовании электричества в другие виды энергии – механическую, кинетическую, тепловую и другие. Следовательно, мощность, по своей сути, представляет собой скорость всех этих превращений.

Показатели – мощность и напряжение встречаются постоянно в повседневной жизни в тех областях, где используются электрические устройства. Все они потребляют определенное количество электротока, поэтому перед началом эксплуатации должны учитываться их потенциальные возможности, параметры и технические характеристики.

Значение мощности используемых приборов требуется для того, чтобы рассчитать сечения кабелей и проводов, номиналов автоматических выключателей и другой защитной аппаратуры. Кроме того, становится возможным заранее подсчитать, за какой срок может быть выполнена та или иная работа.

Для выполнения расчетов используется формула, представляющая собой P = A/t, где А является работой, а t – установленным отрезком времени. Существует два вида мощности – активная и реактивная.

Активная и реактивная мощность

Понятие активной мощности заключается в непосредственном преобразовании электрического тока в механическую, тепловую и другие виды энергии. Этот процесс носит необратимый характер и не может быть выполнен в обратном направлении. Для измерения активной мощности существует специальная единица – ватт (Вт). Формула определяет 1 Вт = 1 вольт х 1 ампер. В быту и на производстве применяются более высокие величины – киловатты и мегаватты.

В отличие от активной, реактивная мощность создается за счет нагрузки, возникающей в емкостных или индуктивных устройствах. Когда используется переменный ток для определения этого показателя существует формула Q = U x I x sin φ. В этом случае sin φ представляет собой сдвиг фаз, который образует сниженное напряжение и рабочий ток. Сам угол имеет значение в диапазоне 0-90 градусов или от 0 до минус 90 градусов. Для измерения реактивной мощности применяются вольт-амперы.

Индуктивные и емкостные элементы способствуют возвращению электроэнергии обратно в сеть. В результате смещений по параметрам напряжения и тока, в электрической сети могут возникнуть некоторые перегрузки и другие негативные явления. Особенно ярко это проявляется у конденсаторов, отдающих обратно весь накопленный заряд. В такие моменты происходит обратное перемещение напряжения и тока, сдвинутых относительно друг друга.

Энергия емкости и индуктивности, смещенных по фазе относительно собственных характеристик сети как раз и представляет собой реактивную мощность. Она компенсируется за счет обратного эффекта, предотвращая потери в эффективности подачи электроэнергии.

Как вычислить электрическую мощность

Составляя проект любой электрической цепи, сначала надо найти мощность и уже по ее результатам определять значение допустимой нагрузки. Для постоянного тока используется всем известная формула P = U x I, выведенная по закону Ома.

Гораздо сложнее узнать мощность если используется переменный ток. Это связано с потреблением реактивной энергии все используемой аппаратурой. Следовательно, формула, приведенная выше, соответствует полному количеству энергии, потребляемой данным устройством. Ее активная составляющая определяется с помощью cosφ, зная которую можно установить, какова часть активной энергии заключена во всей полной мощности.

Это будет выглядеть следующим образом: Ракт = Робщ х cosφ = U x I x cosφ. Следовательно, полная мощность электроприбора определяется Робщ = Ракт/cosφ. Ее показатели будут всегда выше, нежели у активной мощности.

Примерно такая же схема расчетов используется и для трехфазных сетей, каждая из которых условно состоит из трех однофазных. Разница между ними заключается в фазном и линейном напряжении. Первое применяется в однофазном варианте и замеряется между фазой и нулем. Линейное напряжение при трех фазах измеряется между каждым линейным проводом.

Таким образом, зная, что Uлин = Uфаз х √3, найдём активную нагрузку, как P = U x I x √3. Мощность агрегата, например, электродвигателя, инженеры нашли в виде формулы P = U x I x √3 x cosφ. Как правило, мощность того или иного устройства известна заранее, а в большинстве случаев требуется вычислить ток. В этом случае сила тока определяется: I = P/(U x √3 x cosφ).

Физика.

Механика

Представим снова элементарную работу в виде

Удельная величина, равная отношению работы совершенной за время dt к этому времени, называется мощностью:

Другими словами, мощность, развиваемая некоторой силой, равна скорости, с которой эта сила производит работу. Можно сказать и так: средняя за единицу времени мощность численно равна работе совершенной за единицу времени. Если мощность за выбранную единицу времени практически не меняется, то слово «средняя» можно опустить: мощность численно равна работе за единицу времени.

Как видно из определения, мощность равна скалярному произведению силы на скорость перемещения её точки приложения, поэтому работа силы за время от t1 до t2 может быть вычислена следующим образом:

Средняя мощность за этот же промежуток времени равна

За единицу мощности принимается такая мощность, при которой в единицу времени совершается единица работы.

В системе СИ единицей измерения мощности является ватт (Вт):

Внесистемная единица мощности — лошадиная сила (л.с.) — равна 736 Вт. В быту часто используют единицу энергии — 1 кВт•ч = 103 Вт•3600 с=3.6 МДж.

Пример. Вертолет массой m = 3 m висит в воздухе. Определить мощность, развиваемую мотором вертолета, если диаметр ротора равен d = 8 м. При расчете принять, что ротор отбрасывает вниз цилиндрическую струю воздуха диаметром, равным диаметру ротора. Плотность воздуха 1.29 кг/м3.

При решении этой задачи надо применить все известные нам законы динамики. Поскольку это — не одно- и не двухходовая задача, попробуем сначала найти вид окончательного выражения, пользуясь анализом размерности (см. тему 1.3). Искомая мощность зависит от: 1) веса вертолета mg; 2) диаметра винта d, 3) плотности воздуха , то есть искомая формула должна иметь вид

Размерность мощности будет [N] = [ML2T–3]. Составляем равенство размерностей в обеих частях искомой формулы:

Решая систему уравнений

находим

то есть искомая мощность двигателя вертолета будет

где C — некий числовой коэффициент.

Решим теперь эту же задачу точно. Пусть — скорость струи воздуха, отбрасываемой винтом. За время частицы воздуха проходят расстояние . Иными словами, за время винт вертолета придает скорость всем частицам воздуха, находящимся в цилиндре с площадью основания и высотой . Масса воздуха в этом объеме равна

а его кинетическая энергия дается выражением

Поскольку мотор передает воздуху кинетическую энергию , то такова и совершаемая им работа. Поэтому развиваемая мотором мощность (без учета потерь мощности во всех трансмиссиях на пути от двигателя до винта) равна

В этом выражении нам надо еще найти скорость струи воздуха, отбрасываемой винтом. Импульс , передаваемый частицам воздуха за время , равен

Из второго закона Ньютона следует, что средняя сила, действующая на отбрасываемый вниз воздух равна . По третьему закону Ньютона такая же сила действует на вертолет со стороны воздуха. Эта сила компенсирует вес вертолета:

Отсюда получаем уравнение

позволяющее найти скорость струи воздуха:

Подставляя найденную скорость в выражение для мощности двигателя вертолета, получаем окончательный результат:

Мы видим, что выражение для мощности действительно оказалось таким, каким ожидалось на основе анализа размерностей. Подставляя числовые данные, находим

Рис.4.5. Мощность в природе и технике

Что такое коэффициент мощности? | Как рассчитать коэффициент мощности Формула

Коэффициент мощности является выражением энергоэффективности. Обычно он выражается в процентах, и чем меньше процент, тем менее эффективным является энергопотребление.

Коэффициент мощности (PF) представляет собой отношение рабочей мощности, измеренной в киловаттах (кВт), к полной мощности, измеренной в киловольт-амперах (кВА). Полная мощность, также известная как потребление, является мерой количества энергии, используемой для работы машин и оборудования в течение определенного периода. Его находят путем умножения (кВА = V x A). Результат выражается в единицах кВА.

PF выражает отношение фактической мощности, используемой в цепи, к полной мощности, подаваемой в цепь. Коэффициент мощности 96% демонстрирует большую эффективность, чем коэффициент мощности 75%. PF ниже 95% считается неэффективным во многих регионах.

Как понять коэффициент мощности

Пиво — активная мощность (кВт) — полезная мощность, или жидкое пиво, — это энергия, совершающая работу. Это та часть, которую вы хотите.

Пена представляет собой реактивную мощность (кВАр) — пена представляет собой потерянную мощность или потерянную мощность. Это производимая энергия, которая не совершает никакой работы, такой как производство тепла или вибрации.

mug — полная мощность (кВА) — mug — потребляемая мощность или мощность, поставляемая коммунальным предприятием.

Если бы эффективность цепи составляла 100 %, потребление было бы равно доступной мощности. Когда спрос превышает доступную мощность, на коммунальную систему оказывается нагрузка. Многие коммунальные предприятия добавляют плату за спрос к счетам крупных клиентов, чтобы компенсировать разницу между спросом и предложением (когда предложение ниже спроса). Для большинства коммунальных услуг спрос рассчитывается на основе средней нагрузки, размещенной в течение 15–30 минут. Если требования к нагрузке нерегулярны, коммунальное предприятие должно иметь больше резервной мощности, чем если бы требования к нагрузке оставались постоянными.

Пиковый спрос – это когда спрос самый высокий. Задача коммунальных служб — предоставить мощность, чтобы справиться с пиковыми нагрузками каждого клиента. Использование энергии в тот самый момент, когда она наиболее востребована, может нарушить общее предложение, если не будет достаточных резервов. Поэтому коммунальщики выставляют счета за пиковый спрос. Для некоторых крупных клиентов коммунальные службы могут даже брать самый большой пик и применять его в течение всего расчетного периода.

Коммунальные службы взимают надбавки с компаний с более низким коэффициентом мощности. Затраты на более низкую эффективность могут быть крутыми — это похоже на вождение автомобиля, пожирающего бензин. Чем ниже коэффициент мощности, тем менее эффективна схема и тем выше общие эксплуатационные расходы. Чем выше эксплуатационные расходы, тем выше вероятность того, что коммунальные службы накажут клиента за чрезмерное использование. В большинстве цепей переменного тока коэффициент мощности никогда не бывает равным единице, потому что в линиях электропередач всегда присутствует некоторый импеданс (помехи).

Как рассчитать коэффициент мощности

Для расчета коэффициента мощности вам потребуется анализатор качества электроэнергии или анализатор мощности, который измеряет как рабочую мощность (кВт), так и полную мощность (кВА), а также рассчитывает соотношение кВт/кВА.

Формула коэффициента мощности может быть выражена другими способами:

PF = (Истинная мощность)/(Полная мощность)

ИЛИ

PF = Вт/ВА

Где ватты измеряют полезную мощность, а ВА измеряют потребляемую мощность. Отношение этих двух величин, по существу, представляет собой полезную мощность к подаваемой мощности, или:

Как показано на этой диаграмме, коэффициент мощности сравнивает фактическую потребляемую мощность с полной мощностью или потреблением нагрузки. Мощность, доступная для выполнения работы, называется реальной мощностью. Вы можете избежать штрафов за коэффициент мощности, сделав поправку на коэффициент мощности.

Низкий коэффициент мощности означает, что вы используете энергию неэффективно. Это важно для компаний, поскольку может привести к:

  • Тепловым повреждениям изоляции и других компонентов схемы
  • Уменьшению доступной полезной мощности
  • Необходимое увеличение размеров проводника и оборудования

Наконец, коэффициент мощности увеличивает общую стоимость системы распределения электроэнергии, поскольку более низкий коэффициент мощности требует более высокого тока для питания нагрузки.

Связанные ресурсы

  • Колебания напряжения, мерцание и качество питания
  • Устранение неполадок конденсаторов для коррекции коэффициента мощности
  • Почему важно управлять пиковым энергопотреблением

Формула экспоненты — что такое формула экспоненты? Примеры

Показатель степени числа означает, сколько раз любое число умножается само на себя. Существуют различные формулы показателей степени, используемые для решения уравнений. Показатели важны, потому что они помогают в представлении продуктов, где число повторяется само по себе много раз. Давайте узнаем о формулах экспонент с несколькими решенными примерами в конце.

Что такое формулы экспоненты?

Формулы экспоненты относятся к формулам, которые помогают вычислять экспоненты. Показатель степени числа представлен в виде: x n , что означает, что x умножается сам на себя n раз.   Здесь

  • x называется “базовым”
  • .
  • n называется “показатель степени” или “степень”
  • x n  читается как “x в степени n” (или) “x возводится в n”

Формулы степени

Формулы степени выражены как:

  • a = 1
  • а 1  = а
  • а м  × = a m+n
  • a м  / a = a m−n
  • а −м = 1/а м
  • (a м ) = a mn
  • (ab) м  = a м b м
  • (a/b) м  = a м /b м

Давайте лучше разберемся в формулах экспонент на нескольких решенных примерах.

 

Разбивайте сложные концепции с помощью простых визуальных средств.

Математика больше не будет сложным предметом, особенно когда вы понимаете концепции с помощью визуализаций.

Записаться на бесплатный пробный урок

Примеры с использованием экспонентных формул

Пример 1: В лесу на каждом дереве около 5 7 листьев, а в лесу около 5 3 деревьев. Используя формулу показателей, найдите общее количество листьев.

Решение: 

Найти: Общее количество листьев.

Количество деревьев в лесу = 5 3

Количество листьев на каждом дереве = 5 7 (дано)

Используя формулу показателей, x+y

Установите значения,

5 3 x 5 7 = 5 3+7

5 3 x 5 7 = 5 10 .0074

Ответ: общее количество листьев 5 10 .

Пример 2:  Размеры шкафа: x 5  дюйма, y  дюйма и x 8  дюйма. Найдите его объем.

Решение: 

Найти: объем гардероба.

Размеры шкафа: длина (д) = x 5  дюйм, ширина (ш) = y  дюйм, высота (h) = x 8  дюйм (дано)

Использование формулы показателей ,

a x  x a y  = a x+y

Putting the values,

Volume = x 5  × x × y 3  = x 13  × y 3

Объем = x 13  × y 3

Ответ: Объем гардероба равен x 13  × y 3 .

Пример 3: Определите значение x -5/2  при x = 3.

Решение: 

Чтобы найти: значение x -5/2  

Дано: x = 3

Используя формулу экспонент,

x -5/2 = (3) -7/2

= (1/3) 5/2

= (1/3 × 1/3 × 1/3 × 1/3 × 1/3) 1/2

= (1/243) 1/2

= √(1/243) = 1/9√3.

Ответ: Значение x -5/2  при x = 3 равно 1/9√3.

Часто задаваемые вопросы о формулах экспонент

Что такое формулы экспоненты в математике?

Мы знаем, что показатель степени числа представлен в виде: x n  (n — показатель степени). Другими словами, вы можете сказать, что показатели степени — это надстрочные числа. Формулы экспонент – это формулы, которые помогают решать задачи, связанные с экспонентами. Некоторые важные формулы показателей представлены в виде

  • a 0 = 1
  • .
  • а 1  = а
  • a м × a n = a м+н
  • a м  / a = a m−n
  • а −м = 1/а м
  • (a м ) = a mn
  • (ab) м  = a м b м
  • (a/b) м  = a м /b м

Каковы применения формул экспоненты?

Формулы экспонент имеют широкий спектр применения:

  • научных шкал, таких как шкала pH или шкала Рихтера.

Оставить комментарий