Формулы тока напряжения сопротивления: Формула напряжения тока. Найти электрическое напряжение, разность потенциалов.

Содержание

Формула напряжения тока. Найти электрическое напряжение, разность потенциалов.

Как известно у электрического напряжения должна быть своя мера, которая изначально соответствует той величине, что рассчитана для питания того или иного электротехнического устройства. Превышение или снижение величины этого напряжения питания негативно влияет на электрическую технику, вплоть до полного выхода ее из строя. А что такое напряжение? Это разность электрических потенциалов. То есть, если для простоты понимания его сравнить с водой, то это примерно будет соответствовать давлению. По научному электрическое напряжение — это физическая величина, показывающая, какую работу совершает на данном участке ток при перемещении по этому участку единичного заряда.

Наиболее распространенной формулой напряжения тока является та, в которой имеются три основные электрические величины, а именно это само напряжение, ток и сопротивление. Ну, а формула эта известна под названием закона Ома (нахождение электрического напряжения, разности потенциалов).

Звучит эта формула следующим образом — электрическое напряжение равно произведению силы тока на сопротивление. Напомню, в электротехнике для различных физических величин существуют свои единицы измерения. Единицей измерения напряжения является «Вольт» (в честь ученого Алессандро Вольта, который открыл это явление). Единица измерения силы тока — «Ампер», и сопротивления — «Ом». В итоге мы имеем — электрическое напряжение в 1 вольт будет равно 1 ампер умноженный на 1 ом.

Помимо этого второй наиболее используемой формулой напряжения тока является та, в которой это самое напряжение можно найти зная электрическую мощность и силу тока.

Звучит эта формула следующим образом — электрическое напряжение равно отношению мощности к силе тока (чтобы найти напряжение нужно мощность разделить на ток). Сама же мощность находится путем перемножения тока на напряжение. Ну, и чтобы найти силу тока нужно мощность разделить на напряжение. Все предельно просто. Единицей измерения электрической мощности является «Ватт».

Следовательно 1 вольт будет равен 1 ватт деленный на 1 ампер.

Ну, а теперь приведу более научную формулу электрического напряжения, которая содержит в себе «работу» и «заряды».

В этой формуле показывается отношение совершаемой работы по перемещению электрического заряда. На практике же данная формула вам вряд ли понадобится. Наиболее встречаемой будет та, которая содержит в себе ток, сопротивление и мощность (то есть первые две формулы). Но, хочу предупредить, что она будет верна лишь для случая применения активных сопротивлений. То есть, когда расчеты производятся для электрической цепи, у которой имеется сопротивления в виде обычных резисторов, нагревателей (со спиралью нихрома), лампочек накаливания и так далее, то приведенная формула будет работать. В случае использования реактивного сопротивления (наличии в цепи индуктивности или емкости) нужна будет другая формула напряжения тока, которая учитывает также частоту напряжения, индуктивность, емкость.

P. S. Формула закона Ома является фундаментальной, и именно по ней всегда можно найти одну неизвестную величину из двух известных (ток, напряжение, сопротивление). На практике закон ома будет применяться очень часто, так что его просто необходимо знать наизусть каждому электрику и электронику.

Ток, напряжение, сопротивление. Закон Ома.

Мы начинаем публикацию материалов новой рубрики «Основы электроники«, и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду

ток, напряжение и сопротивление 🙂 Кроме того, мы не обойдем стороной закон Ома, который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно.

Итак, давайте начнем с понятия напряжения.

Напряжение.

По определению напряжение — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля — это скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:

В пространстве действует постоянное электрическое поле, напряженность которого равна E. Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:

U = \phi_1\medspace-\medspace \phi_2

В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:

\phi_1\medspace-\medspace \phi_2 = Ed

И в итоге получаем формулу, связывающую напряжение и напряженность:

U = Ed

В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками.

Соответственно, становится понятно, что напряжение в цепи — это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, «напряжение в резисторе» — не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и «землей». Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию «земля» 🙂 Так вот «землей» в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).

Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения. Единицей измерения является Вольт (В). Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт, необходимо совершить работу, равную 1 Джоулю. С этим вроде бы все понятно и можно двигаться дальше 🙂

А на очереди у нас еще одно понятие, а именно ток.

Ток, сила тока в цепи.

Что же такое электрический ток?

Давайте подумаем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны… Рассмотрим проводник, к которому приложено определенное

напряжение:

Из направления напряженности электрического поля (E) мы можем сделать вывод о том, что \phi_1 > \phi_2 (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:

F = Ee

где e − это заряд электрона.

И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотическим движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает

электрический ток 🙂

Ток — это упорядоченное движение заряженных частиц под воздействием электрического поля.

Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.

Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E. И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы 🙂

Для того, чтобы оценить ток в цепи придумали такую величину как сила тока. Итак, сила тока (I) — это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер. Сила тока в проводнике равна 1 Амперу, если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон.

Мы уже рассмотрели понятия силы тока и напряжения, теперь давайте разберемся каким образом эти величины связаны. И для этого нам предстоит изучить, что же из себя представляет сопротивление проводника.

Сопротивление проводника/цепи.

Термин «сопротивление» уже говорит сам за себя 🙂

Итак, сопротивление — физическая величина, характеризующая свойства проводника препятствовать (сопротивляться) прохождению электрического тока.

Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S:

Сопротивление проводника зависит от нескольких факторов:

  • удельного сопротивления проводника \rho
  • длины проводника l
  • площади поперечного сечения проводника S

Удельное сопротивление — это табличная величина. Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:

R = \rho\medspace \frac{l}{S}

Для нашего случая \rho будет равно 0,0175 (Ом * кв. мм / м) — удельное сопротивление меди. Пусть длина проводника составляет 0.5 м, а площадь поперечного сечения равна 0.2 кв. мм. Тогда:

R =0,0175 \cdot \frac{0.5}{0.2} = 0.04375\medspace Ом

Как вы уже поняли из примера, единицей измерения сопротивления является Ом 🙂

С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи.

Закон Ома.

И тут на помощь нам приходит основополагающий закон всей электроники — закон Ома:

Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.

Рассмотрим простейшую электрическую цепь:Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:

I = \frac{U}{R}

Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:

I = \frac{10}{200} = 0. 05 = 50\medspaceмА

Как видите, все несложно 🙂 Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч!

Как найти силу тока через мощность, сопротивление и напряжение

Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени. Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций. В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление.

Если известна мощность и напряжение

Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:

P=UI

После несложных мы получаем формулу для вычислений

I=P/U

Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:

Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:

Р1 = Р2/η

Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.

Находим полную мощность с учетом cosФ (он также указывается на шильдике):

S = P1/cosφ

Определяем потребляемый ток по формуле:

Iном = S/(1,73·U)

Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.

Если известно напряжение или мощность и сопротивление

Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь законом Ома, с его помощью проводим расчёт силы тока через сопротивление и напряжение.

I=U/R

Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:

P=UI

При этом согласно тому же закону Ома:

U=IR

То:

 P=I2*R

Значит расчёт проводим по формуле:

I2=P/R

Или возьмем выражение в правой части выражения под корень:

I=(P/R)1/2

Если известно ЭДС, внутреннее сопротивление и нагрузка

Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:

I=E/(R+r)

Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.

Закон Джоуля-Ленца

Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним закон Джоуля-Ленца.

Его формула выглядит так:

Q=I2Rt

Тогда расчет проводите так:

I2=QRt

Или внесите правую часть уравнения под корень:

I=(Q/Rt)1/2

Несколько примеров

В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.

1 задача: Рассчитать I в цепи из двух резисторов при последовательном соединении и при параллельном соединении. R резисторов 1 и 2 Ома, источник питания на 12 Вольт.

Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.

R1+R2=1+2=3 Ома

Тогда рассчитать силу тока можно по закону Ома:

I=U/R=12/3=4 Ампера

При параллельном соединении двух элементов Rобщее можно рассчитать так:

Rобщ=(R1*R2)/(R1+R2)=1*2/3=2/3=0,67

Тогда дальнейшие вычисления можно проводить так:

I=12*0,67=18А

2 задача: рассчитать ток при смешанном соединении элементов. На выходе источника питания 24В, а резисторы на: R1=1 Ом, R2=3 Ома, R3=3 Ома.

В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.

Rприв=(R2*R3)/(R2+R3)=(3*3)|(3+3)=9/6=3/2=1,5 Ома

Теперь схема примет вид:

Далее находим ток по тому же закону Ома:

I=U/(R1+Rприв)=24/(1+1,5)=24/2,5=9,6 Ампер

Теперь вы знаете, как найти силу тока, зная мощность, сопротивление и напряжение. Надеемся, предоставленные формулы и примеры расчетов помогли вам усвоить материал!

Наверняка вы не знаете:

Как найти сопротивление тока формула. Электрическое сопротивление. Определение, единицы измерения, удельное, полное, активное, реактивное

Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени. Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций. В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление.

Если известна мощность и напряжение

Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:

После несложных мы получаем формулу для вычислений

Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:

Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:

Р1 = Р2/η

Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.

Находим полную мощность с учетом cosФ (он также указывается на шильдике):

S = P1/cosφ

Определяем потребляемый ток по формуле:

Iном = S/(1,73·U)

Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.

Если известно напряжение или мощность и сопротивление

Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь , с его помощью проводим расчёт силы тока через сопротивление и напряжение.

Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:

При этом согласно тому же закону Ома:

P=I 2 *R

Значит расчёт проводим по формуле:

I 2 =P/R

Или возьмем выражение в правой части выражения под корень:

I=(P/R) 1/2

Если известно ЭДС, внутреннее сопротивление и нагрузка

Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:

I=E/(R+r)

Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.

Закон Джоуля-Ленца

Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним .

Его формула выглядит так:

Q=I 2 Rt

Тогда расчет проводите так:

I 2 =QRt

Или внесите правую часть уравнения под корень:

I=(Q/Rt) 1/2

Несколько примеров

В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.

Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.

I=U/R=12/3=4 Ампера

При параллельном соединении двух элементов Rобщее можно рассчитать так:

Rобщ=(R1*R2)/(R1+R2)=1*2/3=2/3=0,67

Тогда дальнейшие вычисления можно проводить так:

В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.

Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.

В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.

Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению

Так записывается основная формула:

Путем преобразования основной формулы можно найти и другие две величины:

Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Формула мгновенной электрической мощности:

Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.

Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.

Первая – мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.

Вторая – метод треугольника. Его ещё называют магический треугольник закона Ома.

Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.

Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.

Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.

Этот круг также, как и треугольник можно назвать магическим.

Среди прочих показателей, характеризующих электрическую цепь, проводник, стоит выделить электрическое сопротивление. Оно определяет способность атомов материала препятствовать направленному прохождению электронов. Помощь в определении данной величины может оказать как специализированный прибор – омметр, так и математические расчеты на основании знаний о взаимосвязях между величинами и физическими свойствами материала. Измерение показателя производится в Омах (Ом), обозначением служит символ R.

Закон Ома – математический подход при определении сопротивления

Соотношение, установленное Георгом Омом, определяет взаимосвязь между напряжением, силой тока, сопротивлением, основанную на математическом взаимоотношении понятий. Справедливость линейной взаимосвязи – R = U/I (отношение напряжения к силе тока) – отмечается не во всех случаях.
Единица измерения [R] = B/A = Ом. 1 Ом – сопротивление материала, по которому идет ток в 1 ампер при напряжении в 1 вольт.

Эмпирическая формула расчета сопротивления

Объективные данные о проводимости материала следуют из его физических характеристик, определяющих как его собственно свойства, так и реакции на внешние влияния. Исходя из этого проводимость зависит от:

  • Размера.
  • Геометрии.
  • Температуры.

Атомы проводящего материала сталкиваются с направленными электронами, препятствуя их дальнейшему продвижению. При высокой концентрации последних атомы не способны им противостоять и проводимость оказывается высокой. Большие значения сопротивления характерны для диэлектриков, которые отличаются практически нулевой проводимостью.

Одной из определяющих характеристик каждого проводника является его удельное сопротивление – ρ. Оно определяет зависимость сопротивления от материала проводника и воздействий извне. Это фиксированная (в пределах одного материала) величина, которая представляет данные проводника следующих размеров – длина 1 м (ℓ), площадь сечения 1 кв. м. Поэтому взаимосвязь между данными величинами выражается соотношением: R = ρ* ℓ/S:

  • Проводимость материала падает по мере увеличения его длины.
  • Увеличение площади сечения проводника влечет за собой снижение его сопротивления. Такая закономерность обусловлена уменьшением плотности электронов, а, следовательно, и контакт частиц материала с ними становится более редким.
  • Рост температуры материала стимулирует рост сопротивления, в то время как падение температуры влечет за собой его снижение.

Расчет площади сечения целесообразно производить согласно формуле S = πd 2 / 4. В определении длины поможет рулетка.

Взаимосвязь c мощностью (P)

Исходя из формулы закона Ома, U = I*R и P = I*U. Следовательно, P = I 2 *R и P = U 2 /R.
Зная величину силы тока и мощность, сопротивление можно определить как: R = P/I 2 .
Зная величину напряжения и мощности, сопротивление легко вычислить по формуле: R = U 2 /P.

Сопротивление материала и величины других сопутствующих характеристик могут быть получены с применением специальных измерительных приборов или на основании установленных математических закономерностей.

Одним из физических свойств вещества является способность проводить электрический ток. Электропроводимость (сопротивление проводника) зависит от некоторых факторов: длины электрической цепи, особенностей строения, наличия свободных электронов, температуры, тока, напряжения, материала и площади поперечного сечения.

Протекание электрического тока через проводник приводит к направленному движению свободных электронов. Наличие свободных электронов зависит от самого вещества и берется из таблицы Д. И. Менделеева, а именно из электронной конфигурации элемента. Электроны начинают ударяться о кристаллическую решетку элемента и передают энергию последней. В этом случае возникает тепловой эффект при действии тока на проводник.

При этом взаимодействии они замедляются, но затем под действием электрического поля, которое их ускоряет, начинают двигаться с той же скоростью. Электроны сталкиваются огромное количество раз. Этот процесс и называется сопротивлением проводника.

Следовательно, электрическим сопротивлением проводника считается физическая величина, характеризующая отношение напряжения к силе тока.

Что такое электрическое сопротивление: величина, указывающая на свойство физического тела преобразовывать энергию электрическую в тепловую, благодаря взаимодействию энергии электронов с кристаллической решеткой вещества. По характеру проводимости различаются:

  1. Проводники (способны проводить электрический ток, так как присутствуют свободные электроны).
  2. Полупроводники (могут проводить электрический ток, но при определенных условиях).
  3. Диэлектрики или изоляторы (обладают огромным сопротивлением, отсутствуют свободные электроны, что делает их неспособными проводить ток).

Обозначается эта характеристика буквой R и измеряется в Омах (Ом) . Применение этих групп веществ является очень значимым для разработки электрических принципиальных схем приборов.

Для полного понимания зависимости R от чего-либо нужно обратить особое внимание на расчет этой величины.

Расчет электрической проводимости

Для расчета R проводника применяется закон Ома, который гласит: сила тока (I) прямо пропорциональна напряжению (U) и обратно пропорциональна сопротивлению.

Формула нахождения характеристики проводимости материала R (следствие из закона Ома для участка цепи): R = U / I.

Для полного участка цепи эта формула принимает следующий вид: R = (U / I) – Rвн, где Rвн – внутреннее R источника питания.

Способность проводника к пропусканию электрического тока зависит от многих факторов: напряжения, тока, длины, площади поперечного сечения и материала проводника, а также от температуры окружающей среды.

В электротехнике для произведения расчетов и изготовления резисторов учитывается и геометрическая составляющая проводника.

От чего зависит сопротивление: от длины проводника – l, удельного сопротивления – p и от площади сечения (с радиусом r) – S = Пи * r * r.

Формула R проводника: R = p * l / S.

Из формулы видно, от чего зависит удельное сопротивление проводника: R, l, S. Нет необходимости его таким способом рассчитывать, потому что есть способ намного лучше. Удельное сопротивление можно найти в соответствующих справочниках для каждого типа проводника (p – это физическая величина равная R материала длиною в 1 метр и площадью сечения равной 1 м².

Однако этой формулы мало для точного расчета резистора, поэтому используют зависимость от температуры.

Влияние температуры окружающей среды

Доказано, что каждое вещество обладает удельным сопротивлением, зависящим от температуры.

Для демонстрации это можно произвести следующий опыт. Возьмите спираль из нихрома или любого проводника (обозначена на схеме в виде резистора), источник питания и обычный амперметр (его можно заменить на лампу накаливания). Соберите цепь согласно схеме 1.

Схема 1 – Электрическая цепь для проведения опыта

Необходимо запитать потребитель и внимательно следить за показаниями амперметра. Далее следует нагревать R, не отключая, и показания амперметра начнут падать при росте температуры. Прослеживается зависимость по закону Ома для участка цепи: I = U / R. В данном случае внутренним сопротивлением источника питания можно пренебречь: это не отразится на демонстрации зависимости R от температуры. Отсюда следует, что зависимость R от температуры присутствует.

Физический смысл роста значения R обусловлен влиянием температуры на амплитуду колебаний (увеличение) ионов в кристаллической решетке. В результате этого электроны чаще сталкиваются и это вызывает рост R.

Согласно формуле: R = p * l / S, находим показатель, который зависит от температуры (S и l – не зависят от температуры). Остается p проводника. Исходя из это получается формула зависимости от температуры: (R – Ro) / R = a * t, где Ro при температуре 0 градусов по Цельсию, t – температура окружающей среды и a – коэффициент пропорциональности (температурный коэффициент).

Для металлов «a» всегда больше нуля, а для растворов электролитов температурный коэффициент меньше 0.

Формула нахождения p, применяемая при расчетах: p = (1 + a * t) * po, где ро – удельное значение сопротивления, взятое из справочника для конкретного проводника. В этом случае температурный коэффициент можно считать постоянным. Зависимость мощности (P) от R вытекает из формулы мощности: P = U * I = U * U / R = I * I * R. Удельное значение сопротивления еще зависит и от деформаций материала, при котором нарушается кристаллическая решетка.

При обработке металла в холодной среде при некотором давлении происходит пластическая деформация. При этом кристаллическая решетка искажается и растет R течения электронов. В этом случае удельное сопротивление также увеличивается. Этот процесс является обратимым и называется рекристаллическим отжигом, благодаря которому часть дефектов уменьшается.

При действии на металл сил растяжения и сжатия последний подвергается деформациям, которые называются упругими. Удельное сопротивление уменьшается при сжатии, так как происходит уменьшение амплитуды тепловых колебаний. Направленным заряженным частицам становится легче двигаться . При растяжении удельное сопротивление увеличивается из-за роста амплитуды тепловых колебаний.

Еще одним фактором, влияющим на проводимость, является вид тока, проходящего по проводнику.

Сопротивление в сетях с переменным током ведет себя несколько иначе, ведь закон Ома применим только для схем с постоянным напряжением. Следовательно, расчеты следует производить иначе.

Полное сопротивление обозначается буквой Z и состоит из алгебраической суммы активного, емкостного и индуктивного сопротивлений.

При подключении активного R в цепь переменного тока под воздействием разницы потенциалов начинает течь ток синусоидального вида. В этом случае формула выглядит: Iм = Uм / R, где Iм и Uм – амплитудные значения силы тока и напряжения. Формула сопротивления принимает следующий вид: Iм = Uм / ((1 + a * t) * po * l / 2 * Пи * r * r).

Емкостное сопротивление (Xc) обусловлено наличием в схемах конденсаторов. Необходимо отметить, что через конденсаторы проходит переменный ток и, следовательно, он выступает в роли проводника с емкостью.

Вычисляется Xc следующим образом: Xc = 1 / (w * C), где w – угловая частота и C – емкость конденсатора или группы конденсаторов. Угловая частота определяется следующим образом:

  1. Измеряется частота переменного тока (как правило, 50 Гц).
  2. Умножается на 6,283.

Индуктивное сопротивление (Xl) – подразумевает наличие индуктивности в схеме (дроссель, реле, контур, трансформатор и так далее). Рассчитывается следующим образом: Xl = wL, где L – индуктивность и w – угловая частота. Для расчета индуктивности необходимо воспользоваться специализированными онлайн-калькуляторами или справочником по физике. Итак, все величины рассчитаны по формулам и остается всего лишь записать Z: Z * Z = R * R + (Xc – Xl) * (Xc – Xl).

Для определения окончательного значения необходимо извлечь квадратный корень из выражения: R * R + (Xc – Xl) * (Xc – Xl). Из формул следует, что частота переменного тока играет большую роль, например, в схеме одного и того же исполнения при повышении частоты увеличивается и ее Z. Необходимо добавить, что в цепях с переменным напряжением Z зависит от таких показателей:

  1. Длины проводника.
  2. Площади сечения – S.
  3. Температуры.
  4. Типа материала.
  5. Емкости.
  6. Индуктивности.
  7. Частоты.

Следовательно и закон Ома для участка цепи имеет совершенно другой вид: I = U / Z . Меняется и закон для полной цепи.

Расчеты сопротивлений требуют определенного количества времени, поэтому для измерений их величин применяются специальные электроизмерительные приборы, которые называются омметрами. Измерительный прибор состоит из стрелочного индикатора, к которому последовательно включен источник питания.

Измеряют R все комбинированные приборы , такие как тестеры и мультиметры. Обособленные приборы для измерения только этой характеристики применяются крайне редко (мегаомметр для проверки изоляции силового кабеля).

Прибор применяется для прозвонки электрических цепей на предмет повреждения и исправности радиодеталей, а также для прозвонки изоляции кабелей.

При измерении R необходимо полностью обесточить участок цепи во избежание выхода прибора из строя. Для это необходимо предпринять следующие меры предосторожности:

В дорогих мультиметрах есть функция прозвонки цепи, дублируемая звуковым сигналом, благодаря чему нет необходимости смотреть на табло прибора.

Таким образом, электрическое сопротивление играет важную роль в электротехнике. Оно зависит в постоянных цепях от температуры, силы тока, длины, типа материала и площади поперечного сечения проводника . В цепях переменного тока эта зависимость дополняется такими величинами, как частота, емкость и индуктивность. Благодаря этой зависимости существует возможность изменять характеристики электричества: напряжение и силу тока. Для измерений величины сопротивления применяются омметры, которые используются также и при выявлении неполадок проводки, прозвонки различных цепей и радиодеталей.

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Формулы составляют скелет науки об электронике. Вместо того, чтобы сваливать на стол целую кучу радиоэлементов, а потом переподключать их между собой, пытаясь выяснить, что же появится на свет в результате, опытные специалисты сразу строят новые схемы на основе известных математических и физических законов. Именно формулы помогают определять конкретные значения номиналов электронных компонентов и рабочих параметров схем.

Точно так же эффективно использовать формулы для модернизации уже готовых схем. К примеру, для того, чтобы выбрать правильный резистор в схеме с лампочкой, можно применить базовый закон Ома для постоянного тока (о нем можно будет прочесть в разделе “Соотношения закона Ома” сразу после нашего лирического вступления). Лампочку можно заставить, таким образом, светить более ярко или, наоборот – притушить.

В этой главе будут приведены многие основные формулы физики, с которыми рано или поздно приходится сталкиваться в процессе работы в электронике. Некоторые из них известны уже столетия, но мы до сих пор продолжаем ими успешно пользоваться, как будут пользоваться и наши внуки.

Соотношения закона Ома

Закон Ома представляет собой взаимное соотношение между напряжением, током, сопротивлением и мощностью. Все выводимые формулы для расчета каждой из указанных величин представлены в таблице:

В этой таблице используются следующие общепринятые обозначения физических величин:

U – напряжение (В),

I – ток (А),

Р – мощность (Вт),

R – сопротивление (Ом),

Потренируемся на следующем примере: пусть нужно найти мощность схемы. Известно, что напряжение на ее выводах составляет 100 В, а ток- 10 А. Тогда мощность согласно закону Ома будет равна 100 х 10 = 1000 Вт. Полученное значение можно использовать для расчета, скажем, номинала предохранителя, который нужно ввести в устройство, или, к примеру, для оценки счета за электричество, который вам лично принесет электрик из ЖЭК в конце месяца.

А вот другой пример: пусть нужно узнать номинал резистора в цепи с лампочкой, если известно, какой ток мы хотим пропускать через эту цепь. По закону Ома ток равен:

I = U / R

Схема, состоящая из лампочки, резистора и источника питания (батареи) показана на рисунке. Используя приведенную формулу, вычислить искомое сопротивление сможет даже школьник.

Что же в этой формуле есть что? Рассмотрим переменные подробнее.

> U пит (иногда также обозначается как V или Е): напряжение питания. Вследствие того, что при прохождении тока через лампочку на ней падает какое-то напряжение, величину этого падения (обычно рабочее напряжение лампочки, в нашем случае 3,5 В) нужно вычесть из напряжения источника питания. К примеру, если Uпит = 12 В, то U = 8,5 В при условии, что на лампочке падает 3,5 В.

> I : ток (измеряется в амперах), который планируется пропустить через лампочку. В нашем случае – 50 мА. Так как в формуле ток указывается в амперах, то 50 миллиампер составляет лишь малую его часть: 0,050 А.

> R : искомое сопротивление токоограничивающего резистора, в омах.

В продолжение, можно проставить в формулу расчета сопротивления реальные цифры вместо U, I и R:

R = U/I = 8,5 В / 0,050 А= 170 Ом

Расчёты сопротивления

Рассчитать сопротивление одного резистора в простой цепи достаточно просто. Однако с добавлением в нее других резисторов, параллельно или последовательно, общее сопротивление цепи также изменяется. Суммарное сопротивление нескольких соединенных последовательно резисторов равно сумме отдельных сопротивлений каждого из них. Для параллельного же соединения все немного сложнее.

Почему нужно обращать внимание на способ соединения компонентов между собой? На то есть сразу несколько причин.

> Сопротивления резисторов составляют только некоторый фиксированный ряд номиналов. В некоторых схемах значение сопротивления должно быть рассчитано точно, но, поскольку резистор именно такого номинала может и не существовать вообще, то приходится соединять несколько элементов последовательно или параллельно.

> Резисторы – не единственные компоненты, которые имеют сопротивление. К примеру, витки обмотки электромотора также обладают некоторым сопротивлением току. Во многих практических задачах приходится рассчитывать суммарное сопротивление всей цепи.

Расчет сопротивления последовательных резисторов

Формула для вычисления суммарного сопротивления резисторов, соединенных между собой последовательно, проста до неприличия. Нужно просто сложить все сопротивления:

Rобщ = Rl + R2 + R3 + … (столько раз, сколько есть элементов)

В данном случае величины Rl, R2, R3 и так далее – сопротивления отдельных резисторов или других компонентов цепи, а Rобщ – результирующая величина.

Так, к примеру, если имеется цепь из двух соединенных последовательно резисторов с номиналами 1,2 и 2,2 кОм, то суммарное сопротивление этого участка схемы будет равно 3,4 кОм.

Расчет сопротивления параллельных резисторов

Все немного усложняется, если требуется вычислить сопротивление цепи, состоящей из параллельных резисторов. Формула приобретает вид:

R общ = R1 * R2 / (R1 ­­+ R2)

где R1 и R2 – сопротивления отдельных резисторов или других элементов цепи, а Rобщ -результирующая величина. Так, если взять те же самые резисторы с номиналами 1,2 и 2,2 кОм, но соединенные параллельно, получим

776,47 = 2640000 / 3400

Для расчета результирующего сопротивления электрической цепи из трех и более резисторов используется следующая формула:

Расчёты ёмкости

Формулы, приведенные выше, справедливы и для расчета емкостей, только с точностью до наоборот. Так же, как и для резисторов, их можно расширить для любого количества компонентов в цепи.

Расчет емкости параллельных конденсаторов

Если нужно вычислить емкость цепи, состоящей из параллельных конденсаторов, необходимо просто сложить их номиналы:

Собщ = CI + С2 + СЗ + …

В этой формуле CI, С2 и СЗ – емкости отдельных конденсаторов, а Собщ суммирующая величина.

Расчет емкости последовательных конденсаторов

Для вычисления общей емкости пары связанных последовательно конденсаторов применяется следующая формула:

Собщ = С1 * С2 /(С1+С2)

где С1 и С2 – значения емкости каждого из конденсаторов, а Собщ – общая емкость цепи

Расчет емкости трех и более последовательно соединенных конденсаторов

В схеме имеются конденсаторы? Много? Ничего страшного: даже если все они связаны последовательно, всегда можно найти результирующую емкость этой цепи:

Так зачем же вязать последовательно сразу несколько конденсаторов, когда могло хватить одного? Одним из логических объяснений этому факту служит необходимость получения конкретного номинала емкости цепи, аналога которому в стандартном ряду номиналов не существует. Иногда приходится идти и по более тернистому пути, особенно в чувствительных схемах, как, например, радиоприемники.

Расчёт энергетических уравнений

Наиболее широко на практике применяют такую единицу измерения энергии, как киловатт-часы или, если это касается электроники, ватт-часы. Рассчитать затраченную схемой энергию можно, зная длительность времени, на протяжении которого устройство включено. Формула для расчета такова:

ватт-часы = Р х Т

В этой формуле литера Р обозначает мощность потребления, выраженную в ваттах, а Т – время работы в часах. В физике принято выражать количество затраченной энергии в ватт-секундах, или Джоулях. Для расчета энергии в этих единицах ватт-часы делят на 3600.

Расчёт постоянной ёмкости RC-цепочки

В электронных схемах часто используются RC-цепочки для обеспечения временных задержек или удлинения импульсных сигналов. Самые простые цепочки состоят всего лишь из резистора и конденсатора (отсюда и происхождение термина RC-цепочка).

Принцип работы RC-цепочки состоит в том, что заряженный конденсатор разряжается через резистор не мгновенно, а на протяжении некоторого интервала времени. Чем больше сопротивление резистора и/или конденсатора, тем дольше будет разряжаться емкость. Разработчики схем очень часто применяют RC-цепочки для создания простых таймеров и осцилляторов или изменения формы сигналов.

Каким же образом можно рассчитать постоянную времени RC-цепочки? Поскольку эта схема состоит из резистора и конденсатора, в уравнении используются значения сопротивления и емкости. Типичные конденсаторы имеют емкость порядка микрофарад и даже меньше, а системными единицами являются фарады, поэтому формула оперирует дробными числами.

T = RC

В этом уравнении литера Т служит для обозначения времени в секундах, R – сопротивления в омах, и С – емкости в фарадах.

Пусть, к примеру, имеется резистор 2000 Ом, подключенный к конденсатору 0,1 мкФ. Постоянная времени этой цепочки будет равна 0,002 с, или 2 мс.

Для того чтобы на первых порах облегчить вам перевод сверхмалых единиц емкостей в фарады, мы составили таблицу:

Расчёты частоты и длины волны

Частота сигнала является величиной, обратно пропорциональной его длине волны, как будет видно из формул чуть ниже. Эти формулы особенно полезны при работе с радиоэлектроникой, к примеру, для оценки длины куска провода, который планируется использовать в качестве антенны. Во всех следующих формулах длина волны выражается в метрах, а частота – в килогерцах.

Расчет частоты сигнала

Предположим, вы хотите изучать электронику для того, чтобы, собрав свой собственный приемопередатчик, поболтать с такими же энтузиастами из другой части света по аматорской радиосети. Частоты радиоволн и их длина стоят в формулах бок о бок. В радиолюбительских сетях часто можно услышать высказывания о том, что оператор работает на такой-то и такой длине волны. Вот как рассчитать частоту радиосигнала, зная длину волны:

Частота = 300000 / длина волны

Длина волны в данной формуле выражается в миллиметрах, а не в футах, аршинах или попугаях. Частота же дана в мегагерцах.

Расчет длины волны сигнала

Ту же самую формулу можно использовать и для вычисления длины волны радиосигнала, если известна его частота:

Длина волны = 300000 / Частота

Результат будет выражен в миллиметрах, а частота сигнала указывается в мегагерцах.

Приведем пример расчета. Пусть радиолюбитель общается со своим другом на частоте 50 МГц (50 миллионов периодов в секунду). Подставив эти цифры в приведенную выше формулу, получим:

6000 миллиметров = 300000 / 50 МГц

Однако чаще пользуются системными единицами длины – метрами, поэтому для завершения расчета нам остается перевести длину волны в более понятную величину. Так как в 1 метре 1000 миллиметров, то в результате получим 6 м. Оказывается, радиолюбитель настроил свою радиостанцию на длину волны 6 метров. Прикольно!

Активное сопротивление. Действующие значения силы тока и напряжения

Активное сопротивление.

Действующие значения силы тока и напряжения
Подробности
Просмотров: 656

«Физика – 11 класс»

Активное сопротивление

Сила тока в цепи с резистором

Есть цепь, состоящая из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R.

Сопротивление R называется активным сопротивлением, т.к. при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора.
Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.
Напряжение на зажимах цепи меняется по гармоническому закону:

u = Um cos ωt

Мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения.
По закону Ома мгновенное значение силы тока:

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения, а амплитуда силы тока определяется равенством

Мощность в цепи с резистором

В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение меняются.
При прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет меняться во времени.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

Р = I2R

Мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

Р = i2R

Cреднее значение мощности за период (используем формулу для мгновенного значения силы тока и выражение ):

График зависимости мгновенной мощности от времени (рис.а):

Согласно графику (рис.б) среднее за период значение cos 2ωt равно нулю, а значит равно нулю второе слагаемое в формуле для среднего значения мощности за период.

Тогда средняя мощность равна:

Действующие значения силы тока и напряжения.

Среднее за период значение квадрата силы тока:

Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока.
Действующее значение силы переменного тока обозначается через I:

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично:

Закон Ома для участка цепи переменного тока с резистором в действующих значениях:

В случае электрических колебаний важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность.
Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Действующие значения непосредственно определяют среднее значение мощности Р переменного тока:

р = I2R = UI.

Итак:
Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин



Электромагнитные колебания. Физика, учебник для 11 класса – Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях — Аналогия между механическими и электромагнитными колебаниями — Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний — Переменный электрический ток — Активное сопротивление. Действующие значения силы тока и напряжения — Конденсатор в цепи переменного тока — Катушка индуктивности в цепи переменного тока — Резонанс в электрической цепи — Генератор на транзисторе. Автоколебания — Краткие итоги главы

чему равно напряжение, как найти сопротивление нагрузки

В наши дни электричество играет в жизни человека очень большую роль, в следствие чего базовые знания в области физики и электротехники нужны практически каждому. Напряжение является одной из главных физических величин, которая позволяет объяснить теорию возникновения электрического поля и методы подбора оптимального сечения кабеля для применения его в повседневной жизни.

Что такое напряжение в сети электричества.

Напряжение – это физическая величина, которая характеризует электрическое поле. Иными словами, оно показывает, какую работу оно совершает при перемещении одного положительного заряда на определённое расстояние.

Показатель напряжения на вольтметре

За единицу напряжения в международной системе принимается такой показатель на концах проводника, при котором заряд в 1 Кл совершает работу в 1 Дж для перемещения его по этому проводнику. Общепринятой единицей измерения напряжения считается 1 В – Вольт.

Важно! Работа измеряется в Джоулях, заряды в Кулонах, а напряжение в Вольтах, следовательно, 1 Вольт равняется 1 Джоулю, деленному на 1 Кулон.

Чему равно напряжение.

Напряжение напрямую связано с работой тока, зарядом и сопротивлением. Чтобы измерить напряжение непосредственно в электрической цепи, к ней нужно подключить вольтметр. Он присоединяется к цепи параллельно, в отличие от амперметра, который подключается последовательно. Зажимы измерительного прибора крепятся к тем точкам, между которыми нужно вычислить напряжение. Чтобы он правильно показал значение, нужно включить цепь. На схемах вольтметр обозначается буквой V, обведенной в кружок.

Изображение вольтметра и электрической цепи

Напряжение обозначается латинской [U], а измеряется в [В]. Оно равно работе, которое совершает поле при перемещении единичного заряда. Формула напряжения тока – это U = A/q, где A – работа тока, q – заряд, а U – само напряжение.

Обратите внимание! В отличие от магнитного поля, где заряды неподвижны, в электрическом поле они находятся в постоянном движении.

Электрическое поле

Формула закона Ома

Свои опыты Ом направлял на изучение такой физической величины, как сопротивление, в результате чего в 1826 году он стал автором закона, который не потерял совей актуальность вплоть до сегодняшнего дня. Из своих опытов Ом вывел, что в различных цепях сила тока может возрастать с различной скоростью, и происходит это по мере увеличения напряжения.

Также, Ом сделал вывод, что каждый проводник обладает индивидуальными свойствами проводимости.

Сопротивление обозначается заглавной латинской [R] и измеряется в Омах. Сопротивление – физическая величина, характеризующая свойства проводника оказывать влияние на идущий по нему ток. Оно прямо пропорционально напряжению  в сети и обратно пропорционально  силе тока. В виде формулы данный закон можно записать как R = U/I, где U – напряжение, а I – сила тока. 1 Ом равняется 1 Вольту, деленному на 1 Ампер.

Запомните! Реостат – прибор, обеспечивающий возможность изменять сопротивление. Прежде всего, он влияет на показатель R в цепи, а, следовательно, на 2 другие величины, описанные в законе Ома. Силу тока может помочь определить амперметр.

Ползунковый реостат

Из формулы закона Ома можно вывести практически любую зависимость, связанную с электричеством. Также, существует понятие удельного сопротивления проводника – физической величины, которая демонстрирует, каким сопротивлением будет обладать проводник из определенного вещества. Обозначается эта величина буквой ρ и через неё можно также найти сопротивление в цепи как произведению удельного сопротивления и длины проводника, деленного на площадь его поперечного сечения.

Важно! В виде формулы нахождение сопротивления через удельное сопротивление выглядит так: R = ρ*(l/S), где l – длина проводника, а S – площадь поперечного сечения.

Физический смысл удельного сопротивления показывает, какое влияние будет оказывать проводник длиной в 1 м с площадью поперечного сечения в 1 квадратный мм, изготовленный из определенного вещества. Измеряется в Омах, умноженных на метр: [ρ] = [Ом*м].

Ом и формула

Как найти сопротивление нагрузки

Сопротивление нагрузки обозначается латинскими буквами Rn или Rн. По сути, это является тем же сопротивлением участка цепи и вычисляется также по формулам закона Ома. Нагрузка обозначается символами, которые на электрической схеме изображаются в виде крестиков в кружке – лампочкой; то есть двигатель, лампа, конкретный прибор и т. д.

Каждая нагрузка имеет своё собственное сопротивление. Например, если к сети подключена одна лампочка, то сопротивление нагрузки – показатель этого единственного прибора в цепи. Если к цепи подключено несколько нагрузок, то сопротивление считается суммарно для каждой из них.

Сопротивление нагрузки вычисляется в соответствии с законом Ома, то есть Rn = U/I. Если к сети подключено несколько нагрузок, то оно будет рассчитываться следующим образом: сначала находится сопротивление каждой отдельной «лампочки». Далее Rn вычисляется в зависимости от того, какой тип подключения в цепи: последовательное или параллельное. При параллельном 1/R = 1/R1 + 1/R2 + 1/Rn, где n –количество подключенных приборов. Если же соединение последовательное, общее R равно сумме всех R цепи.

Последовательное/параллельное соединения

Как найти с помощью формулы напряжение

Людей, интересующихся электричеством и физикой, всегда волнует вопрос, как найти напряжения, если известны другие характеристики. Его можно найти через многие формулы: в соответствии с законом Ома, через работу тока, путём сложения всех напряжений в электрической цепи и практическим способом – с помощью вольтметра. Как вычислить показатель с помощью последнего способа было описано выше.

Важно! В цепях с последовательным соединением общее напряжение – сумма значений каждой нагрузки. При параллельном соединении общее напряжение равно значению каждой лампочки, у которых оно также эквивалентно.

Измерение напряжения

По каким формулам вычисляется напряжение через работу и сама сила тока, рассказывают на уроках физики, так как эти величины считаются базовыми. Работа тока равна произведению напряжения и заряда: A = U*q. Также, из этой формулы выводится A = U*I*t, так как заряд – произведение силы тока и времени. Из них следует, что U = A/q или U = A/(I*t). Кроме того, одной из основных является формула напряжения, выведенная из закона Ома: U = R/I.

Важно! Определить напряжение можно и через мощность электрического тока. Мощность [P] равна A/t, и, так как A = U*I*t, конечная формула выглядит, как P = (U*I*t)/t. Здесь t сократится, и останется P = U*I, из которой следует, что U = P/I.

Как найти силу тока через сопротивление и напряжение

Сила тока обозначается латинскими [I] или [Y], и она зависит от количества заряда, перенесенного от одного полюса к другому за определенный промежуток времени, т.е. I = q/t. Измеряется сила тока в амперах, а узнать её значение в цепи можно при помощи амперметра.

Мужчина считает силу тока

Существуют формулы определения силы тока через напряжение и сопротивление. В первом случае произведение силы тока на время равняется работе, деленной на напряжение: I*t = A/U, во втором – по закону Ома, I = U/R. Через мощность сила будет равняться P/U.

При последовательном соединении, сила тока одинакова на всех участках цепи, следовательно, равна общему значению в цепи. В противоположном случае сила электрического тока равняется сумме силы тока всех нагрузок.

Таким образом, существует огромное множество формул для нахождения силы тока, напряжения и сопротивления. Они всегда могут пригодиться для теории, а на практике всегда помогут специальные приборы – амперметр и вольтметр.

Общие формулы для электроники и электричества


Ниже приведена справочная таблица, в которой приведены все уравнения, вытекающие из закона Ома. В параметры E, I, R и P показаны в центральной области, каждый из которых занимает одно из четырех квадранты пирога. Чтобы найти данный параметр, найдите этот параметр в центре диаграммы и выберите уравнение в его квадранте, которое определяет количество в терминах что вы измерили или знаете.

ПРИМЕЧАНИЕ: Уравнения, относящиеся к мощности и импедансу, описывают Коэффициент мощности (PF), а не чистый постоянный ток. Эта величина составляет реактивное сопротивление нагрузка и сигнал переменного тока.

Закон Ом (постоянный ток):

Ток в амперах = напряжение в вольтах / сопротивление в омах = мощность в ваттах / напряжение в вольт

Ток в амперах = (мощность в ваттах / сопротивление в Ом)

Напряжение в вольтах = ток в амперах Сопротивление в омах

Напряжение в вольтах = мощность в ваттах / ток в амперах

Напряжение в вольтах = (Мощность в ваттах Сопротивление в Ом) Мощность в ваттах = (ток в амперах) 2 Сопротивление в омах

Мощность в ваттах = напряжение в вольтах Ток в амперах

Мощность в ваттах = (напряжение в вольтах) 2 / Сопротивление в омах

Сопротивление в омах = напряжение в вольтах / ток в амперах

Сопротивление в омах = мощность в ваттах / (ток в амперах) 2

Закон Ом (переменный ток):

В следующих формулах закона Ома переменного тока q – фазовый угол в степени отставания тока от напряжения (в индуктивной цепи) или отводов тока напряжение (в емкостной цепи). В резонансном контуре (например, в обычном домашнем 120 В переменного тока) фазовый угол равен 0, а полное сопротивление = сопротивление.

Ток в амперах = напряжение в вольтах / полное сопротивление в омах

Ток в амперах = (мощность в ваттах / импеданс в Ом cosq)

Ток в амперах = мощность в ваттах / (напряжение в вольтах cos q)

Напряжение в вольтах = ток в амперах Импеданс в омах

Напряжение в вольтах = мощность в ваттах / (ток в амперах cos q)

Напряжение в вольтах = ([Мощность в ваттах Полное сопротивление в Ом] / cos q)

Импеданс в Ом = Напряжение в вольтах / Ток в амперах

Импеданс в Ом = Мощность в ваттах / (Ток в амперах 2 cos q)

Импеданс в Ом = (Напряжение в вольтах 2 cos q) / Мощность в ваттах

Мощность в ваттах = ток в амперах 2 Импеданс в омах cos q

Мощность в ваттах = ток в амперах Напряжение в вольтах cos q

Мощность в ваттах = ([Напряжение в вольтах] 2 cos q ) / Импеданс в омах

УРАВНЕНИЯ ЭЛЕКТРОННОЙ ЦЕПИ:

Резонансная частота в герцах (где X L = X C ) = 1 / (2p [Индуктивность в Генри Емкость в фарадах])

Реактивное сопротивление индуктивности в Ом х
X L = 2p (частота в герцах, индуктивность в генри)

Реактивность в омах емкости составляет X C
X C = 1 / (2p [частота в герцах Емкость в фарадах])

Импеданс в Ом (серия) = (Сопротивление в Ом 2 + (X L -X C ) 2 )

Импеданс в Ом (параллельно) = (Сопротивление в Ом Реактивное сопротивление) / (Сопротивление в Ом 2 + Реактивное сопротивление 2

Последовательные резисторы (значения в Ом):

Общее сопротивление = Сопротивление 1 + Сопротивление 2 +. .. Сопротивление n

Два параллельных резистора (значения в Ом):

Общее сопротивление = Сопротивление 1 Сопротивление 2 / Сопротивление 1 + сопротивление 2

Параллельное подключение нескольких резисторов (значения в Ом):

Общее сопротивление = 1 / (1 / Сопротивление 1 ] + 1 / Сопротивление 2 + … 1 / Сопротивление n ])

Параллельные конденсаторы (значения в микрофарадах):

Общая емкость параллельно (значения в любых фарадах) = емкость 1 + Емкость 2 +…. Емкость n

Конденсаторы в серии (значения в микрофарадах):

Общая емкость в серии (значения в любых фарадах) = емкость 1 Емкость 2 / Емкость 1 + Емкость 2

Несколько последовательных конденсаторов (значения в фарадах) = 1 / ([1 / Емкость 1 ] + [1 / Емкость 2 ] + . ….. [1 / Емкость n ])

Цепи времени серии LCR:
Время в секундах = индуктивность в генри / сопротивление в омах
Время в секундах = емкость в фарадах Сопротивление в омах

НАПРЯЖЕНИЕ И ТОК SINE WAV:

Эффективное (RMS) значение = 0.707 Пиковое значение

Эффективное (RMS) значение = 1,11 Среднее значение

Среднее значение = 0,637 Пиковое значение

Среднее значение = 0,9 Эффективное (RMS) значение

Пиковое значение = 1,414 Эффективное (RMS) значение

Пиковое значение = 1,57 Среднее значение

ДЕЦИБЕЛ:

дБ = 10 log 10 (мощность в ваттах # 1 / мощность в ваттах # 2)

дБ = 10 log 10 (коэффициент мощности)

дБ = 20 лог 10 (Вольт или Ампер # 1 / Вольт или Ампер # 2)

дБ = 20 Log 10 (Соотношение напряжения или тока)

Коэффициент мощности = 10 (дБ / 10)

Коэффициент напряжения или тока = 10 (дБ / 20) Если импедансы не равны: дБ = 20 Log 10 [(Вольт 1 [Z 2 ]) / (Вольт 2 [Z 1 ])]

Частота и длина волны

Частота в килогерцах = (300000) / длина волны в дюймах метров

Частота в мегагерцах = (300) / длина волны в метрах

Частота в мегагерцах = (964) / длина волны в футах

Длина волны в метрах = (300000) / частота в килогерцах

Длина волны в метрах = (300) / частота в мегагерцах

Длина волны в футах = (964) / частота в мегагерцах

Длина волны = скорость звука (фут / сек или м / сек) / частота Скорость звука = 1130 фут / сек

Длина антенны:

Четвертьволновая антенна: (обычный провод, коэффициент скорости = 0. 95)
Длина в футах = 234 / частота в мегагерцах

Полуволновая антенна: (обычный провод, коэффициент скорости = 0,95)
Длина в футах = 466 / частота в мегагерцах

Первичное сопротивление согласующего трансформатора громкоговорителя на 70 В = (Выход усилителя вольт) 2 / Мощность динамика

Что такое закон Ватта? – EngineeringClicks

В изучении электроники существует множество законов и теорий. Эти законы позволяют нам понять работу электрических цепей и компонентов.Одним из таких законов является закон Ватта. Закон Ватта назван в честь Джеймса Ватта, шотландского инженера и химика. Он определяет соотношение между мощностью, напряжением и током. Этот закон гласит, что мощность в цепи является произведением напряжения и тока. В этой статье мы обсудим закон Ватта, его формулу, приложения и другие связанные концепции.

Важные данные при определении закона Ватта

Чтобы полностью понять закон Ватта, нам нужно сначала обсудить параметры, используемые при его определении, а именно:

Напряжение

Напряжение (В) – это разность электрических потенциалов между двумя точками в электрической цепи. Любая разница в электрическом потенциале заставляет электроны течь из точки с более высоким потенциалом в точку с более низким потенциалом. Вольт – это единица измерения напряжения (В).

Текущий

Ток (I) – это количество электрического заряда, протекающего через точку в цепи в любой момент времени. Его единица измерения – ампер или «амперы» (A). Ток может течь только тогда, когда есть разница в электрическом потенциале.

Сопротивление

Сопротивление (R) – это сопротивление потоку тока.Это мера способности электрического компонента сопротивляться прохождению электрического тока. Единица измерения – ом (Ом).

Закон

Ома определяет соотношение между током, сопротивлением и напряжением. Этот закон гласит, что ток, проходящий через проводник, прямо пропорционален его напряжению, то есть I = V / R

.
Мощность

Мощность (P) – это мера количества работы, которую может выполнить схема или компонент, который может потреблять за единицу времени. Проще говоря, это количество электрической энергии, переданной в единицу времени.Единица измерения мощности – джоуль в секунду (Дж / сек), также известная как ватт (Вт).

Формула закона Ватта

Формула закона Ватта: P = IV

Где:

I = ток

P = мощность

В = напряжение

Часто спрашивают; в чем разница между законом Ватта и законом Ома? В то время как закон Ома определяет соотношение между сопротивлением, напряжением и током в цепи; Закон Ватта определяет соотношение между мощностью, напряжением и током.

Однако вы можете комбинировать эти законы, чтобы получить полезные формулы. По закону Ома I = V / R и V = IR. Подставляя их в формулу Ватта, получаем:

P = Ix IR = I 2 R и P = VxV / R = V 2 / R

Эти формулы также можно использовать для вывода нескольких других формул.

Большинство вычислений по формуле Ватта можно выполнять вручную. Однако вы также можете использовать онлайн-калькулятор закона Ватта.

Применение закона Ватта

Ниже приведены некоторые применения формулы закона Ватта:

  • Если у вас есть источник питания, вы можете использовать эту формулу для расчета фактической мощности, которую источник может генерировать.Вы также можете использовать его для расчета потребляемой мощности компонента. Учитывая ток и напряжение источника, все, что вам нужно сделать, это умножить значения.
  • Вы можете рассчитать потребляемую мощность здания по формуле Ватта. При проектировании электропроводки здания необходимо оценить его общую потребляемую мощность. Затем вы можете использовать эту информацию, чтобы определить подходящие сечения проводов для здания. Вы также можете оценить его затраты на электроэнергию. Потребляемая мощность здания достигается путем расчета индивидуальной номинальной мощности каждого электроприбора или компонента, который будет в здании, и их суммирования.
  • Зная мощность и напряжение электрического компонента, вы можете рассчитать его ток, используя формулу Ватта (I = P / V). То же самое касается напряжения, когда известны только ток и мощность (V = P / I).
  • Формулы, полученные из комбинации закона Ватта и закона Ома, можно использовать для расчета электрического сопротивления компонента. Например, если в комнате установлена ​​электрическая лампочка, электрическое сопротивление лампочки можно рассчитать с помощью P = V 2 R i.е. R = П / В 2 .

Предположим, что напряжение, подаваемое в эту комнату, составляет x вольт, а мощность лампы – y ватт, тогда сопротивление R = x / y 2 .

Напряжение, энергия и мощность – MCAT Physical

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает одно или больше ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам Varsity найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса – изображению, ссылке, тексту и т. д. – относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; и Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему утверждению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

что такое напряжение, ток и сопротивление и как они связаны

Формула напряжения, сопротивления и тока называется законом Ома. Это уравнение, которое мы использовали, чтобы понять взаимосвязь между напряжением, током и сопротивлением. Это помогает нам понять, как каждый из них влияет на другие. Понимание взаимосвязи между вольт, ом и ампер поможет вам найти ключи к проблемам в цепях. Эти концепции помогут вам увидеть движение электричества (мысленно). Это поможет вам лучше устранять неисправности электроники.

Существует 3 различных формулы, которые могут быть представлены треугольником закона Ома. Если вы знаете 2 значения, вы можете скрыть 3-е значение, чтобы узнать, какую из 3 формул вам нужно найти для неизвестного.Двигаясь сверху вниз, вы делите (V / R = I или V / I = R), а когда идете слева направо, вы умножаете (I x R = V). Прежде чем мы рассмотрим 3 формулы, нам сначала нужно взглянуть на схему, которую мы будем использовать в наших примерах.

Схема батареи и лампочки

Схема – это просто графическое представление реальной цепи. Это похоже на то, как карта отображает улицы. Батарея будет нашим источником энергии и обеспечивать напряжение в нашей цепи.Подключается к лампочке (лампе) 2 проводами. Лампочка будет использоваться для обозначения сопротивления, поскольку она сопротивляется потоку электричества.

Теперь, когда вы понимаете схему и компоненты, давайте подробнее рассмотрим каждый из трех вариантов закона Ома.


Решение для текущего

Если вы знаете напряжение и сопротивление в цепи, вы можете рассчитать ток, закрыв букву I в треугольнике. Причина, по которой мы используем букву I для обозначения тока, заключается в том, что буква C уже используется для обозначения емкости.Буква I обозначает интенсивность и означает то же, что и ток.

Закрытие буквы I показывает, что нам нужно разделить напряжение на сопротивление (V / R), потому что V превышает букву R. Формула тогда выглядит как V / R = I. Эту формулу можно использовать для расчета тока через цепь или просто отдельный компонент.

Если у меня есть батарея на 9 В, подключенная к лампочке с сопротивлением 100 Ом, я мог бы вычислить, сколько тока проходит через цепь. 9 В / 100 Ом = I. Таким образом, в цепи протекает ток 0,09 А.

В этом случае 9 В (давление) проталкивает 0,09 А (движение) тока через 100 Ом сопротивления.

Обычно, когда нам нужно знать ток, протекающий в цепи, мы измеряем напряжение на известном сопротивлении и вычисляем ток. Это связано с тем, что для измерения тока с помощью измерителя необходимо произвести разрыв цепи. Вы узнаете об этом больше, когда узнаете, как пользоваться глюкометром.

Решение для напряжения

Если вы знаете количество тока, протекающего по цепи, и сопротивление, вы можете закрыть букву V в треугольнике, чтобы открыть формулу, необходимую для расчета напряжения. В этом случае покрытие V оставляет нам IR, который составляет I x R.

Рассчитаем напряжение батареи, подключенной к лампочке, если сопротивление света 100 Ом и ток 0,1 А. В данном случае это просто 0,1 А x 100 Ом = В, что дает нам 10 В.

Это означает, что есть 10 В (давление), проталкивающее 0,1 А (движение) тока через 100 Ом сопротивления.

Напряжение на отдельном компоненте называется падением напряжения. Вы узнаете об этом больше в другом посте. Эту формулу можно использовать для расчета напряжения, приложенного к цепи, или для расчета падения напряжения на отдельном компоненте.

Устранение сопротивления


Если вы знаете напряжение и ток, протекающие в цепи, вы можете вычислить ее сопротивление, закрасив R в треугольнике.Это оставляет нам формулу V / I = R. Итак, снова используя нашу лампу и батарею, если батарея 9 В, а ток 0,8 А, мы можем рассчитать сопротивление лампы по формуле 9 В / 0,8 А = R В этом случае сопротивление будет 11,25 Ом.

В этом последнем примере 9 В (давление) проталкивают 0,8 А (движение) тока через сопротивление 11,25 Ом.

Практические задачи

Найдите неизвестное значение в каждой из следующих задач, а затем проверьте свои ответы:
В = 10 В, I =?, R = 50 Ом

V / R = I, 10 В / 50 Ом = 0.02A


В = 30 В, I = 0,05 А, R =?

V / I = R, 30 В / 0,05 A = 600 Ом


В =?, I = 0,02 А, R = 1250 Ом

I x R = V, 0,02 A x 1250 Ом = 25 В

Номинальная мощность

Многие компоненты, используемые в электронике, имеют номинальную мощность. Это максимальная мощность, с которой компонент может безопасно работать без повреждений.

Для большинства компонентов вы можете заменить оригинал на компонент с такой же или более высокой номинальной мощностью.Есть несколько исключений. Резисторы – одно из таких исключений.

Вы всегда должны заменять резистор новым с такой же номинальной мощностью. Использование более высокой мощности может обойти функции безопасности, встроенные в цепь.

Иногда мощность резистора выбирается специально, чтобы гарантировать отказ в случае превышения мощности, чтобы защитить другие компоненты. При таком использовании резистор похож на плавкий предохранитель.

Влияние напряжения и тока на мощность

Одна из формул, используемых для расчета мощности: V x I = W, где V – напряжение в вольтах, I – ток в амперах, а W – мощность в ваттах.Чтобы рассчитать мощность, рассеиваемую компонентом, V – это падение напряжения на компоненте, а I – ток, протекающий через него.

Например, если у вас есть батарея на 10 В, подключенная последовательно к одному резистору 100 Ом, у нас будет ток 0,1 А. Чтобы определить, сколько тепла будет рассеивать резистор, мы используем формулу I x V = W. Таким образом, в этом случае мощность составляет 0,1 A x 10 В = 1 Вт.

Из этой формулы вы можете увидеть, что увеличение напряжения или тока приведет к увеличению мощности.Это увеличение может привести к тому, что мощность будет выше номинальной мощности резистора, что приведет к его выходу из строя.

Это обычно основная причина вторичных отказов в цепи. Один компонент может выйти из строя (первичный отказ) и вызвать изменения в падении напряжения, протекании тока или обоих в других подключенных компонентах, а также вызвать их отказ (вторичный отказ). Вы узнаете об этом больше, когда начнете основной курс устранения неполадок.

Еще одна вещь, на которую хочу обратить ваше внимание.Если падение напряжения или ток через компонент равны нулю, то количество рассеиваемой мощности равно нулю. Это важно понимать, когда мы позже заговорим об использовании транзисторов в качестве переключателей.

Заключение


Закон Ома в первую очередь используется, чтобы помочь вам лучше понять основную взаимосвязь между напряжением, током и сопротивлением. Если у вас есть базовые концепции для нескольких базовых схем, вам, как правило, не нужно их использовать. Более важно, чем математика, понять, как изменения напряжения или сопротивления влияют на ток.

На этом этапе вам должно быть понятно, что чем выше напряжение (давление), тем больше тока будет проходить через сопротивление, а чем ниже напряжение при том же сопротивлении, тем меньше будет протекать ток.

Также должно быть понятно, что чем выше сопротивление, тем меньше будет протекать ток, и что чем ниже сопротивление при том же напряжении, тем выше будет ток.

Как технический специалист, вы обнаружите, что когда компоненты выходят из строя, их сопротивление почти всегда резко меняется.

Оставить комментарий