Где применяются законы ньютона: «Приведите примеры применения первого закона Ньютона в жизни.» — Яндекс Кью

Законы Ньютона: история создания и юридические аспекты применения. Leonid Kats

Законы Ньютона: история создания и юридические аспекты применения. Leonid Kats [июл. 7, 2015|07:32 pm]

da_sss

Законы Ньютона: история создания и юридические аспекты применения.
Лекция, прочитанная в лондонском Королевском обществе 28 апреля 2015 года по случаю
329 годовщины первой публикации ньютоновских “Математических начал натуральной философии”
Как известно любому широко образованному человеку (во всяком случае, я на это надеюсь) Исаак Ньютон (Isaac Newton) опубликовал свои “Philosophiæ Naturalis Principia Mathematica” (“Математические начала натуральной философии”) в апреле 1686 года. Началу его работы – двумя годами ранее – предшествовал знаменательный разговор между магистром астрономии Эдмундом Галлеем (Edmond Halley) и вышеупомянутым профессором Ньютоном (за столиком известного, широко посещаемого и поныне бара Ye Olde Cheshire Cheese.
Затрудняюсь с точным переводом – то ли “У старого чеширского сыра”, то ли “Улыбка старины Чеширского кота”. Находится на 145 Fleet Street, London, изумительные рыбные чипсы, публикуется на правах рекламы). Я имею ввиду того самого Галлея, который к тому времени каким-то непонятным образом стал собственником кометы Р1, открытой безвестным астрономом-любителем еще за два с половиной века до рождества Христова. Прошу слушателей не путать оксфордского профессора Галлея (Halley) с падуанским профессором Галилеем (Galilei). Хотя они оба были великими учеными, но, во-первых, их имена пишутся по-разному, а во вторых, Галилей доказал факт вращения вокруг Солнца – Земли, а Галлей – кометы Р1.
Так вот, на эту комету, носящую ныне название Кометы Галлея (P1/Halley), магистр имел далеко идущие коммерчиские планы. Например, устройство космической обсерватории для наблюдения за НЛО, бензозаправки для американских Spaceх Dragon, и даже диснейленда с русскими (или американскими – кому как больше нравится) горками, которые, благодаря незначительному притяжению на комете, должны были произвести фурор среди посетителей. Однако при попытке регистрации прав собственности на землевладение в лондонском отделении Her Majesty’s Land Registry, Галлей столкнулся со значительными препятствиями, так как не мог точно указать адрес недвижимости.
Представьте себе восторг господина Галлея, когда во время праздного разговора за пинтой старого доброго английского эля Gale’s Prize Old Ale (публикуется на правах рекламы) господин Ньютон заявляет, что без особого труда может решить все затруднения магистра. Если быть точным, Ньютон использовал выражение “like smoke”, что в переводе означает “как два пальца”. Уверенность Ньютона была основана на том, что он уже давно имел в своем распоряжении математический аппарат, позволяющий вычислять орбиты комет, в том числе и той, что находилась в собственности магистра. Этот аппарат профессор купил еще за двадцать лет до описываемых событий на ярмарке в Скарборо (старейшая ярмарка Британии – Scarborough, North Yorkshire, публикуется на правах рекламы), которой в свое время была посвящена романтичная народная баллада “Scarborough Fair.

Приобретен математический аппарат (mathematical machine) был по ошибке по причине забытых дома очков, вместо самогонного (moonshine machine). Это устройство ученый, естественно – после необходимых усовершенствований – собирался применить для изготовления нового сорта виски Merry Рhysicist. Естественно, что все поступления от безакцизной продукции он планировал направить на организацию в Лондоне приюта для бездомных животных Mayhew (Trenmar Gardens, Kensal Green, London, печатается на правах рекламы). В результате этой, можно без преувеличения сказать – роковой – ошибки, приют открылся лишь в 1886 году, а сибирский химик Дмитрий Менделеев (Dmitri Mendeleev, Siberia) получил приоритет в создании сорокаградусного алкоголя, чем русские бессовестно пользуются и по сей день в целях, далеких от благотворительности.
Однако вернемся в пивной зал Ye Olde Cheshire Cheese. Безмерно обрадованный возможностью уладить все разногласия с Her Majesty’s Land Registry магистр Галлей попросил профессора Ньютона немедленно воспользоваться своим математическим аппаратом и предоставить искомый адрес кометы.
Более того, он щедро предложил финансировать
необходимые исследования путем оплаты счетов Ньютона в вышеупомянутом Ye Olde Cheshire Cheese на протяжении всего времени, необходимого для получения научного результата. Тем не менее, все оказалось не так уж и просто. Математический аппарат, принадлежавший Ньютону, не использовался более двадцати лет и требовал ремонта и настройки. Эта работа, а так же последовавшие затем вычисления, потребовали более двух лет упорного труда ученого. Надо отдать должное магистру Галлею, все это время, как и было обещано, он неукоснительно оплачивал все счета профессора, поступавшие из Ye Olde Cheshire Cheese. Именно благодаря этой щедрой финансовой поддержке и стало возможным появление на свет великого трактата “Philosophiæ Naturalis Principia Mathematica”, в котором и были впервые изложены закон всемирного тяготения и три закона механики, называемые ныне законами Ньютона.
Все тот же неутомимый магистр Галлей, впрочем, подразумевая и собственный интерес, всячески способствовал публикации данного труда лондонским Королевским обществом (The Royal Society) в его “The Philosophical Transactions of the Royal Societу” (“Философские труды Королевского общества”).
Но оказалось, что лондонское Королевское общество на тот момент находилось в весьма затруднительном финансовом положении, издав за свой счет в начале 1686 года трактат Фрэнсиса Уиллоуби и Джона Рэя “История рыб” (Francis Willughby & John Ray “History of Fishes”). Книга предназначалась для широкого круга рыболовов, как любителей, так и профессионалов, но не нашла широкого спроса из-за ограниченности материала. Например, в ней не было ни слова о таких популярных способах ловли рыбы, как ловля с помощью аммонала (ammonal), волчьей пасти (cleft palate) и даже великолепного спиннинга от фирмы Shimano BeastMaster (напечатано на правах рекламы). Более того, авторы позволили себе неуважительно отозваться о классике американской литературы Германе Мелвилле (Herman Melville), указав, что белый кит является продуктом воспаленного воображения сильно пьющего автора (Delirium tremens). Так как в сознании американцев капитан Ахав (shkipper Ahab) уже давно слился с пророком Ионой (prophet Jonah), а библейский Левиафан (Leviathan) – с Моби Диком (Moby Dick), “История рыб”, естественно, вызвала острую негативную реакцию не только литературных критиков, но и Объединенного профсоюза американских китобоев (Joint Trade Union of American Whalers).

Таким образом, великий труд Ньютона рисковал остаться неопубликованным, а человечество – избавленным от огромных бюджетных расходов на поиск цивилизации зеленых человечков в созвездии Андромеды (Constellation Andromeda). Впрочем, что касается последних, они в конце концов прибыли на Землю самостоятельно, и были обнаружены во время всем известных событий на полуострове Крым, Россия (The peninsula of Crimea, Ukraine). Однако магистр Галлей, человек в общем-то небогатый, возможности которого в добавок были истощены оплатой на протяжении двух лет счетов сэра Ньютона за эль Gale’s Prize Old Ale (изысканный, хотя и не самый дешевый сорт для истинных ценителей, публикуется на правах рекламы), нашел блестящий выход из положения. Он обратился за помощью к своему отцу, зажиточному мыловару, предложив ему финансировать издание в обмен на право монопольной поставки мыла в туалеты проектируемого диснейлэнда на комете Галлея. Проблема была решена, и великое творение увидело свет.
Надо сказать, что лондонское Королевское общество, получив деньги на издание Philosophiæ Naturalis Principia Mathematica”, рассчиталось с магистром Галлеем необычным образом – вручив ему пятьдесят экземпляров нераспроданного трактата “История рыб”. Такой бартер оказался для магистра не таким уж и невыгодным (точнее, для его наследников). Во всяком случае, два известных мне экземпляра были проданы на лондонском аукционе Кристис (Christie’s, King-Street, London, публикуется на правах рекламы) за £ 50.000 и £ 57.000 соответственно. Кроме того, ходили настойчивые слухи, что эмир Катара шейх Хамад бен Халифа Аль Тани приобрел этот раритет за огромную сумму в библиотеке Вестминстерского дворца (Palace of Westminster). Странным образом время этой покупки совпало с началом компании возрождения осетровых в рыбных хозяйствах Сахары (Sahara).
В задачи настоящей краткой лекции не входит исследование значения труда Ньютона для всего дальнейшего развития человечества. Об этом уже много раз писалось и говорилось
многочисленными историками науки. Однако я позволю себе обратить внимание на малоизвестный широкой публике аспект применения законов Ньютона – а именно в юриспруденции. Для этого напомним читателям, не успевшим в свое время закончить Кембриджский университет (University of Cambridge, Cambridge, Cambridgeshire) под руководством самого профессора Исаака.

1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
2. Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга равны и направлены в противоположные стороны.
Так как законы Ньютона носят универсальный для всей вселенной характер, то вполне естественным было для юристов всех стран прибегнуть к ним как к некоему эталону. Более того, я убежден, что при встрече человечества с инопланетянами, законы Ньютона смогут послужить той основой, на базе которой разовьется взаимопонимание человеческого и внеземного разумов. Впрочем, объективности ради надо заметить, что не все разделяют мое мнение. В России под влиянием исков бывших акционеров ОАО “НК “ЮКОС“ (OJSC “Yukos Oil Company”), усомнились в правомерности применения законов Ньютона на ее территории, мотивируя это тем, что Россия не подписывала европейской Энергетической хартии (Energy Charter Treaty). В результате вопрос был вынесен на голосование в Государственную Думу, где третий закон был признан не соответствующим конституции страны и поэтому на территории России не действующим, а первые два закона были уточнены и улучшены с помощью поправок, приведших их в соответствие с действующим законодательством Российской Федерации.
Еще более сложная ситуация сложилась в Греции, где вопрос о законах Ньютона был поставлен на референдуме. Премьер-министр страны Алексис Ципрас (Alexis Tsipras) пошел на такой, не побоюсь этого слова, революционный шаг, так как был твердо убежден, что при их соблюдении Греция не сможет отдать долги международным кредиторам в ближайшие 1018 лет – что, кстати, было подтверждено и расчетами Международного Валютного Фонда (International Monetary Fund). На референуме были отменены законы Ньютона, и, на всякий случай, Архимеда (Archimedes) и Бойля-Мариота (Boyle–Mariotte), а также решено отдать долг МВФ (IMF) исключительно греческими оливками. Против такого плана резко выступила директор-распорядитель фонда Кристин Лагард (Сhristine Madeleine Odette Lagarde), заявив, что при оптовой цене на оливки в 1 евро за килограмм получение 32 миллионов тонн этого продукта приведет к тому, что фонд будет вынужден сменить название на Международный Продовольственный Фонд (International Food Fund). Учитывая медлительность американской бюрократии, переименование и прочие формальности могут продлиться от 3 месяцев до 47 лет. А за это время вся мировая экономика, лишенная поддержки фонда, рухнет. Однако, эти события мало сказались на применении законов Ньютона в Греции, так как во время референдума страна обанкротилась, и решения, принятые греческим народом, так и не были опубликованы – правительству нечем было заплатить типографии.
Впрочем, я несколько отвлекся от темы. Итак, о применении законов Ньютона в английской юриспруденции. Выдающийся британский философ и гуманист Томас Мор (Thomas More) в каком-то смысле был предтечей и сформулировал эти законы, но с точки зрения юриста, еще задолго до их появления – в 1515 году. Эти тезисы должны были послужить составной частью его эпохального труда “Утопия” (“Utopia”), однако так и не были опубликованы при жизни автора в связи с его безвременной кончиной в результате несчастного случая (ему отрубили голову).
Пожалуйста, сравните с ньютоновскими формулировками:
1. Всегда найдется болван, который продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, даже если ты лупишь его по башке.
2. Если ты хочешь пнуть кого-нибудь от души, следи за тем, чтобы изменение количества движения было обеспечено пропорционально приложенной движущей силой и происходило по
направлению той прямой, по которой эта сила действует. Иначе ни фига не выйдет.
3. Действию всегда есть равное и противоположное противодействие, то есть если ты утверждаешь, что лежишь на диване, значит и диван может утверждать, что лежит на тебе, только с другой стороны.
Поражает глубина и гуманистическая направленность этих строк. Даже католическая церковь оценила вклад великого юриста и мыслителя в законотворчество и канонизировала его в 1935 году. Хотя сам Томас Мор во время праздничного банкета по этому поводу в ресторане Ai Fienarol (Via Sardegna, 137, лучшая паста Рима, печатается на правах рекламы) намекнул Папе Пию XI (Pope Pius XI), что предпочел бы нобелевку (Nobel Prize) по литературе, так как звание “Святой” ему, простому лорд-канцлеру Англии, кажется несколько нескромным. Другой английский писатель, сэр Уинстон Леонард Спенсер-Черчиль (Sir Winston Leonard Spencer-Churchill), все-таки получивший Нобелевскую литературную премию за свои мемуары, в приватных разговорах неоднократно подчеркивал, что без законов Мора и Ньютона (он называл их Моразмоньютоновскими законами) его успех как литератора был бы невозможен, и он остался бы в памяти потомков всего лишь самым выдающимся премьер-министром Великобритании.
Помню, как во время Ялтинской конференции в феврале 1945 года сэр Черчилль так и сказал гениралиссимусу Сталину (Generalissimo Stalin): “Мы таки сделали это – пнули чудовище Гитлера так, чтобы изменение количества движения было обеспечено пропорционально приложенной движущей силой.” А дядюшка Джо (Uncle Joe), улыбаясь в усы и мягко помахивая своей знаменитой трубкой Dunhill (трубки Dunhill – штучный товар для знатоков, печатается на правах рекламы), ответил: “О да, мы пнули его как следует и проследили за тем, чтобы все происходило по направлению той прямой, по которой сила действует. ” Из этого диалога можно ясно понять, что просвещенный тиран Сталин тоже прекрасно знал и ценил Моразмоньютоновские законы.
Собственно, сталинская концепция “Об обострении классовой борьбы по мере продвижения к социализму”, при всех своих претензиях на новаторство, является третьим Моразмоньютоновским законом в чистом виде. Читатель легко может убедиться в этом сам, заменив слова в классической формуле с “лежишь на диване” на “строишь социализм”. В СССР даже был учрежден Государственный Университет Латинской Грамматики, сокращенно ГУЛАГ (GULAG), где ньютоновская “Philosophiæ Naturalis Principia Mathematica” и моровская “Utopia” являлись основными учебными пособиями. Поражает размах просветительской деятельности этого учебного заведения: за 26 лет существования университета его курс прослушало около тридцати миллионов человек – от простого фермера до маршала – получив возможность изучить великие труды в оригинале.
Впрочем, оставим успехи русских в области гуманитарных программ и вернемся к нашей основной теме, то есть к использованию Моразмоньютоновских законов в современном британском судопроизводстве. Должен честно признаться, что об этом я не знаю ровным счетом ничего. На память приходит только пара скандальных сообщений прессы о применении полицией первого и второго законов, которые журналисты по своему невежеству расценили как полицейский произвол. Да, было еще пару лет назад дело об изнасиловании, где солиситор пытался доказать на основании третьего закона, что если жертва была изнасилована, то с тем же успехом можно считать, что жертва и была насильником. Однако судья отверг его доводы на основании того, что законы Ньютона действительны только для классической механики. Впрочем, в этом нет ничего удивительного для судьи по фамилии Салама (Salama), у которого из-под парика выглядывают пейсы, а дядюшка содержит кошерный ресторан “1701”, что при синагоге Bevis Marks (ресторан включен в “Michelin Guide”, изумительная тушеная баранина и домашний куриный суп, печатается на правах рекламы). Я как раз забронировал там столик на завтра, так что если кто-нибудь захочет получить мой автограф – не стесняйтесь, приходите вечерком прямо в “1701”. Буду весьма рад.
Leonid Kats

Физика. 8 класс

Физика. 8 класс
  

Кикоин И.К., Кикоин А.К. Физика. 8 класс. Учебное пособие. — 4-е изд., перераб. — М.: Просвещение, 1973. — 256 с.

Советская фундаментальная наука, и физика в частности, была одной из сильнейших в мире. А по каким учебникам учились в школе и готовились к экзаменам будущие лучшие в мире ученые?

Вашему вниманию предлагается учебник по физике для советских восьмиклассников. Охватывает разделы “Кинематика”, “Динамика, “Равновесие тел” и “Законы сохранения в механике”.



Оглавление

Глава 1. Общие сведения о движении
§ 1. ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ ТЕЛ. МАТЕРИАЛЬНАЯ ТОЧКА
§ 2. ПОЛОЖЕНИЕ ТОЧКИ (ТЕЛА) В ПРОСТРАНСТВЕ
§ 3. ПЕРЕМЕЩЕНИЕ
§ 4. ПОНЯТИЕ О ВЕКТОРАХ. ВЕКТОР ПЕРЕМЕЩЕНИЯ. КООРДИНАТЫ ТЕЛА
§ 5. ДЕЙСТВИЯ НАД ВЕКТОРАМИ: СЛОЖЕНИЕ ВЕКТОРОВ
§ 6. ДЕЙСТВИЯ НАД ВЕКТОРАМИ: ВЫЧИТАНИЕ ВЕКТОРОВ
§ 7. ДЕЙСТВИЯ НАД ВЕКТОРАМИ: УМНОЖЕНИЕ ВЕКТОРА НА СКАЛЯР
§ 8. ПРЯМОЛИНЕЙНОЕ РАВНОМЕРНОЕ ДВИЖЕНИЕ
§ 9. ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ДВИЖЕНИЯ
§ 10. ОТНОСИТЕЛЬНОСТЬ ДВИЖЕНИЯ
§ 11. ОТНОСИТЕЛЬНОСТЬ ДВИЖЕНИЯ (ПРОДОЛЖЕНИЕ)
§ 12. ЕДИНИЦЫ ИЗМЕРЕНИЙ ДЛИНЫ И ВРЕМЕНИ
Глава 2. Прямолинейное неравномерное движение
§ 13. СРЕДНЯЯ СКОРОСТЬ
§ 14. МГНОВЕННАЯ СКОРОСТЬ
§ 15. УСКОРЕНИЕ. РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ
§ 16. НАПРАВЛЕНИЕ УСКОРЕНИЯ
§ 17. ПЕРЕМЕЩЕНИЕ ПРИ РАВНОУСКОРЕННОМ ДВИЖЕНИИ
§ 18. СРЕДНЯЯ СКОРОСТЬ ПРИ ПРЯМОЛИНЕЙНОМ РАВНОУСКОРЕННОМ ДВИЖЕНИИ. СВЯЗЬ МЕЖДУ ПЕРЕМЕЩЕНИЕМ И СКОРОСТЬЮ
§ 19. ИЗМЕРЕНИЕ УСКОРЕНИЯ
§ 20. СВОБОДНОЕ ПАДЕНИЕ ТЕЛ
§ 21. ДВИЖЕНИЕ ТЕЛА, БРОШЕННОГО ВЕРТИКАЛЬНО ВВЕРХ
Глава 3. Криволинейное движение
§ 22. ПЕРЕМЕЩЕНИЕ И СКОРОСТЬ ПРИ КРИВОЛИНЕЙНОМ ДВИЖЕНИИ
§ 23. УСКОРЕНИЕ ПРИ КРИВОЛИНЕЙНОМ ДВИЖЕНИИ
§ 24. ДВИЖЕНИЕ ПО ОКРУЖНОСТИ. УГОЛ ПОВОРОТА И УГЛОВАЯ СКОРОСТЬ
§ 25. УСКОРЕНИЕ ПРИ РАВНОМЕРНОМ ДВИЖЕНИИ ТЕЛА ПО ОКРУЖНОСТИ
§ 26. ВРАЩЕНИЕ ТВЕРДОГО ТЕЛА
§ 27. ОБ ОТНОСИТЕЛЬНОСТИ ДВИЖЕНИЯ ТЕЛА ПРИ ВРАЩЕНИИ СИСТЕМЫ ОТСЧЕТА
Динамика
Глава 4. Законы движения
§ 28. ТЕЛА И ИХ ОКРУЖЕНИЕ. ПЕРВЫЙ ЗАКОН НЬЮТОНА
§ 29. ПОЧЕМУ ВОЗНИКАЮТ УСКОРЕНИЯ
§ 30. ВЗАИМОДЕЙСТВИЕ TEЛ. УСКОРЕНИЯ ТЕЛ ПРИ ИХ ВЗАИМОДЕЙСТВИИ
§ 31. ИНЕРТНОСТЬ ТЕЛ
§ 32. МАССА ТЕЛ
§ 33. МАССА ЛУНЫ
§ 34. СИЛА
§ 35. ВТОРОЙ ЗАКОН НЬЮТОНА
§ 36. ВТОРОЙ ЗАКОН НЬЮТОНА (продолжение)
§ 37. ИЗМЕРЕНИЕ СИЛ. ДИНАМОМЕТР
§ 38. ТРЕТИЙ ЗАКОН НЬЮТОНА
§ 39. ЗНАЧЕНИЕ ЗАКОНОВ НЬЮТОНА
Глава 5. Силы природы
§ 40. ЭЛЕКТРОМАГНИТНЫЕ СИЛЫ
§ 41. СИЛА УПРУГОСТИ
§ 42. СИЛА ВСЕМИРНОГО ТЯГОТЕНИЯ
§ 43. ПОСТОЯННАЯ ВСЕМИРНОГО ТЯГОТЕНИЯ
§ 44. СИЛА ТЯЖЕСТИ
§ 45. ВЕС ТЕЛ
§ 46. ИЗМЕРЕНИЕ МАССЫ ТЕЛ ВЗВЕШИВАНИЕМ
§ 47. МАССА ЗЕМЛИ
§ 48. СИЛА ТРЕНИЯ. ТРЕНИЕ ПОКОЯ
§ 49. СИЛА ТРЕНИЯ СКОЛЬЖЕНИЯ
§ 50. СИЛА СОПРОТИВЛЕНИЯ, ВОЗНИКАЮЩАЯ ПРИ ДВИЖЕНИИ ТЕЛА В ЖИДКОСТИ ИЛИ В ГАЗЕ
Глава 6. Применение законов движения
§ 51. ДВИЖЕНИЕ ТЕЛА ПОД ДЕЙСТВИЕМ СИЛЫ УПРУГОСТИ
§ 52. ДВИЖЕНИЕ ПОД ДЕЙСТВИЕМ СИЛЫ ТЯЖЕСТИ: НАЧАЛЬНАЯ СКОРОСТЬ ТЕЛА РАВНА НУЛЮ ИЛИ ПАРАЛЛЕЛЬНА СИЛЕ ТЯЖЕСТИ
§ 53. ВЕС ТЕЛА, ДВИЖУЩЕГОСЯ С УСКОРЕНИЕМ
§ 54. НЕВЕСОМОСТЬ
§ 55. ДВИЖЕНИЕ ПОД ДЕЙСТВИЕМ СИЛЫ ТЯЖЕСТИ: ТЕЛО БРОШЕНО ПОД УГЛОМ К ГОРИЗОНТУ
§ 56. ДВИЖЕНИЕ ПОД ДЕЙСТВИЕМ СИЛЫ ТЯЖЕСТИ: ТЕЛО БРОШЕНО ГОРИЗОНТАЛЬНО
§ 57. ИСКУССТВЕННЫЕ СПУТНИКИ ЗЕМЛИ. ПЕРВАЯ КОСМИЧЕСКАЯ СКОРОСТЬ
§ 58. ДВИЖЕНИЕ ПЛАНЕТ
§ 59. ДВИЖЕНИЕ ТЕЛА ПОД ДЕЙСТВИЕМ СИЛЫ ТРЕНИЯ
§ 60. ДВИЖЕНИЕ ТЕЛА ПОД ДЕЙСТВИЕМ НЕСКОЛЬКИХ СИЛ
§ 61. ПАДЕНИЕ ТЕЛА В ГАЗЕ ИЛИ В ЖИДКОСТИ
§ 62. НАКЛОН ТЕЛ ПРИ ДВИЖЕНИИ НА ПОВОРОТАХ
§ 63. ПРИ КАКИХ УСЛОВИЯХ ТЕЛА ДВИЖУТСЯ ПОСТУПАТЕЛЬНО? ЦЕНТР МАСС И ЦЕНТР ТЯЖЕСТИ
§ 64. ВСЕГДА ЛИ ВЕРНЫ ЗАКОНЫ МЕХАНИКИ НЬЮТОНА
Равновесие тел
Глава 7. Элементы статики
§ 65. РАВНОВЕСИЕ ТЕЛ ПРИ ОТСУТСТВИИ ВРАЩЕНИЯ
§ 66. РАВНОВЕСИЕ ТЕЛА С ЗАКРЕПЛЕННОЙ ОСЬЮ. МОМЕНТ СИЛЫ
§ 67. ПРАВИЛО МОМЕНТОВ
§ 68. УСТОЙЧИВОСТЬ РАВНОВЕСИЯ ТЕЛ ПОД ДЕЙСТВИЕМ СИЛЫ ТЯЖЕСТИ
§ 69. РАВНОВЕСИЕ ТЕЛ НА ОПОРАХ
Законы сохранения в механике
Глава 8. Закон сохранения импульса
§ 70. СИЛА И ИМПУЛЬС
§ 71. ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА
§ 72. РЕАКТИВНОЕ ДВИЖЕНИЕ
Глава 9. Механическая работа и мощность
§ 74. ПОЧЕМУ РАБОТА ОПРЕДЕЛЯЕТСЯ КАК ПРОИЗВЕДЕНИЕ
§ 75. БОЛЕЕ ОБЩЕЕ ОПРЕДЕЛЕНИЕ РАБОТЫ
§ 76. РАБОТА, СОВЕРШАЕМАЯ СИЛАМИ, РАВНОДЕЙСТВУЮЩАЯ КОТОРЫХ НЕ РАВНА НУЛЮ. ТЕОРЕМА О КИНЕТИЧЕСКОЙ ЭНЕРГИИ
§ 77. РАБОТА СИЛЫ ТЯЖЕСТИ
§ 78. РАБОТА СИЛЫ УПРУГОСТИ
§ 79. РАБОТА СИЛЫ ТРЕНИЯ
§ 80. МОЩНОСТЬ
Глава 10. Закон сохранения энергии
§ 82. РАБОТА ТЕЛА И ИЗМЕНЕНИЕ ЕГО СОСТОЯНИЯ. ПОНЯТИЕ ОБ ЭНЕРГИИ
§ 83. ПОТЕНЦИАЛЬНАЯ И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ
§ 84. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ УПРУГО ДЕФОРМИРОВАННОГО ТЕЛА
§ 85. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ТЕЛА, НАХОДЯЩЕГОСЯ ПОД ДЕЙСТВИЕМ СИЛЫ ТЯЖЕСТИ
§ 36. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ
§ 87. ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ
§ 88. МЕХАНИЧЕСКАЯ ЭНЕРГИЯ И СИЛА ТРЕНИЯ
§ 89. ПРЕВРАЩЕНИЕ ЭНЕРГИИ И ИСПОЛЬЗОВАНИЕ МАШИН
§ 90. КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ
§ 91. СТОЛКНОВЕНИЕ ТЕЛ
§ 92. ДВИЖЕНИЕ ЖИДКОСТИ ПО ТРУБАМ. ЗАКОН БЕРНУЛЛИ
§ 93. О ЗНАЧЕНИИ ЗАКОНОВ СОХРАНЕНИЯ
Заключение
Лабораторные работы
1. Определение ускорения тела при равноускоренном движении
2. Определение коэффициента трения скольжения
3. Изучение движения тела по параболе
4. Выяснение условия равновесия рычага
5. Определение центра тяжести плоской пластины
Ответы к упражнениям

6: Применение законов Ньютона

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    4005
    • OpenStax
    • OpenStax

    Автомобильные гонки в последние годы стали очень популярными. Когда каждая машина движется по криволинейной траектории вокруг поворота, ее колеса также быстро вращаются. Колеса совершают много оборотов, в то время как автомобиль совершает только часть одного (дуга окружности). Как мы можем описать скорости, ускорения и действующие силы? Какая сила удерживает гоночный автомобиль от разворота и удара о стену, граничащую с трассой? Что обеспечивает эту силу? Почему трек забанен? Мы ответим на все эти вопросы в этой главе, расширяя наше рассмотрение законов движения Ньютона.

    • 6.1: Прелюдия к применению законов Ньютона
      Популярность автомобильных гонок в последние годы возросла. Когда каждая машина движется по криволинейной траектории вокруг поворота, ее колеса также быстро вращаются. Колеса совершают много оборотов, в то время как автомобиль совершает только часть одного (дуга окружности). Как мы можем описать скорости, ускорения и действующие силы? Какая сила удерживает гоночный автомобиль от разворота и удара о стену, граничащую с трассой? Что обеспечивает эту силу? Почему трек забанен? Мы ответим на все эти вопросы в этой главе, расширяя нашу с
    • 6. 2: Решение задач с помощью законов Ньютона (часть 1)
      Законы движения Ньютона можно применять во многих ситуациях для решения задач движения. Некоторые задачи содержат несколько векторов силы, действующих на объект в разных направлениях.
    • 6.3: Решение задач с законами Ньютона (часть 2)
      Некоторые задачи движения содержат несколько физических величин, таких как силы, ускорение, скорость или положение. Для их решения можно применить концепции кинематики и динамики.
    • 6.4: Трение (Часть 1)
      Когда тело движется, оно испытывает сопротивление, потому что тело взаимодействует с окружающей средой. Это сопротивление есть сила трения. Трение препятствует относительному движению между соприкасающимися системами, но также позволяет нам двигаться — концепция, которая становится очевидной, если вы попытаетесь пройтись по льду. Трение — распространенная, но сложная сила, и ее поведение до сих пор полностью не изучено. Тем не менее, можно понять обстоятельства, в которых он себя ведет.
    • 6.5: Трение (Часть 2)
      Простое трение всегда пропорционально нормальной силе. Когда предмет находится не на горизонтальной поверхности, как в случае с наклонной плоскостью, необходимо найти силу, действующую на предмет, направленную перпендикулярно поверхности.
    • 6.6: Центростремительная сила
      Центростремительная сила – это сила, направленная к центру, которая всегда направлена ​​к центру вращения, поэтому она перпендикулярна линейной скорости. Вращающаяся и ускоренная системы отсчета неинерциальны. Силы инерции, такие как сила Кориолиса, необходимы для объяснения движения в таких системах отсчета.
    • 6.7: Сила сопротивления и конечная скорость
      Силы сопротивления, действующие на объект, движущийся в жидкости, противодействуют движению. Для более крупных объектов (таких как бейсбольный мяч), движущихся со скоростью в воздухе, сила сопротивления определяется с использованием коэффициента сопротивления, площади объекта, обращенной к жидкости, и плотности жидкости. Для небольших объектов (таких как бактерия), движущихся в более плотной среде, сила сопротивления определяется законом Стокса.
    • 6.E: Применение законов Ньютона (упражнения)
    • 6.S: Применение законов Ньютона (Краткое изложение)

    Миниатюра: Стандартные автомобили, участвовавшие в гонках Grand National Divisional на гоночной трассе Iowa Speedway в мае 2015 года, часто достигают скорости 200 миль в час. (320 км/ч).


    Эта страница под названием 6: Применение законов Ньютона распространяется под лицензией CC BY 4.0 и была создана, изменена и/или курирована OpenStax с помощью исходного контента, который был отредактирован в соответствии со стилем и стандартами платформы LibreTexts; подробная история редактирования доступна по запросу.

    1. Наверх
    • Была ли эта статья полезной?
    1. Тип изделия
      Глава
      Автор
      ОпенСтакс
      Лицензия
      СС BY
      Версия лицензии
      4,0
      Программа OER или Publisher
      ОпенСтакс
      Показать оглавление
      нет
    2. Теги
      1. [email protected]://openstax. org/details/books/university-physics-volume-1

    Применение законов Ньютона | Инженерная библиотека

    На этой странице представлена ​​глава о применении законов Ньютона из «Справочника по основам Министерства энергетики: классическая физика», DOE-HDBK-1010-92, Министерство энергетики США, июнь 1992 г.

    Другие связанные главы из «Справочника по основам Министерства энергетики: классическая физика» можно увидеть справа.

    Сила и вес

    Силу можно рассматривать просто как толчок или тягу, но более четко ее можно определить как любое действие на тело, которое стремится изменить скорость тела. Вес — это сила, действующая на объект из-за положения объекта в гравитационном поле.

    Введение

    При изучении сил учащийся должен делать обоснованные предположения, требуемые при постановке реальных задач. Способность понимать и использовать правильные предположения при постановке и решении инженерных задач, безусловно, является одной из самых важных способностей успешного оператора. Одна из целей данного пособия — предоставить возможность развить эту способность посредством изучения основ и анализа практических задач.

    Необходим эффективный метод решения всех инженерных задач. Выработка хороших привычек формулировать проблемы и представлять их решения окажется ценным активом. Каждое решение должно представлять собой логическую последовательность шагов от гипотезы к заключению, а его представление должно включать четкое изложение следующих частей, каждая из которых четко определена: а) данные, б) желаемые результаты, в) необходимые диаграммы, г) расчеты. д) ответы и выводы. Многие проблемы становятся ясными и прямолинейными, когда они начинаются с логического и дисциплинированного метода атаки.

    Предмет классической физики основан на удивительно небольшом количестве фундаментальных понятий и включает главным образом применение этих основных соотношений к множеству ситуаций. Законы движения Ньютона являются одними из фундаментальных понятий, используемых при изучении силы и веса.

    Сила

    Сила определяется как векторная величина, стремящаяся вызвать ускорение тела в направлении его приложения. Изменение скорости тела вызывает ускорение тела. Следовательно, сила может быть математически определена как заданная вторым законом движения Ньютона (уравнение 4-1).

    F = ма

    (4-1)

    куда:

    Ф = сила, действующая на объект (Ньютон или фунт-сила)
    м = масса объекта (кг или фунт)
    и = ускорение объекта (м/сек 2 или фут/сек 2 )

    Сила характеризуется точкой приложения, величиной и направлением. Сила, фактически распределенная по небольшому участку тела, на который она воздействует, может считаться сосредоточенной силой, если размеры затрагиваемой области малы по сравнению с другими соответствующими размерами.

    Две или более сил могут действовать на объект, не влияя на его состояние движения. Например, на книгу, лежащую на столе, действует направленная вниз сила, вызванная гравитацией, и восходящая сила, действующая на нее со стороны столешницы. Эти две силы компенсируются, и результирующая сила книги равна нулю. Этот факт можно проверить, заметив, что никакого изменения состояния движения не произошло.

    Масса

    Вес есть особое применение понятия силы. Он определяется как сила, действующая на объект со стороны гравитационного поля Земли, или, точнее, сила притяжения Земли к телу.

    $$ W = {мг \над g_c} $$

    (4-2)

    куда:

    Ш = вес (фунт)
    м = масса (фунты) объекта
    г = местное ускорение свободного падения (32,17 фут/сек 2 )
    г с = постоянная преобразования, используемая для облегчения использования второго закона Ньютона в английской системе единиц и равная 32,17 фут-фунт/фунт-сила-сек 2

    Обратите внимание, что g c имеет то же числовое значение, что и ускорение свободного падения на уровне моря.

    Масса тела одинакова, где бы оно ни находилось, будь то на Луне или на Земле. Однако вес тела зависит от местного ускорения силы тяжести. Таким образом, вес объекта на Луне меньше, чем на Земле, потому что локальное ускорение свободного падения на Луне меньше, чем на Земле.

    Пример: 92 } } \номер \\ &=& 28,19 ~\text{фунт-сила} \end{эквнаррай} $$

    Поняв идею массы и веса, особенно их различия, легче объяснить концепцию гравитационной силы. Любой брошенный объект будет ускоряться при падении, даже если он не находится в физическом контакте с каким-либо другим телом. Чтобы объяснить это, была разработана идея гравитационной силы, в результате чего появилось представление о том, что одно тело, такое как Земля, оказывает силу на другое тело, даже если они находятся далеко друг от друга. Гравитационное притяжение двух объектов зависит от массы каждого и расстояния между ними. Эта концепция известна как закон тяготения Ньютона, который был представлен в предыдущей главе.



    У нас есть несколько структурных калькуляторов на выбор. Здесь только несколько:

    • Калькулятор луча
    • Калькулятор болтовых соединений
    • Распределение силы болтового соединения
    • Калькулятор зажимов
    • Калькулятор потери устойчивости колонны
    • Калькулятор роста усталостной трещины


    Диаграммы свободного тела

    При изучении действия сил на тело необходимо выделить тело и определить все силы, действующие на него. Этот метод использования диаграммы свободного тела необходим для понимания основных и сложных силовых задач.

    При решении задачи, связанной с силами, необходимо тщательно помнить законы Ньютона и применять эти принципы буквально и точно. При применении этих принципов существенно, чтобы тело было изолировано от всех других тел, чтобы можно было рассмотреть полный и точный учет всех сил, действующих на это тело. Диаграмма такого изолированного тела с изображением всех внешних сил, действующих на него, называется диаграммой свободного тела 9019. 9 . Давно установлено, что метод диаграмм свободного тела является ключом к пониманию инженерных задач. Это потому, что изоляция тела — это инструмент, который четко разделяет причину и следствие и фокусирует наше внимание на буквальном применении принципа.

    Пример:

    Рассмотрим книгу, лежащую на столе на рис. 1. Хотя книга неподвижна, на нее действуют две силы, удерживающие ее в неподвижном состоянии. Одним из них является вес (W) книги, оказывающей давление на стол. Другая — это сила, с которой стол удерживает книгу на месте. Эта сила известна как нормальная сила (Н) и равна весу книги. Нормальная сила определяется как любая перпендикулярная сила, с которой любые две поверхности прижимаются друг к другу. Диаграмма свободного тела для этой ситуации, показанная справа на рисунке 1, изолирует книгу и представляет силы, действующие на объект.

    Рисунок 1: Книга на столе

    Построение диаграммы свободного тела

    При построении диаграммы свободного тела обычно выполняются следующие шаги.

    Шаг 1. Определите, какое тело или комбинацию тел следует изолировать. Выбранное тело обычно включает одну или несколько желаемых неизвестных величин.
    Шаг 2. Затем изолируйте выбранное тело или комбинацию тел с помощью диаграммы, представляющей его полные внешние границы.
    Шаг 3. Изобразите все силы, действующие на изолированное тело, приложенные удаленными контактирующими и притягивающими телами в их надлежащих положениях на схеме изолированного тела. Не показывайте силы, которые объект воздействует на что-либо еще, так как эти силы не действуют на сам объект.
    Шаг 4. Укажите выбор координатных осей прямо на схеме. Соответствующие размеры также могут быть представлены для удобства. Обратите внимание, однако, что диаграмма свободного тела служит для того, чтобы сосредоточить внимание на действии внешних сил; поэтому схему не следует загромождать излишней информацией. Стрелки силы должны четко отличаться от других стрелок, чтобы избежать путаницы. Для этого можно использовать цветные карандаши.

    Когда эти шаги будут выполнены, получится правильная диаграмма свободного тела, и учащийся может применить к диаграмме соответствующие уравнения, чтобы найти правильное решение.

    Пример:

    Автомобиль на рис. 2 буксируется силой некоторой величины. Постройте диаграмму свободного тела, показывающую все силы, действующие на автомобиль.

    Рисунок 2: Автомобиль

    Решение:

    Следуя шагам построения диаграммы свободного тела (показаны на рисунке 3), объект (автомобиль) выбирается и изолируется. Все силы, действующие на автомобиль, представлены с помощью соответствующих осей координат. Эти силы таковы:

    F Приложение Сила, приложенная для буксировки автомобиля
    Ф К Сила трения, которая противодействует приложенной силе из-за веса автомобиля и характера поверхностей (автомобильных шин и дороги)
    Ш Вес автомобиля
    Н Нормальная сила, действующая на автомобиль со стороны дороги
    Рис. 3: Схема свободного тела

    Сила трения (F K ) — это сила, противодействующая направлению движения. Эта сила объясняется более подробно в главе о типах сил.

    Чтобы решить эту практическую задачу, учащийся присваивал значения каждой силе в соответствии с данными, приведенными в задаче. После назначения знака (например, + для сил, направленных вверх и вправо, – для сил, направленных вниз и влево), студент суммирует все силы, чтобы найти результирующую силу, действующую на тело. Используя эту информацию о результирующей силе и соответствующие уравнения, учащийся мог найти запрошенные неизвестные. В качестве варианта можно предложить учащемуся найти неизвестную силу, действующую на тело, при наличии достаточной информации о других силах, действующих на тело. Учащийся научится решать конкретные примеры с использованием диаграмм свободного тела в следующей главе.

    Некоторые расширенные диаграммы свободного тела для различных типов систем показаны на рисунке 4.

    Рисунок 4: Различные схемы свободного тела

    У нас есть несколько структурных калькуляторов на выбор. Здесь только несколько:

    • Калькулятор луча
    • Калькулятор болтовых соединений
    • Распределение силы болтового соединения
    • Калькулятор зажимов
    • Калькулятор потери устойчивости колонны
    • Калькулятор роста усталостной трещины


    Равновесие сил

    Знание сил, необходимых для поддержания объекта в равновесии, необходимо для понимания природы тел в состоянии покоя и в движении.

    Чистая сила

    Когда силы действуют на объект, результатом может быть изменение состояния движения объекта. Однако, если выполняются определенные условия, силы могут объединяться для поддержания состояния равновесия или баланса.

    Чтобы определить, находится ли тело в равновесии, необходимо оценить суммарный эффект всех сил, действующих на него. Все силы, действующие на объект, в результате образуют по существу одну силу, влияющую на движение объекта. Сила, являющаяся результатом всех сил, действующих на тело, определяется как чистая сила . Важно помнить, что силы являются векторными величинами. При анализе различных сил необходимо учитывать как величину (смещение) силы, так и направление приложения силы. Как описано в предыдущей главе, это лучше всего сделать с помощью диаграммы свободного тела.

    Чтобы лучше понять это, рассмотрим книгу, лежащую на столе, в секции А на рис. 5.

    Рисунок 5: Net Force

    Книга остается неподвижной, опираясь на стол, потому что стол прикладывает нормальную силу, направленную вверх, равную весу книги. Следовательно, результирующая сила, действующая на книгу, равна нулю. Если к книге приложить силу (участок В на рис. 5) и пренебречь влиянием трения, результирующая сила будет равна приложенной силе, и книга будет двигаться в направлении приложенной силы. Диаграмма свободного тела в разделе C на рисунке 5 показывает, что вес (W) книги компенсируется нормальной силой (N) стола, поскольку они равны по величине, но противоположны по направлению. Таким образом, результирующая (чистая) сила равна приложенной силе (F ПРИЛОЖЕНИЕ ).

    Равновесие

    Поскольку считается, что объект, находящийся в равновесии, находится в состоянии равновесия, можно предположить, что результирующая сила, действующая на объект, равна нулю. То есть, если векторная сумма всех сил, действующих на объект, равна нулю, то объект находится в равновесии.

    Первый закон движения Ньютона описывает равновесие и действие силы на тело, находящееся в равновесии. Этот закон гласит: «Объект остается в покое (если изначально находился в покое) или движется по прямой линии с постоянной скоростью, если результирующая сила, действующая на него, равна нулю». Первый закон движения Ньютона также называют законом инерции. Инерция — это тенденция тела сопротивляться изменению состояния его движения.

    Первое условие равновесия, являющееся следствием первого закона Ньютона, может быть записано в векторной форме: «Тело будет находиться в поступательном равновесии тогда и только тогда, когда векторная сумма сил, действующих на тело со стороны окружающей среды, равна нулю».

    Например, если на тело действуют три силы, то для того, чтобы тело находилось в равновесии, необходимо, чтобы выполнялось следующее.

    Ф 1 + F 2 + F 3 = 0

    (4-3)

    Это уравнение можно также записать следующим образом.

    Σ F = 0

    (4-4)

    В эту сумму входят все силы, действующие на тело со стороны окружающей среды. Исчезновение этой векторной суммы является необходимым условием, называемым первым условием равновесия, которое должно быть выполнено, чтобы обеспечить поступательное равновесие. В трех измерениях (x, y, z) составные уравнения первого условия равновесия:

    Σ F X = 0 Σ F Y = 0 Σ F Z = 0

    (4-5)

    Это условие применяется к объектам, движущимся с постоянной скоростью, а также к телам, находящимся в покое или в статическом равновесии (называемым СТАТИКОЙ).

    Применяя знание того, что объект, находящийся в равновесии, имеет результирующую силу, равную нулю, можно решить следующий пример:

    Пример:

    Объект на рисунке 6 имеет вес 125 фунтов силы. Объект подвешен на тросах, как показано на рисунке. Рассчитайте натяжение (T 1 ) троса под углом 30° к горизонтали.

    Рисунок 6: Висячий объект

    Натяжение кабеля — это сила, передаваемая кабелем. Натяжение в любой точке троса можно измерить, отрезав от него подходящую длину и вставив пружинную шкалу.

    Рисунок 7: Диаграмма свободного тела

    Решение:

    Поскольку объект и поддерживающие его тросы неподвижны (т. е. находятся в равновесии), мы знаем, что результирующая сила, действующая на пересечение тросов, равна нулю. Тот факт, что результирующая сила равна нулю, говорит нам, что сумма x-компонентов T 1 , T 2 и T 3 равна нулю, а сумма y-компонентов T 1 , T 2 и T 3 равно нулю.

    Σ F x = T 1.x + T 2.x 9{\circ}) &=& 0 \номер \\ (T_1)(0.5) + (T_2)(0) + (125 ~\text{lbf})(-1) &=& 0 \nonumber \\ 0,5 ~T_1 – 125 ~\text{фунт-сила} &=& 0 \номер \\ 0,5 ~T_1 &=& 125 ~\text{lbf} \nonumber \\ T_1 &=& 250 ~\text{фунт-сила} \end{эквнаррай} $$

    Более простой метод решения этой проблемы включает в себя присвоение знака диаграмме свободного тела и изучение направления сил.

    Выбрав (+) в качестве восходящего направления и (-) в качестве нисходящего направления, учащийся может на экзамене определить, что 1) восходящая составляющая T 9{\circ}) – 125 ~\text{lbf} &=& 0 \nonumber \\ 0,5 ~T_1 &=& 125 ~\text{lbf} \nonumber \\ T_1 &=& 250 ~\text{фунт-сила} \end{эквнаррай} $$

    Если сумма всех сил, действующих на тело, равна нулю, говорят, что тело находится в равновесии сил. Если сумма всех сил не равна нулю, любая сила или система сил, способная уравновесить систему, определяется как уравновешивающая .

    Пример:

    Автомобиль массой 2000 фунтов ускоряется (на поверхности без трения) со скоростью 2 фута/сек 2 . Какую силу необходимо приложить к автомобилю, чтобы он уравновешивал эту систему?

    Решение:

    а. Нарисуйте схему свободного тела.

    Рисунок 8: Диаграмма свободного тела

    б. Сила F 2 ДОЛЖНА быть приложена в направлении, противоположном F 1 , так, чтобы сумма всех сил, действующих на автомобиль, равнялась нулю.

    Σ Усилия = F 1 +плюс; F 2 + Н + Вт = 0

    в. Так как автомобиль остается на поверхности, силы N и W действуют равными и противоположными направлениями. Сила F 92} \номер \\ &=& 124 ~\text{фунт-сила} \end{эквнаррай} $$



    У нас есть несколько структурных калькуляторов на выбор. Здесь только несколько:

    • Калькулятор луча
    • Калькулятор болтовых соединений
    • Распределение силы болтового соединения
    • Калькулятор зажимов
    • Калькулятор потери устойчивости колонны
    • Калькулятор роста усталостной трещины


    Виды силы

    При определении того, как объект реагирует на силу или силы, важно понимать различные типы сил, которые могут воздействовать на объект.

    В предыдущем разделе обсуждалось равновесие сил, действующих на тела. Вспоминая, что сила определяется как векторная величина, стремящаяся вызвать ускорение тела в направлении своего приложения, становится очевидным, что учащийся должен быть знаком с различными типами существующих сил, чтобы построить правильную свободную модель. -диаграмму тела и применить соответствующее уравнение. Сила прикладывается либо прямым механическим контактом, либо дистанционным действием.

    Силы растяжения и сжатия

    При обсуждении типов сил используется простое правило, чтобы определить, является ли сила растягивающей или сжимающей силой. Если сила, приложенная к элементу, стремится разорвать элемент, говорят, что он находится в состоянии натяжения . Если сила стремится сжать элемент, это сжатие . Следует также отметить, что канаты, тросы и т. д., прикрепленные к телам, могут воспринимать только растягивающие нагрузки, и поэтому такие объекты находятся в напряжении при размещении на диаграмме свободного тела. Кроме того, когда речь идет о жидкости, следует понимать, что силы жидкости почти всегда являются сжимающими силами.

    Трение

    Другой тип силы, часто используемый в классической физике, — это сила, возникающая в результате контакта двух поверхностей, когда одна из поверхностей пытается двигаться параллельно или над другой поверхностью. Такие силы называются силами трения . Существует два типа сил трения: силы сухого трения, иногда называемые кулоновским трением, и силы трения жидкости.

    Жидкостное трение возникает между слоями жидкости, движущимися с разными скоростями. Этот тип силы трения используется при рассмотрении задач, связанных с течением жидкости по трубам. Такие проблемы рассматриваются в Основном руководстве по течению жидкости. В этом разделе рассматриваются задачи о контакте твердых тел по сухим поверхностям.

    Законы сухого трения лучше всего понять из следующего эксперимента. На горизонтальной плоской поверхности лежит брусок веса W (см. рис. 9). Силы, действующие на брусок, это его вес W и нормальная сила N поверхности. Поскольку у веса нет горизонтальной составляющей, нормальная сила поверхности также не имеет горизонтальной составляющей; поэтому реакция нормальна к поверхности и представлена ​​буквой N в части (а) рисунка. Предположим теперь, что к блоку приложена горизонтальная сила P (см. часть (b)). Если P мало, блок не будет двигаться. Следовательно, должна существовать какая-то другая горизонтальная сила, которая уравновешивает P. Эта другая сила есть сила трения покоя F, которая фактически является равнодействующей большого числа сил, действующих на всей поверхности контакта между бруском и плоскостью. Природа этих сил точно неизвестна, но обычно предполагается, что эти силы возникают из-за неровностей контактирующих поверхностей, а также из-за действия молекул.

    Рисунок 9: Силы трения

    Если усилие P увеличить, то сила трения F также увеличится, продолжая противодействовать P, пока ее величина не достигнет некоторого максимального значения F M (см. часть (c) рис. 9). При дальнейшем увеличении P сила трения уже не может его уравновешивать, и блок начинает скользить. Как только блок был приведен в движение, величина F падает с F M до меньшего значения F K . Это связано с меньшим взаимопроникновением между неровностями соприкасающихся поверхностей, когда эти поверхности движутся относительно друг друга. С этого момента блок продолжает скользить с возрастающей скоростью (т. е. ускоряется), а сила трения, обозначаемая F K и называемая кинетической силой трения, остается приблизительно постоянной.

    Экспериментальные данные показывают, что максимальное значение F M силы статического трения пропорционально нормальной составляющей N реакции поверхности, как показано в уравнении 4-5.

    F M = μ S N

    (4-5)

    Термин μ S представляет собой константу, называемую коэффициентом статического трения. Точно так же звездная величина F K кинетической силы трения можно выразить в следующем виде.

    F K = μ K N

    (4-6)

    Член μ K представляет собой константу, называемую коэффициентом кинетического трения. Коэффициенты трения µ S и µ K не зависят от площади соприкасающихся поверхностей. Однако оба коэффициента сильно зависят от характера контактирующих поверхностей. Поскольку они также зависят от точного состояния поверхностей, их значение редко известно с точностью более 5%. Следует отметить, что силы трения всегда противоположны по направлению движению (или приближающемуся движению) объекта.

    Центростремительная сила

    Тело, движущееся с постоянной скоростью по окружности, не находится в равновесии. Хотя величина линейной скорости не меняется, направление скорости постоянно меняется. Поскольку изменение направления требует ускорения, объект, движущийся по круговой траектории, имеет постоянное ускорение по направлению к центру круговой траектории.

    Вспоминая второй закон движения Ньютона, F = ma, требуется сила, чтобы вызвать ускорение. Следовательно, чтобы иметь постоянное ускорение по направлению к центру кругового пути, должна быть результирующая сила, действующая по направлению к центру. Эта сила известна как центростремительная сила. Без этой силы объект будет двигаться прямолинейно. На рис. 10 показана центростремительная сила.

    Рисунок 10: Центростремительная сила

    Центробежная сила

    Другая сила, которая кажется противоположной направлению движения, — это центробежная сила, действующая на объект, который движется по криволинейной траектории. Эта сила кажется силой, направленной от центра кругового пути. На самом деле это вымышленная сила, но это кажущаяся сила, которая используется для описания сил, возникающих из-за вращения объекта.

    Чтобы лучше понять центростремительные и центробежные силы, представьте, что к плоскости на рисунке 10 прикреплена струна. Когда плоскость вращается вокруг центра, струна воздействует на плоскость центростремительной силой. Это приводит к тому, что скорость самолета изменяется в направлении, заставляя его двигаться по окружности.

    Рисунок 11: Центробежная сила

    Кажущаяся направленная наружу сила, центробежная сила, по-видимому, оттягивает плоскость от центра, показанного на рис. 11. Это та же самая видимая направленная наружу сила, которую человек ощущает, когда едет в машине, когда машина движется по кругу.

    Оставить комментарий