Гироскоп механический: Оригинальный Механический Гироскоп в коробке Tedco – tc00100

применение в технике » РобоВики

Данная статья является вводной теорией к уроку «Механический гироскоп. Авиагоризонт из Lego EV3» для кружка робототехники.

«

Я увидел вращение Земли под микроскопом»

В 1852 году в Парижской академии наук французский физик, механик и астроном Леон Фуко (1819 — 1868) продемонстрировал прибор, позволяющий обнаружить вращение Земли. Гироскоп — так он назвал это устройство. «Гирос» — от греческого «вращение». «Скопео» — от греческого «вижу, наблюдаю». Гироскоп был придуман ранее другим изобретателем, но название этого прибора пошло именно от Фуко.

Французский физик Леон Фуко

Оригинальную конструкцию продемонстрированного в Парижской академии гироскопа со специальной шкалой Фуко изобрел сам. Постройку гироскопа ученый заказал у известного изобретателя Генриха Румкорфа (1803 — 1877), создателя катушки Румкорфа — устройства для получения электрических высоковольтных импульсов.

Гироскоп Фуко представлял из себя вращающийся ротор (волчок) подвешенный так, что его ось могла поворачиваться в любом направлении относительно некоторой центральной неподвижной точки. Такой гироскоп имел наружную и внутреннюю рамку, которые могли вращаться относительно друг друга, и ротор, который концами оси крепился на внутренней рамке.

Гироскоп в кардановом подвесе

Оси вращения двух рамок и ротора пересекаются в точке О — он же центр масс этих тел.

Как бы не поворачивалось основание гироскопа, ось ротора сохраняет неизменное положение. Почему это так, нужно знать физические законы. Самые любознательные могут посмотреть видео по ссылкам в конце документа. Это свойство гироскопа было использовано Фуко для доказательства вращения Земли.

Гироскоп Фуко. Стрелка и шкала использовались для фиксации с помощью микроскопа смещения оси ротора при вращении Земли

Фуко установил гороскоп в подвале дома на тяжелом столе, чтобы никакая внешняя сила не повлияла на его вращение. Ученый раскручивал ротор до большой скорости с помощью специальной машины и возвращал на подставку.

Чтобы увидеть мельчайшее смещение оси вращения ротора относительно метки, Фуко производил наблюдения в микроскоп. И вскоре увидел смещение, которое повторялось из опыта к опыту.

— Я увидел вращение Земли под микроскопом, — сказал Фуко.

Кстати, Леону Фуко принадлежит другой опыт, доказывающий вращение нашей планеты. В 1851 году каждый парижанин мог «увидеть» вращение планеты во французском Пантеоне. В этом высоком храме Фуко построил огромный маятник с высотой подвеса в 67 метров и шаром массой 28 кг на конце. Позже в СССР в 1931 году маятник Фуко был установлен в Исаакиевском соборе, где демонстрировался до 1986 года. Прочитать о маятнике Фуко подробней можно по этой ссылке.

Демонстрация вращения Земли с помощью маятника Фуко в парижском ПантеонеМаятник Фуко в Исаакиевском соборе сбивает спичечный коробок

Применение гироскопа в технике

Игрушечный волчок — это простейший гироскоп, который вращается вокруг точки опоры. Гироскопические свойства проявляются во всех быстровращающихся устройствах — лопастях вертолета, турбине двигателя самолета.

Игрушечный волчок и вертолет

При повороте основания гироскопа ось вращения ротора сохраняет свое изначальное положение. И это свойство гироскопа нашло отражение в приборах, созданных для навигации самолетов, ракет, кораблей. Гироскоп может быть установлен даже в ваш смартфон, только он будет не механический, а электронный.

Приборы, использующие гироскоп, получили название гироскопических. Кроме карданова подвеса в механических гироскопах может использоваться аэродинамический подвес (ротор плавает на воздушной подушке) или электромагнитный подвес (ротор подвешивается в магнитом поле).

Гирокомпас. Из-за вращения Земли вокруг своей оси ось ротора гироскопа автоматически выравнивается относительно южного и северного полюса. Такой компас не подвержен влиянию намагниченных масс металла или электрической проводки, имеющихся на кораблях и самолетах.

Гирокомпас на корабле

Гиротахометр измеряет угловую скорость объекта, например, скорость и направление поворота самолета.

Авиагоризонт — гироскопический бортовой прибор самолета, который используется для определения углов тангажа (нос-хвост) и крена (левое-правое крыло) летательного аппарата. Это важнейшее устройство, с помощью которого опытный летчик может управлять самолетом с нулевой видимостью, не имея ориентиров в пространстве.

Прибор «Авиагоризонт» устанавливается на каждом самолете и находится в кабине экипажа

Гиростабилизатор на ракете, космическом корабле или спутнике дает понять электронной системе управления, в каком положении находится корабль относительно Земли или другого объекта. И с помощью такого гироскопа система управления может дать автоматический сигнал на запуск соответствующих корректирующих двигателей.

Гиростабилизатор позволяет установить систему координат для управления кораблем «Союз»

Гиродины (сontrol moment gyroscope) — это силовые гиростабилизаторы, которые устанавливаются на космические корабли или ракеты для их выравнивания в пространстве. Свойство крутящегося волчка оставаться в вертикальном положении можно использовать для отталкивания от него. Гиродины намного больше и тяжелее гироскопов, использующихся для навигации в пространстве. Их большая скорость вращения и большая масса дает большой момент инерции, который используется для изменения положения космического корабля. Космический корабль может оттолкнуться от такого гироскопа без использования двигателей ориентации. Так, четыре гиродина находится на МКС и позволяют поворачивать станцию без использования реактивных двигателей.

Замена гиродина на МКС (слева). Блок из четырех гиродинов МКС (справа)

Литература:

  1. Творцы машин. Гироскоп Фуко 
  2. Habr. Как опереться на пустоту?
  3. 1sept.ru. Как это устроено: Гироскопы
  4. ИНЕРЦИЯ И МОМЕНТ ИНЕРЦИИ: базовые сведения

Видео:

  1. Научфильм СССР. Гироскоп и его применение. 2 части
  2. НИЯУ МИФИ. Опыт с большим гироскопом. Гирокомпас
  3. НИЯУ МИФИ. Гироскоп (гирокомпас) в карданном подвесе
  4. GetAClass — Физика в опытах и экспериментах. Гироскоп
  5. GetAClass — Физика в опытах и экспериментах. Прецессия гироскопа
  6. Гироскоп . Вычисляется угловая скорость регулярной прецессии гироскопа
  7. Gyroscope Tricks and Physics Stunts

 

Устройство гироскопа

Термин «гироскоп» имеет греческое происхождение, и сформировано от двух слов, которые, в переводе на русский язык означают «круглый» и «смотрю». Что касается смысла работы этого прибора, то он состоит в том, чтобы иметь возможность изменять свою ориентацию по определенным углам относительно некоей инерциальной системы отсчета.

Авторство названия этого прибора и самого термина приписывают Ж. Фуко, который впервые упомянул его в 1852 году в докладе, сделанном перед Французской Академией Наук. Само это сообщение было сделано для того, чтобы экспериментальным способом объяснить то, каким именно образом планета Земля вращается в инерциальном пространстве. Именно поэтому сам прибор и был назван словом «гироскоп».

Что касается принципов действия, то различают два основных типа гироскопов: механические и оптические.

Механические гироскопы

Среди приборов этого типа, пожалуй, наиболее интересным является гироскоп роторный, основой которого является, как нетрудно догадаться из самого названия, ротор, насаженный на ось, которая имеет возможность свободного изменения положения в пространстве.

Гироскоп механический

То свойство, за которое, собственно говоря, и ценят гироскоп, – это его способность при отсутствии воздействия на него моментов различных внешних сил сохранять направление вращения оси в пространстве. Основным определяющим в этом процессе является значение величины угловой скорости собственного вращения этого прибора.

С точки зрения конструкции, механические гироскопы представляют собой некие достаточно специфичные высокоточные приборы, которые собираются из немалого количества разнообразных высококачественных деталей, которые способны достаточно эффективно обеспечить их функционирование.

Гироскопы нашли достаточно широкое применение в различных технических устройствах. В подавляющем большинстве случаев используются те из них, которые размещаются в кардановом подвесе. Как правило, они имеют три степени свободы, то есть имеют возможность совершать вокруг своих осей три независимых поворота.

Для того чтобы надежно и с требуемой высокой скоростью обеспечить вращение ротора гироскопов, в их конструкциях используются специализированные гиромоторы. Кроме того, для обеспечения снятия данных с различных плоскостей гироскопов, применяются такие устройства, как датчики момента и датчики угла.

Одно из основных предназначений гироскопов – это их применение в качестве составных частей различных навигационных систем, в том числе и тех, что используются для стабилизации и ориентации различных космических аппаратов.

Оптические гироскопы

Эти приборы подразделяются на активные оптические (лазерные), интегрально-оптические, волоконно-оптические и пассивные оптические гироскопы.

Когда в направлении вращения прибора посылается луч света, а против этого направления отсчитывается определяемая интерферометром разница во времени прихода лучей, то оказывается возможным просчитать не только разницу оптических путей лучей, вычисленную в инерциональной системе отсчета, но и показатель углового поворота прибора.

Точно так же, как и механические, оптические гироскопы собираются из высокоточных деталей.

 

 

 

Механические характеристики гироскопа

: самый важный параметр

к Харви Вайнберг