Гравитация это что такое: Гравитация — что это такое? Определение, значение, перевод

Содержание

Гравитация | это… Что такое Гравитация?

Гравита́ция (притяжение, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. Гравитация является самым слабым из четырех типов фундаментальных взаимодействий. В квантовом пределе гравитационное взаимодействие должно описываться квантовой теорией гравитации, которая ещё полностью не разработана.

Содержание

  • 1 Гравитационное взаимодействие
  • 2 Небесная механика и некоторые её задачи
  • 3 Сильные гравитационные поля
  • 4 Гравитационное излучение
  • 5 Тонкие эффекты гравитации
  • 6 Классические теории гравитации
    • 6.1 Общая теория относительности
    • 6.2 Теория Эйнштейна — Картана
    • 6.
      3 Теория Бранса — Дикке
  • 7 Квантовая теория гравитации
    • 7.1 Теория струн
    • 7.2 Петлевая квантовая гравитация
    • 7.3 Причинная динамическая триангуляция
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Гравитационное взаимодействие

Закон всемирного тяготения.

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

Здесь  — гравитационная постоянная, равная примерно 6,6725×10−11 м³/(кг·с²).

Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами на космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации.

В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Небесная механика и некоторые её задачи

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации, называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений — сложная структура колец Сатурна.

Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

Сильные гравитационные поля

В сильных гравитационных полях, а также при движении в гравитационном поле с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности (ОТО):

  • изменение геометрии пространства-времени;
    • как следствие, отклонение закона тяготения от ньютоновского;
    • и в экстремальных случаях — возникновение чёрных дыр;
  • запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений;
    • как следствие, появление гравитационных волн;
  • эффекты нелинейности: гравитация имеет свойство взаимодействовать сама с собой, поэтому принцип суперпозиции в сильных полях уже не выполняется.

Гравитационное излучение

Экспериментально измеренное уменьшение периода обращения двойного пульсара PSR B1913+16 (синие точки) с высокой точностью соответствует предсказаниям ОТО по гравитационному излучению (чёрная кривая).

Одним из важных предсказаний ОТО является гравитационное излучение, наличие которого до сих пор не подтверждено прямыми наблюдениями. Однако существуют весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, в знаменитой системе PSR B1913+16 (пульсаре Халса — Тейлора) — хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением.

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами, этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного

n-польного источника пропорциональна , если мультиполь имеет электрический тип, и  — если мультиполь магнитного типа[1], где v — характерная скорость движения источников в излучающей системе, а c — скорость света. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

где  — тензор квадрупольного момента распределения масс излучающей системы. Константа  (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ.)), предпринимаются попытки прямого обнаружения гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO, VIRGO, TAMA (

англ.), GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna — лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном Центре Гравитационно-Волновых Исследований «Дулкын»[2] республики Татарстан.

Тонкие эффекты гравитации

Измерение кривизны пространства на орбите Земли (рисунок художника)

См. также: Gravity Probe B

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и их обнаружение и экспериментальная проверка поэтому весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчета (или эффект Лензе-Тирринга) и гравитомагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters[3]. Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения — −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год).

Классические теории гравитации

См. также: Теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных экспериментальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая[4] классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем — метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля — с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

Теория Эйнштейна — Картана

Теория Эйнштейна — Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина объектов[5]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к ОТО в условиях современной Вселенной настолько малы, что пока не видно даже гипотетических путей для их измерения.

Теория Бранса — Дикке

В скалярно-тензорных теориях, самой известной из которых является теория Бранса — Дикке (или Йордана — Бранса — Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая — для скалярного поля. Теория Бранса — Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля[6].

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского[7]. Благодаря наличию безразмерного параметра в теории Йордана — Бранса — Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана — Бранса — Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Квантовая теория гравитации

Основная статья: Квантовая гравитация

Несмотря на более чем полувековую историю попыток, гравитация — единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория. При низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами — калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема, и поэтому считается неудовлетворительной.

В последние десятилетия разработаны три перспективных подхода к решению задачи квантования гравитации: теория струн, петлевая квантовая гравитация и причинная динамическая триангуляция.

Теория струн

Основная статья: Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги — браны. Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами. Вариантом теории струн является М-теория.

Петлевая квантовая гравитация

Основная статья: Петлевая квантовая гравитация

В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели, не требуя для объяснения их масс введения бозона Хиггса.

Причинная динамическая триангуляция

Основная статья: Причинная динамическая триангуляция

В ней пространственно-временное многообразие строится из элементарных евклидовых симплексов (треугольник, тетраэдр, пентахор) размеров порядка планковских с учётом принципа причинности. Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.

См. также

  • Гравиметр
  • Напряжённость гравитационного поля
  • Гравитационный потенциал
  • Гравитационный коллапс
  • Гравитационная волна
  • Скорость гравитации
  • Альтернативные теории гравитации
  • Общая теория относительности
  • Чёрная дыра

Примечания

  1. См. аналогию между слабым гравитационным полем и электромагнитным полем в статье гравитомагнетизм.
  2. Научный Центр Гравитационно-Волновых Исследований «Дулкын»
  3. C. W. F. Everitt et al. Gravity Probe B: Final results of a space experiment to test general relativity, Physical Review Letters (1 мая 2011). Проверено 6 мая 2011.
  4. Канонической эта теория является в том смысле, что она наиболее хорошо разработана и широко используется в современной небесной механике, астрофизике и космологии, причём количество надёжно установленных противоречащих ей экспериментальных результатов практически равно нулю.
  5. Иваненко Д. Д., Пронин П. И., Сарданашвили Г. А. Калибровочная теория гравитации. — М.: Изд. МГУ, 1985.
  6. Brans, C. H.; Dicke, R. H. (November 1 1961). «Mach’s Principle and a Relativistic Theory of Gravitation». Physical Review 124 (3): 925—935. DOI:10.1103/PhysRev.124.925. Retrieved on 2006-09-23.
  7. С ортодоксальной точки зрения это уравнение представляет собой координатное условие.

Литература

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900—1915). — М.: Наука, 1981. — 352c.
  • Визгин В. П. Единые теории в 1-й трети ХХ в. — М.: Наука, 1985. — 304c.
  • Иваненко Д. Д., Сарданашвили Г. А. Гравитация. 3-е изд. — М.: УРСС, 2008. — 200с.
  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М.: Мир, 1977.
  • Торн К. Черные дыры и складки времени. Дерзкое наследие Эйнштейна. — М.: Государственное издательство физико-математической литературы, 2009.

Ссылки

  • Физическая энциклопедия — «Тяготение»
  • Закон всемирного тяготения или «Почему Луна не падает на Землю?» — Просто о сложном
  • Проблемы гравитации (док. фильм BBC, видео)
  • Земля и гравитация; Релятивиская теория гравитации (телепередачи Гордон «Диалоги», видео)
Теории гравитации
Стандартные теории гравитацииАльтернативные теории гравитацииКвантовые теории гравитацииЕдиные теории поля
Классическая физика
  • Теория тяготения Ньютона

Релятивистская физика

  • Общая теория относительности
    Математическая формулировка общей теории относительности
    Гамильтонова формулировка общей теории относительности

Принципы

  • Принцип эквивалентности сил гравитации и инерции
  • Принцип Маха
  • Геометродинамика (англ. )
Классические
  • Теория гравитации Лесажа
  • Модифицированная ньютоновская динамика

Релятивистские

  • Релятивистская теория гравитации
  • Калибровочная теория гравитации
  • Гравитация с массивным гравитоном
  • Телепараллелизм
  • Теория Нордстрёма
  • Теория Бранса — Дикке
  • Биметрические теории гравитации
  • Несимметричные теории гравитации
  • Теория гравитации Уайтхеда (англ.)
  • Теория Эйнштейна — Картана
  • Каноническая квантовая гравитация
  • Петлевая квантовая гравитация
  • Полуклассическая гравитация (англ.)
  • Причинная динамическая триангуляция (англ.)
  • Евклидова квантовая гравитация
  • Уравнение Уилера — Девитта (англ.)
  • Индуцированная гравитация (англ.)
  • Некоммутативная геометрия (англ.)
Многомерные
  • Общая теория относительности в многомерном пространстве
  • Теория Калуцы — Клейна
  • Супергравитация

Струнные

  • Теория струн
  • Теория суперструн
  • М-теория

Прочие

  • Исключительно простая теория всего

как она появляется, насколько сильна, действие на человека, исследования, изменения

Если бы не она, мы не были бы собой. Только с ней мы можем жить на нашей планете. Только она держит Землю на своем месте. И только ее надо преодолеть, чтобы очень большо не упасть. Речь о гравитации.

Гравитация — одна из фундаментальных сил природы, самое слабое взаимодействие из них. Определяется взаимным притяжением между двумя атомами (или группами атомов). Если вы положите два мячика на стол, между ними будет притяжение, но крайне слабое. Если мячики вырастут до размеров Земли, соответственно, сила возрастет многократно и станет ощутимой. Гравитацией обладают, как правило, крупные объекты, образующие гравитационное поле. Благодаря ему, мы можем ходить по Земле, а сама планета удерживает атмосферу. На Луне гравитация слабая, поэтому атмосферу ничего не держит.

Изучение гравитации, в силу слабости ее проявления (только в макромасштабах), проходит крайне сложно. Есть мнение, что квантовая теория гравитации поможет объединить воедино все, что мы знаем о фундаментальных силах и материи во Вселенной.

Самое обсуждаемое по теме Гравитация

Cовременная физика переживает нелегкие времена. На одной стороне лежит квантовая теория, которая описывает устройство Вселенной на уровне атомов, а на другой – Общая теория относительности Эйнштейна (ОТО), согласно которой пространство и время могут искривляться под влиянием гравитации. Проблема заключается в том, что по отдельности и ОТО и квантовая механика работают прекрасно, но противоречат постулатам друг друга. По этой причине физики трудятся над созданием единой «теории всего» на протяжении последних 90 лет. Вот только с каждым новым открытием вопросов становится все больше, однако исследователи не оставляют попыток докопаться до истины – результаты первого в своем роде эксперимента показали, что в искривленной и расширяющейся вселенной пары частиц появляются из пустого пространства. Полученный в ходе моделирования результат вновь возвращает нас к вопросу о том, как что-то может возникнуть из ничего. Словом, шаг вперед и два назад.

Читать далее

Существует вопросы, ответы на которые мы никогда не узнаем. Взять, к примеру, черные дыры – эти таинственные космические объекты встречаются по всей Вселенной. Их гравитация настолько сильна, что все расположенные поблизости объекты будут неизбежно ими поглощены. И если мы в состоянии обнаружить черные дыры и предположить что происходит внутри, то узнать что именно находится за горизонтом событий не представляется возможным. Ни один живой организм никогда не сможет оказаться внутри этих космических монстров. Наука, однако, позволяет делать определенные предположения. Так, общая теория относительности Эйнштейна (ОТО) гласит, что все объекты поглощенные черной дырой остаются в ней навсегда. Даже кванты самого света не способны вырваться наружу. Но в 1970-х годах ХХ столетия физик-теоретик Стивен Хокинг пришел к выводу, что черные дыры должны испускать излучение, тем самым создавая парадокс.

Читать далее

Одна из наиболее многообещающих попыток объяснить гравитацию – это попытка взглянуть на нее иначе, например, как на что-то вроде голограммы — трехмерного эффекта, который появляется на плоской двумерной поверхности. Идея заключается в том, что нам лишь кажется, что мы живем в трехмерной вселенной – на самом деле изменений может быть только два. Такой взгляд на мир называется голографическим принципом. Итак, представим, что некоторая удаленная двумерная поверхность содержит все данные, необходимые для полного описания нашего мира, и, как и в голограмме, эти данные проецируются в трех измерениях. Подобно персонажам на экране телевизора, мы живем на плоской поверхности, которая выглядит так, будто у нее есть глубина.

Читать далее

Гравитация является самой главной силой во Вселенной. Именно она удерживает планеты на орбите вокруг Солнца. Она же удерживает Луну на земной орбите и создает звезды и планеты, притягивая материал, из которого они состоят. Но что особенно интересно, так это способность гравитации притягивать свет. Этот принцип открыл Альберт Эйнштейн, описав гравитацию как кривую в пространстве – она огибает объект, например звезду или планету. И если поблизости находится другой объект, он также втягивается в кривую. Согласно Общей теории относительности (ОТО), время движется медленнее вблизи массивных объектов, так как их гравитационная сила изгибает пространство-время, которые неразрывно связаны. Это означает, что большие массы деформируют ткань пространства-времени своим огромным гравитационным влиянием. Недавно в научном журнале Nature вышла интересная статья. Ее авторы утверждают, что атомные часы, разделенные всего несколькими сантиметрами, измеряют разные скорости времени – как и предсказывал Эйнштейн.

Читать далее

Считается, что гравитация ответственна за все происходящее в нашей Вселенной – от падения яблока на голову Исаака Ньютона, до вращения сверхмассивных черных дыр в центрах далеких галактик. Обычно мы представляем гравитацию как силу, которая притягивает вещи к массивным объектам. В некоторых учебниках по физике, особенно начальных классов, можно встретить утверждения о том, что «гравитация Земли притягивает объекты к центру планеты». Но так ли это? Исследователи полагают, что ключом к разгадке тайны гравитации является термин «ускорение», а не «тяга». Дело в том, что гравитация вообще не притягивает объекты; скорее, она искривляет пространство-время, заставляя объекты следовать за создаваемыми ей изгибами, в результате чего они иногда ускоряются. В этой статье разбираемся чем на самом деле является гравитация.

Читать далее

Ученым давно известно, что в нашем понимании гравитации чего-то не хватает. Она, например, не объясняет, как таинственная темная энергия ускоряет расширение Вселенной, а также не согласуется с квантовой механикой, которая описывает, как объекты ведут себя на уровне атомов и элементарных частиц. Один из способов попытаться примирить обе теории – это наблюдать, как маленькие объекты взаимодействуют с гравитацией. Недавно международная команда физиков впервые в истории успешно измерила гравитационное поле крошечного золотого шара диаметром около 2 мм в лабораторных условиях. Новое исследование призвано помочь ученым понять, как гравитация согласуется с квантовой механикой в мельчайших масштабах. Интересно, что гравитационные силы подобной величины, как правило, возникают только в областях самых отдаленных галактик. Так что результаты нового исследования как минимум восхищают.

Читать далее

В мире очень много мифов. Я говорю не про те, которые родились в древней Греции, а о тех, которые люди придумывают до сих пор просто от незнания. Часто какая-то информация или искажается, или просто неправильно понимается одним человеком и распространяется среди других. Так и получается, что мы знаем о предметах и явлениях то, чего на самом деле нет. Чтобы развеять такие мифы, мы периодическим публикуем ”разоблачительные” статьи, в которых рассказываем истинную природу вещей и то, как они устроены. Для этого мы собираем мнения ученых, исследователей и просто здравый смысл. Все вместе это позволяет разобраться в природе вещей и, что называется, стать умнее. На это раз мы поговорим о гравитации, которая вызывает немало споров. А еще голивудские фильмы сильно портят нам представление о том, что же это такое на самом деле.

Читать далее

На языке пилотов «страйк» — вовсе не лучший удар, который можно сделать в боулинге. Как правило, этим словом в авиации обозначают столкновение птиц с самолетом (с добавлением слова bird (птица) — получается «bird strike»). На самом деле птицы сталкиваются с самолетами очень часто: вполне возможно, такой инцидент был даже во время вашего недавнего полета, просто вы об этом не знаете. Обычно такие происшествия не приводят к серьезным последствиям, птица весом меньше 3 кг просто сгорает в двигателе. Однако иногда самолеты даже вынуждены экстренно садиться из-за столкновения с птицами.

Читать далее

Искусственная гравитация давно была описана в фантастических романах и показана в фильмах вроде «Космической одиссеи 2001 года». Теоретически возможность создания искусственной гравитации не отрицается. Однако до проектов, которые можно было бы протестировать в условиях космических станций в ближайшее время, дело практически не доходило. Но совсем скоро все может измениться благодаря стараниям команды CU Boulder.

Читать далее

Находясь длительное время в условиях невесомости, космонавты наносят своему здоровью сильный вред. В частности, у них сильно ослабевают мышцы и кости, и на данный момент они могут уменьшить ущерб только регулярными физическими упражнениями, и затем проходить длительный процесс восстановления на Земле. Кажется, скоро реабилитация ускорится — экипаж МКС проведет эксперимент, результаты которого помогут создать лекарство для лечения последствий пребывания в невесомости.

Читать далее

Что такое гравитация? | Космическое пространство НАСА – Наука НАСА для детей

фундаментальная физика

Гравитация — это сила, с которой планета или другое тело притягивает объекты к своему центру. Сила гравитации удерживает все планеты на орбитах вокруг Солнца.


Что еще делает гравитация?

Почему при прыжке вы приземляетесь на землю, а не улетаете в космос? Почему вещи падают, когда вы их бросаете или роняете? Ответ — гравитация: невидимая сила, которая притягивает объекты друг к другу. Земная гравитация — это то, что удерживает вас на земле и заставляет предметы падать.

Анимация гравитации в действии. Альберт Эйнштейн описал гравитацию как кривую в пространстве, огибающую объект, например, звезду или планету. Если поблизости находится другой объект, он втягивается в кривую. Изображение предоставлено: NASA

Все, что имеет массу, также имеет гравитацию. Объекты с большей массой имеют большую гравитацию. Гравитация также ослабевает с расстоянием. Итак, чем ближе объекты друг к другу, тем сильнее их гравитационное притяжение.

Гравитация Земли создается всей ее массой. Вся его масса создает комбинированное гравитационное притяжение всей массы вашего тела. Это то, что дает вам вес. И если бы вы были на планете с меньшей массой, чем Земля, вы бы весили меньше, чем здесь.

Изображение предоставлено НАСА

Вы оказываете на Землю ту же гравитационную силу, что и на вас. Но поскольку Земля намного массивнее вас, ваша сила на самом деле не оказывает влияния на нашу планету.


Гравитация в нашей вселенной

Гравитация — это то, что удерживает планеты на орбитах вокруг Солнца и Луну на орбитах вокруг Земли. Гравитационное притяжение Луны притягивает к ней моря, вызывая океанские приливы. Гравитация создает звезды и планеты, стягивая воедино материал, из которого они сделаны.

Гравитация притягивает не только массу, но и свет. Альберт Эйнштейн открыл этот принцип. Если вы посветите фонариком вверх, свет станет незаметно краснее, поскольку гравитация притягивает его. Вы не можете увидеть изменения своими глазами, но ученые могут их измерить.

Черные дыры содержат так много массы в таком маленьком объеме, что их гравитация достаточно сильна, чтобы удержать что-либо, даже свет, от побега.


Гравитация на Земле

Гравитация очень важна для нас. Без него мы не могли бы жить на Земле. Гравитация Солнца удерживает Землю на орбите вокруг него, удерживая нас на удобном расстоянии, чтобы мы могли наслаждаться солнечным светом и теплом. Он удерживает нашу атмосферу и воздух, которым мы должны дышать. Гравитация — это то, что удерживает наш мир вместе.

Однако гравитация не везде на Земле одинакова. Гравитация немного сильнее над местами с большей массой под землей, чем над местами с меньшей массой. НАСА использует два космических корабля для измерения этих изменений гравитации Земли. Эти космические аппараты являются частью миссии Gravity Recovery and Climate Experiment (GRACE).

Миссия GRACE помогает ученым создавать карты изменений силы тяжести на Земле. Области, выделенные синим цветом, имеют немного более слабую гравитацию, а области, отмеченные красным цветом, имеют немного более сильную гравитацию. Изображение предоставлено: НАСА/Центр космических исследований Техасского университета 9.0003

GRACE обнаруживает крошечные изменения гравитации с течением времени. Эти изменения раскрыли важные детали о нашей планете. Например, GRACE отслеживает изменения уровня моря и может обнаруживать изменения в земной коре, вызванные землетрясениями.


Если вам это понравилось, вам может понравиться:

Что такое барицентр?

Что такое черная дыра?

Что такое гравитационная волна?

Что такое гравитационная волна?

Краткий ответ:

Гравитационная волна — это невидимая (но невероятно быстрая) рябь в пространстве. Гравитационные волны распространяются со скоростью света (186 000 миль в секунду). Эти волны сжимают и растягивают все на своем пути, проходя мимо.

Гравитационная волна — это невидимая (но невероятно быстрая) рябь в пространстве.

Мы давно знаем о гравитационных волнах. Более 100 лет назад великий ученый по имени Альберт Эйнштейн выдвинул множество идей о гравитации и космосе.

Альберт Эйнштейн, официальная фотография лауреата Нобелевской премии по физике 1921 года.

Эйнштейн предсказал, что когда два тела — планеты или звезды — вращаются вокруг друг друга, происходит что-то особенное. Он считал, что такое движение может вызвать рябь в пространстве. Эта рябь будет распространяться, как рябь в пруду, когда в него бросают камень. Ученые называют эту рябь пространства гравитационными волнами .

Гравитационные волны невидимы. Однако они невероятно быстры. Они путешествуют со скоростью света (186 000 миль в секунду). Гравитационные волны сжимают и растягивают все на своем пути, проходя мимо.

Иллюстрация того, как масса искривляет пространство. Предоставлено: NASA

Что вызывает гравитационные волны?

Самые мощные гравитационные волны создаются, когда объекты движутся с очень большой скоростью. Некоторые примеры событий, которые могут вызвать гравитационную волну:

  • когда звезда взрывается асимметрично (называется сверхновой)
  • когда две большие звезды вращаются вокруг друг друга
  • когда две черные дыры вращаются вокруг друг друга и сливаются

Художественная анимация гравитационных волн, возникающих в результате слияния двух черных дыр. Кредит: ЛИГО/Т. Пайл

Но эти типы объектов, которые создают гравитационные волны, находятся далеко. А иногда эти события вызывают лишь небольшие слабые гравитационные волны. Затем волны становятся очень слабыми к тому времени, когда они достигают Земли. Это затрудняет обнаружение гравитационных волн.


Откуда мы знаем, что гравитационные волны существуют?

В 2015 году ученые впервые обнаружили гравитационные волны. Они использовали очень чувствительный инструмент под названием LIGO (лазерный интерферометр гравитационно-волновой обсерватории). Эти первые гравитационные волны возникли, когда две черные дыры столкнулись друг с другом. Столкновение произошло 1,3 миллиарда лет назад. Но рябь не доходила до Земли до 2015 года!

LIGO состоит из двух обсерваторий: одной в Луизиане и одной в Вашингтоне (вверху). У каждой обсерватории есть два длинных «рука», длина каждого из которых превышает 2 мили (4 километра). Предоставлено: Калифорнийский технологический институт/MIT/LIGO Lab 9.0003

Эйнштейн был прав!

Первое обнаружение гравитационных волн было очень важным событием в науке.

Оставить комментарий