Химия таблица химических элементов: Таблица Менделеева – универсальный и безграничный язык общения ученых

Содержание

Таблица Менделеева – универсальный и безграничный язык общения ученых

АМ: Это инициатива, которая поддержана ЮНЕСКО и ООН. Изначально год Периодического закона, год 150-летия открытия Периодического закона, это инициатива, с которой выступила Российская академия наук при поддержке Министерства иностранных дел Российской Федерации. 

Таблица Менделеева – универсальный язык общения ученых, прежде всего химиков. Хотя, если мы посмотрим шире, Менделеев был не только химиком. И открытие Периодического закона – это открытие, которое связывает очень многих ученых. Это и химики, и биологи, и медики, геологи, геохимики…

Для чего нужен этот год? Для того, чтобы еще раз напомнить всему миру, поскольку это международное событие, что мир наш развивается за счет открытий ученых, и что наука — это двигатель, драйвер прогресса человечества.

Во Франции, в ЮНЕСКО, 29 января будет торжественное открытие празднования Международного года Периодического закона. В России такое открытие пройдет 6 февраля в здании Российской академии наук.

Фото РХТУ

Александр Мажуга, ректор Российского химико-технологического университета им. Д.И. Менделеева

АУ: Химия – наука, которая постоянно развивается. Какие ее направления сегодня наиболее востребованы в мире? В чем будущее химических технологий?

АМ: Сегодня, как и многие другие науки, химия выходит на междисциплинарный уровень. И все больше востребованных направлений находятся на стыке наук. Это химия, биология и медицина, биомедицина, биохимия, биоорганическая химия. Надо понимать, что химия — это вообще все, что есть вокруг нас: то, чем мы дышим, что мы едим, к чему мы прикасаемся. Но наиболее востребованные направления сейчас, это – биомедицина, использование новых материалов в медицине; все, что связано с созданием новых конструкционных материалов – это, естественно, тоже химия. А конструкционные материалы – это различные аппараты новые, это различные строительные материалы, материалы для сельского хозяйства.

Конечно же химия – это основа наших лекарств. Фармацевтическая химия – синтез новых терапевтических, диагностических агентов. Если химия – все, что вокруг нас, то химическая технология – это то, что позволяет получать те или иные продукты.

АУ: Что интересует молодежь, на какие факультеты и специальности самый высокий конкурс? Куда хотят пойти учиться абитуриенты?

АМ: Самый высокий конкурс в нашем университете на следующих направлениях: химико-фармацевтический факультет – это все, что связано с разработкой фармацевтических субстанций; биотехнологический факультет – наш университет специализируется в области биотехнологий применительно к пищевым добавкам, различным кормам, а также к селекции микроорганизмов, которые используются применительно к утилизации тех или иных техногенных отходов. И факультет нефтегазохимии и полимеров – все, что связано с созданием новых конструкционных материалов, прежде всего полимерного строения.

АУ: Вы упомянули сейчас переработку отходов при помощи различных новых соединений. Это направление, которое очень востребовано, потому что загрязнение окружающей среды – тема, которая постоянно на повестке дня и ООН, и всего мира. Такая научная работа идет обычно закрыто – в институтах и университетах – или же она предполагает международное сотрудничество и есть  какие-то крупные проекты?

Такие работы ведутся в рамках международного сотрудничества и, конечно же, вместе с нашими партнерами из химической и биотехнологической промышленности. И тут нужен не только биотехнологический подход, чтобы решить техногенные проблемы, но и направление, связанное с созданием новых «зеленых» химических производств, производств, которые экологичны, требуют небольшого количества ресурсов – например, замкнутые циклы. Такие химические фабрики будущего – тоже важное направление работы нашего университета.

АУ: Зачастую образование бывает очень академичным, научным… Есть ли практика связи образования с навыками и работой в отрасли, с работой на практический результат?

Основной залог успеха образования в нашей области, в области химической технологии, это непосредственный контакт с предприятиями, с конечными потребителями наших технологий, с компаниями, куда идут работать наши выпускники. Мы стараемся максимально изменять образовательные «траектории» наших студентов так, чтобы они были синхронизированы с предприятиями отрасли.

Фото РХТУ

Новый учебный комлекс РХТУ

АУ: Участвуют ли студенты в каких-то научных разработках, которые потом  претворяются в жизнь?

АМ: Да, конечно. Студенты во время обучения в нашем университете занимаются наукой, как и во многих других университетах в нашей стране. Мы рассматриваем сейчас возможность так называемого «проектного» обучения, когда начиная с первого курса студенты – мы можем также готовить проектные группы – выполняют тот или иной проект, связанный с отраслью химической технологии, и на выходе они получают технологию, которую можно реализовать. И подход, когда дипломный проект – это некий стартап, также реализуется в нашем университете.

АУ: Возвращаясь к теме таблицы Менделеева… Говорят,  оформляя свой Периодический закон в таблицу, Менделеев предусмотрительно оставил свободные места – «на будущее».

Как происходит открытие новых элементов, как часто приходится обновлять таблицу?

АМ: Периодическая таблица – это не просто графическое представление элементов. До Менделеева были более ранние варианты, когда элементы располагались по мере увеличения их атомного номера или веса (те элементы, что были открыты на момент той или иной таблицы). Но только Менделеев увидел в расположении элементов периодичность. Так появился Периодический закон: свойства элементов изменяются в рядах, и они повторяются. То есть самое его главное открытие – не просто расположение элементов в ячейках в таблице, а закон периодичности.

Сейчас элементы, которые были совсем недавно открыты – три новых элемента, –  являются сверхтяжелыми, радиоактивными и короткоживущими. На момент открытия таблицы такого количества элементов как сейчас известно не было. Что самое главное, Менделеев своим законом предсказывал существование элементов. В его первоначальной таблице были пустые ячейки – он показывал, что в этой ячейке должен появиться новый элемент.

Само доказательство закона происходило позднее, когда эти новые элементы открывались и попадали уже в ячеечку Периодической таблицы. Мало того, Менделеев мог предсказывать и массу этого элемента, причем совпадения были порой с точностью до десятой в атомной массе!

Что касается новых элементов и пустых ячеек, то, как говорят, таблица Менделеева не окончена и, на самом деле, бесконечна. Сейчас мы находимся на таком «минимуме стабильности» химических элементов, но благодаря предсказаниям физиков мы должны будем выйти на элементы, которые будут опять же стабильны. То есть, чем тяжелее элемент, чем больше у него масса, тем менее стабильным он становится. Часто такие элементы – короткоживущие и радиоактивные. Но через какой-то период мы должны выйти опять на более стабильные элементы.

АУ: Есть ли страны-лидеры в открытии новых элементов, которые открыли их больше всего?

АМ: Нельзя сказать, что какая-то одна страна имеет лидерство. И в России было открыто шесть элементов, и в США было открыто достаточно большое количество. Достаточно сложно сказать, в какой стране больше или меньше было открыто. Чаще всего сейчас открытие новых элементов – как последних трех – происходит в коллаборации. Так, последние три были открыты при сотрудничестве России и США вместе: кто-то делает мишень, кто-то ее облучает, кто-то выделяет. И, соответственно, и один из элементов был назван в честь известного российского ученого, академика Юрия Оганесяна. Кстати, это единственный пример в Периодической таблице, когда элемент назван в честь живущего сейчас ученого.

АУ: То есть выдающийся ученый получил таким образом  «памятник при жизни»?

АМ: Да, при жизни. Есть еще ряд элементов, которые названы «московий» – в честь Москвы, «дубний» – в честь г. Дубны, где находится Объединенный институт ядерных исследований, и конечно же «рутений», названный в честь России. Поэтому, ждем новых элементов – в коллаборации с другими странами, другими научными и учебными организациями.

 

От истории химии до величайших вымыслов: вся правда о Менделееве

Как известно, в 2019 году мир отмечал 185-летие со дня рождения Д.

И. Менделеева и 150-летие Периодической системы химических элементов. В честь памятных дат ведущие ученые проводили в «Сириусе» научно-популярные лекции по химии и ее истории. Подводя итоги года, мы вспоминаем самые интересные факты и вымыслы, связанные с великими открытиями. 

Открытие Менделеевым таблицы химических элементов стало настоящей революцией в науке. Но история этого открытия до сих пор окутана легендами, мифами и легендами. Правда ли, что великому ученому приснился сон о том, как систематизировать знания о химических элементах? А верить ли слухам, что он торговал чемоданами в Гостином дворе в Санкт-Петербурге и придумал формулу спирта?

Развенчивает стереотипы и подтверждает догадки, а также рассказывает об истории химии – старший преподаватель кафедры радиохимии СПбГУ Евгений Калинин.

С чего начинается химия

Основа всей современной химии – наши представления об атоме. Именно на уровне атома (носителя свойств вещества) человечество может объяснить фундаментальные свойства химических элементов – электронное строение атома, масса и заряд ядра, валентность, степени окисления и многое другое.

Из школьной программы мы, конечно, помним, что:

  • атом – мельчайшая частица, в состав которой входят отрицательно заряженные электроны» и «положительно заряженное» ядро. А ядро – это центр атома, который играет в его строении самую существенную роль и вокруг которого вращаются все электроны.

Но изучена ли природа мельчайшей структурной единицы досконально? Если подумать, мы в точности не знаем, как устроен атом и можем рассуждать о его строении лишь опосредованно, утверждает Евгений Калинин.

Тем не менее, история химии изучает и описывает долгий процесс накопления научных знаний, начиная с древних времен. Например, еще греческие философы были рассуждали о важных вопросах о делимости материи. Первым стал рассуждать на эту тему Левкипп, учитель Демокрита.

Атомизм Левкиппа-Демокрита

Философа интересовало: можно ли каждую часть материи, которая обладает определенными свойствами, бесконечно делить на еще более мелкие части?

Например, камень, расколотый пополам или растолченный в порошок, все равно останется тем же камнем. А что, если взять каждую его крупинку и раздробить на еще меньшие частички – до какого предела можно проводить такое деление и существует ли вообще такой предел?

Левкипп пришел к выводу:

  • в конечном счете это приведет к исчезновению прежних свойств и появлению новых.

Эту мысль за своим наставником стал развивать и Демокрит. Он придумал мельчайшим частицам название: «атомос», то есть «неделимые». Термин, который ввел философ, унаследовала и современная химия. Учение о том, что деление материи допустимо только до определенного предела, стало называться атомистикой, или атомистической теорией.

Таким образом, Левкипп и Демокрит обрисовали важную мысль о том, что все состоит из атомов – невидимых и неделимых сфер материи бесконечного типа и числа.

Попытка точных измерений

Тщательным экспериментальным исследованиям физических и химических явлений дал жизнь ирландский химик XVII века Роберт Бойль – автор многих фундаментальных открытий. Вы о них точно слышали:

– Бойль предпринял первые попытки точных измерений при описании изменения вещества в экспериментах по сжатию и расширению газов;

– Именно Бойль установил, что воздух под давлением ртути умеет сжиматься, правда, не бесконечно (такое свойство воздуха в 1651 году было названо упругостью). Открытая ученым обратная зависимость объема от давления получила название закона Бойля. Занимаясь изучением химических процессов, он ввел в науку понятие анализа состава тел и прославился своими взглядами на строение вещества.

Как-то охарактеризовать невидимые атомы предложил английский естествоиспытатель Джон Дальтон. Изучая составы химических соединений, он установил:

  • Два элемента могут соединяться друг с другом в строго определенных соотношениях (соотношение малых целых чисел) и обобщил результаты своих исследований, сформулировав закон кратных отношений – важнейшее открытие в химии.

Дальтон исследовал многие распространенные бинарные соединения (гидриды и оксиды) и сгруппировал первую таблицу относительных атомных весов.

Тропинка к Менделееву

В истории развития химии важными являются и труды Йенса Якоба Берцелиуса. В попытке точно определить элементный состав различных соединений ученый провел не менее 2000 анализов и в итоге получил новую таблицу относительных атомных весов. К слову, во времена Берцелиуса было открыто уже 54 элемента.

  • Метод, как их упорядочить и систематизировать, обнаружил Иоганн Деберейнер, объединивший элементы в группы. Он наблюдал за изменением их химических свойств и поведением атомного веса.
  • Но впервые расположил их в порядке возрастания Джон Ньюлендс. Он придумал вертикальные столбцы и вставил по семь элементов в каждый. Также ученый определил, что похожие элементы часто попадают в одни и те же горизонтальные ряды.
  • Позже немец Лотар Майер опубликовал научный труд, в котором рассматривал объемы, занимаемые весовыми количествами элемента, численно равными их атомным весам. Он первым предложил термин «периодичность».

И наконец, фундаментальный вклад в развитие науки – создание периодической системы химических элементов и формулировка Периодического закона Менделеева. К этой задаче российский ученый подошел вплотную: в 1867-1868 годах он подготовил первое издание учебника «Основы химии», где обобщал все химические свойства всех известных тогда элементов.

Спустя три года Менделеев предложил новый вариант Периодической системы, уже в известном нам виде. Особенностью этого исследования было то, что в этой системе ученый предугадал открытие новых элементов.

  • По мнению Менделеева, в одном столбце должны находиться элементы с одинаковой валентностью, поэтому он решил в своей таблице оставить пустые клетки, при этом тщательно изучая динамику возрастания атомных весов. Потом он соотносил это с валентностями в типических соединениях и химическими свойствами элементов.

Интересный факт: сперва коллеги Менделеева с недоверием отнеслись к его теории о недостающих элементах, но в течение 15 лет новые элементы – галлий, скандий и германий – были открыты, их свойства в точности отвечали признакам, описанным Менделеевым. После этого сомнений в значимости Периодической системы у скептиков не осталось.

Легенды и мифы о Менделееве

Миф 1. Таблица Менделеева ученому приснилась

Историю о том, что Периодическая система элементов привиделась химику во сне, слышал чуть ли не каждый изучающий химию школьник. Эта легенда появилась благодаря товарищу Менделеева Александру Иностранцеву, русскому геологу и профессору Петербургского университета. Сам Менделеев такого не подтверждал: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово».

Миф 2. Изобретение 40-градусной водки

Есть мнение, что Дмитрий Иванович Менделеев изобрел традиционную русскую водку. Слухи породила его революционная научная работа на тему «Рассуждение о соединении спирта с водою», и строго говоря, к алкогольному напитку эта работа имела весьма косвенное отношение – ученый в своей диссертации заложил основы гидратной теории растворов спирта с водой при различных температурах.

Миф 3. Чемоданных дел мастер

Еще один интересный миф говорит о том, что Менделеев изготавливал чемоданы и торговал ими в Гостином дворе в Санкт-Петербурге. Ученый действительно научился переплетному и картонажному делу еще в юности и, имея огромный архив личных и научных документов, самостоятельно переплетал их и клеил для них картонные ящики. Кроме того, он мастерски делал оригинальные рамки для фотографий. Материалы для любимого занятия Менделеев покупал в том самом петербуржском Гостином дворе.

А легенду породила одна история. Однажды, когда ученый зашел в хозяйственную лавку, он услышал за своей спиной следующий диалог:

– Кто этот почтенный господин? – спросили у лавочника.

– Неужели не знаете? – удивился тот. – Да это же известный чемоданных дел мастер Менделеев! – с уважением в голосе ответил продавец.

Так люди узнали, что Менделеев любил не только изобретать, но и заниматься «приземленными ремеслами».

Где искать самую старую таблицу Менделеева?

Об этом в рамках открытой лекции «150 лет Периодической системе химических элементов Д. И. Менделеева. История создания» школьникам рассказал Евгений Олегович Калинин, старший преподаватель СПбГУ (кафедра радиохимии). «Данный демонстрационный вариант был изготовлен по указанию самого Дмитрия Ивановича в 1876 году. Недавно средства массовой информации писали о якобы найденной в Сент-Эндрюсском университете самой старой в мире Периодической таблице химических элементов. Так вот, это не так, — рассказывает Евгений Калинин. — Как выяснили эксперты, настенная таблица, обнаруженная в Шотландии, была напечатана в 1880-х годах. И хотя это, безусловно, интересная находка, по-настоящему ценный демонстрационный вариант Периодической системы находится в СПбГУ, в Большой химической аудитории».

Евгений Калинин обратил внимание школьников на разницу в датах между формулированием Периодического закона в 1869 году и созданием его графического образа в виде таблицы в 1876 году. Что происходило в течение семи лет? Почему первый публичный вариант таблицы не был создан раньше?

Когда Дмитрий Иванович сформулировал Периодическую систему, он еще и сам не был уверен в том, в каком окончательном виде следует ее подавать. На осмысление этого вопроса у него ушло несколько лет.

Старший преподаватель СПбГУ Евгений Калинин

Представленный в аудитории СПбГУ вариант не соответствует тому, к которому мы все привыкли. По словам химика, в этой таблице, например, не хватает восьмой (VIII) группы химических элементов — благородных газов. «Они к моменту создания данного варианта таблицы еще не были открыты, и, честно сказать, ни сам Менделеев, ни его современники, конечно, не предполагали, что благородные газы вообще существуют в природе. Поэтому для них места в этом варианте не отведено», — поясняет Евгений Калинин.

Нет в этой таблице и некоторых химических элементов. На их местах стоят прочерки. Эти элементы тогда еще не были открыты, но Дмитрий Иванович Менделеев был убежден, что они должны быть. «На это указывает и тот факт, что в некоторых клеточках нет символа химических элементов, но указан атомный вес. Например, рядом с Са стоит прочерк и цифра 44. Химического элемента нет, но четко указана, какая у него должна быть масса», — объясняет Евгений Калинин.

Менделеев не просто разложил химические элементы по полочкам в зависимости от их атомного веса и химических свойств. Он еще и предсказал, что нужно работать не только с известными на тот момент элементами, но и вести поиск новых.

Старший преподаватель СПбГУ Евгений Калинин

Лекция прошла в аудитории, которая носит название Большой химической. Она находится в здании, построенном в 1894 году по инициативе Дмитрия Ивановича Менделеева. По словам Евгения Калинина, в конце XIX века ежегодно химию в Университете изучали почти 400 человек. При этом больших аудиторий и лабораторий для занятий не было. Поэтому Дмитрий Иванович в 1880-х годах предложил построить специальный лабораторный корпус для преподавания химии в Университете. Правда, сам Менделеев в нем лекции уже не читал, но председательствовал на заседаниях Русского физико-химического общества.

Открытая лекция для школьников прошла в рамках цикла мероприятий, посвященных 150-летию открытия Периодического закона и 185-летию со дня рождения Дмитрия Ивановича Менделеева. На ней присутствовали учащиеся Волховской средней общеобразовательной школы № 1 и лицея № 554 Приморского района Санкт-Петербурга. Следующая лекция состоится 22 февраля.

Международный год Периодической таблицы химических элементов

2019  год, Международный год Периодической таблицы химических элементов, стал особым годом в истории химического сообщества, нашей страны и мира.

20  декабря 2017  года на 74-м пленарном заседании 72-й сессии Генеральной Ассамблеи Организации Объединенных Наций была принята резолюция, посвященная науке, технологии и инновациям для развития. Пунктом 31  этой резолюции ООН провозгласила «…год, начинающийся 1  января 2019  года, Международным годом Периодической таблицы химических элементов…».

Принятие резолюций стало возможным благодаря колоссальной Работе, которую провели Международный союз теоретической и прикладной химии (ИЮПАК), Министерство иностранных дел Российской Федерации, Комиссия Российской Федерации по делам ЮНЕСКО, Российское химическое общество имени Д.И.Менделеева, многие российские и зарубежные ученые.

Церемония открытия Международного года Периодической таблицы химических элементов прошла в штаб-квартире ЮНЕСКО в Париже 29 января 2019  года. C приветствием к собравшимся обратилась Генеральный директор ЮНЕСКО Одри Азуле. Генеральным спонсором церемонии открытия выступила российская компания «ФосАгро». Во время открытия состоялась презентация образовательной инициативы ЮНЕСКО «1001  изобретение: путешествие от алхимии к химии». Эта инициатива, объединяющая дидактические материалы и практические научные эксперименты для лучшего понимания химии и многочисленных способов ее применения и предназначенная для школьников, была затем представлена во многих странах, в том числе в России, Германии, Великобритании, Китае.

В рамках Международного года Периодической таблицы химических элементов особое место заняло празднование Международного дня женщин в науке 11  февраля 2019 года. Специальный международный симпозиум «Making Their Table: Women and the Periodic Table of Elements» был проведен в Университете Мурсии, Испания. В открытии новых химических элементов Периодической системы выдающиеся женщины-химики сыграли очень важную роль. Достаточно упомянуть Марию Кюри, которая была награждена Нобелевскими премиями в 1903 и 1911  годах за открытие радия и полония, Иду Ноддак за открытие рения, Маргариту Катрин Перей за открытие франция и многих других выдающихся женщин-химиков.

В 2019  году мероприятия, связанные с Международным годом Периодической таблицы химических элементов, прошли более чем в 90  странах на всех континентах.

Специальный симпозиум «Периодической таблице — 150  лет» состоялся в рамках 47-го  Всемирного конгресса ИЮПАК в Париже. В столице Франции прошла и 51-я Международная химическая олимпиада, в которой приняли участие команды 80 стран. Российские школьники завоевали четыре золотые медали.

Тематические выставки, посвященные 150-летию Периодической таблицы химических элементов, экспонировались в Лондоне, Пекине, Токио, ряде штатов Индии и в других странах. В октябре в Риме с успехом прошла конференция «Симфония элементов», организованная Итальянской федерацией физиков и химиков, завершившаяся показом балета «Dance of the elements». Премьеры музыкальных произведений, посвященных Периодической таблице, состоялись в Китае, Израиле, Японии. Памятные марки вышли в Испании, Киргизии, Алжире, Молдове, России и других странах. В Европейском парламенте прошли слушания, на которых была представлена Периодическая таблица «исчезающих» элементов, подготовленная Европейским химическим обществом. Проблема рационального использования редких и рассеянных элементов вызвала огромный интерес, в результате парламентариями были сформулированы конкретные предложения в этой области. Дар-эс-Салам (Танзания) стал местом проведения Международной летней школы по зеленой химии, посвященной Международному году Периодической таблицы.

В Российской Федерации под патронажем национального Организационного комитета, который возглавлял Д.А.Медведев, был проведен ряд масштабных мероприятий, посвященных выдающемуся ученому Д.И.Менделееву и его научному наследию. XXI Менделеевский съезд по общей и прикладной химии в Санкт-Петербурге стал крупнейшим за все время проведения этих ключевых для химического научного сообщества мероприятий. На XXI съезд зарегистрировались почти четыре тысячи участников из шестидесяти стран мира. Среди них два лауреата Нобелевской премии, пять президентов ИЮПАК, президенты химических обществ, астрофизического общества, директора ведущих научных институтов мира и руководители лидирующих химических вузов, главы научных фондов и промышленных компаний, историки и политики. В общей сложности они сделали 5366  докладов, что стало еще одним рекордом. В рамках XXI съезда впервые прошли сразу семь международных англоязычных симпозиумов, которые также собрали рекордное количество участников. На круглых столах рассматривались ключевые вопросы взаимодействия науки и бизнеса, многостороннего международного сотрудничества и популяризации химии.

XII Всероссийский фестиваль науки NAUKA 0+ также отметился несколькими рекордами. За три дня — с 11  по 13  октября — главный научно-популярный форум страны собрал в Москве беспрецедентное количество посетителей — около 950 тысяч человек. В рамках программы Фестиваля состоялось свыше двух тысяч мероприятий более чем на сотне площадок по всему городу. Их организаторами стали ведущие вузы, научные центры, исследовательские институты, технологические предприятия, музеи и даже школы Москвы, — всего около 350  организаций. По традиции на Фестивале были представлены все области науки от физики частиц до социологии, однако главной темой стали химия и Периодическая таблица химических элементов. В честь 150-летия фундаментального открытия великого русского ученого организаторы Фестиваля представили посетителям самую большую в России таблицу Менделеева. Ее масштабное изображение — 67  метров в длину и почти 9 метров в высоту — заняло весь фасад Дворца пионеров на Воробьевых горах.

18  мая состоялся II Всероссийский химический диктант, в котором приняли участие 34  тысячи человек. Каждый вопрос диктанта раскрывал роль и значение химии в жизни современного человека и общества, химическую природу окружающего мира.

Официальная церемония закрытия Международного года Периодической таблицы химических элементов прошла 5 декабря в Токио (Япония). Участники мероприятия встретили аплодисментами академика Юрия Цолаковича Оганесяна, в честь которого назван 118  элемент (оганесон), на сегодня завершающий Периодическую таблицу. Председатель Исполнительного комитета Международного года Периодической таблицы в Японии профессор Кохэй Тамао в своем выступлении отметил, что церемония закрытия Международного года Периодической таблицы дала возможность оглянуться на многие мероприятия в честь празднования юбилея таблицы, которые были проведены по всему миру. Эти события прославили работу ученых и инженеров, которые внесли свой вклад в открытие и развитие Периодической таблицы, а также работу тех, кто и сегодня изучает новые элементы, способствуя развитию науки.

Н. П.Тарасова, профессор, сопредседатель Международного комитета по проведению Международного года Периодической таблицы химических элементов

Таблица Менделеева: проверено временем

Этот год объявлен ЮНЕСКО Международным годом Периодической таблицы химических элементов в честь 150-летнего юбилея со дня открытия Дмитрием Ивановичем Менделеевым периодического закона, определившего дальнейшее развитие химии, физики и других наук. О том, как Периодическая таблица Менделеева помогает химикам сегодня, нам рассказали сотрудники кафедры физической химии – одной из старейших кафедр университета.

04.04.2019 3267

Первое обнародование Периодической таблицы Дмитрия Ивановича Менделеева состоялось 6 марта 1869 года на заседании Русского физико-химического общества. Множество последующих открытий и новых концепций в физике, химии и других науках опиралось на закономерности Периодической таблицы. Кафедра химии в ЛЭТИ была создана почти через три десятка лет после великого открытия Дмитрия Ивановича. Её основал в 1891 году доктор химических наук, профессор Александр Александрович Кракау. Курс «Физическая химия» ввёл основатель физико-химического анализа академик Николай Семёнович Курнаков. В разные годы здесь работали: создатель отечественной электрометаллургической промышленности проф. Максимилиан Степанович Максименко, проф. Николай Антонович Пушин, впервые получивший электролитическим способом алюминий из отечественного сырья, создатель термодинамической шкалы твёрдости профессор Борис Филиппович Ормонт, при котором кафедра была переименована в кафедру физической химии.

С приходом на заведование члена-корреспондента РАН Виктора Владимировича Гусарова кафедра после почти 80-летнего перерыва опять стала выпускающей. На ней осуществляется подготовка магистров по программе «Биосовместимые материалы» в рамках направления «Биотехнические системы и технологии», а также аспирантов по специальности «Физическая химия». Образовательную и научную деятельность осуществляют как преподаватели ЛЭТИ, так и учёные из ведущих научно-исследовательских институтов Санкт-Петербурга и Ленинградской области. Так, сотрудни- ками кафедры под руководством В.В. Гусарова в рамках совместной работы с коллективами НИТИ имени А.П. Александрова, СПб АЭП и проектно-конструкторского филиала концерна «Росэнергоатом» по разработке и обоснованию работоспособности отечественного устройства   локализации расплава активной зоны ядерного реактора (ловушки расплава) был создан новый класс функциональных материалов – жертвенный материал. Он призван именно «пожертвовать собой», чтобы минимизировать последствия тяжёлых аварий на атомных станциях. Впервые в мире он был внедрён при строительстве АЭС в Китае, затем – в Индии, потом – в России.

На кафедре ведутся работы над созданием оксидных катализаторов (в том числе, для нужд атомной энергетики), нанокомпозиционных материалов (группа доцента А.Н. Бугрова), изучаются механизмы формирования наночастиц, свойства и области применения фуллеренов и фуллеренолов (группа профессора Н. А. Чарыкова). Об этом нам рассказала заведующая кафедрой физической химии ЛЭТИ, доктор химических наук Оксана Владимировна Альмяшева. Сама она принимала участие в разработке новых катализаторов окисления водорода для пассивной системы безопасности АЭС, позволяющих понизить вероятность образования и взрыва гремучей смеси в реакторном пространстве. В итоге разработанный научной группой химического конструирования материалов нанокомпозиционный катализатор превзошёл по ключевым параметрам более дорогие, используемые в настоящее время платино-палладиевые катализаторы.

По словам сотрудников кафедры, без использования периодического закона Д.И. Менделеева невозможно себе представить процесс конструирования новых материалов с требуемым набором свойств. Вот что рассказал начальник отдела исследований тяжёлых аварий НИТИ имени А.П. Александрова, преподаватель спецкурса для магистрантов кафедры физической химии Вячеслав Исхакович Альмяшев, принимавший непосредственное участие в разработке жертвенных материалов:

– После техногенной катастрофы на Чернобыльской АЭС стало понятно, что атомные станции помимо активных систем безопасности должны иметь такие системы, которые на уровне физико-химических процессов без участия оперативного персонала существенно понижали бы вероятность выхода радиоактивных материалов за пределы реакторного пространства, даже в случае таких серьёзных аварий, как тяжелая авария с расплавлением активной зоны. К таким системам (пассивным системам безопасности) относится и ловушка расплава, в качестве функционального наполнителя которой выступает разработанный нами жертвенный материал. Его назначение – изменить свойства поступающего в ловушку расплава таким образом, чтобы обеспечить благоприятные условия его охлаждения и кристаллизации в корпусе ловушки. Разработка любого материала начинается с выбора элементного состава, то есть с анализа Периодической системы Д.И. Менделеева. Далее осуществляется термодинамический анализ и выбор оптимальной композиции. В курсе «Физико-химическое конструирование биосовместимых материалов» я прививаю студентам навыки обоснования выбора элементного состава и структуры материалов для направленного получения совокупности свойств, требуемых для решения поставленной задачи. В иных курсах программы «Биосовместимые материалы» ребята получают опыт синтеза материалов.

Сегодня происходит смена технологического уклада. Наиболее важные и заметные открытия происходят на стыке наук и опираются на использование новых материалов, конструирование которых начинается с атомного уровня. Оно немыслимо без понимания Периодической таблицы Менделеева.