Индукционный ток какой буквой обозначается: Какой буквой обозначается в физике 1. Скорость движения частицы в магнитном поле 2. Скорость

Содержание

Какой буквой обозначается в физике 1. Скорость движения частицы в магнитном поле 2. Скорость

1. Визначте характер зміни кінетичної енергії молекул під час плавлення:а) зменшується; б) збільшується; в) не змінюється;г) спочатку збільшується, а … потім зменшується.2. Обчисліть кількість теплоти, яка необхідна для плавлення льоду масою 1,2 кг, взятого при температурі 0ºС:а) 276,7 Дж; б) 398,4 Дж; в) 276,7 кДж; г) 398,4 кДж.3. Скільки енергії необхідно для плавлення 400 кг залізного металобрухту, взятого за температури плавлення?а) 270 кДж; б) 400 кДж; в) 675 кДж; г) 108 МДж.4. Велика посудина з водою, поміщена в льох, оберігає овочі від замерзання. Чому?5. Чому свинець можна розплавити полум’ям лампи, а залізо не можна?​

У повну склянку чаю вкинули цукор і обережно розмішали ложечкою. Чим пояснити, що при цьому не вилилось жодної кралі чаю?​

Сколько энергии необходимо затратить, чтобы расплавить свинец массой 6 кг, взятого при начальной температуре 93 °С.

5 Джкг, удельная теплоёмкость свинца 140 Джкг⋅°С. (Ответ округлите до десятых).​

СРОЧНО!!! Тема: Дослідження заломлення світла 1) яку фізичну величину ви визначали, 2) який результат отримали; 3) чи залежить значення отриманої ве … личини від кута падіння світла; 4) у чому причини можливої похибки експерименту.​

Обчисліть кількість теплоти, яка необхідна для плавлення льоду масою 1,2 кг, взятого при температурі 0ºС​

Сравни количества теплоты Q1 и Q2, необходимые  для плавления цилиндра из меди и стали массой по 14 кг каждый, если они нагреты до их температуры плав … ления. Удельная теплота плавления указана в таблице.​

Определи, на сколько уменьшилась или увеличилась внутренняя энергия алюминия  массой 3 кг во время плавления. Удельная теплота плавления алюминия равн … а 3,9⋅105Джкг. (Ответ округлите до целого значения).​

Процес випаровування твердих тіл називається : а) конденсацією б) сублімацією в) пароутворенням г) плавленням Поможіть пж

Определите массу свинца, если для плавления потребовалось 134 кДж теплоты. Удельная теплота плавления свинца равна 0,25⋅105Джкг. (Ответ округлите до с … отых).​

пожалуйста, очень срочно! ‼️‼️​

Явление самоиндукции — урок. Физика, 9 класс.

Согласно правилу Ленца индукционный ток в замкнутом контуре всегда противодействует своим магнитным полем изменению внешнего магнитного потока, которое вызвало его появление.

Рассмотрим случай, когда явление электромагнитной индукции наблюдается при изменении силы тока, проходящего через катушку с большим количеством витков. Если причина возникновения индукционного тока состоит в возрастании тока, то индукционный ток своим магнитным полем будет противодействовать этому возрастанию.

Убедиться в этом можно на следующем опыте.

Соберем цепь по следующему принципу: один участок содержит электрическую лампу и катушку индуктивности, второй участок — электрическую лампу и сопротивление, которое одинаково с сопротивлением катушки. В замкнутом электрическом контуре на первом участке наблюдаем явление запаздывания включения лампы, которое называется самоиндукцией.

 

 

 

 

 

 

 

Самоиндукция — это явление возникновения индукционного тока в цепи при изменении протекающего по цепи тока.

Возникающий индукционный ток называют током самоиндукции.

На участке цепи, содержащий катушку, возник индукционный ток, который препятствовал нарастанию основного тока, создаваемого источником, поэтому лампа загорелась позже, чем лампа соединенная с резистором. Из этого следует, что индуктивность катушки превышает индуктивность резистора.

Индуктивность — это физическая величина, которую обозначают буквой L.

Индуктивность характеризует способность катушки препятствовать нарастанию силы тока.

Обрати внимание!

За единицу измерения индуктивности принят генри (Гн).

L=1 Гн

Различные катушки могут иметь разную индуктивность. Она зависит от:

  • размеров и формы катушки;
  • числа витков;
  • наличия сердечника;
  • материала, из которого изготовлен сердечник.

Чем большей индуктивностью обладает катушка, тем с большим запозданием будет загораться лампа.

Явление самоиндукции можно наблюдать и при размыкании цепи. Изменим цепь.

 

 

Параллельно источнику тока включены катушка и лампа.

В такой цепи наблюдается явление кратковременного свечения лампы при размыкании электрической цепи, что также объясняется правилом Ленца о явлении самоиндукции как механизме препятствия изменения тока в контуре.

Применение катушек с большими значениями индуктивности, которые являются одновременно технологическими элементами электрической цепи и источниками больших значений ЭДС самоиндукции, может приводить при разрывах цепи к электризации воздуха.

 

Методическая разработка для самостоятельной работы студентов по теме Электродинамика

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ НОВОСИБИРСКОЙ ОБЛАСТИ «КУПИНСКИЙ МЕДИЦИНСКИЙ ТЕХНИКУМ»

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

Для самостоятельной работы студентов

По дисциплине: ФИЗИКА

Тема: «ЭЛЕКТРОДИНАМИКА»

Специальность: 34. 02.01 Сестринское дело Курс: 1

(базовой подготовки)

Купино

2019

Рассмотрено на заседании предметной цикловой

Методической комиссии по общеобразовательным дисциплинам,

общему гуманитарному и социально-экономическому, математическому и

естественно-научному циклу

Протокол № _____ от «_____» _________20____г.

Председатель ПЦМК: _____________

Автор – составитель: преподаватель математики высшей категории Тюменцева О.Н.

Купино

2019 г

Пояснительная записка

Методическое пособие предназначено для самостоятельного изучения теоретических и практических знаний по теме.

Цель пособия – изучить понятия: сил, действующих на проводник с током в магнитном поле, сил, действующих на электрический заряд, движущийся в магнитном поле, индукции и самоиндукции. Данное пособие рекомендовано для студентов первого курса специальности 34.02.01 Сестринское дело. Пособие содержит определения основных понятий по теме электромагнитная индукция, вопросы для самопроверки, образцы решения задач и задачи для самостоятельного решения.

Пособие направлено на формирование навыков самостоятельной работы с учебным материалом, формирование навыков решения задач, формирование и развитие творческого потенциала, повышение интереса к дисциплине.

Электромагнитная индукция

1.Магнитный поток

Вектор магнитной индукции  B ⃗   характеризует силовые свойства магнитного поля в данной точке пространства. Введем еще одну величину, зависящую от значения вектора магнитной индукции не в одной точке, а во всех точках произвольно выбранной поверхности. Эту величина называется магнитным потоком и обозначается греческой буквой Φ (фи).

Магнитный поток Φ однородного поля через плоскую поверхность — это скалярная физическая величина, численно равная произведению модуля индукции B магнитного поля, площади поверхности S и косинуса угла α между нормалью  n ⃗   к поверхности и вектором индукции  B ⃗:

Φ=B⋅S⋅cosα.   (1) В СИ единицей магнитного потока является вебер (Вб): 1 Вб = 1 Тл ⋅ 1 м2.

Магнитный поток в 1 Вб — это магнитный поток однородного магнитного поля с индукцией 1 Тл через перпендикулярную ему плоскую поверхность площадью 1 м2.

Поток может быть как положительным, так и отрицательным в зависимости от значения угла α.

Поток магнитной индукции наглядно может быть истолкован как величина, пропорциональная числу линий вектора индукции  B ⃗  , пронизывающих данную площадку поверхности.

Из формулы (1) следует, что магнитные поток может изменяться:

  • или только за счет изменения модуля вектора индукции B магнитного поля, тогда ΔΦ=(B 2 −B 1 )⋅S⋅cosα  ;

  • или только за счет изменения площади контура S, тогда

 ΔΦ=B⋅(S 2 −S 1 )⋅cosα  ;

 ΔΦ=B⋅S⋅(cosα 2 −cosα 1 )  ;

 ΔΦ=B 2 ⋅S 2 ⋅cosα 2 −B 1 ⋅S 1 ⋅cosα 1  .

2. Электромагнитная индукция (ЭМИ)

Открытие ЭМИ

Вам уже известно, что вокруг проводника с током всегда существует магнитное поле. А нельзя наоборот, с помощью магнитного поля создать ток в проводнике? Именно такой вопрос заинтересовал английского физика Майкла Фарадея, который в 1822 г. записал в своем дневнике: «Превратить магнетизм в электричество». И только через 9 лет эта задача была им решена.

Открытие электромагнитной индукции, как назвал Фарадей это явление, было сделано 29 августа 1831 г. Первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек относительно друг друга.

17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита.

В течение одного месяца Фарадей опытным путем открыл, что в замкнутом контуре возникает электрический ток при любом изменении магнитного потока через него. Полученный таким способом ток называется индукционным током Ii.

Известно, что в цепи возникает электрический ток в том случае, когда на свободные заряды действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в нем появляются сторонние силы, действие которых характеризуется ЭДС, которую называют

ЭДС индукции и обозначают Ei.

Индукционный ток Ii в контуре и ЭДС индукции Ei связаны следующим соотношением (законом Ома):

 I i =−E i/R  , 

где R — сопротивление контура.

Явление возникновения ЭДС индукции при изменении магнитного потока через площадь, ограниченную контуром, называется явлением электромагнитной индукции

.

Если контур замкнут, то вместе с ЭДС индукции возникает и индукционный ток.

Джеймс Клерк Максвелл предложил такую гипотезу: изменяющееся магнитное поле создает в окружающем пространстве электрическое поле, которое и приводит свободные заряды в направленное движение, т.е. создает индукционный ток. Силовые линии такого поля замкнуты, т.е. электрическое поле вихревое.

Индукционные токи, возникающие в массивных проводниках под действием переменного магнитного поля, называются токами Фуко или вихревыми токами.

История

Вот краткое описание первого опыта, данное самим Фарадеем.

«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута (фут равен 304,8 мм), и между витками ее намотана проволока такой же длины, но изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая — с сильной батареей, состоящей из 100 пар пластин. .. При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, не смотря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».

3. Правило Ленца

Русский физик Эмилий Ленц в 1833 г. сформулировал правило (правило Ленца), которое позволяет установить направление индукционного тока в контуре:

  • возникающий в замкнутом контуре индукционный ток имеет такое направление, при котором созданный им собственный магнитный поток через площадь, ограниченную контуром, стремится препятствовать тому изменению внешнего магнитного потока, вызвавшее данный ток.

Или

Например, при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки, т. е. вектор индукции B ⃗  ′   этого поля направлен против вектора индукции B ⃗   внешнего магнитного поля. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с индукцией B ⃗ , увеличивающее магнитный поток через витки катушки.

4. Закон ЭМИ

Опыты Фарадея показали, что ЭДС индукции (и сила индукционного тока) в проводящем контуре пропорциональна скорости изменения магнитного потока. Если за малое время Δt магнитный поток меняется на ΔΦ, то скорость изменения магнитного потока равна ΔΦ Δt   . С учетом правила Ленца Д. Максвелл в 1873 г. дал следующую формулировку закона электромагнитной индукции:

  • ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока, пронизывающего этот контур, взятой с противоположным знаком

 E i =−ΔΦ/ Δt  . 

  • Знак «минус» в законе следует из закона Ленца. При увеличении магнитного потока (ΔΦ > 0), ЭДС отрицательная (Ei < 0), т. е. индукционный ток имеет такое направление, что вектор магнитной индукции индукционного

  • магнитного поля направлен против вектора магнитной индукции внешнего (изменяющегося) магнитного поля (рис. 4, а). При уменьшении магнитного потока (ΔΦ < 0), ЭДС положительная (Ei > 0) (рис. 4, б).

В Международной системе единиц закон электромагнитной индукции используют для установления единицы магнитного потока. Так как ЭДС индукции Ei выражают в вольтах, а время в секундах, то из закона ЭМИ вебер можно определить следующим образом:

магнитный поток через поверхность, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 с в контуре возникает ЭДС индукции равная 1 В:

1 Вб = 1 В ∙ 1 с.

5. ЭДС индукции в движущемся проводнике

При движении проводника длиной l со скоростью υ ⃗   в постоянном магнитном поле с вектором индукции B ⃗   в нем возникает ЭДС индукции E i =B⋅υ⋅l⋅cosα, 

где α – угол между направлением скорости υ⃗проводника и вектором магнитной индукции B ⃗.

Причиной появления этой ЭДС является сила Лоренца, действующая на свободные заряды в движущемся проводнике. Поэтому направление индукционного тока в проводнике будет совпадать с направлением составляющей силы Лоренца на этот проводник.

С учетом этого можно сформулировать следующее для определения направления индукционного тока в движущемся проводнике (правило левой руки):

нужно расположить левую руку так, чтобы вектор магнитной индукции B ⃗   входил в ладонь, четыре пальца совпадали с направлением скорости υ ⃗   проводника, тогда отставленный на 90° большой палец укажет направление индукционного тока (рис. 5).

Если проводник движется вдоль вектора магнитной индукции, то индукционного тока не будет (сила Лоренца равна нулю).

Вопросы для самопроверки

  1. Сформулируйте определение магнитного потока

  2. Сформулируйте правило Ленца

  3. Сформулируйте определение ЭДС индукции

  4. Сформулируйте определение вихревого электрического поля

  5. Сформулируйте определение самоиндукции

  6. Сформулируйте определение индуктивности

  7. Перечислите свойства электромагнитного поля

Примеры решения задач по теме: Электромагнитная индукция

        1. Медное кольцо, диаметр которого — 20 см, а диаметр провода кольца 2 мм, расположено в однородном магнитном поле. Плоскость кольца перпендикулярна вектору магнитной индукции. Определите модуль скорости изменения магнитной индукции поля со временем, если при этом в кольце возникает индукционный ток 10 А. Удельное сопротивление меди ρСu = 1,72 • 10-8 Ом·м.

        1. Плоская рамка из провода сопротивлением 5 Ом находится в однородном магнитном поле. Проекция магнитной индукции поля на ось Ох, перпендикулярную плоскости рамки, меняется от В = 3 Тл до В = -1 Тл. За время изменения поля по рамке протекает заряд 1,6 Кл. Определите площадь рамки.  

        1. Замкнутый контур из тонкой проволоки помещён в магнитное поле. Плоскость контура перпендикулярна вектору магнитной индукции поля. Площадь контура S = 2•10–3 м2. В контуре возникают колебания тока с амплитудой iм = 35 мА, если магнитная индукция поля меняется с течением времени в соответствии с формулой B = acos(bt), где а = 6•10–3 Тл, b = 3500 с–1. Чему равно электрическое сопротивление контура R? 

Задачи для самостоятельного решения

  1. Медное кольцо из провода диаметром 2 мм расположено в однородном магнитном поле, магнитная индукция которого меняется по модулю со скоростью 1,09 Тл/с. Плоскость кольца перпендикулярна вектору магнитной индукции. Каков диаметр кольца, если возникающий в нём индукционный ток равен 10 А? Удельное сопротивление меди ρCu = 1,72·10-8 Ом·м.

  2. Плоская горизонтальная фигура площадью 0,1 м2, ограниченная проводящим контуром с сопротивлением 5 Ом, находится в однородном магнитном поле. Пока проекция вектора магнитной индукции на вертикальную ось Oz медленно и равномерно возрастает от В1Z = – 0,15 Тл до некоторого конечного значения В2Z, по контуру протекает заряд 0,008 Кл. Найдите В2Z

  3. Проводящий стержень длиной l = 20 см движется поступательно в однородном магнитном поле со скоростью v = 1 м/с так, что угол между стержнем и вектором скорости α = 30° (см. рисунок). ЭДС индукции в стержне равна 0,05 В. Какова индукция магнитного поля? 

11 класс – Физика

 

Явление электромагнитной индукции было открыто Майлом Фарадеем в 1831 году. Еще за 10 лет до этого Фарадей думал о способе превратить магнетизм в электричество. Он считал, что магнитное поле и электрическое поле должны быть как-то связаны.

Открытие электромагнитной индукции

Например, с помощью электрического поля можно намагнитить железный предмет. Наверное, должна существовать возможность с помощью магнита получить электрический ток.  

Сначала Фарадей открыл явление электромагнитной индукции в неподвижных относительно друг друга проводниках. При возникновении в одной из них тока в другой катушке тоже индуцировался ток. Причем в дальнейшем он пропадал, и появлялся снова лишь при выключении питания одной катушки. 

Через некоторое время Фарадей на опытах доказал, что при перемещении катушки без тока в цепи относительно другой, на концы которой подается напряжение, в первой катушке тоже будет возникать электрический ток.

Следующим опытом было введение в катушку магнита, и при этом тоже в ней появлялся ток. 

Фарадеем была сформулирована основная причина появления тока в замкнутом контуре. В замкнутом проводящем контуре ток возникает при изменении числа линий магнитной индукции, которые пронизывают этот контур.

Чем больше будет это изменение, тем сильнее получится индукционный ток. Неважно, каким образом мы добьемся изменения числа линий магнитной индукции. Например, это можно сделать движением контура в неоднородном магнитном поле, как это происходило в опыте с магнитом или движением катушки. А можем, например, изменять силу тока в соседней с контуром катушке, при этом будет изменяться магнитное поле, создаваемое этой катушкой.

Формулировка закона

Подведем краткий итог. Явление электромагнитной индукции – это явление возникновения тока в замкнутом контуре, при изменении магнитного поля в котором находится этот контур.

Для более точной формулировки закона электромагнитной индукции необходимо ввести величину, которая бы характеризовала магнитное поле – поток вектора магнитной индукции.

Магнитный поток

Вектор магнитной индукции обозначается буквой B. Он будет характеризовать магнитное поле в любой точке пространства. Теперь рассмотрим замкнутый контур, ограничивающий поверхность площадью S. 2, которая расположена перпендикулярно вектору магнитной индукции.

 

При внесении в катушку магнита в ней возникает индукционный ток. Если к катушке присоединить гальванометр, то можно заметить, что направление тока будет зависеть от того приближаем ли мы магнит или удаляем его.

Магнит будет взаимодействовать с катушкой либо притягиваясь, либо отталкиваясь от нее. Это будет возникать вследствие того, что катушка с проходящим по ней током, будет подобна магниту с двумя полюсами. Направление индуцируемого тока будет определять, где у катушки будет находиться какой из полюсов.

Если приближать к катушке магнит, то в ней будет возникать индукционный ток такого направления, что катушка обязательно будет отталкиваться от магнита. Если мы будет удалять магнит от катушки, то при этом в катушке возникнет такой индукционный ток, что она будет притягиваться к магниту.

Стоит отметить, что не важно каким полюсом мы подносим или убираем магнит, всегда при подносе катушка будет отталкиваться, а при удалении притягиваться. Различие состоит в том, что при приближении магнита к катушке магнитный поток, который будет пронизывать катушку, увеличивается, так как у полюса магнита кучность линий магнитной индукции увеличивается. А при удалении магнита, магнитный поток, пронизывающий катушку, будет уменьшаться.

Узнать направление индукционного тока можно. Для этого существует правило Ленца. Оно основано на законе сохранения. Рассмотрим следующий опыт.

рисунок

Имеется катушка с подключенным к ней гальванометром. К одному и краев катушки начинаем подносить магнит, например, северным полюсом. Количество линий, которые будут пронизывать поверхность каждого витка катушки, будет увеличиваться. Следовательно, будет увеличиваться и значение магнитного потока.

Так как должен выполняться закон сохранения, должно возникнуть магнитное поле, которое будет препятствовать изменению магнитного потока. В нашем случае магнитный поток увеличивался, следовательно, ток должен течь в таком направлении, чтобы линии вектора магнитной индукции, создаваемые катушкой, были направлены в противоположном направлении линиям магнитной индукции, создаваемым магнитом.  

То есть они должны в нашем случае быть направлены вверх. Теперь воспользуемся правилом буравчика. Направляем большой палец правой руки по необходимому нам направлению линий магнитной индукции, то есть – вверх. Тогда остальные пальцы укажут, в какую сторону должен быть направлен индукционный ток. В нашем случае, слева на право.

Аналогичный процесс происходит при удалении магнита. Убираем магнит, магнитный поток уменьшается, следовательно, должно возникнуть поле которое будет увеличивать магнитный поток. То есть поле линии магнитной индукции, которого будут сонаправлены с линиями магнитной индукции, создаваемыми постоянным магнитом. В нашем случае эти лини направлены вниз. Опять пользуемся правилом буравчика и определяем направление индукционного тока.

 

После возникновения понятия о явлении электромагнитной индукции, интересно было бы узнать её количественные характеристики. Согласно опытам сила индукционного тока, которая возникнет в замкнутом контуре, будет пропорциональна изменению магнитного потока, который пронизывает этот контур.

Магнитный поток

Магнитный поток – это не что иное, как количество пронизывающих контур линий магнитной индукции. Чем больше их пронизывает контур, тем больше будет магнитный поток. Поэтому скорость изменения магнитного потока, можно представить как скорость изменения количество линий магнитной индукции, которые пронизывают контур.

За некоторое достаточно малое время ∆t магнитный поток изменится на некоторую величину ∆Ф. Следовательно, сила индукционного тока в замкнутом контуре будет пропорциональна скорости изменения магнитного потока, который пронизывает поверхность, ограниченную этим контуром.

Ii = ∆Ф/∆t.

Электродвижущая сила

Ток в цепи будет возникать при направленном движении заряженных частиц, под действием некоторых сторонних сил. Электродвижущая сила, величина численно равная работе сил по перемещению, единичного положительного заряда вдоль замкнутого контура, называется электродвижущей силой. 

При изменении магнитного потока в контуре возникает электрический ток, а следовательно, возникает электродвижущая сила, которая в этом случае называется ЭДС индукции. Для её обозначение используют прописную букву Е. Мы будем обозначать ЭДС индукции Ei.

Согласно закону Ома для замкнутой цепи, будет выполняться следующее равенство:

Ii = Ei/R.

Теперь сформулируем закон электромагнитной индукции. Он будет говорить об ЭДС индукции, так как сила тока, будет зависеть от свойств проводника, а ЭДС будет определяться только изменением магнитного потока, пронизывающего замкнутый контур.

Закон электромагнитной индукции

ЭДС индукции возникающая в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, которую ограничивает этот контур.

Ei = |∆Ф/∆t |.

Теперь необходимо учесть направление индукционного тока, который возникает в контуре. Для этого в формуле необходимо раскрыть модуль и поставить перед частным знак минус.

Ei = -∆Ф/∆t.

Индукционный ток должен быть направлен в направлении против положительного обхода контура. ЭДС индукции будет отрицательна.

 

Нахождение ЭДС индукции через силу Лоренца

Магнитный поток через контур может изменяться по следующим причинам:

В обоих этих случаях будет выполняться закон электромагнитной индукции. При этом происхождение электродвижущей силы в этих случаях различное. Рассмотрим подробнее второй из этих случаев

В данном случае проводник движется в магнитном поле. Вместе с проводником совершают движение и все заряды, которые находятся внутри проводника. На каждый из таких зарядов со стороны магнитного поля будет действовать сила Лоренца. Она и будет способствовать перемещению зарядов внутри проводника.

  • ЭДС индукции в данном случае будет иметь магнитное происхождение.

Рассмотрим следующий опыт: магнитный контур, у которого одна сторона подвижная, помещают в однородное магнитное поле. Подвижная сторона длиной l начинает скользить вдоль сторон MD и NC с постоянной скоростью V. При этом она постоянно остаётся параллельной стороне СD. Вектор магнитной индукции поля будет перпендикулярен проводнику и составлять угол а с направлением его скорости. На следующем рисунке представлена лабораторная установка для этого опыта:

Сила Лоренца, действующая на движущуюся частицу, вычисляется по следующей формуле:

Fл = |q|*V*B*sin(a).

Сила Лоренца будет направлена вдоль отрезка MN. Рассчитаем работу силы Лоренца:

A = Fл*l = |q|*V*B*l*sin(a).

ЭДС индукции – это отношение работы, совершаемой силой при перемещении единичного положительного заряда, к величине этого заряда. Следовательно, имеем:

Ei = A/|q| = V*B*l*sin(a).

Эта формула будет справедлива для любого проводника, движущегося в с постоянной скоростью в магнитном поле. ЭДС индукции будет только в этом проводнике, так как остальные проводники контура остаются неподвижными. Очевидно, что ЭДС индукции во всем контуре будет равняться ЭДС индукции в подвижном проводнике.

ЭДС из закона электромагнитной индукции 

Магнитный поток через тот же контур, что и в примере выше, будет равняться: 

Ф = B*S*cos(90-a) = B*S*sin(a).

Здесь угол (90-а) = угол между вектором магнитной индукции и нормалью к поверхности контура. За некоторое время ∆t площадь контура будет изменяться на ∆S = -l*V*∆t. Знак «минус» показывает, что площадь уменьшается. При этом за это время магнитный поток изменится:

∆Ф = -B*l*V*sin(a).

Тогда ЭДС индукции равна:

Ei = -∆Ф/∆t = B*l*V*sin(a).

Если весь контур будет двигаться внутри однородного магнитного поля с постоянной скоростью, то ЭДС индукции будет равняться нулю, так как будет отсутствовать изменение магнитного потока.

  • ЭДС индукции будет возникать и при повороте рамки внутри магнитного поля.

Микрофон – электрическое устройство, которое преобразует звуковые колебания воздуха в колебания электрического тока. Микрофоны получили широко распространение в радиовещании, телевидении и т.д.

Электродинамический микрофон

Рассмотрим, как работает микрофон, на самом простом из микрофонов – электородинамическом. Его работа основана на явлении электромагнитной индукции. Рассмотрим устройство электродинамического микрофона.

картинка

Диафрагма микрофона (2) сделана из полистирола или алюминиевой фольги. Она жестко связана со звуковой катушкой. Звуковая катушка (1) изготавливается из очень тонкой проволоки.

Катушку помешают в кольцевой зазор сильно постоянного магнита (3). Линии магнитной индукции будут перпндикулярны виткам катушки.

Когда человек говорит, возникает звуковая волна. Эта волна вызывает колебание диафрагмы, а следовательно и колебание звуковой катушки. Катушка движется в магнитном поле, в её витка индуцируется ток, и на концах катушки возникает переменная ЭДС индукции.

Это переменное напряжение вызывает колебание тока в цепи микрофона. Данные колебания могут быть поданы на громкоговоритель. Электродинамический микрофон имеет очень простую конструкцию.

Так же микрофоны этого типа имеют небольшие габариты и надежны в эксплуатации. При этом искажение преобразуемых колебаний в звуковом диапазоне невелики.

Самоиндукция

Как уже известно, если по катушке идет переменный ток, то магнитный поток, который пронизывает катушку, будет изменяться. При этом, в этом же самом проводнике возникает ЭДС индукции. Это явление называется самоиндукция.

Во время самоиндукции контур, через который проходит ток, выполняет сразу две функции. Переменный ток в проводнике вызовет появление магнитного потока, через поверхность ограниченную контуром. Магнитный поток будет изменяться с течением времени, следовательно, в контуре будет возникать ЭДС индукции.

Напряженность возникающего вихревого поля будет направлена против тока. То есть, вихревое поле будет препятствовать нарастанию тока. Если бы ток уменьшался, то вихревое поле поддерживало бы ток. Явление самоиндукции можно наблюдать, например, на следующем опыте.

Рассмотрим следующую принципиальную электрическую схему. 

Параллельно источнику питания подключены две одинаковые лампочки. В цепь одной из них последовательно включено сопротивление, а в цепь другой – катушка индуктивности. При замыкании ключа, первая лампочка вспыхнет почти мгновенно.

Вторая лампочка включится только спустя некоторое время. ЭДС самоиндукции катушки будет достаточно большим, и будет препятствовать нарастанию силы тока, поэтому свое максимальное значение сила тока достигнет только спустя некоторое время. Теперь рассмотрим следующую схему.

Здесь при размыкании ключа в катушке возникнет ЭДС самоиндукции, которая будет стараться поддерживать ток. В момент размыкания ключа через гальванометр будет протекать ток, обратно направленный по отношению к первоначальному. Сила тока при размыкании может даже превысить силу тока, который был первоначально. Следовательно, ЭДС самоиндукции будет больше ЭДС батареи.

Электрический ток | Справочник | Инженерные системы

В первую очередь, стоит выяснить, что представляет собой электрический ток. Электрический ток — это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Джильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон — «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором — «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока — это когда один конец провода соединен с наэлектризованным телом, а другой — с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

Основные величины электрического тока

Количество электричества и сила тока. Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количество электричества, проходящее сквозь проводник.

От количества электричества зависит, в частности, химическое действие электрического тока, т. е. чем больший заряд прошел через раствор электролита, тем больше вещества осядет на катоде и аноде. В связи с этим количество электричества можно подсчитать, взвесив массу отложившегося на электроде вещества и зная массу и заряд одного иона этого вещества.

Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с). В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А). Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.

Электрическое напряжение. Мы уже знаем, что электрический ток представляет собой упорядоченное движение заряженных частиц — электронов. Это движение создается при помощи электрического поля, которое совершает при этом определенную работу. Это явление называется работой электрического тока. Для того чтобы переместить больший заряд по электрической цепи за 1 с, электрическое поле должно выполнить большую работу. Исходя из этого, выясняется, что работа электрического тока должна зависеть от силы тока. Но существует и еще одно значение, от которого зависит работа тока. Эту величину называют напряжением.

Напряжение — это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд — в кулонах (Кл). В связи с этим единицей измерения напряжения станет 1 Дж/Кл. Данную единицу назвали вольтом (В).

Для того чтобы в электрической цепи возникло напряжение, нужен источник тока. При разомкнутой цепи напряжение имеется только на клеммах источника тока. Если этот источник тока включить в цепь, напряжение возникнет и на отдельных участках цепи. В связи с этим появится и ток в цепи. То есть коротко можно сказать следующее: если в цепи нет напряжения, нет и тока. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре). Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.

Электрическое сопротивление. После подключения в электрическую цепь всевозможных проводников и амперметра можно заметить, что при использовании разных проводников амперметр выдает разные показания, т. е. в этом случае сила тока, имеющаяся в электрической цепи, разная. Это явление можно объяснить тем, что разные проводники имеют разное электрическое сопротивление, которое представляет собой физическую величину. В честь немецкого физика ее назвали Омом. Как правило, в физике применяются более крупные единицы: килоом, мегаом и пр. Сопротивление проводника обычно обозначается буквой R, длина проводника — L, площадь поперечного сечения — S. В этом случае можно сопротивление записать в виде формулы:

R = р * L/S

где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м2. Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом х мм2/м. В нижеприведенной табл. 1 показаны удельные сопротивления некоторых материалов.

Удельное электрическое сопротивление некоторых материалов

Материал р, Ом х м2/м Материал р, Ом х м2/м
Медь 0,017 Платино-иридиевый сплав 0,25
Золото 0,024 Графит 13
Латунь 0,071 Уголь 40
Олово 0,12 Фарфор 1019
Свинец 0,21 Эбонит 1020
Металл или сплав
Серебро 0,016 Манганин (сплав) 0,43
Алюминий 0,028 Константан (сплав) 0,50
Вольфрам 0,055 Ртуть 0,96
Железо 0,1 Нихром (сплав) 1,1
Никелин (сплав) 0,40 Фехраль (сплав) 1,3
Хромель (сплав) 1,5

По данным таблицы становится понятно, что самое малое удельное электрическое сопротивление имеет медь, самое большое — сплав металлов. Кроме этого, большим удельным сопротивлением обладают диэлектрики (изоляторы).

Электрическая емкость. Мы уже знаем, что два изолированных друг от друга проводника могут накапливать электрические заряды. Это явление характеризуется физической величиной, которую назвали электрической емкостью. Электрическая емкость двух проводников — не что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф). На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).

Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.

Работа и мощность электрического тока. Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т. е. позволяет выполнять электролиз и т. д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение — в вольтах, сила тока — амперах, время — в секундах. В связи с этим 1 Дж = 1В х 1А х 1с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт). На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).

Основные законы электрического тока

Закон Ома. Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных особенностей применения электричества является быстрая транспортировка энергии из одного места в другое и передача ее потребителю в нужной форме. Произведение разности потенциалов на силу тока дает мощность, т. е. количество энергии, отдаваемой в цепи на единицу времени. Как было сказано выше, чтобы замерить мощность в электрической цепи, понадобилось бы 3 прибора. А нельзя ли обойтись одним и вычислить мощность по его показаниям и какой-либо характеристике цепи, вроде ее сопротивления? Многим эта идея понравилась, они посчитали ее плодотворной.

Итак, что же такое сопротивление провода или цепи в целом? Обладает ли проволока, подобно водопроводным трубам или трубам вакуумной системы, постоянным свойством, которое можно было бы назвать сопротивлением? К примеру, в трубах отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется простому соотношению, в которое входит разность температур, площадь поперечного сечения проволоки и ее длина. Открытие такого соотношения для электрических цепей стало итогом успешных поисков.

В 1820-х годах немецкий школьный учитель Георг Ом первым приступил к поискам вышеназванного соотношения. В первую очередь, он стремился к славе и известности, которые бы позволили ему преподавать в университете. Только поэтому он выбрал такую область исследований, которая сулила особые преимущества.

Ом был сыном слесаря, поэтому знал, как вытягивать металлическую проволоку разной толщины, нужную ему для опытов. Поскольку в те времена нельзя было купить пригодную проволоку, Ом изготавливал ее собственноручно. Во время опытов он пробовал разные длины, разные толщины, разные металлы и даже разные температуры. Все эти факторы он варьировал поочередно. Во времена Ома батареи были еще слабые, давали ток непостоянной величины. В связи с этим исследователь в качестве генератора применил термопару, горячий спай которой был помещен в пламя. Кроме этого, он использовал грубый магнитный амперметр, а разности потенциалов (Ом называл их «напряжениями») замерял путем изменения температуры или числа термоспаев.

Учение об электрических цепях только-только получило свое развитие. После того как, примерно, в 1800 году изобрели батареи, оно стало развиваться намного быстрее. Проектировались и изготовлялись (довольно часто вручную) различные приборы, открывались новые законы, появлялись понятия и термины и т. д. Все это привело к более глубокому пониманию электрических явлений и факторов.

Обновление знаний об электричестве, с одной стороны, стало причиной появления новой области физики, с другой стороны, явилось основой для бурного развития электротехники, т. е. были изобретены батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, электромоторы и прочее, прочее.

Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии — для переменного. В 1826 году Ом опубликовал книгу, в которой изложил теоретические выводы и экспериментальные результаты. Но его надежды не оправдались, книгу встретили насмешками. Это произошло потому, что метод грубого экспериментирования казался мало привлекательным в эпоху, когда многие увлекались философией.

Ому не оставалось ничего другого, как оставить занимаемую должность преподавателя. Назначения в университет он не добился по этой же причине. В течение 6 лет ученый жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования.

Но постепенно его труды получили известность сначала за пределами Германии. Ома уважали за границей, пользовались его изысканиями. В связи с этим соотечественники вынуждены были признать его на родине. В 1849 году он получил должность профессора Мюнхенского университета.

Ом открыл простой закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, для всей цепи). Кроме этого, он составил правила, которые позволяют определить, что изменится, если взять проволоку другого размера. Закон Ома формулируется следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Джоуля-Ленца. Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U). По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна i, то за время t пройдет заряд it, и поэтому работа электрического тока в этом участке будет:

А = Uit

Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т. е. работа в единицу времени, равна:

Р = A/t = Ui

Эту формулу применяют в системе СИ для определения единицы напряжения.

Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:

U = ir

где r — сопротивление проводника. В таком случае:

А = rt2t

Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.

Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них — осветительные лампы накаливания.

Закон электромагнитной индукции. В первой половине XIX века английский физик М. Фарадей открыл явление магнитной индукции. Этот факт, став достоянием многих исследователей, дал мощный толчок развитию электро- и радиотехники.

В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики — закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.

Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.

При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т. е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило Ленца. Как мы уже знаем, в проводнике возникает индукционный ток. В зависимости от условий своего появления он имеет разное направление. По этому поводу русский физик Ленц сформулировал следующее правило: индукционный ток, возникающий в замкнутом контуре, всегда имеет такое направление, что создаваемое им магнитное поле не дает магнитному потоку изменяться. Все это вызывает возникновение индукционного тока.

Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.

Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.

Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.

ИНДУКЦИОННЫЙ ТОК – это… Что такое ИНДУКЦИОННЫЙ ТОК?

ИНДУКЦИОННЫЙ ТОК
ИНДУКЦИОННЫЙ ток – электрический ток, возникающий вследствие электромагнитной индукции.

Большой Энциклопедический словарь. 2000.

  • ИНДУКЦИОННЫЙ ПРИБОР
  • ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ

Смотреть что такое “ИНДУКЦИОННЫЙ ТОК” в других словарях:

  • ИНДУКЦИОННЫЙ ТОК — ток, возникающий в проводящем контуре, находящемся в перем. магн. поле или движущемся в магн. поле. (см. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 …   Физическая энциклопедия

  • индукционный ток — — [Интент] Параллельные тексты EN RU из ABB Review. Перевод компании Интент Though fundamentally based on the physics of electromagnetism, the existing technology had to be cleverly manipulated so it could be applied in an industrial setup …   Справочник технического переводчика

  • индукционный ток — электрический ток, возникающий вследствие электромагнитной индукции. * * * ИНДУКЦИОННЫЙ ТОК ИНДУКЦИОННЫЙ ТОК, электрический ток, возникающий вследствие электромагнитной индукции …   Энциклопедический словарь

  • индукционный ток — indukuotoji srovė statusas T sritis automatika atitikmenys: angl. induced current; induction current vok. Induktionsstrom, m; induzierter Strom, m; Influenzstrom, m rus. индукционный ток, m; индуцированный ток, m; наведённый ток, m pranc. courant …   Automatikos terminų žodynas

  • индукционный ток — indukuotoji srovė statusas T sritis fizika atitikmenys: angl. induced current; induction current vok. Induktionsstrom, m; induzierter Strom, m rus. индуктируемый ток, m; индукционный ток, m; индуцированный ток, m pranc. courant d’induction, m;… …   Fizikos terminų žodynas

  • Индукционный ток — Индукционный ток  электрический ток, возникающий в замкнутом проводящем контуре при изменении потока магнитной индукции, пронизывающего этот контур. Величина и направление индукционного тока определяются законом электромагнитной индукции и… …   Википедия

  • ИНДУКЦИОННЫЙ ТОК — электрич. ток, возникающий вследствие электромагнитной индукции …   Большой энциклопедический политехнический словарь

  • ИНДУКЦИОННЫЙ ТОК — электрич. ток, возни кающий вследствие эл. магн. индукции …   Естествознание. Энциклопедический словарь

  • окислительно-восстановительная реакция на поверхности электрода, возбуждающая индукционный ток — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN electron transfer reaction …   Справочник технического переводчика

  • ТОК — 1. ТОК1, тока, муж. 1. только ед. Действие и состояние по гл. течь (см. течь1 в 1 знач.), течение (устар.). «Не волнуй же, Днепр широкий, быстрый ток студеных вод!» И.Козлов. Ток реки. 2. То, что течет, поток, струя (устар.). «Потянем ка вдвоем… …   Толковый словарь Ушакова

Книги

  • Индукция, взаимоиндукция, самоиндукция – это просто. Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 1050 грн (только Украина)
  • Индукция, взаимоиндукция, самоиндукция-это просто. Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 820 руб
  • Индукция, взаимоиндукция, самоиндукция – это просто. Теория абсолютности, Г. С. Гуревич, С. Н. Каневский. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 545 руб
Другие книги по запросу «ИНДУКЦИОННЫЙ ТОК» >>

Электромагнитное поле – основные понятия, формулы и определения с примерами

Содержание:

Электромагнитное поле:

Сильное электромагнитное поле отрицательно действует на человеческий организм – повреждается центральная нервная система, может возникнуть рак головного мозга, уровень гемоглобина в крови понижается, нарушается память и понижается внимание.

Карта электромагнитного поля:

Электрический заряд и электромагнитное поле

При трении тел друг о друга на них возникают электрические заряды. В этом случае говорят, что тело наэлектризовано, оно получило электрический заряд, или оно потеряло электрический заряд.

 Электрическое взаимодействие между наэлектризованными телами в зависимости от знаков их зарядов может носить характер притяжения или отталкивания:

  • –    тела, обладающие зарядами одинакового знака, отталкиваются друг от друга;
  • –    тела, обладающие зарядами противоположного знака, притягиваются друг к другу.

В природе существуют заряды двух видов: положительный электрический заряд (+) и отрицательный электрический заряд (-). Заряды одинакового знака отталкиваются друг от друга, а заряды разного знака притягиваются друг к другу. Тела, не обладающие избытком электрического заряда, называют электрически нейтральными, или незаряженными телами.

Электрический заряд обозначают буквой q. За единицу измерения электрического заряда в СИ принят 1 кулон, названный так в честь французского ученого Шарля Кулона: [q] = 1 Кл.

Электростатическое поле – вид материи, который создается неподвижными электрическими зарядами.

 Напряженность электрического поля – силовая характеристика этого поля. Являясь векторной величиной, напряженность электрического поля направлена так же, как и электрическая сила, действующая на положительный заряд.

Вещества, продолжительное время сохраняющие свои магнитные свойства, называются постоянными магнитами или просто магнитами. Каждый магнит имеет два полюса: северный (N) и южный (S). Одноименные полюсы магнита отталкиваются, разноименные полюсы магнита притягиваются.

Магнитное поле – вид материи, который создается движущимися зарядами.

Индукция магнитного поля (или магнитная индукция) является силовой характеристикой этого поля. Направление вектора магнитной индукции в данной точке магнитного поля совпадает с направлением северного полюса магнитной стрелки, помещенной в эту точку поля.

Кстати:

Было выяснено, что при полете пчела заряжается положительно. А цветы обладают отрицательным зарядом. Поэтому, когда пчела садится на цветок, ее пыльца прилипает к пчеле. Самым интересным является то, что после контакта пчелы с цветком электромагнитное поле растения меняется. Это изменение как будто подает знаки другим пчелам, находящимся в воздухе: “На этом цветке нет пыльцы!”.

Электрический заряд

Электрический заряд — это свойство тел и частиц создавать вокруг себя электромагнитное ноле. Электрический заряд принят также количественной мерой измерения этого свойства тел.

Взаимодействие между заряженными частицами называется электромагнитным взаимодействием. Например, когда говорят, что протон несет положительный заряд, а электрон несет отрицательный заряд, то можно с уверенностью говорить о наличии электромагнитного взаимодействия между ними. Между незаряженными (электрически нейтральными) частицами не существует электромагнитного взаимодействия. Поэтому говорят: Электрический заряд определяет интенсивность электромагнитного взаимодействия.

Электрический заряд обладает следующими особенностями:

1. Электрический заряд дискретен (не непрерывен, делим) — электрический заряд любого тела кратен целому числу элементарных зарядов:

Здесь N – число приобретенных или потерянных телом электронов.

Абсолютное значение наименьшего электрического заряда в природе называют элементарным зарядом. Элементарный заряд обозначают буквой е, численное его значение равно абсолютному значению заряда электрона или протона:

Кроме электрона и протона в природе существуют ещё несколько видов элементарных частиц. Однако только электроны и протоны могут существовать в свободном состоянии неограниченно долго. Время жизни остальных заряженных частиц очень мало – миллионные доли секунды. Они образуются в результате столкновений быстрых элементарных частиц, и через ничтожно малое время превращаются в другие частицы.

Дискретность заряда позволяет ему равномерно распределяться по поверхности проводника. Предположим, что заряд равномерно распределился по поверхности площадью S.

Величина, численно равная электрическому заряду, приходящемуся на единицу площади поверхности, называется поверхностной плотностью электрического заряда ():

Единицей поверхностной плотности электрического заряда в СИ является:

2.    Для электрического заряда выполняется закон сохранения – алгебраическая сумма электрических зарядов частиц (или тел) замкнутой системы остается неизменной:

3.    Электрический заряд является аддитивной величиной – электрический заряд системы равен алгебраической сумме электрических зарядов частиц (или тел) этой системы.

4.    Электрический заряд является инвариантной величиной – электрический заряд частиц (или тел) одинаков во всех инерциальных системах отсчета.

Электромагнитное поле

Раздел физики, в котором изучаются электрические и магнитные явления, проявляющиеся при движении и взаимодействии электрических зарядов, называется электродинамикой.

Электродинамика – раздел физики, изучающий закономерности взаимодействия между электрическими зарядами посредством электромагнитного поля.

Электромагнитное поле – вид материи, осуществляющий взаимодействие между электрически заряженными частицами и телами.

Электрическое и магнитное поля являются особыми формами проявления электромагнитного поля. Поэтому состояние электромагнитного поля в произвольной точке пространства и в любой момент времени характеризуется двумя величинами – напряженностью электрического поля и индукцией магнитного поля Эти величины являются силовыми характеристиками электромагнитного поля и определяют силы, с которыми оно действует на заряженные частицы. Под “определением силовых характеристик электромагнитного поля” имеется в виду определение сил, действующих на внесенный в поле пробный заряд (положительный точечный заряд). Отметим, что действие электромагнитного поля на заряд может быть различным, в зависимости от того, покоится заряд или движется.

Силу, с которой электромагнитное поле действует на заряд, покоящийся в данной инерциальной системе отсчета, называют электрической. Электрическая сила всегда прямо пропорциональна количественному значению заряда, помещенного в данную точку поля:

На электрический заряд, движущийся в данной инерциальной системе отсчета, электромагнитное поле действует, кроме электрической силы, ещё с силой, называемой магнитной силой. Магнитная сила прямо пропорциональна и значению движущегося заряда, и проекции скорости заряда, перпендикулярной вектору магнитной индукции:

Поэтому на электрический заряд, движущийся в электромагнитном поле, действует результирующая сила, равная сумме электрической и магнитной сил. Эту силу называют обобщенной силой Лоренца:

Напряженность электростатического поля

Поле, созданное неподвижными электрическими зарядами, называется электростатическим.

 Напряженность электрического поля – векторная физическая величина, равная отношению электрической силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку поля, к величине этого заряда:

Единица измерения напряженности электрического поля в СИ:

 Электрическая сила равна произведению напряженности электрического поля на величину помещенного в поле заряда:

Закон Кулона: сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению модулей этих зарядов и обратно пропорциональна квадрату расстояния между ними:

Учитывая кулоновскую силу в формуле напряженности, выясняем, от каких величин зависит напряженность электрического поля.

Модуль напряженности электрического поля, создаваемого точечным зарядом в данной точке, прямо пропорционален величине этого заряда и обратно пропорционален квадрату расстояния до этой точки:

Одной из задач электродинамики является определение силовой характеристики электростатического поля, созданного данным электрическим зарядом. Одним из особых состояний электромагнитного поля является создаваемое неподвижным зарядом электростатическое поле.

Электрическое поле — это электромагнитное поле, в котором относительно данной системы отсчета. Электрическое поле, созданное покоящимися относительно данной системы отсчета электрическими зарядами, называется электростатическим. В дальнейшем для упрощения, называя поле электрическим, будем подразумевать, что это электростатическое поле.

Электрическое иоле может быть однородным и неоднородным.

Однородное электрическое поле — поле, в каждой точке которого численное значение и направление напряженности электрического поля одинаковы. В противном случае поле неоднородное.

Например, поле между двумя параллельными пластинами, одна из которых обладает положительным, а другая таким же но модулю отрицательным зарядом, является однородным (а), а электрическое поле, создаваемое точечным зарядом, является неоднородным (b).


 

Напряженность электрического поля, создаваемого точечным электрическим зарядом в вакууме и в среде. Известно, что при внесении пробного заряда в электрическое поле точечного заряда в вакууме между зарядами возникает кулоновское взаимодействие.

Силы взаимодействия двух точечных электрических зарядов прямо пропорциональны произведению модулей зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды (с).

Здесь – коэффициент пропорциональности, равный

Эта постоянная показывает, что два точечных заряда по 1 Кл каждый, находящиеся в  вакууме на расстоянии 1 м друг от друга, взаимодействуют с силой 9•109 Н.

Здесь – электрическая постоянная: 

Таким образом, на основе закона Кулона можно определить модуль напряженности электрического поля, созданного в вакууме зарядом в любой точке на расстоянии от источника поля:

Напряженность в данной точке электрического поля, созданного точечным зарядом в вакууме, прямо пропорциональна величине этого заряда и обратно пропорциональна квадрату расстояния от источника поля до этой точки.

Если заряд положительный, то вектор напряженности в произвольной точке поля направлен радиально от источника поля (d), а если же заряд отрицательный – вектор напряженности направлен радиально к источнику поля (заряду ).

Для электрических полей выполняется принцип суперпозиции.

Напряженность результирующего электрического поля в данной точке пространства, создаваемого несколькими электрическими зарядами, равна геометрической сумме напряженностей отдельных полей:

На рисунке изображена схема определения напряженности результирующего ноля в точке А, созданного двумя точечными зарядами (е).

В среде (внутри однородного диэлектрика) кулоновская сила взаимодействия зарядов слабее по сравнению с силой их взаимодействия в вакууме в раз:

Здесь  — величина, называемая диэлектрической проницаемостью среды и показывающая, во сколько раз кулоновская сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме при неизменном расстоянии между ними:

Напряженность электрического поля в среде меньше, чем в вакууме, в  раз:

Значит, диэлектрическая проницаемость среды также является физической величиной, показывающей, во сколько раз напряженность электрического поля, созданного электрическим зарядом в данной точке внутри однородного диэлектрика, меньше, чем в вакууме:

Диэлектрическая проницаемость различных сред различна. Например, для дистиллированной воды =81 (для вакуума = 1).

Работа однородного электрического поля

Энергетическая характеристика электрического поля называется электрическим напряжением или просто напряжением.

Скалярная величина, показывающая, какую работу совершило электрическое поле при перемещении единичного заряда из одной точки поля в другую, называется электрическим напряжением между этими точками поля:

Единицей измерения напряжения в СИ является вольт:

Механическая работа — скалярная физическая величина, равная произведению модуля силы, действующей на тело, модуля перемещения тела и косинуса угла между векторами силы и перемещения:

Работа силы тяжести в гравитационном поле Земли:

Работа силы тяжести не зависит от формы траектории движения тела, она зависит от разности уровней начального и конечного положений центра тяжести тела.

Силы, работа которых не зависит от формы траектории движения тела, называются консервативными. Значит, сила тяжести — консервативная сила.

Это положение позволяет вывести понятие “потенциальной энергии” для системы тел, взаимодействующих с силами гравитационного взаимодействия. Так, выражение mgh в последней формуле является потенциальной энергией взаимодействия Земли и тела, находящегося на высоте h от поверхности Земли:

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

Проведенные учеными исследования показали, что Земля обладает отрицательным электрическим зарядом, а слой ионосферы в её атмосфере – положительным зарядом. Слои атмосферы, лежащие между ними, играют роль изолятора.

Работа однородного электрического поля:

Работа однородного электрического поля, в котором положительный пробный заряд под действием постоянной электрической силы совершает перемещение между двумя точками поля, равна (а):

Здесь – угол между силовой линией поля и вектором перемещения заряда.

Так как проекция вектора перемещения на силовую линию равна то работа поля будет равна:

Работа однородного электрического поля при перемещении пробного положительного заряда равна произведению модуля этого заряда на модуль напряженности электрического поля и на проекцию его перемещения на направление силовых линий.

Выражение (1) можно написать и так:

Здесь и – соответственно расстояния от отрицательной пластины до точек 1 и 2. Вследствие пропорциональности работы электрического поля величине пробного заряда отношение не зависит от величины пробного заряда и не зависит от траектории его движения. Это отношение зависит от электрического поля, а также от начального и конечного положений заряда в поле.

Так как работа электрической силы при переносе пробного заряда из одной точки электрического поля в другую не зависит от формы траектории, то электрическая сила является консервативной, а электрическое поле — потенциальным.

Скалярная физическая величина, равная отношению работы электрического поля при переносе электрического заряда из одной точки поля в другую к величине этого заряда, называется разностью потенциалов между этими точками, или напряжением между ними:

Здесь – разность потенциалов. Индексы 1 и 2 указывают на точки

поля, между которыми перемещается заряд. Единицей измерения разности потенциалов в СИ является вольт:

Из выражения (3) можно определить работу поля при перемещении заряда между двумя его точками:

Работа электрического поля при перемещении заряда между двумя его точками равна произведению заряда на разность потенциалов (напряжение) между ними :

Сравнивая (1) и (3), получим формулу, связывающую напряженность и напряжение: 

Напряженность электрического поля направлена от точки поля с большим потенциалом к точке с меньшим потенциалом.

Потенциал электрического поля

Для выражения энергетической характеристики электрического ноля в произвольной точке используется физическая величина, называемая потенциалом. Разность потенциалов между любой точкой электрического поля и точкой, принятой за нулевой потенциал, называют потенциалом поля в этой точке. Обычно вычисление потенциала производится относительно бесконечности.

Потенциал – скалярная величина, численно равная работе поля по перемещению единичного положительного заряда в бесконечность при его отталкивании от положительного заряда q:

Потенциал обозначается символом . Единицей измерения потенциала в СИ

является вольт:

Потенциальная энергия заряда в электрическом поле. Так как электрическое поле является потенциальным, то к замкнутой системе заряд-электрическое поле можно применить теорему о потенциальной энергии.

Работа, совершенная в потенциальном поле, равна изменению потенциальной энергии системы, взятому с противоположным знаком:

Здесь и – потенциальные энергии заряда в точках 1 и 2 ноля (b).

Сравнив выражения (4) и (7), получим:

Отсюда

Значит, величина, определяемая отношением потенциальной энергии пробного заряда в данной точке поля к величине заряда, равна потенциалу поля.

Эквипотенциальные поверхности

Поверхность, во всех точках которой потенциал поля принимает одинаковые значения, называется эквипотенциальной. Для точечного заряда эквипотенциальными являются концентрические сферы, центры которых совпадают с местонахождением заряда (с). Для однородного электрического поля — это поверхности, перпендикулярные силовым линиям поля (d).

Конденсатор и электрическая емкость

Конденсатор-устройство, используемое для накопления электрических зарядов. Его название происходит от латинского слова “kondensare”, что означает сгущение.

Самый простой конденсатор — плоский конденсатор, состоит из двух близко расположенных параллельных металлических пластин с тонким слоем диэлектрика (например, воздуха) между ними (а). На схемах электрических цепей конденсатор обозначают как .

Пластины конденсатора электризуются равными по модулю зарядами противоположных знаков.

Способность конденсатора накапливать электрический заряд характеризуется физической величиной, называемой электрической ёмкостью.

Для разделения, накопления и передачи большого количества электрического заряда разных знаков используются устройства, называемые электрофорной машиной (b).

Быстро вращаясь, диски электрофорной машины трутся о воздух между ни-ми и электризуются зарядами разного знака. Заряды пластин снимаются с помощью металлических щеток и накапливаются в двух лейденских банках (1), а оттуда передаются на сферические металлические кондукторы (2). В результате на одном из кондукторов накапливается положительный, а на другом — отрицательный заряд.

Известный сербский ученый Никола Тесла (1856-1943) выдвинул идею о том, что система Земля – атмосфера представляет собой гигантский конденсатор, который является источником дешевой электрической энергии. Согласно этой идее, совпадение частоты слабого электромагнитного излучения, посылаемого в ионосферу Земли, с собственной частотой заряженных частиц ионосферы вызовет в ней резонанс. В результате возникнет очень сильное излучение, окружающее Землю. В это время достаточно будет в любой точке поверхности Земли воткнуть длинный металлический стержень, чтобы непрерывно получать из неба бесплатную электрическую энергию. Главной проблемой было построение башни для создания возбуждающих ионосферу импульсов – резонатора. Американский миллиардер Морган принял решение о финансировании постройки этой башни в Лонг-Айленде (США). Однако незадолго до завершения работы он приостановил и отменил этот проект в целях предотвращения возможной экологической катастрофы.

Известно, что простейшим конденсатором является плоский конденсатор, состоящий из двух параллельных пластин. Характеристикой конденсатора является электрическая ёмкость.

Электрическая ёмкость конденсатора (С) – скалярная физическая величина, равная отношению заряда конденсатора к разности потенциалов (напряжению) между его пластинами:

Единицей измерения электрической ёмкости в СИ является фарад (1Ф):

1 фарад – это электрическая емкость конденсатора, когда заряд пластин 1 Кл создает между ними напряжение 1В:

Фарад – очень большая ёмкость, поэтому на практике используются его дольные единицы (микрофарад, нанофарад, пикофарад и др.):

Заряд конденсатора равен модулю заряда одной из пластин конденсатора. Этот заряд прямо пропорционален напряжению на концах источника, подключенного к конденсатору:

Значит, электроёмкость является коэффициентом пропорциональности между зарядом и напряжением и не зависит ни от заряда, ни от напряжения. От чего же зависит электроёмкость?

Электрическая ёмкость плоского конденсатора зависит от площади его пластин, расстояния между пластинами и диэлектрической проницаемости вещества, находящегося между ними:

Здесь S – площадь одной из пластин конденсатора, d – расстояние между пластинами, — диэлектрическая проницаемость вещества, которое находится между его пластинами. Именно диэлектрик, находящийся между пластинами, дает конденсатору возможность длительное время сохранять заряд. Если диэлектриком между пластинами является только воздух ( = 1), то такой конденсатор называется воздушным и его электроёмкость:

Энергия электрического поля конденсатора

Энергия однородного электрического поля между пластинами плоского заряженного конденсатора определяется нижеприведенной формулой:

Примечание. Множитель в выражении (5) указывает на то, что при движении пластин конденсатора в отдельности каждая из них оказывается движущейся в электрическом поле, созданным зарядом другой пластины. Напряженность поля одной пластины в 2 раза меньше напряженности электрического поля между пластинами.

Если учесть здесь выражение (2), то получаются выражения, отражающие зависимость энергии конденсатора от ёмкости и заряда конденсатора:

или

Если учесть выражение (3) в выражениях (6) и (7), то можно получить следующие выражения для энергии электрического поля плоского конденсатора:

Распределение энергии электрического ноля в пространстве выражается физической величиной, называемой плотностью энергии электрического поля:

Плотность энергии электрического поля – физическая величина, численно равная энергии электрического поля, приходящейся на единицу объёма:

Здесь – плотность энергии электрического поля, единица её измерения в СИ: 

Если в последнем выражении учесть формулу (8), выражения то станет очевидным, что плотность энергии электрического поля прямо пропорциональна квадрату напряженности поля:

Примечание. Конденсатор не может служить аккумулятором, длительное время сохраняющим в себе электрическую энергию (из-за утечки заряда). Однако он, в отличие от аккумулятора, способен мгновенно разряжаться в цепи с малым сопротивлением. Это свойство конденсатора широко используется на практике (например, во вспышках фотоаппаратов и лампах мобильных телефонов).

Соединение конденсаторов

Электрическая цепь может состоять из различных элементов: источник тока, потребители (лампа, электрический звонок, электрический нагреватель, телевизор и др.), ключ, соединительные провода. Одной из простейших цепей является последовательное соединение этих элементов.

При последовательном соединении конец каждого проводника соединяется с началом последующего.

При последовательном соединении силы токов одинаковы в любой части цепи:

Общее напряжение цепи при последовательном соединении равно сумме напряжений отдельных участков этой цепи:

 

Общее сопротивление при последовательном соединении равно сумме сопротивлений отдельных ее участков:

 

Общее сопротивление цепи, состоящей из n проводников с одинаковым сопротивлением R, в n раз больше сопротивления каждого проводника:

Параллельным называется соединение проводников, при котором начапа всех проводников соединяются в одной точке (например, в точке А), а концы в другой (например, в точке В).

Напряжения на концах параллельно соединенных проводников одинаковы:

При параллельном соединении сила тока в неразветвленной части цепи равна сумме сил токов в отдельных ветвях цепи:

Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника:

Общее сопротивление участка цепи, состоящей из двух параллельно соединенных проводников, равно:

В соответствии с этим общее сопротивление участка цепи, состоящей из n числа параллельно соединенных проводников с одинаковым сопротивлением R, меньше сопротивления каждого из них в n раз:

 На практике часто случается, что при выходе из строя бытовых приборов для срочного их ремонта отсутствуют конденсаторы с необходимым номиналом электроёмкости и напряжения. В таких случаях приходится получить необходимый номинал, используя конденсаторы различного номинала. А для этого необходимо знать правила их соединений.

С целью получения различных значений электроёмкости собирают батареи конденсаторов, соединяя их либо последовательно, либо параллельно.

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов отрицательно заряженная пластина первого конденсатора соединена с положительно заряженной пластиной второго и т.д. (с).

Заряды последовательно соединенных конденсаторов одинаковы:

Общее напряжение на концах цепи, состоящей из последовательно соединенных конденсаторов, равно сумме напряжений отдельных конденсаторов:

Величина, обратная общей электроемкости батареи последовательно соединенных конденсаторов, равна сумме величин, обратных значениям электроёмкостей отдельных конденсаторов:

Общая ёмкость цепи, состоящей из последовательно соединенных n конденсаторов одинаковой ёмкости, в n раз меньше ёмкости одного конденсатора:

Напряжение и энергия последовательно соединенных конденсаторов обратно пропорциональны их электрическим ёмкостям:

Параллельное соединение конденсаторов

При параллельном соединении положительно заряженные пластины всех конденсаторов соединяют в одной точке, а отрицательно заряженные пластины в другой точке (d).

Общий заряд параллельно соединенных конденсаторов равен сумме зарядов отдельных конденсаторов:

Напряжения на концах параллельно соединенных конденсаторов одинаковы:

Общая электроёмкость батареи параллельно соединенных конденсаторов равна сумме электроёмкостей отдельных конденсаторов:

Общая электроёмкость n числа параллельно соединенных одинаковых конденсаторов в n раз больше электроёмкости одного конденсатора:

Электрические заряды и энергии параллельно соединенных конденсаторов прямо пропорциональны их электроёмкостям:

Движение заряженных частиц в магнитном поле

При равномерном движении по окружности линейная скорость материальной точки численно равна отношению пройденного пути ко времени, за которое этот путь пройден: 

При равномерном движении по окружности модуль центростремительного ускорения материальной точки равен отношению квадрата линейной скорости к радиусу окружности:

Сила, с которой магнитное поле действует на движущуюся заряженную частицу, называется силой Лоренца:

Если заряженная частица влетает в магнитное поле в направлении, перпендикулярном линиям индукции, то сила Лоренца принимает максимальное значение:

Сила Лоренца перпендикулярна векторам и   её направление определяется правилом левой руки.

Правило левой руки для определения направления силы Лоренца

Правило левой руки для определения направления силы Лоренца: левую руку следует расположить в магнитном поле так, чтобы вектор магнитной индукции входил в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного заряда), тогда отогнутый на 90о большой палец покажет направление действующей на заряд силы Лоренца.

Вблизи Северного и Южного полюсов Земли наблюдаются очень красивые природные явления, называемые “полярным сиянием”. Причиной возникновения полярного сияния является действие магнитного поля Земли на поток заряженных частиц в атмосфере.

Магнитное поле — это электромагнитное поле, индукция магнитного поля которого относительно данной системы отсчета отлична от нуля напряженность электрического поля которого равна нулю

На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца:

Так как направление силы Лоренца перпендикулярно направлению скорости частицы то эта сила не совершает работы: По этой причине сила Лоренца не может изменить модуль скорости и импульса частицы, а также ее кинетическую энергию. Она способна изменить лишь направление движения частицы. Согласно II закону Ньютона, уравнение движения заряженной частицы в неизменном во времени однородном магнитном поле (при условии ) имеет вид:

Если частица влетает в поле в направлении, перпендикулярном силовым линиям поля то на неё действует максимальная сила Лоренца (sin 90° = 1):

В этом случае уравнение движения частицы:

Сообщая телу центростремительное ускорение (так как ), сила Лоренца заставляет его вращаться по окружности радиусом R (b):

Уравнение движения частицы преобразуется: 

Из выражения (4) можно выяснить, от каких величин зависит радиус окружности, по которой вращается частица:

Здесь р и Ек – соответственно модуль импульса и кинетическая энергия частицы.

Радиус окружности, которую описывает заряженная частица в однородном магнитном поле, прямо пропорционален модулю скорости его движения (импульса) и обратно пропорционален модулю вектора магнитной индукции поля.

Период обращения частицы по окружности зависит от массы частицы, величины заряда и модуля индукции магнитного поля:

Кстати:

Прибор, используемый для определения массы частицы, называется “масс-спектрограф”. Принцип его работы заключается в следующем: вакуумная камера прибора помещается в однородное магнитное поле (вектор его индукции направлен к нам перпендикулярно плоскости рисунка). Заряженные частицы сначала ускоряются электрическим полем, а затем, отклоняясь магнитным полем, описывают дугу, оставляя след на фотопластинке (с). Радиус кривизны дуги измеряется. Это позволяет точно вычислить массу частицы с известным значением заряда.

Действие магнитного поля на проводник с током

Направление вектора индукции магнитного поля, созданного электрическим током, удобно определять правилом правого буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика показывает направление вектора индукции магнитного поля, созданного этим током (1). Направление вектора индукции магнитного поля кругового тока также определяется правилом правого буравчика: если вращать рукоятку буравчика по направлению кругового тока, то направление поступательного движения буравчика покажет направление вектора индукции магнитного поля, созданного током (2).

При помещении проводника с током в однородное магнитное поле модуль действующей на него силы Ампера равен произведению модуля индукции магнитного поля, длины этого проводника, силы тока в нем и синуса угла между направлением тока и вектором магнитной индукции:

Направление силы Ампера определяется правилом левой руки: если расположить левую руку в магнитном поле так, чтобы линии магнитной индукции были направлены в ладонь, а четыре пальца были вытянуты по направлению тока, то отведенный под 90о большой палец укажет направление силы Ампера.


В начале XIX века один из основоположников математической теории электромагнетизма, немецкий математик и физик Карл Фридрих Гаусс (1777-1855) разработал теорию электромагнитной пушки, называемой “пушкой Гаусса”. Принцип её работы основан на взаимодействии катушки с током и железного снаряда (постоянный магнит). На рисунке изображены модель пушки Гаусса и схема принципа его работы (а).

После того, как датский ученый X. Эрстед экспериментально установил существование взаимодействия проводника с током и магнитной стрелки, французский физик А. Ампер выяснил, что два параллельных проводника с током взаимодействуют как два постоянных магнита. Стало известно, что между параллельными проводниками с токами одинакового направления взаимодействие носит характер притяжения, а между проводниками с токами противоположного направления -характер отталкивания. Так как электрический ток является упорядоченным движением заряженных частиц, то магнитное взаимодействие является взаимодействием магнитных полей, созданных движущимися заряженными частицами в пространстве.

Магнитное поле действует с определенной силой на любой проводник с током (пробный ток), помещенный в это поле. Модуль этой силы, называемой силой Ампера, равен произведению силы тока в проводнике, модуля вектора магнитной индукции, длины проводника и синуса угла между направлением тока и вектором индукции магнитного поля:

Известно, что направление силы Ампера определяется правилом левой руки. Если проводник с током перпендикулярен вектору магнитной индукции (sin90°=l), то сила Ампера принимает максимальное значение:

С помощью этой формулы можно выразить физическую суть силовой характеристики магнитного поля – индукции магнитного поля.

Индукция магнитного поля — векторная величина, численно равная максимальной силе, действующей на элемент тока (), помещенный в это поле:

За направление вектора магнитной индукции в данной точке поля принимают направление, которое указывает северный полюс свободной магнитной стрелки, помещенной в эту точку поля (с). Единицей измерения магнитной индукции в СИ является тесла (Тл):

1 тесла — индукция такого магнитного поля, которое на проводник длиной 1 м, расположенный перпендикулярно линиям магнитной индукции, и силой тока 1 А, действует с силой 1 Н.

Магнитное поле, в каждой точке которого числовое значение и направление вектора магнитной индукции одинаковы, называется однородным магнитным полем.

Для магнитного поля выполняется принцип суперпозиции: вектор индукции результирующего магнитного поля, созданного несколькими проводниками с током, равен геометрической сумме векторов индукции отдельных магнитных полей, созданных этими проводниками: 

С целью визуализации магнитного поля его изображают с помощью линий магнитной индукции (силовые линии поля) (d):

Линия индукции магнитного поля – линия, касательная к каждой точке которой совпадает с вектором магнитной индукции в этой точке.

Линии индукции магнитного поля замкнутые, они не имеют ни начала, ни конца.

Поле, силовые линии которого являются замкнутыми, называют вихревым.

Применение силы Ампера в электроизмерительных приборах

Известно, что существуют различные системы электроизмерительных приборов – амперметра, вольтметра и ваттметра. Это магнитоэлектрические, электромагнитные и электродинамические системы. Принцип работы всех этих систем основан на действии магнитного поля на проводник с током.

Принцип работы приборов магнитоэлектрической системы основан на взаимодействии магнитного поля постоянного магнита с магнитным полем, возникающим вследствие прохождения измеряемого тока через проводящую рамку (е).

Принцип работы прибора электромагнитной системы основан на взаимодействии магнитного поля, возникающего в результате прохождения измеряемого тока через неподвижную катушку, с подвижным стальным сердечником, помещенным в это поле (f).

Принцип действия прибора электродинамической системы основан на взаимодействии магнитных полей токов, протекающих по неподвижной и подвижной катушкам (или системам катушек) (g).

Магнитный поток и явление электромагнитной индукции

После проведения многочисленных опытов М. Фарадей в 1831 году установил, что изменения магнитного поля приводят к возникновению электрического тока в замкнутом проводящем контуре.

Явление возникновения электрического тока в замкнутом проводящем контуре, помещенном в изменяющееся магнитное поле, называют электромагнитной индукцией, а возникающий ток – индукционным током.

Возникновение переменного магнитного поля всегда сопровождается созданием в окружающем пространстве вихревого электрического поля.

Вихревое электрическое поле отличается от электростатического:

  • a)    электростатическое поле создается неподвижным электрическим зарядом, а вихревое электрическое поле создается переменным магнитным полем;
  • b)    линии напряженности электростатического поля не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Линии напряженности вихревого электрического поля не имеют ни начала, ни конца — эти линии замкнуты.

В 1833 году русский физик Э. Ленц установил общее правило определения направления индукционного тока, так называемое правило Ленца:

Индукционный ток принимает такое направление, что созданное им магнитное поле противодействует тому изменению внешнего магнитного поля, которое стало причиной возникновения тока.

При усилении внешнего магнитного поля магнитное поле индукционного тока ослабляет это изменение — вектор индукции магнитного поля индукционного тока направлен против вектора индукции внешнего магнитного поля (1).

При ослаблении внешнего магнитного поля магнитное поле индукционного тока препятствует изменению, то есть стремится к тому, чтобы это поле не ослабло. Вектор индукции магнитного поля индукционного тока направлен так же, как и вектор индукции внешнего магнитного поля (2).

Магнитный поток

Если поместить замкнутый контур (рамку) в однородное магнитное поле, то через площадь S, ограниченную этим контуром, проходит определенное количество линий магнитной индукции (с). Величину, прямо пропорциональную числу этих линий индукции, называют потоком магнитной индукции, или просто магнитным потоком.

Поток магнитной индукции (Ф) – скалярная физическая величина, равная произведению модуля вектора магнитной индукции, площади контура и косинуса угла между вектором магнитной индукции и нормалью к площади контура:

Магнитный поток относится к скалярным величинам, которые могут принимать положительные, отрицательные значения, а также равняться нулю:

  • —   если угол между вектором индукции и нормалью к плоскости контура острый, то магнитный поток принимает положительные значения, а если этот угол тупой – отрицательные;
  • —    если вектор индукции перпендикулярен плоскости контура, то есть параллелен нормали к плоскости, то тогда магнитный поток, пронизывающий плоскость контура, принимает максимальное значение:

  • —    если вектор индукции параллелен поверхности, то есть перпендикулярен нормали, то тогда магнитный поток не проходит через плоскость контура, то есть он равен нулю: Значит, линии магнитной индукции не пронизывают поверхность контура.

Единицей измерения магнитного потока в СИ является вебер (1 Вб):

1 Вебер — магнитный поток, пронизывающий поверхность площадью 1 м2, ограниченную проводящим контуром, расположенным в магнитном поле с индукцией 1 Тл перпендикулярно линиям индукции поля.

Явление электромагнитной индукции

В 1831 году английский ученый Майкл Фарадей (1791-1867) открыл явление электромагнитной индукции и показал существование взаимосвязи между электрическим и магнитным полем.

Вы знаете, что при введении в катушку, соединенную с гальванометром, постоянного магнита, и выведении его из катушки в витках катушки возникает индукционный ток. А если магнит неподвижен внутри катушки или совершает вращательное движение внутри катушки, то ток не возникает. Значит, причиной возникновения индукционного тока является изменение магнитного потока, пронизывающего контур (d и е).

Возникновение электрического тока в проводящем контуре в результате изменений магнитного потока, пронизывающего площадь, ограниченную этим контуром, называют явлением электромагнитной индукции.

Направление индукционного тока зависит от того, увеличивается или уменьшается пронизывающий контур магнитный поток.

1. Магнитный поток увеличивается  Это случай, когда магнит приближается к контуру. В результате магнитный поток растет, индукционный ток, возникающий в контуре при изменении внешнего поля, создает свое собственное магнитное поле. Это вновь созданное поле отталкивает приближающийся к катушке магнит. Значит, вектор индукции внешнего поля, создавшего ток в контуре, направлен против вектора собственного магнитного поля контура с током (см. d). В этом случае магнит и контур отталкиваются одноименными магнитными полюсами. Для круговых токов можно применять правило правого буравчика и легко определить, как направлен индукционный ток – его направление совпадает с направлением вращения стрелки часов.

Правило правого буравчика для кругового тока

Правило правого буравчика для кругового тока: при вращении рукоятки буравчика по направлению кругового тока направление его поступательного движения совпадает с направлением вектора индукции магнитного поля внутри кругового тока (f).

2. Магнитный поток уменьшается Это случай, когда магнит выводится из катушки. В результате магнитный поток уменьшается. Возникающий в контуре индукционный ток принимает такое направление,  при котором вектор индукции его собственного магнитного ноля направлен так же, как и вектор индукции внешнего магнитного поля . В этом случае магнит и контур притягиваются, как магниты, противоположными полюсами (см. е). На основе правила правого буравчика устанавливается, что индукционный ток направлен против направления вращения стрелки часов.

Итак, возникающий в замкнутом проводящем контуре индукционный ток всегда направлен так, что его собственное магнитное поле препятствует тем изменениям внешнего магнитного поля, которые стали причиной возникновения этого тока.

Это правило Ленца, позволяющее определить направление индукционного тока.

Закон электромагнитном индукции

Упорядоченное движение заряженных частиц называется электрическим током.

Для существования непрерывного электрического тока в проводнике необходимо выполнение следующих условий: наличие в проводнике заряженных частиц (носителей заряда), способных свободно перемещаться по проводнику; действие электрической силы, способной перемещать эти частицы в определенном направлении; проводник (цепь, состоящая из проводников), по которому проходит электрический ток, должен быть замкнутым.

За направление электрического тока условно принято направление вектора напряженности электрического поля внутри проводника.

За направление электрического тока принято направление движения положительных зарядов (против направления движения свободных электронов).

Зависимость силы тока в данном проводнике от напряжения на его концах проводника и от его сопротивления выражается законом Ома для участка цепи постоянного тока.

Сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Индукционный ток, как и любой другой, создается электрическим полем.

Существование переменного магнитного поля всегда сопровождается появлением в окружающем пространстве вихревого электрического поля. Именно вихревое электрическое поле (а не переменное магнитное) действует на свободные электроны в замкнутом контуре и способствует возникновению индукционного тока в нем.

Вихревое электрическое поле существенно отличается от электростатического:

  • а) Электростатическое поле создается покоящимися зарядами, а вихревое электрическое переменным магнитным полем;
  • b) Линии напряженности электростатического поля не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Линии напряженности вихревого электрического поля не имеют ни начала, ни конца, они замкнуты как линии индукции магнитного поля.

Кстати:

Одним из современных видов общественного транспорта является поезд на воздушной подушке, движущийся в подвешенном состоянии левитации -без непосредственного контакта с дорогой. Вместо колес шасси этого поезда, называемого МагЛев, оснащено электромагнитной опорой и направляющими магнитами. Железная дорога состоит из проводящего рельса Т-образной формы, оснащенного электромагнитом, создающим мощный индукционный ток. Такой поезд, испытания которого проводились в Японии вблизи города Фудзияма, показал рекордную скорость 603  На рисунке показана упрощенная схема МагЛева (а).

Вихревое электрическое поле и ЭДС индукции

Причиной возникновения индукционного тока в замкнутом проводящем контуре является возникновение вихревого электрического поля вокруг переменного магнитного ноля, которое, действуя на свободные электроны в контуре, приводит их в упорядоченное движение -создает индукционный электрический ток. Работа вихревого электрического поля по перемещению положительного единичного заряда по замкнутому проводнику характеризуется физической величиной, называемой электродвижущей силой индукции (ЭДС индукции).

Электродвижущая сила индукции — скалярная физическая величина, равная отношению работы, совершенной вихревым электрическим полем при перемещении положительного единичного заряда вдоль замкнутого контура, к величине этого заряда:

В проведенном исследовании явления электромагнитной индукции вы определили, что значение возникшего в замкнутом контуре индукционного тока пропорционально скорости изменения магнитного потока, проходящего через поверхность, ограниченную этим контуром. Значит, и электродвижущая сила индукции, создающая индукционный ток в проводящем контуре, зависит от скорости изменения внешнего магнитного потока.

Если за очень малый промежуток времени  магнитный поток изменяется на то отношение является скоростью изменения магнитного потока.

Закон электромагнитной индукции

На основе вышесказанного можно выразить закон электромагнитной индукции:

ЭДС индукции, возникающая в замкнутом проводящем контуре, прямо пропорциональна скорости изменения магнитного потока, проходящего через ограниченную этим контуром поверхность:

Знак минус в выражении (2) указывает на то, что магнитный поток индукционного тока препятствует изменению внешнего магнитного потока, породившего индукционный ток.

Если контур состоит из N числа витков, го выражение (2) принимает вид:

Здесь  — ЭДС индукции, единицей ее измерения является вольт (1 В):

Сила индукционного тока, возникающего в замкнутом проводящем контуре, определяется согласно закону Ома для участка цепи:

Здесь R – сопротивление контура.

ЭДС индукции в движущихся в магнитном поле проводниках. При движении проводника в магнитном поле находящиеся внутри него свободные заряженные частицы движутся вместе с ним. По этой причине на каждую частицу действует сила Лоренца. В результате свободные заряды, перемещаясь внутри проводника, совершают упорядоченное движение – в проводнике возникает ЭДС индукции.

Возникающая ЭДС индукции зависит от скорости проводника, длины части проводника, находящейся в поле, и модуля вектора магнитной индукции. Это легко доказывается на основе закона электромагнитной индукции.

Представим, что проводник длиной переместился в магнитном поле индукцией на в направлении, перпендикулярном вектору индукции (b). ЭДС индукции, возникающая при этом в проводнике: 

Здесь принято во внимание, что и (см. b). Если вектор скорости составляет угол с вектором магнитной индукции, то ЭДС индукции определяется так:

Направление индукционного тока в проводнике, движущегося в магнитном иоле, удобно определять правилом правой руки:

Правую руку следует держать в магнитном поле так, чтобы вектор входил в ладонь, а отогнутый на 90° большой палец показывал направление движения проводника, тогда четыре вытянутых пальца укажут направление индукционного тока.

Кстати:

Принцип работы электронных счетчиков потребления, используемых в быту, основан на применении закона электромагнитной индукции. Например, в электронных счетчиках потребления воды в проводящем электрический ток потоке жидкости возникает ЭДС индукции, пропорциональная скорости жидкости. Индукционный ток в электронной части прибора преобразуется в цифровой сигнал.

ЭДС самоиндукции и энергия магнитного поля

Инертность – одно из важнейших свойств тела (происходит от латинского слова “inertia” – бездеятельность, ленивость).

Инертность — это свойство тел, выражающееся в том, что на изменение скорости тела всегда требуется определенное время. Явление сохранения телом состояния покоя или прямолинейного равномерного движения при отсутствии действия на тело других тел (когда действующие на тело силы уравновешивают друг друга) называется инерцией.

Мера инертности тела — его масса.

Энергия, которой обладает тело вследствие своего движения, называется кинетической энергией. Кинетическая энергия тела зависит от массы тела и модуля его скорости (не от направления):

Так как магнитные свойства разных веществ различны, то индукция магнитного поля, созданного в них одним и тем же источником поля, будет различна. Магнитные свойства веществ характеризуются величиной, называемой магнитной проницаемостью вещества.

Магнитная проницаемость вещества показывает, во сколько раз модуль индукции однородного магнитного поля В в веществе отличается от индукции этого магнитного поля в вакууме Во:

Здесь (мю) — магнитная проницаемость вещества. Это безразмерная величина.

Прохождение электрического тока через газ при отсутствии внешнего воздействия называется самостоятельным разрядом. Одним из видов самостоятельного газового разряда является искровой разряд.

Искровой разряд возникает в воздухе при высоком напряжении между электродами и наблюдается в виде светящихся узких каналов зигзагообразной формы. Температура в канале разряда может достигать 10 ООО °С, сила тока до 5000 А, напряжение до 104 В.

Кстати:

Наверно, каждый из вас наблюдал появление кратковременной искры при вынимании вилки прибора в рабочем режиме из электрической розетки. Это значит, что в воздухе между вилкой прибора и электрической розеткой возник самостоятельный разряд с напряжением несколько тысяч вольт. Такая искра иногда приводит к выводу из строя вилки или розетки.

ЭДС самоиндукции

Электрический ток, существующий в любом замкнутом контуре, создает собственное магнитное поле (находится в собственном магнитном поле). При изменении силы тока в контуре одновременно происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока приводит к возникновению вихревого электрического поля, и в результате в этом контуре возникает ЭДС индукции.

Явление возникновения ЭДС индукции в замкнутом проводящем контуре в результате изменения силы тока в нем называют самоиндукцией.

При увеличении силы тока в замкнутом контуре от нуля до определенного значения увеличивается и проходящий через этот контур магнитный поток. Возникающая в контуре в результате увеличения магнитного потока ЭДС самоиндукции создает индукционный ток, направленный против проходящего по контуру основного тока – индукционный ток замедляет рост основного тока и достижение им максимального значения – на увеличение силы тока до максимального значения уходит определенное время (кривая OA, b).

При размыкании цепи сила тока уменьшается от максимального значения до нуля, вместе с этим уменьшается магнитный поток. Уменьшение магнитного потока приводит к возникновению в контуре ЭДС самоиндукции, которая в свою очередь создает в этом контуре индукционный ток, направленный, согласно правилу Ленца, так же, как и основной ток, и замедляющий его уменьшение (кривая ВС, b).

Из вышесказанного становится ясно, что возникающий в контуре собственный магнитный поток прямо пропорционален силе проходящего через контур тока – или:

Здесь L является коэффициентом пропорциональности (между и ) и называется индуктивностью контура (катушки).

Индуктивность зависит от геометрических размеров контура (катушки), от магнитной проницаемости среды внутри него, от числа витков. Она не зависит от силы тока в контуре и магнитного потока.

Индуктивность – скалярная величина, единица ее измерения в СИ названа генри (1 Гн), в честь американского ученого Джозефа Генри:

1 Гн — индуктивность такого контура (катушки), в которой при силе тока 1 А через контур проходит собственный магнитный поток 1 Вб.

Если учесть выражение (1) в законе электромагнитной индукции, то получим, что ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, проходящего через контур:

Здесь — ЭДС самоиндукции, — скорость изменения силы тока в контуре.

Энергия магнитного поля

Согласно закону сохранения энергии, работа, совершенная при создании ЭДС индукции, будет равна энергии магнитного поля, создавшего его. Для определения этой энергии удобно воспользоваться схожестью явления самоиндукции с явлением инерции. Так, индуктивность L играет такую же роль при изменениях силы тока в электромагнитных процессах, какую играет масса – при изменениях скорости в механических процессах. Тогда для энергии магнитного поля, создаваемого контуром в электромагнитных явлениях, можно принять выражение, аналогичное выражению кинетической энергии тела в механических явлениях:

Если в этом выражении учесть формулу (1), получим ещё две формулы для энергии магнитного поля:

Из теоретических вычислений получено, что плотность энергии магнитного поля прямо пропорциональна квадрату магнитной индукции и обратно пропорциональна магнитным свойствам среды:

Здесь – магнитная постоянная:

Электродвигатели

– кодовые обозначения для проектирования двигателей с заторможенным ротором

NEMA – Национальная ассоциация производителей электрооборудования – которая устанавливает стандарты проектирования двигателей, установила буквенное обозначение кодов NEMA для классификации двигателей по соотношению кВА с заторможенным ротором на мощность в лошадиных силах.

Буквенный код NEMA
кВА / л.с.
с заблокированным ротором
Приблизительное среднее значение
A 0 – 3,14 1.6
B 3,15 – 3,55 3,3
C 3,55 – 3,99 3,8
D 4,0 – 4,49 4,3
E 4,5 – 4,99 4,7
F 5,0 – 5,59 5,3
G 5,6 – 6,29 5,9
H 6,3 – 7,09 6.7
Дж 7,1 – 7,99 7,5
K 8,0 – 8,99 8,5
L 9,0 – 9,99 9,5
M 10,0 – 11,19 10,6
N 11,2 – 12,49 11,8
P 12,5 – 13,99 13,2
R 14,0 – 15.99 15,0
S 16,0 – 17,99
T 18,0 – 19,99
U 20,0 – 22,39
V 22,4 – и вверх

Пусковая кВА, необходимая для запуска двигателя при полном напряжении, определяется по паспортной табличке двигателя или у производителя.

В целом считается, что для небольших двигателей требуется более высокая пусковая кВА, чем для двигателей большего размера.Стандартные трехфазные двигатели часто имеют следующие коды заторможенного ротора:

  • менее 1 л.с.: код заторможенного ротора L, 9,0 – 9,99 кВА
  • от 1 1/2 до 2 л.с.: код заторможенного ротора L или M, 9,0 – 11,19 кВА
  • 3 л.с.: код заторможенного ротора K, 8,0 – 8,99 кВА
  • 5 л.с.: код заторможенного ротора J, 7,1 – 7,99 кВА
  • от 7,5 до 10 л.с.: код заторможенного ротора H, 6,3 – 7,09 кВА
  • более 15 л.с.: Код заторможенного ротора G, 5,6 – 6,29 кВА

Какой ток? – Определение из Whatis.com

К

Что сейчас?

Ток – это поток носителей электрического заряда, обычно электронов или электронно-дефицитных атомов. Обычным обозначением тока является заглавная буква I. Стандартной единицей измерения является ампер, обозначенный буквой A. Один ампер тока представляет один кулон электрического заряда (6,24 x 10 18 носителей заряда), проходящего мимо определенной точки за одну секунду. . Физики считают, что ток течет от относительно положительных точек к относительно отрицательным точкам; это называется обычным током или током Франклина.Электроны, наиболее распространенные носители заряда, заряжены отрицательно. Они перетекают из относительно отрицательных точек в относительно положительные.

Различия между постоянным и переменным током

Электрический ток может быть постоянным или переменным. Постоянный ток (DC) течет в одном и том же направлении во все моменты времени, хотя мгновенная величина тока может варьироваться. В переменном токе (AC) поток носителей заряда периодически меняет направление на противоположное. Количество полных циклов переменного тока в секунду – это частота, которая измеряется в герцах.Примером чистого постоянного тока является ток, производимый электрохимической ячейкой. Выход выпрямителя источника питания до фильтрации является примером пульсирующего постоянного тока. Выход из розеток общего пользования – переменный ток.

Плотность тока

Ток на единицу площади поперечного сечения известен как плотность тока . Он выражается в амперах на квадратный метр, в амперах на квадратный сантиметр или в амперах на квадратный миллиметр. Плотность тока также можно выразить в амперах на круговой мил.Как правило, чем больше ток в проводнике, тем выше плотность тока. Однако в некоторых ситуациях плотность тока варьируется в разных частях электрического проводника. Классическим примером является так называемый скин-эффект , при котором плотность тока высока около внешней поверхности проводника и низкая – около центра. Этот эффект возникает при переменном токе на высоких частотах. Другой пример – ток внутри активного электронного компонента, такого как полевой транзистор (FET).

Электрический ток всегда создает магнитное поле. Чем сильнее ток, тем сильнее магнитное поле. Пульсирующий постоянный ток или переменный ток обычно создает электромагнитное поле. Это принцип, по которому происходит распространение беспроводного сигнала.

См. Также напряжение, сопротивление и закон Ома.

Последнее обновление: октябрь 2021 г.

Паспортная табличка двигателя и пояснения к номинальным характеристикам

Пояснения к паспортной табличке электродвигателя.Фото: TestGuy

Электродвигатель – это рабочая лошадка, которая преобразует электрическую энергию в механическую, используя принципы электромагнетизма. Эти вращающиеся машины используются практически во всех формах современной жизни, от простых бытовых приборов до крупных промышленных предприятий и производственных предприятий.

Детские игрушки, пылесосы, вентиляторы, электроинструменты, электромобили, механические насосы, лифты и грузовые поезда – это всего лишь несколько примеров широкого спектра применений, в которых вы найдете те или иные формы электродвигателей.Магнитные поля, создаваемые электрическими зарядами, являются движущей силой двигателей, которые создают крутящий момент, необходимый для выполнения полезной работы.

С таким большим разнообразием применений двигателей и большим разнообразием электрических систем, которые питают их, неудивительно, что существует множество различных номинальных характеристик и рабочих характеристик, которые необходимо учитывать при выборе электродвигателя для конкретного применения. .

Стремясь стандартизировать эти основные характеристики и рабочие параметры двигателя, Национальная ассоциация производителей электрооборудования (NEMA) играет ведущую роль в определении этих характеристик в стандарте NEMA Standard MG-1.Рабочие характеристики, определенные в этом стандарте, кодируются на паспортной табличке двигателя во время производства, чтобы помочь конечному пользователю выбрать безопасное и надежное применение.

Национальный электротехнический кодекс определяет необходимую маркировку для обычных двигателей в разделе 430.7 (A) NEC для безопасной установки и эксплуатации в определенных условиях. Когда дело доходит до тестирования и технического обслуживания электродвигателей, четкое понимание этих характеристик имеет первостепенное значение для определения процедур испытаний и ожидаемых значений испытаний для конкретной машины.

В этой статье мы объясняем маркировку, используемую в NEC, а также другие общие термины и характеристики, указанные на паспортных табличках двигателей.

Пример паспортной таблички электродвигателя

. Фотография: “ North American Electric

”.

Производитель

Указывает, какая компания произвела двигатель, и обычно включает адрес компании и страну происхождения. У производителя обычно есть конкретная модель или заводской номер, связанный с двигателем.

Номинальное напряжение

Указывает рабочее напряжение, необходимое для оптимальной работы, как указано производителем двигателя.Вращающиеся машины обычно проектируются с допуском 10% для напряжения выше и ниже номинального значения, указанного на паспортной табличке.

Допуск напряжения обычно не указывается на двигателе, что может ввести в заблуждение тех, кто не знаком с этим номиналом. Предполагается, что двигатель с номинальным напряжением на паспортной табличке 460 В будет работать в диапазоне от 414 В до 506 В. Двигатель на 230 В может работать в диапазоне от 207 В до 253 В.

Некоторые двигатели могут работать с более чем одним напряжением, и эта возможность будет указана на паспортной табличке.Двойные номинальные напряжения позволяют разделить обмотки статора пополам для использования в последовательном или параллельном соединении.

Важно отметить, что многие другие номинальные значения, указанные на паспортной табличке, такие как коэффициент мощности, КПД, крутящий момент и ток, применимы только при номинальном напряжении и частоте.

Ток полной нагрузки (FLA)

По мере увеличения подключенной нагрузки и требуемого крутящего момента на электродвигателе сила тока, необходимая для питания электродвигателя, также увеличивается. Ток полной нагрузки (FLA) – это максимальный ожидаемый ток, потребляемый двигателем при работе с максимальным крутящим моментом и мощностью.

Паспортная табличка FLA – это очень важный номинал, который используется для выбора правильного сечения провода, пускателя двигателя и устройств защиты от перегрузки, необходимых для обслуживания и защиты двигателя. Для многоскоростного двигателя ток полной нагрузки указан только для максимальной скорости.

Чтобы рассчитать падение напряжения в цепи двигателя, возьмите сопротивление цепи фидера и умножьте на FLA двигателя. Для получения процентного падения напряжения разделите полученное ранее значение на напряжение питания холостого хода и умножьте на 100%.

Номинальная частота и количество фаз (двигатели переменного тока)

Частота энергосистемы означает, сколько раз синусоидальная волна переменного напряжения повторяет одну и ту же последовательность значений в течение заданной единицы времени. В США и Канаде частота электросети составляет 60 Гц.

В других частях света частота может быть 50 Гц или 60 Гц. Количество фаз указывает на то, подключен ли двигатель к одному токоведущему проводу и нейтрали (однофазный) или трем токоведущим проводам (трехфазный).

Синхронная скорость

Скорость, с которой работает вращающееся поле внутри двигателя, зависит от частоты входной мощности и количества электрических магнитных полюсов внутри. Это называется синхронной скоростью, которая не зависит от скорости выходного вала.

Синхронная скорость = количество циклов (Гц) x 60 (секунд в 1 мин) x 2 (тактовые импульсы) / количество полюсов.

Четырехполюсный двигатель без подключенной нагрузки, например, будет иметь синхронную скорость 1800 об / мин при 60 Гц и синхронную скорость 1500 об / мин при 50 Гц.Если двигатель предназначен для работы на разных скоростях при управлении от частотно-регулируемого привода (ЧРП), диапазон входной частоты должен быть указан на паспортной табличке.

Номинальная скорость при полной нагрузке

Для двигателя практически невозможно достичь синхронной скорости, потому что даже ненагруженный двигатель все еще имеет некоторую форму трения, которую необходимо преодолеть. По мере увеличения нагрузки двигателя требуется более высокий крутящий момент, что означает снижение числа оборотов в минуту.

Номинальная скорость при полной нагрузке – это фактическое значение частоты вращения, указанное на паспортной табличке двигателя.Термин «проскальзывание» относится к разнице между синхронной скоростью и фактической скоростью при полной нагрузке (также называемой асинхронной скоростью или скоростью скольжения).

Накладка

Скольжение увеличивается с нагрузкой, обеспечивая больший крутящий момент. Чтобы вычислить скольжение двигателя в процентах, вычтите асинхронную скорость из синхронной скорости, затем разделите на синхронную скорость и умножьте на 100.

Скольжение = ((фактическая скорость синхронной скорости) / синхронная скорость) x 100

Используя приведенную выше формулу, двигатель со скоростью вращения 1400 об / мин и синхронной скоростью 1500 об / мин будет иметь скольжение 6.7%

Мощность (л.с.)

Самый простой и распространенный рейтинг электродвигателя – это его мощность в лошадиных силах, которая была первоначально принята в конце 18 века шотландским инженером Джеймсом Ваттом, который хотел сравнить мощность паровых двигателей с мощностью тягловых лошадей.

Этот термин был создан, чтобы помочь клиентам лучше понять, сколько работы могут произвести паровые двигатели. Позже он был расширен, чтобы включить выходную мощность других типов поршневых двигателей, а также турбин, электродвигателей и другого оборудования.

Мощность на валу – это мера механической выходной мощности двигателя. Выражается как способность передавать крутящий момент, необходимый для нагрузки при номинальной скорости.

л.с. = (Крутящий момент) x (Скорость) / 5250. Крутящий момент выражается в фунт-футах, а скорость выражается в об / мин.

Для электродвигателя одна лошадиная сила эквивалентна 746 Вт электрической мощности и является стандартной номинальной мощностью в Соединенных Штатах. В Европе мощность двигателя в киловаттах стала стандартом.

1HP = 746 Вт.Двигатель мощностью 100 л.с. будет производить 74,6 кВт электроэнергии. Согласно требованиям NEC, номинальная мощность в лошадиных силах должна быть указана на паспортной табличке для двигателей мощностью более 1/8 л.с.

КПД двигателя

Показывает, сколько электроэнергии, подаваемой на двигатель, преобразуется в механическую энергию выходного вала. Выражается в процентах. Оставшаяся тепловая энергия, которая не преобразуется в механическую, теряется в основном в виде тепла, которое может повредить изоляцию двигателя.

Эффективность определяется как выходная мощность, деленная на входную мощность, выраженную в процентах: (Выход / Вход) 100.

Тепловые потери в двигателе могут существенно повлиять на КПД. Существует пять различных типов потерь двигателя:

  1. Потери в сердечнике: Энергия, необходимая для намагничивания сердечника и потерь на вихревые токи в сердечнике статора.
  2. Потери статора: I 2 R нагрев статора из-за протекания тока в обмотках статора.
  3. Потери в роторе: I 2 нагрев стержней ротора при протекании индуцированного тока
  4. Потери на трение и ветер: Подшипники и трение воздуха на валу ротора и охлаждающем вентиляторе.
  5. Потери от паразитной нагрузки: Потоки реактивного сопротивления утечки, вызванные током нагрузки.

Первые три категории (сердечник, статор и ротор) обычно составляют более 80% общих потерь двигателя.

Коэффициент обслуживания

Эксплуатационный коэффициент двигателя (SF) – это мера периодической перегрузочной способности, при которой двигатель может работать без перегрева или иного повреждения двигателя, когда на двигатель подается номинальное напряжение и частота.

Двигатели, которые непрерывно работают с коэффициентом использования больше 1, будут иметь меньший ожидаемый срок службы по сравнению с работой с номинальной мощностью в лошадиных силах, указанной на паспортной табличке.

Пример: двигатель мощностью 1 л.с. с коэффициентом обслуживания 1,15 может работать при 1,15 л.с. без перегрева (11,15)

Повышение номинальной температуры, класс системы изоляции и номинальная температура окружающей среды

NEMA определяет допустимое превышение температуры для двигателей, работающих при полной нагрузке и при эксплуатационном коэффициенте, если применимо.Спецификация стандартизирована для температуры окружающей среды 40 ° C или 104 ° F для всех классов изоляции.

Каждый класс изоляции имеет максимальное превышение температуры обмотки двигателя и максимальный температурный диапазон. Кроме того, указывается повышение температуры горячей точки, относящееся к обмоткам двигателя, окруженным другими обмотками.

Допустимое превышение температуры при полной нагрузке для двигателей с коэффициентом эксплуатации 1,0

  • Изоляция класса A 60 ° C, 5 ° C Горячая точка
  • Изоляция класса B 80 ° C, 10 ° C Горячая точка
  • Изоляция класса F 105 ° C, 10 ° C Горячая точка
  • Изоляция класса H 125 ° C, 15 ° C Горячая точка

Допустимое превышение температуры при эксплуатационном коэффициенте для двигателей с эксплуатационным коэффициентом 1.15

  • Изоляция класса A 70 ° C
  • Изоляция класса B 90 ° C
  • Изоляция класса F – 115 ° C

Максимальная температура изоляции обмотки двигателя

  • Изоляция класса A 105 ° C
  • Изоляция класса B 130 ° C
  • Изоляция класса F 155 ° C
  • Изоляция класса H – 180 ° C

Пример: для изолированного двигателя класса F с коэффициентом эксплуатации 1.0, добавьте допустимое превышение NEMA 105 ° C к эталонной температуре 40 ° C, чтобы получить максимальную рабочую температуру двигателя (105 + 40 = 145 ° C).

Максимальная температура, указанная в NEMA, превышает допустимое превышение температуры, чтобы обеспечить запас для температуры «горячей точки» обмотки, в данном случае 10 ° C для машины класса F.

Двигатели

класса F традиционно использовались в большинстве промышленных приложений. С увеличением использования приводов переменного тока (VFD) и связанного с этим нагрева, вызванного гармониками, производимыми в этих приводах, класс H стал гораздо более распространенным.

Рейтинг времени

Электродвигатели

имеют номинальное время, указывающее, как долго они могут работать при номинальной нагрузке и температуре окружающей среды. Стандартные двигатели рассчитаны на непрерывный режим работы и могут работать круглосуточно (24/7) без перебоев.

В зависимости от области применения некоторые двигатели могут быть рассчитаны только на кратковременную работу. Двигатели с уменьшенным сроком службы могут быть изготовлены с более легкой конструкцией и, следовательно, будут стоить меньше, чем двигатель, рассчитанный на продолжительный режим работы.

Примером двигателя с прерывистым режимом работы может быть двигатель, используемый в приводе клапана. Во многих случаях механические клапаны периодически открываются и закрываются, в отличие от двигателя насоса, который может работать много часов или дней подряд.

Номинальное время электродвигателя обычно выражается в минутах. Некоторые примеры временного режима: 5, 15, 30, 60 минут с перерывами.

Буквенный код или ампер с заторможенным ротором

Электродвигатели обычно имеют большой пусковой ток, связанный с ними при запуске с их полным номинальным напряжением, приложенным к обмоткам.Во многих случаях этот пусковой ток во много раз превышает значение тока полной нагрузки.

Значение заблокированного ротора важно, потому что большой пусковой ток может снизить напряжение, подаваемое на двигатель, что может повлиять на другое оборудование в той же цепи. Пускатели двигателя с пониженным напряжением и звездой-треугольником могут помочь ограничить этот пусковой ток, подавая на двигатель меньшее напряжение в течение короткого периода времени, пока двигатель не набирает скорость перед подачей полного номинального напряжения.

Заблокированный ротор – это кВА на л.с., потребляемая, когда ротор заблокирован на месте.Буквенные обозначения для этого номинала будут находиться в диапазоне от A до V, при этом двигатели класса A имеют наименьшую мощность в кВА, а двигатели с кодом V – наибольшую.

Стандартные номинальные значения заблокированного тока можно найти в статье 430 NEC. Этот рейтинг требуется, если двигатель переменного тока мощностью 0,5 л.с. или более. На двигателях с многофазным ротором буквенный код обычно опускается.

Код письма с дизайном

Электродвигателям присваивается буквенный код конструкции, определенный NEMA, который определяет характеристики крутящего момента и тока двигателя.Для некоторых механизмов могут потребоваться двигатели со специальными характеристиками, указанными в этом коде.

  • Код A Нормальный пусковой момент, высокий пусковой ток
  • Код B Нормальный пусковой момент, низкий пусковой ток
  • Код C Высокий пусковой момент, низкий пусковой ток
  • Код D Высокий пусковой момент, низкий пусковой ток, высокое скольжение

Определения букв конструкции двигателя можно найти в ANSI / NEMA MG 1-1993, Двигатели и генераторы, Часть 1, Определения, и в IEEE 100-1996, Стандартный словарь электрических и электронных терминов.Двигатели NEMA Code B являются наиболее широко используемым типом двигателей и могут запускать широкий спектр промышленных нагрузок.

Буквенные коды конструкции электродвигателя

. Фото: TestGuy

Ток и напряжение возбуждения

Для синхронных двигателей с возбуждением постоянным током номинальный ток возбуждения и напряжение указаны на паспортной табличке.

Обмотка

Тип конструкции обмотки, используемой для электродвигателя, например, прямой шунт, стабилизированный шунт, составной или последовательный, если двигатель постоянного тока.

Термозащита

Двигатели, оснащенные термозащитным устройством, указаны на паспортной табличке с пометкой «Thermally Protected» или «T.P. Этот тип защиты прерывает подачу питания на двигатель, если двигатель испытывает чрезмерные температуры из-за перегрузки или отказа при запуске. Электропитание снова подключается, когда двигатель остынет до приемлемой температуры.

Тип корпуса

Тип корпуса, который часто обозначается на паспортной табличке как ENCL, классифицирует степень защиты двигателя от рабочей среды и метод охлаждения.Стандартные типы кожуха двигателя включают:

Open Drip Proof (ODP) – подходит только для чистых и сухих помещений.

Полностью закрытый вентилятор с охлаждением (TEFC) – обычно используется на открытом воздухе и в грязных помещениях, но не является герметичным или водонепроницаемым. Количество воды и наружного воздуха, попадающее в двигатель, не влияет на его работу.

Totally Enclosed Non Ventilated (TENV) – используется в местах, подверженных воздействию влаги или грязи, и не оборудован вентилятором для охлаждения.Эти двигатели используют естественную конвекцию для охлаждения и не должны использоваться в опасных местах или с чрезмерной влажностью.

Totally Enclosed Air Over (TEAO) – пыленепроницаемый корпус, предназначенный для нагнетателей и вентиляторов, установленных на валах. Двигатель должен быть установлен на самом валу в соответствии с воздушным потоком.

Totally Enclosed Wash Down (TEWD) – разработан для струй воды под высоким давлением и высокой влажности. Этот тип корпуса – лучший выбор для влажных сред.

Полностью закрытая, агрессивная и суровая среда разработана для безопасных сред с экстремальным присутствием влаги или химических веществ.

Взрывобезопасный (EXPL) разработан, чтобы выдерживать внутренние взрывы определенных газов или паров, не допуская распространения взрыва во внешнюю атмосферу.

Опасные места (HAZ) – Общая классификация опасных мест. Эти двигатели подразделяются на классы, подразделения и группы.

Размер рамы

Размеры двигателя указываются размером рамы и устанавливают важные установочные размеры, такие как монтажное отверстие для опоры, диаметр вала и высота вала.

Напряжение нагревателя

Двигатели, используемые для установки вне помещений или в местах, где может возникать конденсация, часто оснащены нагревателями для предотвращения конденсации. На этом типе оборудования обычно указываются номинальное напряжение нагревателя, количество фаз и номинальная мощность в ваттах.

Нагреватели конденсата включаются при выключении двигателя. Статья 430.7 (A) (15) NFPA 70-2017 требует от производителя маркировать двигатель, оснащенный нагревателем для конденсата, чтобы установить, чтобы установщик обеспечил надлежащее электропитание нагревателя.

Список литературы

Комментарии

Войдите или зарегистрируйтесь, чтобы оставить комментарий.

писем об экологических исследованиях – IOPscience

Текущий объем Номер 11, ноябрь 2021 года, номер 10, октябрь 2021 года, номер 9, сентябрь 2021 года, номер 8, август 2021 года, номер 7, июль 2021 года, номер 6, июнь 2021 года, номер 5, май 2021 года, номер 4, апрель 2021 года, номер 3, март 2021 года, номер 2, февраль 2021 года, номер 1, январь 2021 года.

Архив журнала Том 16, 2021 Том 15, 2020 Том 14, 2019 Том 13, 2018 Том 12, 2017 Том 11, 2016 Том 10, 2015 Том 9, 2014 Том 8, 2013 Том 7, 2012 Том 6, 2011 Том 5, 2010 Том 4, 2009 Том 3, 2008 Том 2, 2007 Том 1, 2006

Проблемы с фокусом Сосредоточение внимания на восстановлении тропических ландшафтов Сосредоточение внимания на многомасштабном планировании взаимосвязи воды, энергии и суши для управления социально-экономическими, климатическими и технологическими изменениями Сосредоточение внимания на изменениях в Арктике: трансдисциплинарные исследования и коммуникация Энергия в домашних хозяйствах, устойчивость и справедливость: дань уважения Кирку Смиту Сосредоточение внимания на системах мониторинга углерода Исследования и приложения Теоретический анализ передовых интеллектуальных вычислений в исследованиях окружающей среды Сосредоточение внимания на устойчивости земной системы и опрокидывающем поведении Сосредоточение внимания на участии общественности в экологических исследованиях Сосредоточение внимания на спутниковом дистанционном зондировании атмосферной среды в Азии Сосредоточение внимания на унаследованных последствиях землепользования и управления Сосредоточение внимания на синтезе данных для климатических решений Сосредоточение внимания на устойчивом развитии Взаимодействие между целями развития в социально-экономических и экологических аспектах Сосредоточение внимания на пластмассах от суши до водных экосистем Сосредоточение внимания на исследовании динамики глобальной экосистемы: исследования, применения и последствия для политики Сосредоточение внимания на унаследованных последствиях землепользования nd Управление качеством воды и функциями экосистем Стратегии быстрого прогресса в борьбе с изменением климата Фокус на изменение климата, загрязнение воздуха и здоровье человека Фокус на транспорт и окружающую среду Фокус на устойчивые продовольственные системы Фокус на реактивный азот и цели в области устойчивого развития ООН Фокус на управление глобальным достоянием: устойчивое сельское хозяйство и использование земельных и водных ресурсов мира Ресурсы в 21 веке Сосредоточение внимания на социальной устойчивости к изменениям климата за последние 5000 лет Сосредоточение внимания на социально-экологическом будущем американского Запада Сосредоточение внимания на инструментах экологического следа для обеспечения устойчивости Сосредоточение внимания на наблюдениях за экстремальными осадками и понимании процесса Сосредоточение внимания на устойчивости к климатическим потрясениям в тропиках Сосредоточение внимания на взаимодействиях между Наука и политика в системах подземных вод Сосредоточение внимания на динамике углеродного цикла во время эпизодов быстрого изменения климата Сосредоточение внимания на решениях со стороны спроса для перехода к низкоуглеродным обществам Сосредоточение внимания на энергетических преобразованиях и здоровье Сосредоточение внимания на синтезе фактических данных для климатических решений Сосредоточение внимания на окружающей среде Исследовательская инфраструктура: новые научные возможности для решения глобальных проблем Фокус на утечку: информирование управления землепользованием в мире с дистанционным управлением Фокус на индикаторах изменчивости и изменений окружающей среды Арктики BRACE1.5: Воздействие глобального потепления на 1,5 ° C и 2 ° C на изменение климата Фокус на Северной Евразии в глобальной Земле и человеческих системах: изменения, взаимодействия и устойчивое социальное развитие Фокус на устойчивых городах: городские решения для достижения желаемых результатов Фокус на систематизацию и масштабирование городских решений для Смягчение последствий изменения климата Сосредоточение внимания на роли лесов и почв в достижении целей смягчения последствий изменения климата Сосредоточение внимания на исследованиях и применении систем мониторинга углерода Сосредоточение внимания на потребностях в ресурсах для будущей урбанизации Устойчивость и уязвимость арктических и бореальных экосистем к изменению окружающей среды: достижения и результаты ABoVE (уязвимость арктических бореальных зон) Эксперимент) Сосредоточение внимания на смертности деревьев в мире потепления: причины, закономерности и последствия Сосредоточение внимания на доступе к энергии для устойчивого развития Сосредоточение внимания на городских продовольственных, энергетических и водных системах: междисциплинарные, мультишкалярные и межотраслевые перспективы Сосредоточение внимания на воздействиях экстремальных погодных и климатических явлений В разных секторах Сравнение различных методов воздействия изменения климата на сельское хозяйство Фокус на экологических последствиях перехода домохозяйств к энергоснабжению на глобальном юге Фокус на межуровневых обратных связях в устойчивом управлении земельными ресурсами Фокус на сценариях отрицательных выбросов и технологиях Фокус на изменениях земельного покрова и воздействии на окружающую среду в Южной и Юго-Восточной Азии Фокус на Экосистемы сухих тропических лесов и экосистемные услуги перед лицом глобальных изменений. , Экономические и политические факторы, влияющие на результаты природоохранных мероприятий Сосредоточение внимания на недавних, настоящих и будущих изменениях продуктивности и биомассы в Арктике и Северном регионе Сосредоточение внимания на экологических процессах и динамике водного цикла в Африке Сосредоточение внимания на связях между электричеством, водой и климатом Сосредоточение на совокупных выбросах, глобальном углеродном бюджете и последствиях s для целевых показателей по смягчению изменения климата. Прогнозы воздействия на климат для стратегий адаптации Сосредоточение внимания на хранении воды для управления экстремальными климатическими явлениями и изменениями Сосредоточение внимания на глубоководном горизонте Разлив нефти Сосредоточение внимания на Северной Евразии в глобальной системе Земля: изменения и взаимодействия Сосредоточение внимания на проблемах управления азотом: от глобального до местного масштаба Сосредоточение внимания на улучшении количественной оценки парниковых газов в сельском хозяйстве по влиянию изменения климата на динамику углерода экосистемы водно-болотных угодий Фокус на криосферные экосистемы Фокус на криосферные изменения в меняющемся климате Ожидаемые изменения в глобальном круговороте воды в атмосфере Фокус на климатические и экологические изменения в Норвегии в Евразии Фокус на изменении климата на Тибетском нагорье Фокус на ресурсы подземных вод, климат и уязвимость Фокус на взаимосвязи между химическим составом атмосферы и снегом и льдом Фокус на глобальных экологических сценариях Фокус на осаждениях аэрозолей Фокус на взаимодействия аэрозолей и облаков Фокус на ветроэнергетику Фокус на экологическую справедливость и здоровье на международном уровне Фокус на северном полушарии Высокий Широта Климат и изменение окружающей среды Фокус на обезлесение тропических лесов и выбросы парниковых газов Фокус на глобальное воздействие загрязнения воздуха твердыми частицами

комментарий к Фарадею (1832 г.) «Экспериментальные исследования электричества»

Philos Trans A Math Phys Eng Sci.2015 Apr 13; 373 (2039): 20140208.

Физический факультет Университета Суррея, Гилфорд, Суррей, Великобритания

© 2015 The Authors. Опубликовано Королевским обществом в соответствии с условиями лицензии Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, которая разрешает неограниченное использование при условии указания автора и источника.

Abstract

История науки наполнена примерами ключевых открытий и прорывов, которые были опубликованы в виде знаковых текстов или журнальных статей и по которым можно проследить истоки целых дисциплин.К таким публикациям, меняющим парадигму, относятся De Revolutionibus orbium coelestium Коперника (1543), Philosophi Naturalis Principia Mathematica Исаака Ньютона (1687) и статьи Альберта Эйнштейна по теории относительности (1905 и 1915). Статья Майкла Фарадея 1832 года об электромагнитной индукции гордо стоит среди этих работ и в некотором смысле может рассматриваться как оказавшая почти немедленное влияние на преобразование нашего мира в самом реальном смысле больше, чем любая из других перечисленных. Здесь мы рассматриваем статус предмета – взаимосвязь между магнетизмом и электричеством как до, так и после статьи Фарадея, и углубляемся в детали ключевых экспериментов, которые он проводил в Королевском институте, четко описывая, как он открыл процесс электромагнитной индукции, посредством чего электрический ток может протекать через проводник, который испытывает изменяющееся магнитное поле.Его идеи не только позволили бы Максвеллу позднее развить его теорию классического электромагнетизма, но и непосредственно привели бы к развитию электрического динамо и электродвигателя, двух технологических достижений, которые являются самой основой современного мира. Этот комментарий был написан в ознаменование 350-летия журнала Philosophical Transactions of the Royal Society .

Ключевые слова: электромагнетизм, индукция, динамо, электродвигатель

1.Электромагнетизм до Фарадея

Начало девятнадцатого века было захватывающим временем для экспериментальной физики. Это было также время большой путаницы в отношении природы электричества. Работа двух итальянцев, Луиджи Гальвани и Алессандро Вольта по характеристикам биоэлектричества привела к тому, что Вольта изобрел батарею в 1799 году. Его «гальваническая батарея» внезапно дала натурфилософам (термин «ученые» появился только в 1834 году 1 ), надежный и гораздо более полезный источник электричества, чем лейденские банки или все более совершенные электростатические машины, и превратил предмет из интеллектуального любопытства в настоящую науку.В самом прямом смысле слова стимулировали науку , которая, конечно же, является источником этого повседневного слова.

В частности, многих ученых так увлекла запутанная связь между электричеством и магнетизмом. Действительно, некоторые утверждали, что между этими двумя явлениями нет никакой связи, хотя с середины восемнадцатого века было известно, что, например, удары молнии создают определенные магнитные эффекты.

Затем, в 1820 году, датский ученый Ганс Кристиан Эрстед провел эксперимент, в котором ему приписывают открытие электромагнетизма.21 апреля 1820 года он заметил, готовясь к лекции, что, когда он пропустил электрический ток по проводу, расположенная рядом стрелка компаса временно отклонилась от своего устойчивого положения, указывающего на магнитный север. Это произошло в тот момент, когда ток от батареи был включен, а затем снова, когда он был выключен, тем самым подтверждая прямую связь между электричеством и магнетизмом, а именно то, что изменение электрического тока (от отсутствия до текущего и наоборот ) создавал временный магнитный эффект в непосредственной близости от него.

Отчет об открытии Эрстеда содержится в письме, которое его коллега Кристофер Ханстин написал Майклу Фарадею много лет спустя:

Эрстед попытался разместить провод своей гальванической батареи перпендикулярно (под прямым углом) над магнитной иглой, но не заметил заметного движения. Однажды, после окончания своей лекции, поскольку он использовал сильную гальваническую батарею для других экспериментов, он сказал: «Давайте теперь, когда батарея активна, попробуем провести провод параллельно игле».Когда это было сделано, он был весьма озадачен, увидев, что стрелка совершает сильные колебания (почти под прямым углом к ​​магнитному меридиану). Затем он сказал: «Давайте теперь изменим направление тока», и стрелка отклонилась в противоположном направлении. 2

Первоначальная интерпретация Эрстеда заключалась в том, что магнитные эффекты, создаваемые током через провод, излучаются наружу так же, как тепло или свет. Но после дальнейших экспериментов он показал, что на самом деле создаваемое магнитное поле вращается вокруг провода (хотя, конечно, никто еще не думал о полях).

В течение нескольких месяцев после открытия Эрстеда французский физик и математик Андре-Мари Ампер показал, что два токоведущих провода, помещенные параллельно близко друг к другу, генерируют магнитные силовые линии, которые заставляют провода притягиваться или отталкиваться друг от друга в зависимости от от того, текут ли токи в одном или в противоположных направлениях. Ампер продолжал помогать основать область классического электромагнетизма, и в его честь была названа единица измерения электрического тока в системе СИ.

Ампер и Эрстед показали, что электричество каким-то образом можно преобразовать в магнетизм, но им и другим не удалось сделать обратное: создать электричество из магнетизма .

Не менее известный (в то время, хотя и менее известный сегодня) французский физик по имени Франсуа Араго затем провел эксперимент, который полностью сбил с толку большинство ученых того времени и послужил одной из главных мотиваций для великой работы Фарадея. В 1824 году Араго продемонстрировал, что вращающийся медный диск заставляет подвешенную над ним магнитную иглу вращаться.Этот результат был замечательным по двум причинам. Во-первых, на медный диск не подавался внешний электрический ток, а, во-вторых, хотя медь является проводником, она не магнитная. И все же здесь было магнитное поле, которое, по-видимому, создавалось просто вращением этого диска, которое влияло на стрелку компаса. Чтобы описать происходящее, потребовались бы талант и изобретательность Майкла Фарадея, и в серии тщательно и четко описанных экспериментов в период с августа по ноябрь 1831 года он изменил облик науки таким образом, чтобы это повлияло на нашу жизнь. и по сей день.

2. Ранние годы

Майкл Фарадей родился в 1791 году в Ньюингтон-Баттс, сейчас в Южном Лондоне, но тогда не более чем в деревне в сельской местности Суррея. Он был сыном кузнеца, который переехал из Камбрии на северо-западе Англии незадолго до рождения Майкла. Его семья была не в достатке, и Фарадей получил типичное образование рабочего класса, которое он компенсировал чтением всех книг, которые мог достать, – страсть, которую он подпитывал, став учеником переплетчика и книготорговца в возрасте 14 лет. .Его растущее увлечение наукой привело в 1812 году к событию, которое изменило его жизнь и ход истории человечества: любезный посетитель книжного магазина предложил юному Фарадею билеты на серию лекций, прочитанных великим Хамфри Дэви в университете. Королевский институт, основанный несколькими годами ранее. Когда он представил Дэви обильные записи, которые он делал во время лекций, великий человек был так впечатлен, что взял его в качестве своего лаборанта. 3 В следующем году Фарадей путешествовал с Дэви по Европе, где он мог бы увидеть и услышать многих ведущих мыслителей своего времени [4].Когда в 1820 году он услышал об эксперименте Эрстеда, он решил провести собственное исследование природы электромагнетизма.

То, что Фарадею не хватало в формальной научной подготовке, особенно в математике, он компенсировал своим исключительным талантом экспериментатора. И хотя изначально он с недоверием относился к математике, считая ее препятствием, а не помогающим нашему пониманию работы Природы, позже в жизни он изменил свою точку зрения в свете работ Джеймса Клерка Максвелла.Фактически, сам Максвелл считал Фарадея прекрасным теоретиком и утверждал, что это было причиной того, что он смог изложить теории Фарадея языком аналитической математики. Важно отметить, что на самом деле в исследованиях Фарадея неразрывно связаны три концепции: электрический ток, магнитное поле и механическое движение, и именно взаимодействие между этими тремя понятиями является постоянной темой всей его работы. В сентябре 1821 года он построил устройство, которое можно считать первым электродвигателем.Он показал, что подвешенный провод, свободно висящий в контейнере с ртутью с постоянным магнитом в его центре, будет вращаться вокруг магнита, когда через него пройдет электрический ток (с проводящей ртутью, замыкающей цепь).

С помощью этой красивой простой установки Фарадей продемонстрировал то, что он назвал «электромагнитным вращением» – он использовал электричество и магнетизм для создания движения, обобщение принципа Эрстеда – и открыл принцип, лежащий в основе электродвигателя [5].Идея заключалась в том, что ток, проходящий через провод, создавал вокруг него магнитное поле, которое взаимодействовало с полем магнита, толкая провод круговыми движениями все время, пока течет ток.

Это раннее открытие так взволновало Фарадея, что он провел следующее десятилетие, то и дело пытаясь понять физику, лежащую в основе электромагнетизма. В то время он описал в своем дневнике ряд неудачных экспериментов, в которых пытался продемонстрировать то, что он назвал «электромагнитной индукцией». 4 Но его исследования, последовавшие за работами Эрстеда, Ампера и Араго, были временно приостановлены между 1825 и 1830 годами, когда он по указанию Дэви занялся поиском способов улучшить качество оптического стекла, используемого для линз. . Все изменилось во второй половине 1831 года, который завершился подготовкой статьи, которую мы теперь можем описать. Создав непрерывное механическое движение из магнетизма и электричества (электродвигатель), сцена была настроена для генерации электричества из механического движения и магнетизма (электрическое динамо или генератор) – открытие, которое изменило наш мир.

Напомним, что главной мотивацией Фарадея было «преобразовать магнетизм в электричество» [6], и именно диск Араго стал стартовой площадкой для его прекрасных экспериментов. Что делает его работы такими замечательными для чтения сегодня, так это ясность и точность его описаний. Уильям Генри Брэгг, который намного позже стал директором исследовательской лаборатории Дэви-Фарадея в Королевском институте в 1923 году, написал в предисловии к книге о Фарадее, посвященной столетию со дня его открытия:

Фарадей имел обыкновение описывать каждый эксперимент во всех подробностях и подробностях в тот день, когда он был проведен.Во многих записях обсуждаются последствия, которые он мог бы извлечь из того, что он наблюдал. В других случаях они описывают предлагаемый курс исследования, которое будет проводиться. Таким образом, Дневник – это гораздо больше, чем просто каталог результатов. Читатель может шаг за шагом проследить путь к окончательным и фундаментальным выводам. Он рассматривает формирование идеи, ее экспериментальную реализацию и использование как точку опоры для следующего шага вперед. [7]

3. Экспериментальные исследования в области электричества

Статья, которой посвящена данная статья, является первой и самой известной из тридцати статей, написанных Фарадеем и опубликованных в журнале Royal Society’s Philosophical Transactions между 1832 и 1856 под названием Experimental Researches in Electricity , каждое из которых продолжается там, где закончилось предыдущее.Этот первый из них был зачитан Королевскому обществу 24 ноября 1831 года. 5 Однако примерно в это же время Королевское общество ввело новую процедуру рецензирования статей, представленных для публикации в его Philosophical Transactions , который должен был отложить появление статьи Фарадея в печати на несколько месяцев, к его большому разочарованию [8].

14 января 1832 года, обеспокоенный тем, что французы его избивают, он написал секретарю Королевского общества, призывая его попытаться ускорить процесс публикации, иначе эти философы могут получить некоторые из моих фактов в разговоре. , повторите их и опубликуйте от своего имени, пока я не уйду ». 6 Хотя точная дата появления бумаги в печати неизвестна, самое раннее свидетельство, которое у нас есть, – 9 апреля 1832 года. Изощренность, что ток может индуцироваться все время, когда существует относительное движение между проводником и магнитным полем. Оглядываясь назад и используя соответствующий язык, который мы используем сегодня, мы говорим, что ток индуцируется в проводнике, когда он находится внутри изменяющегося магнитного поля.Для этого не имеет значения, действительно ли движется проводящий провод или объект, создающий магнитное поле (либо постоянный магнит, либо другой провод с протекающим через него электрическим током).

Первый эксперимент, обсуждаемый Фарадеем в статье, демонстрирует простую индукцию, и его стоит описать здесь. Сначала 26 футов медной проволоки были намотаны на деревянный цилиндр в виде спирали. Изоляция отдельных шпилей и предотвращение их соприкосновения с помощью тонкого шпагата.Затем катушка с проволокой была покрыта слоем муслина (толстая хлопчатобумажная ткань, также называемая бязью – название, обычно использовавшееся в то время, в том числе Фарадеем). Затем поверх этого был намотан второй медный провод. Этот процесс повторялся, пока у него не было 12 витков провода, все изолированные друг от друга. Затем он соединил свободные концы всех четных катушек, чтобы получилась одна непрерывная длина, а также с нечетными катушками. Теперь у него было две спирали, концы одной из которых он подключил к гальванометру (устройство, изобретенное несколькими годами ранее для определения наличия электрического тока), а другую – к гальванической батарее.

Сначала Фарадей не заметил реакции гальванометра при включении батареи, но, экспериментируя с более длинными витыми проводами, разными материалами для проводящих проводов и более мощными батареями, он наконец смог вызвать небольшую реакцию в стрелке гальванометра. отклонение в одну сторону при включении аккумуляторной батареи и в другую при ее отключении. Теперь мы знаем этот эффект как электромагнитную индукцию – в том смысле, что изменение электрического тока в первом проводе и, следовательно, создаваемое им магнитное поле вызывало временное протекание тока во втором проводе.

Затем он нашел гораздо более эффективный способ изменения магнитного поля: перемещая два провода, один из которых подключен к батарее, а другой – к гальванометру, по направлению друг к другу или от него. Стрелка гальванометра реагировала, вибрируя то в одну сторону, то в другую, синхронно с движением проводов взад и вперед. Но как только они остановились, стрелка гальванометра тоже показала отсутствие тока по второму проводу, хотя он продолжал непрерывно течь по первому.

Стоит отметить, что в этот момент Фарадей, как и другие исследователи того времени, все еще не понимал природу самого электричества. Он называет электричество, протекающее через провод из-за гальванической батареи, как вольтовое электричество , а влияние, которое оно оказывает на второй провод, как вольта-электрическая индукция . Он отличает это от электрического разряда из лейденской банки как электричество напряжения или обычное электричество .Только когда он построил первую клетку Фарадея в 1836 году, он начал думать об электричестве как о силе, а не как о жидкости.

Затем он переходит к гораздо более эффективной версии своего первого эксперимента, в котором он пытается вызвать ток в катушке с проволокой за счет включения и выключения тока в другой катушке. На этот раз он использовал не намагниченное железное кольцо вместо оригинального деревянного цилиндра. Он намотал две катушки проволоки на противоположных сторонах кольца, очень осторожно изолировав их от самого кольца и отделив каждую петлю проводов от соседних изолирующей нитью.Затем он подключил одну катушку к батарее, а другую – к гальванометру. При включении батареи «гальванометр сразу же пострадал, причем до степени, намного превышающей описанную» ([9], §28), и он снова сильно отклонился, когда батарея была выключена. Ясно, что временный ток генерировался во втором проводе каждый раз, когда он подключал и отключал батарею. Как пишет Фарадей, можно почти почувствовать волнение:

При использовании силы ста пар пластин [для создания как можно более мощной батареи из своей гальванической груды] с этим кольцом, импульс на гальванометре, когда контакт был завершен или разорван, был настолько велик, что игла быстро вращалась четыре или пять раз, прежде чем воздух и земной магнетизм смогли свести ее движение к простым колебаниям.([9], §31)

Индукционное кольцо Фарадея было, по сути, самым первым электрическим трансформатором. Он сохранился до наших дней и выставлен в музее Королевского института (). Несомненно, это остается одним из важнейших научных объектов истории науки.

Индукционное кольцо Фарадея (1831 г.). Изображение любезно предоставлено Королевским обществом / Библиотекой изображений науки и общества.

Затем Фарадей заметил, что при замене железного кольца на медное индуцированный ток был намного слабее, и это было похоже на то, когда спиральные провода вообще ни на что не наматывались.Очевидно, разница в том, что железное кольцо помогало генерировать гораздо более сильный электромагнит, чего не могла сделать немагнитная медь.

Следующий шаг был важным. Фарадей понял, что должен быть «какой-то особый эффект, имеющий место во время формирования магнита, а не просто его виртуальное приближение, что мгновенно индуцированный ток возбуждается» ([9], §39). Он провел эксперимент, который по сей день знаком в любом научном классе в мире.Он заменил проволочную спираль, соединенную с батареей и генерирующую магнитное поле, на простой постоянный стержневой магнит. Затем он взял полую катушку проволоки, концы которой подключил к гальванометру. Быстро воткнув магнит в катушку, увидел, что стрелка гальванометра отклонится. Если повернуть процесс вспять, вытащив магнит наружу, игла отклонится в противоположном направлении. Затем, постоянно перемещая стержневой магнит внутрь и из катушки, он мог заставить стрелку гальванометра колебаться из стороны в сторону синхронно с движением магнита.

Фарадей продолжил эксперименты с более мощными постоянными магнитами и электромагнитами разной силы, но основной принцип был тем же. Он торжественно заявляет, что «различные эксперименты… я думаю, наиболее полно доказывают производство электричества из обычного магнетизма» ([9], §57). Он решает называть «действие, оказываемое обычными магнитами» магнитоэлектрической индукцией , чтобы отличить ее от вольта-электрической индукции , создаваемой полем токоведущего провода.Что касается второго провода, который подвергается этой индукции, он описывает его как «находящееся в особом состоянии» сопротивления образованию в нем электрического тока и называет его находящимся в электротоническом состоянии . Но в этот момент он признает, что ему еще предстоит понять свойства материи, находящейся в этом состоянии, особенно потому, что он экспериментирует с различными проводящими материалами, такими как медь и серебро, которые сами по себе не являются магнитными.

Фарадей понял, что ему нужно найти способ создания изменяющегося магнитного поля, и продолжил разработку улучшенной версии эксперимента Араго с диском.Он установил медный диск на латунную ось, чтобы он мог свободно вращаться между двумя полюсами постоянного магнита. Затем он подключил диск к гальванометру, прикрепив один провод к его центру, а другой касаясь его обода (как на рисунке).

Вращающийся диск Фарадея – генерирует непрерывный электрический ток в проводящем диске, когда он вращается между двумя полюсами мощного постоянного магнита. Эта диаграмма взята из оригинальной статьи Фарадея [9]. Авторское право Королевское общество.

Затем, когда диск вращался, гальванометр регистрировал непрерывный ток, который явно должен был проходить в радиальном направлении через диск.Изменение направления вращения диска на противоположное привело к отклонению стрелки гальванометра в противоположном направлении, что означает изменение направления электрического тока.

Фарадей классно заметил, что «Таким образом, здесь было продемонстрировано производство постоянного тока электричества обычными магнитами ([9], §90)». Его объяснение происходящего прекрасно понятно: «Если оконечный провод перемещается так для того, чтобы разрезать магнитную кривую, вызывается сила, которая имеет тенденцию проталкивать через нее электрический ток »([9], §256). 8

С помощью этого эксперимента Фарадей смог показать, как магнитное поле и непрерывное механическое движение производят непрерывный электрический ток. Он изобрел электрический генератор.

Затем он присоединяет два провода, которые подключены к гальванометру, к разным точкам на ободе вращающегося диска и понимает, что индуцированный ток всегда направлен под прямым углом к ​​движению диска и что в этом случае поток электричества идет в радиальном направлении.

Затем Фарадей делает интересную и весьма примечательную попытку описать на более микроскопическом уровне то, что может происходить внутри металлов, несущих индуцированный электрический ток: «В электротоническом состоянии однородные частицы материи, по-видимому, приняли регулярное, но вынужденное электрическое расположение в направлении тока … этого вынужденного состояния может быть достаточно, чтобы элементарная частица покинула своего компаньона, с которым она находится в ограниченном состоянии, и присоединилась к соседней подобной частице, по отношению к которой она находится в более естественном состоянии »([9], §76).Обратите внимание, что он принимает здесь теорию электрического тока Ампера, но, если смотреть с точки зрения современной физики, нельзя не восхищаться его проницательностью; его описание предшествует более чем полувековой теории атома Больцмана и открытию Дж. Дж. Томсоном электрона, не говоря уже о понимании природы электричества как потока электронов.

Конечно, мы можем видеть, насколько далеко Фарадей и другие были в то время от понимания истинной природы электрического тока по тому, как он до сих пор обращается к различным видам электричества.Он определяет пять различных типов: гальваническое электричество (вырабатываемое батареей), общее электричество (например, разряд от заряженного тела, такого как лейденская банка), магнитоэлектричество (под которым он подразумевает индуцированный ток), термоэлектричество. Электричество и электричество животных (такое, которое, как известно, вырабатывается некоторыми существами, такими как электрический угорь).

Здесь следует упомянуть, что американский ученый Джозеф Генри (1797–1878), чья жизнь, начиная с бедных и скромных начал, во многом отражала жизнь Майкла Фарадея, также работал (независимо) над электрооборудованием. магнетизм по ту сторону Атлантики – хотя к 1830-м годам интерес к этой теме определенно циркулировал по всей Атлантике.Важно отметить, что Генри на самом деле обогнал Фарадея в открытии индуктивности на несколько месяцев в 1831 году, но именно Фарадей опубликовал первые результаты, и, несмотря на столь расстроившие его задержки, ему приписывают это открытие.

4. Ошибка Фарадея

Сегодня каждый школьник узнает о правилах Флеминга для левой и правой руки. Эти полезные визуальные мнемоники были разработаны английским инженером Джоном Амброузом Флемингом (1849–1945) в конце девятнадцатого века и дают простой способ определения направления движения электродвигателя (правило левой руки) и направления тока в генераторе (правило правой руки).Например, в правиле левой руки указательный палец, средний палец и большой палец можно удерживать указательными в трех взаимно ортогональных направлениях, чтобы представить магнитное поле (первый палец), электрический ток (второй палец) и толчок, или движение, ( большой палец). Читая статью Фарадея, поражаешься, насколько просты эти мнемоники и насколько полезными они были бы, если бы он знал о них. Пытаясь описать направление индуцированного тока, Фарадей заявляет: «Связь, которая сохраняется между магнитным полюсом, движущейся проволокой или металлом, и направлением развивающегося тока, т.е.е. закон, который управляет эволюцией электричества посредством магнитоэлектрической индукции, очень прост, хотя его довольно трудно выразить ([9], §114).

Действительно, экспериментируя с двумя параллельными проводами, Фарадей заявляет: «Как Провода приблизились, индуцированный ток был в направлении против направления по отношению к индуцирующему току. По мере того, как провода удалялись, индуцированный ток был в направлении , в том же направлении , что и индуцирующий ток ([9], §19). ‘Затем снова немного позже:’ Во всех случаях было обнаружено, что индуцированный ток, создаваемый Первое действие индуцирующего тока было направлено противоположно второму, но ток, вызванный прекращением индуцирующего тока, был в том же направлении ([9], §26).’

Но Фарадей ошибся [10]. показывает выдержку из своего дневника (его лабораторной записной книжки), написанного 26 марта 1832 года, то есть всего за несколько дней до того, как его статья появилась в печати, и поэтому он слишком поздно, чтобы вносить в нее какие-либо изменения. Мы даже видим интересную первую попытку нарисовать диаграмму. Тот, что ниже, изображает правильную взаимную ортогональность электричества, магнетизма и движения и считается одним из самых значительных рисунков в его записной книжке. 9

Это страница из записной книжки Фарадея, написанной 26 марта 1832 года (RI MS F / 2 / C, p.147). Он гласит: «Взаимосвязь электричества, магнетизма и движения может быть представлена ​​тремя линиями, расположенными под прямым углом друг к другу, каждая из которых может представлять любую из этих точек, а две другие линии – другие точки. Тогда, если электричество будет определяться в одной линии, а движение – в другой, магнетизм разовьется в третьей; или если электричество определяется в одной линии, а магнетизм – в другой, движение будет происходить в третьей. Или, если сначала определить магнетизм, тогда движение будет производить электричество или движение электричества.Или, если движение будет первой определяемой точкой, магнетизм разовьет электричество или магнетизм электричества ». Воспроизведено с любезного разрешения Королевского института Великобритании.

5. Влияние открытия Фарадея

Нет сомнений в том, что эксперименты, описанные в статье Фарадея, не только заложили основы для истинного понимания природы электричества, но и для его практического применения способами, которые могли бы преобразовать наш мир. В течение нескольких месяцев многие изобретатели заинтересовались этими чудесными потенциальными приложениями, и все же многие из них не понимали или даже не интересовались физикой, лежащей в основе электромагнитной индукции.Действительно, истинная математическая теория не появилась бы до работы Джеймса Клерка Максвелла в 1865 году.

Применение открытий Фарадея быстро стало очевидным, когда другие ученые, инженеры и изобретатели начали работать над созданием все более совершенных электрических генераторов, которые могли бы найти практическое применение [11]. Например, французский производитель инструментов Ипполит Пикси (1808–1835) построил примитивный электрический генератор еще в 1832 году, непосредственно основанный на идеях индукции Фарадея.Устройство состояло из ручного вращающегося магнита над катушкой с железным сердечником внутри. Импульс тока в катушке создавался каждый раз, когда над ней проходил один из двух полюсов магнита. Однако то, что производилось, было переменным (AC) током, поскольку направление индуцированного тока изменялось с каждым полувитком магнита. Поскольку в то время не было реального применения переменного тока (его преимущества станут очевидными только позже), необходимо было найти способ преобразовать его в постоянный (DC) ток.Предложение Ампера и других привело к появлению коммутатора – поворотного переключателя, который меняет местами подключение к внешней цепи при изменении тока, давая пульсирующий постоянный ток вместо переменного. Вскоре после изобретения Pixii другие начали производить свои собственные аналогичные устройства. Следует отметить два лондонских инструмента: американца Джозефа Саксона и англичанина Джозефа Кларка. К середине 1830-х годов такие машины производили целый ряд различных эффектов индуцированных электрических токов, от химического разложения до искр, и все это происходило путем поворота ручки, которая вращала магнит.

Однако первым важным практическим применением открытия Фарадея стал не электрический генератор, а телеграф. Основываясь на способности управлять магнитом на расстоянии, это изобретение позволило установить связь на большом расстоянии, которая соединит мир. И он был основан на очень простой идее: движение проводящей катушки над магнитом в одном месте индуцирует ток, который передается в другое место, где он воздействует на гальванометр. Идея была реализована почти сразу же, как только мир узнал о творчестве Фарадея, особенно Павлом Шиллингом, Карлом Фридрихом Гауссом и Вильгельмом Вебером.Через несколько лет он был коммерциализирован Куком и Уитстоном в Великобритании (1837 г.) и Морсом и Вейлом в США (1838 г.). Коммерческое крупномасштабное применение открытия Фарадея было сделано гальваническими мастерами Бирмингема еще в 1844 году. Там по крайней мере две компании использовали его метод извлечения электричества из магнетизма в больших масштабах [12].

В 1850-х годах изобретение ускорилось, когда в ожидании коммерческого применения электрического света были разработаны конструкции для все более мощных генераторов (известных как «магнитоэлектрические машины»).Но эти первые генераторы были невероятно громоздкими и, конечно же, требовали источника энергии в первую очередь для создания механического движения. Первая экспериментальная установка магнитоэлектрической машины с паровым двигателем произошла на британском маяке. Устройство, которое весило 2 тонны, было изобретено англичанином Фредериком Холмсом и впервые испытано на знаменитом экспериментальном маяке Боу-Крик на Тринити-Буй-Уорф на реке Темза в Лондоне в мае 1857 года под наблюдением Фарадея [13]. 10 В следующем году он был установлен и впервые использован на маяке Южный Форленд на Дуврских скалах. Таким образом, Южный Форленд стал первым местом в мире, где производилась электроэнергия для практического обеспечения энергией. И после 2000 лет использования магнитов для навигации, начиная с примитивных китайских компасов с подвешенными магнитами, магниты, наконец, помогли мореплавателям по-другому: они генерировали мощное электрическое освещение, которое безопасно уводило их от опасных скал.

К середине 1860-х годов несколько ученых и изобретателей разрабатывали практические конструкции динамо-электрической машины. В этих устройствах вместо постоянных магнитов использовались катушки электромагнитного поля с автономным питанием, что позволило впервые вырабатывать гораздо больше энергии. Таким образом, они привели к первому крупному промышленному использованию электроэнергии и были первыми генераторами, способными обеспечивать достаточную мощность для промышленности.

После открытия генератора переменного тока, теперь известного как генератор переменного тока, слово «динамо» стало ассоциироваться исключительно с коммутируемым электрическим генератором постоянного тока.К 1880-м годам так называемая “ война токов ” была в самом разгаре между теми, кто, например, Томасом Эдисоном, который отдавал предпочтение постоянному току для выработки электроэнергии, и теми, кто во главе с Джорджем Вестингаузом и Николой Тесла считал, что переменный ток является допустимым. путь вперед. Последние двое в конечном итоге решительно выиграют ту ожесточенную войну. Развитие передачи энергии переменного тока с использованием трансформаторов (истоки которых лежат в простом индукционном кольце Фарадея) для передачи энергии с высоким напряжением и с низкими потерями позволило центральным электростанциям стать экономически практичными.

Сегодня генератор переменного тока доминирует в крупномасштабном производстве электроэнергии и полагается на текучую среду, обычно пар, который действует как промежуточный носитель энергии, для привода турбин и выработки электроэнергии. На атомных и угольных электростанциях тепло, вырабатываемое в результате ядерного деления и химического сжигания углерода, соответственно, используется для превращения воды в пар. В известном смысле все электростанции можно грубо рассматривать как гигантские котлы.

Джеймс Кларк Максвелл (1831–1879) родился всего за несколько месяцев до того, как Фарадей провел свои знаменитые эксперименты и заинтересовался работой по электромагнитной индукции, и в частности тем, что Фарадей начал называть «силовыми линиями» для описания влияние электрического и магнитного полей.Молодой Максвелл регулярно посещал лекции Фарадея в Королевском институте, и уже в 1856 году он опубликовал статью под названием On Faraday’s Lines of Force , из которой интересно процитировать следующее:

«Я попытался представить в удобной и управляемой форме те математические идеи, которые необходимы для изучения явлений электричества. Обычно это методы, предложенные в процессе рассуждения, которые можно найти в исследованиях Фарадея, и которые, хотя они были математически интерпретированы проф.Томсон и другие, как правило, предполагают неопределенный и нематематический характер по сравнению с теми, которые используются математиками. С помощью метода, который я принимаю, я надеюсь сделать очевидным, что я не пытаюсь создать какую-либо физическую теорию науки, в которой я почти не провел ни одного эксперимента, и что предел моего замысла состоит в том, чтобы показать, как с помощью строгое применение идей и методов Фарадея, связь самых разных порядков явлений, которые он обнаружил, могут быть ясно поставлены перед математическим умом.

Несколькими годами позже, в 1861–1862 годах, Максвелл опубликовал знаменитую статью из четырех частей под названием On Physics Lines of Force , за которой в 1865 году последовала его величайшая работа [14] «Динамическая теория. электромагнитного поля »[15], в котором он объединил электрические и магнитные поля в одно понятие: волна, движущаяся в пространстве со скоростью света, и в котором он впервые изложил свои знаменитые уравнения (хотя еще не в форме из четырех уравнений, названных его именем и знакомых каждому студенту-физику).Это объединение света и электричества считается одним из ключевых достижений в истории науки, благодаря которому теории Фарадея были дополнены математической плотью.

Книга Максвелла [16] заложила основы не только для последующего открытия радиоволн, но и для большей части современной физики, включая работы Эйнштейна по специальной теории относительности и развитию квантовой теории, в первые десятилетия двадцатого века. Это, в свою очередь, привело ко многим замечательным достижениям, которые сформировали нашу современную электронную эру, от телевидения до компьютеров и смартфонов.Оглядываясь сегодня вокруг, мы не можем не увидеть всеобъемлющее влияние, которое работа Фарадея оказала на нашу жизнь, – влияние, которое не подает никаких признаков ослабления.

На протяжении всей своей жизни Фарадей был гораздо больше заинтересован в понимании физических основ электромагнетизма и электромагнитной индукции, чем многие другие ученые его возраста, которые были более одержимы практическим применением его открытий. Сегодня мы по-прежнему используем Фарадея как лучший пример научного исследования, движимого любопытством, проводимого ради самого себя.

Благодарности

Автор хотел бы поблагодарить профессора Фрэнка Джеймса из Королевского института Великобритании за его помощь в предоставлении множества полезных комментариев для улучшения этой рукописи.

Сноски

1 Многие историки науки сочли бы использование термина «ученый» в отношении натурфилософов или химиков (включая самого Фарадея) анахронизмом. Однако впредь в этой статье мы, тем не менее, будем использовать этот современный термин, тем более что между работами Фарадея и изобретением этого слова кембриджским историком и философом Уильямом Уэвеллом в 1834 году всего два года.

2 Ханстин – Фарадею, 30 декабря 1857 г., в [1, т. 5, письмо 3374].

3 Описание жизни Фарадея см. В [2,3].

4 Фарадей. 1825 Дневник 1 , 279.

5 Фактически 24 ноября была прочитана только первая часть газеты. Остальная часть была прочитана дважды, 8 и 15 декабря.

6 Фарадей Роже, 14 января 1832 г., в [1], т. 2, письмо 531.

7 Фарадей – Гудзон, 9 апреля 1832 г., в [1], т. 2, буква 566.

8 Обратите внимание, что если номер серии не указан, то мы обозначаем первую статью, которая, конечно же, является предметом данной статьи.

9 Фрэнк Джеймс из Королевского института в настоящее время готовит электронное издание лабораторной записной книжки Фарадея, описывающей его индукционные эксперименты.

10 Самая ранняя машина Холмса для постоянного тока включала 120 постоянных магнитов в форме подковы, каждый весом 50 фунтов, вместе со 160 катушками; последующие версии были несколько меньше.

Профиль автора

Джим Аль-Халили – физик, автор и телеведущий из Университета Суррея, где он в настоящее время преподает и проводит исследования в области квантовой физики. Он получил докторскую степень в области теоретической ядерной физики в 1989 году и опубликовал множество публикаций о структуре и реакциях экзотических ядер. Он активен в качестве научного коммуникатора и написал ряд научно-популярных книг, переведенных более чем на двадцать языков. Его книга «Следопыты» по истории средневековой арабской науки была номинирована на премию Уорвика в 2013 году.Его последняя работа – «Жизнь на грани: наступление эры квантовой биологии». Он регулярно ведет телевизионные документальные фильмы, в том числе номинированные на премию Bafta «Химия: изменчивая история» и «Шок» и «Трепет: история электричества» для BBC. Последние три года он представляет весьма успешную еженедельную программу BBC Radio 4 «Life Scientific». В 2007 году он получил медаль Майкла Фарадея Королевского общества за научную коммуникацию.

Ссылки

1. Джеймс ФАЙЛ.2012 г. Переписка Майкла Фарадея (6 томов, Лондон, 1991–2012). [Google Scholar] 2. Джеймс ФАЙЛ. 2010 г. Майкл Фарадей: очень короткое введение. Оксфорд, Великобритания: Издательство Оксфордского университета. [Google Scholar] 3. Рассел CA. 2001 г. Майкл Фарадей: наука и вера (издательство Оксфордского университета;). [Google Scholar] 4. Бауэрс Б., Саймонс Л. 1991 г. Любопытство полностью удовлетворено: путешествия Фарадея по Европе 1813–1815 гг. Лондон, Великобритания: Peter Peregrinus Ltd совместно с Музеем науки. [Google Scholar] 5.Гудинг Д. 1991 г. Эксперимент и создание смысла: участие человека в научных наблюдениях и экспериментах. Дордрехт, Нидерланды: Kluwer. [Google Scholar] 6. Твини Р.Д., Гудинг Д. 1991 г. «Химические заметки, намеки, предложения и цели поиска» Майкла Фарадея, 1822 г., стр. 70–71. Лондон, Великобритания. [Google Scholar] 7. Сартон Г. 1934 г. Рецензия на «дневник Фарадея Майкла Фарадея» Томаса Мартина. Исида 20, 472–474. (10.1086 / 346808) [CrossRef] [Google Scholar] 8. Андерсон Р. 1993 г. Судейская оценка «Работы Фарадея об электромагнитной индукции 1831 года».Примечания Рек. R. Soc. Лондон. 47, 243–256. (10.1098 / rsnr.1993.0031) [CrossRef] [Google Scholar] 9. Фарадей М. 1832 г. Экспериментальные исследования в электричестве. Фил. Пер. R. Soc. Лондон. 122, 125–162. (10.1098 / rstl.1832.0006) [CrossRef] [Google Scholar] 10. Ромо Дж., Дончел МГ. 1994 г. Первоначальная ошибка Фарадея относительно направления индуцированных токов и рукопись I серии его исследований ». Arch. Hist. Exact Sci. 47, 291–385. (10.1007 / BF00374741) [CrossRef] [Google Scholar] 11. Джеймс ФАЙЛ.1999 г. Талант гражданского инженера: Майкл Фарадей, наука, инженерия и английская маячная служба, 1836–1865 гг. Пер. Newcomen Soc. 70, 153–160. [Google Scholar] 12. Thomas JM. 1991 г. Майкл Фарадей и королевский институт: гений человека и места, (IOP Publishing, впоследствии опубликовано Тейлором и Фрэнсисом;), стр. 51. [Google Scholar] 13. Холмс Ф. Х. 1863 г. О магнитоэлектричестве и его применении в маячных целях. Инженер 16, 337–338. [Google Scholar] 14. Niven WD. (ред.).1965 г. Научные статьи Джеймса Клерка Максвелла, Dover Publications, по специальной договоренности с Cambridge University Press, стр. 157. [Google Scholar] 15. Максвелл Дж. 1865 г. Динамическая теория электромагнитного поля. Фил. Пер. R. Soc. Лондон. 155, 459–512. (10.1098 / rstl.1865.0008) [CrossRef] [Google Scholar] 16. Максвелл Дж. 1873 г. Трактат об электричестве и магнетизме, 2 тома Оксфорд, Великобритания: Clarendon Press. [Google Scholar]

Глоссарий по солнечной энергии | Министерство энергетики

S

жертвенный анод – кусок металла, закопанный рядом с конструкцией, которая должна быть защищена от коррозии.Металл расходуемого анода предназначен для коррозии и уменьшения коррозии защищаемой конструкции.

спутниковая система энергоснабжения (SPS) – Концепция обеспечения большого количества электроэнергии для использования на Земле от одного или нескольких спутников на геостационарной околоземной орбите. Очень большой массив солнечных элементов на каждом спутнике будет обеспечивать электричество, которое будет преобразовано в микроволновую энергию и направлено на приемную антенну на земле. Там она будет преобразована в электроэнергию и распределена так же, как и любая другая энергия, вырабатываемая централизованно, через сеть.

планирование – Общая практика обеспечения того, чтобы генератор был зафиксирован и доступен, когда это необходимо. Это также может относиться к составлению графиков импорта или экспорта энергии в зону балансирования или из нее.

Барьер Шоттки – Барьер ячейки, установленный как граница раздела между полупроводником, например кремнием, и листом металла.

scribing – Вырезание сеточного рисунка канавок в полупроводниковом материале, как правило, для создания межсоединений.

герметичная батарея – Батарея с невыполненным электролитом и закрывающейся вентиляционной крышкой, также называемая аккумуляторной батареей с регулируемым клапаном. Электролит добавлять нельзя.

сезонная глубина разряда – поправочный коэффициент, используемый в некоторых процедурах определения размеров системы, который «позволяет» батарее постепенно разряжаться в течение 30-90-дневного периода плохой солнечной инсоляции. Этот фактор приводит к немного меньшей фотоэлектрической матрице.

аккумулятор – аккумулятор, который можно перезаряжать.

саморазряд – Скорость, с которой батарея без нагрузки теряет свой заряд.

полупроводник – Любой материал с ограниченной способностью проводить электрический ток. Некоторые полупроводники, включая кремний, арсенид галлия, диселенид меди, индия и теллурид кадмия, уникально подходят для процесса фотоэлектрического преобразования.

полукристаллический См. Полукристаллический .

Соединение серии – Способ соединения фотоэлементов путем соединения положительных выводов с отрицательными выводами; такая конфигурация увеличивает напряжение.

Контроллер серии – Контроллер заряда, который прерывает зарядный ток путем размыкания цепи фотоэлектрической (PV) матрицы. Элемент управления включен последовательно с фотоэлектрической панелью и батареей.

Регулятор серии – Тип регулятора заряда аккумулятора, в котором ток зарядки регулируется переключателем, подключенным последовательно с фотоэлектрическим модулем или массивом.

Последовательное сопротивление – Паразитное сопротивление току в элементе из-за таких механизмов, как сопротивление основной части полупроводникового материала, металлических контактов и межсоединений.

Аккумулятор мелкого цикла – Аккумулятор с небольшими пластинами, который не выдерживает большого количества разрядов до низкого уровня заряда.

срок годности батарей – Продолжительность времени, в течение которого при определенных условиях батарея может храниться, чтобы сохранить ее гарантированную емкость.

ток короткого замыкания (Isc) – ток, свободно протекающий через внешнюю цепь без нагрузки или сопротивления; максимально возможный ток.

Контроллер шунта – Контроллер заряда, который перенаправляет или шунтирует зарядный ток от батареи.Контроллеру требуется большой радиатор для отвода тока от короткозамкнутой фотоэлектрической батареи. Большинство контроллеров шунта предназначены для небольших систем мощностью 30 ампер или меньше.

Шунтирующий регулятор – Тип регулятора заряда аккумуляторной батареи, в котором зарядный ток регулируется переключателем, включенным параллельно с фотоэлектрическим (PV) генератором. Замыкание фотоэлектрического генератора предотвращает перезарядку аккумулятора.

Процесс Сименс – коммерческий метод получения очищенного кремния.

кремний (Si) – полуметаллический химический элемент, который является отличным полупроводниковым материалом для фотоэлектрических устройств. Он кристаллизуется в гранецентрированной кубической решетке, как алмаз. Обычно он содержится в песке и кварце (в виде оксида).

синусоида – Форма волны, соответствующая одночастотному периодическому колебанию, которое может быть математически представлено как функция амплитуды в зависимости от угла, при котором значение кривой в любой точке равно синусу этого угла.

синусоидальный инвертор – инвертор, вырабатывающий синусоидальные формы мощности коммунального качества.

монокристаллический материал – материал, состоящий из монокристалла или нескольких крупных кристаллов.

Кремний монокристаллический – Материал с монокристаллическим образованием. Многие фотоэлементы изготовлены из монокристаллического кремния.

одноступенчатый контроллер – контроллер заряда, который перенаправляет весь зарядный ток, когда аккумулятор приближается к полному состоянию заряда.

smart grid – Интеллектуальная электроэнергетическая система, которая регулирует двусторонний поток электроэнергии и информации между электростанциями и потребителями для управления работой сети.

программные затраты – Неаппаратурные затраты, связанные с фотоэлектрическими системами, такие как финансирование, получение разрешений, установка, подключение и проверка.

солнечный элемент См. Фотоэлектрический элемент .

солнечная постоянная – Среднее количество солнечного излучения, которое достигает верхних слоев атмосферы Земли на поверхности, перпендикулярной солнечным лучам; равно 1353 Вт на квадратный метр или 492 британских тепловых единицы на квадратный фут.

солнечное охлаждение – Использование солнечной тепловой энергии или солнечного электричества для питания охлаждающего устройства. Фотоэлектрические системы могут питать испарительные охладители (“болотные” охладители), тепловые насосы и кондиционеры.

солнечная энергия – Электромагнитная энергия, передаваемая солнцем (солнечное излучение). Количество, которое достигает Земли, равно одной миллиардной общей произведенной солнечной энергии, или примерно 420 триллионов киловатт-часов.

Кремний солнечного качества – Кремний промежуточного качества, используемый в производстве солнечных элементов.Дешевле, чем кремний электронного качества.

солнечная инсоляция См. инсоляция.

солнечное излучение См. освещенность.

солнечный полдень – Время суток в определенном месте, когда солнце достигает своей наивысшей видимой точки на небе.

солнечная панель См. Фотоэлектрическая (PV) панель .

солнечный ресурс – количество солнечной инсоляции, получаемой площадкой, обычно измеряется в кВтч / м2 / день, что эквивалентно количеству солнечных часов в пиковую погоду.

солнечный спектр – Общее распределение электромагнитного излучения, исходящего от Солнца. Различные области солнечного спектра описываются диапазоном длин волн. Видимая область простирается от 390 до 780 нанометров (нанометр составляет одну миллиардную часть одного метра). Около 99 процентов солнечного излучения содержится в диапазоне длин волн от 300 нм (ультрафиолет) до 3000 нм (ближний инфракрасный). Комбинированное излучение в диапазоне длин волн от 280 до 4000 нм называется широкополосным или полным солнечным излучением.

солнечные тепловые электрические системы – Технологии преобразования солнечной энергии, которые преобразуют солнечную энергию в электричество путем нагрева рабочей жидкости для питания турбины, приводящей в действие генератор. Примеры этих систем включают системы центрального приемника, параболическую тарелку и солнечный желоб.

объемный заряд См. Барьер ячейки .

удельный вес – Отношение веса раствора к весу равного объема воды при заданной температуре.Используется как индикатор уровня заряда аккумулятора.

вращающийся резерв – Электростанция или энергосистема подключены и работают на малой мощности, превышающей фактическую нагрузку.

Ячейка с разделенным спектром – Составное фотоэлектрическое устройство, в котором солнечный свет сначала разделяется на спектральные области с помощью оптических средств. Затем каждая область направляется в отдельный фотоэлектрический элемент, оптимизированный для преобразования этой части спектра в электричество. Такое устройство обеспечивает значительно большее общее преобразование падающего солнечного света в электричество. См. Также многопереходное устройство .

распыление – Процесс, используемый для нанесения фотогальванического полупроводникового материала на подложку с помощью процесса физического осаждения из паровой фазы, при котором высокоэнергетические ионы используются для бомбардировки элементарных источников полупроводникового материала, которые выбрасывают пары атомов, которые затем осаждаются тонкими слоями на субстрат.

прямоугольная волна – форма волны, имеющая только два состояния (т. Е. Положительное или отрицательное). Прямоугольная волна содержит большое количество гармоник.

Преобразователь прямоугольной формы – Тип инвертора, который выдает выходной сигнал прямоугольной формы. Он состоит из источника постоянного тока, четырех переключателей и нагрузки. Переключатели представляют собой силовые полупроводники, которые могут пропускать большой ток и выдерживать высокое номинальное напряжение. Переключатели включаются и выключаются в правильной последовательности, с определенной частотой.

Эффект Стэблера-Вронски – Тенденция эффективности преобразования солнечного света в электричество фотоэлектрических устройств на основе аморфного кремния ухудшаться (снижаться) при первоначальном воздействии света.

автономная система – Автономная или гибридная фотоэлектрическая система, не подключенная к сети. Может иметь или не иметь хранилища, но для большинства автономных систем требуются батареи или какой-либо другой вид хранилища.

стандартные условия отчетности (SRC) – Фиксированный набор условий (включая метеорологические), в которые данные электрических характеристик фотоэлектрического модуля переводятся из набора фактических условий испытаний.

стандартные условия испытаний (STC) – Условия, при которых модуль обычно испытывается в лаборатории.

ток в режиме ожидания – Это величина тока (мощности), используемая инвертором при отсутствии активной нагрузки (потеря мощности). КПД инвертора самый низкий при низкой нагрузке.

Монтаж на стойке – Метод монтажа фотоэлектрической батареи на наклонной крыше, который включает установку модулей на небольшом расстоянии над скатной крышей и их наклон под оптимальным углом.

Элемент с недостатком электролита – Батарея, содержащая мало свободного жидкого электролита или не содержащая его совсем.

Состояние заряда (SOC) – Доступная оставшаяся емкость аккумулятора, выраженная в процентах от номинальной емкости.

аккумуляторная батарея – Устройство, способное преобразовывать энергию из электрической в ​​химическую форму и наоборот. Реакции почти полностью обратимы. Во время разряда химическая энергия преобразуется в электрическую и потребляется во внешней цепи или аппарате.

расслоение – Состояние, возникающее при изменении концентрации кислоты в электролите аккумулятора сверху вниз.Периодическая контролируемая зарядка при напряжениях, вызывающих выделение газов, приведет к перемешиванию электролита. См. Также выравнивание .

строка – Ряд фотоэлектрических модулей или панелей, соединенных между собой последовательно для создания рабочего напряжения, необходимого для нагрузки.

Рынки субчасовой энергии – Рынки электроэнергии, работающие с шагом в 5 минут. Приблизительно 60% всей электроэнергии в Соединенных Штатах в настоящее время продается на субчасовых рынках, работающих с 5-минутными интервалами, так что максимальная гибкость может быть получена от парка генераторов.

подложка – Физический материал, на который наносится фотоэлектрический элемент.

подсистема – Любой из нескольких компонентов фотоэлектрической системы (например, массив, контроллер, батареи, инвертор, нагрузка).

сульфатирование – Состояние, поражающее неиспользуемые и разряженные батареи; Вместо обычных крошечных кристаллов на пластине растут крупные кристаллы сульфата свинца, что затрудняет подзарядку аккумулятора.

сверхпроводящий магнитный накопитель энергии (SMES) – технология SMES использует сверхпроводящие характеристики низкотемпературных материалов для создания интенсивных магнитных полей для хранения энергии.Он был предложен в качестве варианта хранения для поддержки широкомасштабного использования фотоэлектрической энергии как средства сглаживания колебаний в выработке электроэнергии.

сверхпроводимость – Резкое и сильное увеличение электропроводности некоторых металлов при приближении температуры к абсолютному нулю.

superstrate – Покрытие на солнечной стороне фотоэлектрического модуля, обеспечивающее защиту фотоэлектрических материалов от ударов и ухудшения окружающей среды, при этом обеспечивая максимальное пропускание соответствующих длин волн солнечного спектра.

Пиковая мощность – Максимальная мощность, обычно в 3-5 раз превышающая номинальную мощность, которую можно обеспечить за короткое время.

доступность системы – Процент времени (обычно выражается в часах в год), в течение которого фотоэлектрическая система сможет полностью удовлетворить потребность в нагрузке.

рабочее напряжение системы – Выходное напряжение фотоэлектрической матрицы под нагрузкой. Рабочее напряжение системы зависит от нагрузки или батарей, подключенных к выходным клеммам.

системный накопитель См. Емкость аккумулятора .

В начало

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie.Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie.Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *