Из каких элементов состоит электрическая цепь: из каких элементов состоит электрическая цепь?

Содержание

Электрическая цепь что такое и из каких элементов состоит

Электрическая цепь – это соединение различных электрических или электронных деталей в одно. Для объединения используются проводники, которые пропускают через себя ток. Сами элементы могут самыми разнообразными – линейными, нелинейными, пассивными или активными. Любая электрическая цепь имеет в себе питание, включатель, провода, потребители тока. Она также должна быть замкнутой, иначе ток не сможет по ней протекать. Не являются электрической цепью заземляющие и зануляющие контуры.

В статье будет описано строение как сложных, так и простейших электрических цепей, как их грамотно создать, а главное обеспечить ее безопасность. В качестве дополнения, статья имеет в себе несколько видеороликов и интересный научный материал по теме.

Простейшая электрическая цепь

Основы электрических цепей

Как вода течет по водопроводу (по трубам, через краны, фильтры, счетчики и т.д.), так же электричество течет по цепи (проводам, электрическим и  электронным компонентам, через штекера и гнезда и т.д.). Электричество является одной из нескольких видов энергии, которая при своем течении может высвобождать свет, тепло, звук, радиоволны, механические движения, электромагнитные поля и т.д. Взять любую электротехнику (компьютер, мобильный телефон, электропечь, телевизор и т.д.), вся она содержит в себе электрические схемы, состоящие из различных электрических цепей, по которым течет ток, и на которых присутствует напряжение определенной величины и полярности.

Давайте более подробно разберем, что же собой представляет электрическая цепь, как именно по ней бежит ток. Итак, электрический ток — это упорядоченное движение электрических заряженных частиц. Напомню, что в твердых телах носителями электрического заряда являются электроны (частицы имеющие отрицательный заряд, он же минус). В жидкостях и газах носителями электрического заряда являются ионы (атомы и молекулы, у которых имеется недостаток электронов на своих орбитах, и имеющие положительный заряд, он же плюс). Чаще всего приходится иметь дело именно с движением электронов по электрической цепи именно в твердотельных проводниках (это металлы, кристаллы).

Сложная электрическая цепь

Электрическая цепь это некий замкнутый путь, по которому течет ток, бегут электрически заряженные частицы. Само перемещение этих частиц можно представить следующим образом. Как вам должно быть известно из уроков по физике все вещества состоят из атомов и молекул (мельчайшая частица самого вещества, его структурная составляющая). В твердых состояниях вещества атомы выстроены в определенном порядке, имеют так называемую кристаллическую решетку. У некоторых веществ электроны, что наиболее удалены от центра атома, могут легко отрываться от своего атома и переходить к соседнему. Так получается движение заряженных частиц внутри самого вещества.

Такие вещества являются проводниками электрического тока. Одни это делают хорошо, другие хуже (проводят ток). Если же взять такое вещество как медь (металл), который достаточно хорошо проводит через себя электричество и сделать из нее проволоку, то в итоге мы получим проводник электрического тока определенной длины.

Еще нужен источник тока, который в зависимости от своего принципа действия может на одном своем полюсе создавать переизбыток отрицательного заряда, а на другом — положительного (он же недостаток отрицательного).

Чтобы пошел ток нужен как бы мостик, соединяющий эти самые противоположные полюса. В роли этого моста, для перехода электрического заряда с одного полюса на другой, и будет выступать замкнутая электрическая цепь, состоящая из различных проводников.

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.

К примеру, мы просто обычной медной проволокой соединим полюса источника питания. В итоге через проволоку потечет ток (тот самый переизбыток электрических зарядов). Это будет, пожалуй, самой простой электрической цепью, которая может только создавать короткое замыкание этого самого источника питания. Но все же это электрическая цепь. Более полезной электроцепью будет такая схема — источник питания (обычная батарейка), провода, переключатель и лампочка (рассчитанная на напряжение источника питания). Когда мы все это соединим друг за другом (последовательно) мы уже получим электрическую цепь, где течение тока будет приносить пользу в виде излучения света электрической лампочкой.

Естественно, подобными простыми электрическими цепями электротехника не ограничивается. Если правильно подключать различные электрические и электронные компоненты между собой, подсоединяя к ним источник питания, создавая различные функциональные схемы, можно в итоге получать все то разнообразие электроустройств, которое мы сейчас имеем. И все они имеют различные по сложности электрические цепи.

Интересно по теме: Как проверить стабилитрон.

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону. Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы.

Первую группу составляют элементы, предназначенные для выработки электроэнергии. Они называются источниками питания.

Вторая группа — элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). Эти элементы называются приемниками электрической энергии (электроприемниками).

В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).

Материал по теме: Как подключить конденсатор

Источники питания цепи постоянного тока — это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные — напряжение и мощность.

Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.

Электрическая цепь и ее элементы.

Графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов, называется схемой электрической цепи. Элементами электрической цепи являются различные электротехнические устройства, которые могут работать в различных режимах.

Режимы работы как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество.

Режим холостого хода — это режим, при котором тока в цепи нет. Такая ситуация может возникнуть при разрыве цепи. Номинальный режим бывает, когда источник питания или любой другой элемент цепи работает при значениях тока, напряжения и мощности, указанных в паспорте данного электротехнического устройства.

Эти значения соответствуют самым оптимальным условиям работы устройства с точки зрения экономичности, надежности, долговечности и пр.Режим короткого замыкания — это режим, когда сопротивление приемника равно нулю, что соответствует соединению положительного и отрицательного зажимов источника питания с нулевым сопротивлением.

Ток короткого замыкания может достигать больших значений, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным.

Согласованный режим источника питания и внешней цепи возникает в том случае, когда сопротивление внешней цепи равно внутреннему сопротивлению.

В этом случае ток в цепи в 2 раза меньше тока короткого замыкания. Самыми распространенными и простыми типами соединений в электрической цепи являются последовательное и параллельное соединение.

Последовательное соединение элементов цепи

В этом случае все элементы подключаются к цепи друг за другом. Последовательное соединение не дает возможности получить разветвленную цепь — она будет неразветвленной. На рис. 1 показан пример последовательного соединения элементов в цепи.

В нашем примере взяты два резистора. Резисторы 1 и 2 имеют сопротивления R1 и R2. Поскольку электрический заряд в этом случае не накапливается (постоянный ток), то при любом сечении проводника за определенный интервал времени проходит один и тот же заряд. Из этого вытекает, что сила тока в обоих резисторах равная:

I = I1 = I2

А вот напряжение на их концах суммируется:

U = U1 + U2

Согласно закону Ома, для всего участка цепи и для каждого резистора в отдельности полное сопротивление цепи будет:

R = R1 + R2

В случае последовательного соединения проводников напряжения и сопротивления можно выразить соотношением:

U1/U2 = R1/R2

Размыкание трехфазного тока.

Параллельное соединение проводников

Когда два проводника соединяются параллельно, электрическая цепь имеет два разветвления. Точки разветвления проводников называют узлами. В них электрический заряд не накапливается, т. е. электрический заряд, поступающий за определенный промежуток времени в узел, равен заряду, уходящему из узла за то же время. Из этого следует, что:

I = I1 + I2

где I — сила тока в неразветвленной цепи.

При параллельном соединении проводников напряжение на них будет одно и то же. Обозначим сопротивления параллельно соединенных двух проводников R1 и R2. Используя закон Ома для участков электрической цепи с данными сопротивлениями, можно выявить, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных проводников, т. е.:

1/R = 1/R1 + 1/R2

Из этого вытекает:

R = R1R2/(R1 + R2)

Данная формула справедлива только для определения общего сопротивления двух проводников, соединенных параллельно. Величину, обратную сопротивлению, называют проводимостью. При параллельном соединении проводников их сопротивления и сила тока связаны соотношением:

I1/I2 = R2/R1

Соединения конденсаторов

У конденсаторов существует также два вида соединения: последовательное и параллельное.

Последовательное соединение. В этом случае обкладка одного конденсатора, заряженная отрицательно, соединена с обкладкой другого конденсатора, заряженного положительно. На рис. 3 показан пример последовательного соединения конденсаторов.

При данном типе соединения действует следующее правило: величина, обратная емкости батареи конденсаторов при последовательном соединении, равна сумме величин, обратных емкостям отдельных конденсаторов. Из этого следует:

1/С = 1/С1 + 1/С2 + 1/С3 + …

При этом типе соединения емкость батареи конденсаторов меньше емкости любого из конденсаторов.

Параллельное соединение. При параллельном соединении конденсаторов положительно заряженные обкладки соединены с положительно заряженными, а отрицательно заряженные — с отрицательными (рис. 4).

В этом случае емкость батареи конденсаторов будет равна сумме электрических емкостей конденсаторов:

С = С1 + С2 + С3 + …

Соединения источников тока

При параллельном способе соединения источников тока соединяют между собой все положительные и все отрицательные полюсы. Напряжение на разомкнутой батарее будет равно напряжению на каждом отдельном источнике, т. е. при параллельном способе соединения ЭДС батареи равна ЭДС одного источника. Сопротивление батареи при параллельном включении источников будет меньше сопротивления одного элемента, потому что в этом случае их проводимости суммируются.

При последовательном соединении источников тока два соседних источника соединяются между собой противоположными полюсами. Разность потенциалов между положительным полюсом последнего источника и отрицательным полюсом первого будет равна сумме разностей потенциалов между полюсами каждого источника.

Из этого вытекает, что при последовательном соединении ЭДС батареи равна сумме ЭДС источников, включенных в батарею. Общее сопротивление батареи при последовательном включении источников равняется сумме внутренних сопротивлений отдельных элементов.

Расчет электрических цепей

Основой расчета электрических цепей является определение силы токов в отдельных участках при заданном напряжении и заранее известном сопротивлении отдельных проводников. Допустим, общее напряжение на концах цепи нам известно. Известны также сопротивления R1, R2 … R6 подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (сопротивление амперметра в расчет не принимается). Следует вычислить силу токов I1, I2, … I6.

В первую очередь, нужно уточнить, сколько последовательных участков имеет данная цепь. Исходя из предложенной схемы, видно, что таких участков три, причем второй и третий содержат разветвления. Допустим, что сопротивления этих участков R1, R’, R”. А значит, все сопротивление цепи можно выразить как сумму сопротивлений участков:

R = R1 + R’ + R”

где R’ — общее сопротивление параллельно соединенных резисторов R2, R3 и R4, a R” — общее сопротивление параллельно соединенных резисторов R5 и R6. Применяя закон параллельного соединения, можно вычислить сопротивления R’ и R”:

1/R’ = 1/R2 + 1/R3 + 1/R4 и 1/R” = 1/R5 + 1/R6

Для того чтобы определить силу тока в неразветвленной цепи с помощью закона Ома, нужно знать общее сопротивление цепи при заданном напряжении. Для этого следует воспользоваться формулой:

I = U/R

Из всего вышеизложенного можно вывести, что I = I1.

Но для определения силы тока в отдельных ветвях следует сначала вычислить напряжение на отдельных участках последовательных цепей. Опять же с помощью закона Ома можно записать:

U1 = IR1; U2 = IR’; U3 = IR”

Теперь, зная напряжение на отдельных участках, можно определить силу тока в отдельных ветвях:

I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6

Бывают случаи, когда нужно вычислить сопротивления отдельных участков цепи по уже известным напряжениям, силе токов и сопротивлении других участков, а также определить нужное напряжение по заданным сопротивлениям и силе токов. Метод расчета электрических цепей всегда одинаков и основан на законе Ома.

Электроцепь

Состав электрической цепи

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.

Устройство электрической цепи

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами. Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток.

Задачу решает электронный блок на основе инвертора. Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет. Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра. К примеру, действующее значение ЭДС.

Выключатель

Рубильник позволит присоединить источник питания к проводам, потребителю. Каждый (за редким исключением) пользовался настенным выключателем. При замыкании-размыкании электрической цепи возникает искра. Объясняется наличием сопротивления емкостного типа. Для предотвращения искрения цепь дополняется дросселем, рубильник сформирован контакторами специального типа. Придуманы прочие технические решения, к примеру, катушка Тесла.

Провода

В технике провода изготавливают медные, алюминиевые. Связано с низким удельным сопротивлением металлов. Цена невысока. Выделяющееся на проводниках тепло определяется двумя параметрами:

  • Сопротивление участка цепи.
  • Электрический ток.

Понятно, второй параметр определяется нуждами потребителей. Поставщик стремится влиять на первый. Удельное сопротивление проводника предвидится по возможности низким. Ученых давно интересует явление сверхпроводимости. Металлы при понижении температуры теряют сопротивление. Уменьшаются потери. Среди полупроводников встречаются образцы с положительным и отрицательным температурным коэффициентом сопротивления. Абсолютное значение параметра металлов на порядки ниже.

Проблема с алюминием, медью проста: при протекании электрического тока в цепи температура растет. Повышается сопротивление участка, дополнительно усугубляя ситуацию. Получается замкнутый круг. Ученые считают: затруднение допустимо исправить, заручившись помощью явления сверхпроводимости.

Металл при некоторой низкой температуре резко, рывком снижает сопротивление, достигая нуля (выше рубежа график понижается плавно со скоростью 1/273 1/град). Проблема практического применения в том, что значения, провоцирующие скачок, низкие. Например, для свинца рубеж составляет 7,2 К. Экстремально низкая отрицательная температура по шкале Цельсия.

Ученые видят решение проблемы в открытии материалов, демонстрирующих явление сверхпроводимости при комнатных температурах. Тогда большие токи удастся передавать потребителям, избежав потерь. В электрической цепи, сформированной сверхпроводниками, заряды способны циркулировать бесконечно длительное время без внешней подпитки источником.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности “Программное обеспечение вычислительной техники и автоматизированных систем”, МИФИ, 2005–2010 гг.

Написано статей

Электрическая цепь представляет собой группу заранее изготовленных элементов, соединенных определенным образом и предназначенных для протекания по ним электрического тока. Разница между активными и пассивными элементами электрической цепи заключается в следующем – активные элементы способны самостоятельно создавать в цепи ток, а пассивные могут только потреблять или накапливать электрическую энергию. Более подробно о создании, строении электроцепей можно узнать из материала Учебное пособие по электротехнике.

Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.electrohobby.ru

www.mukhin.ru

www.websor.rul

www.vashtehnik.ru

Предыдущая

ТеорияЧему равна электроемкость конденсатора?

Следующая

ТеорияЧто такое короткое замыкание

Из каких основных элементов состоит электрическая цепь. Самая простая электрическая цепь и её схема

Человечество давно научилось использовать электрические явления природы в своих практических целях для получения, использования, а также преобразования энергии. Такое действие достигается путем применения определенных устройств. Элементы оборудования в совокупности образуют систему. Такая система известна, как электрическая цепь.

Чтобы сделать вилки в помещениях менее заметными, обычно они устанавливаются примерно на 30 см над полом. Все розетки должны иметь контакт с контактом или контактный контакт. Электрические приборы обычно снабжены универсальными заглушками, которые подходят как для розетки, так и для розетки.

По определению, электрическая цепь представляет собой схему, основным элементом которой является источник или источник тока. Другие возможные компоненты схемы включают резисторы, конденсаторы, катушки, диоды и т.д. эти элементы подключаются к источнику тока с помощью проводов, благодаря чему ток течет от источника.

Элементы цепи

Электрическая цепь содержит в себе такие составляющие, как источники энергии, потребители, а также соединяющие их провода.

Существуют дополнительные приборы цепи, например, выключатели, измерители тока и защитные аппараты.

Источниками энергии в схеме такой цепи выступают аккумуляторы, генераторы тока и гальванические элементы. Их еще называют

Один из способов классификации электрических цепей делит их на. Упорядоченное движение зарядов в проводниках электрическое. Томами, характеризующими ток, являются интенсивность и напряжение. Меньшие единицы также используются: миллиампер и микро-усилитель.

Протекающий ток равен одному амперу А, когда один поперечный разрез проводника течет в течение одной секунды от заряда одного С-шара. Устройство для измерения тока является амперметром. Для правильной работы он должен быть подключен к цепи последовательно и должен иметь небольшое внутреннее сопротивление, чтобы его можно было исключить при расчете. Работа этого устройства заключается в измерении эффектов, вызванных током. В зависимости от типа измеренного эффекта амперметр можно разделить на.

В приемниках электрической цепи электроэнергия преобразовывается в другой тип энергии. Таким оборудованием бывают двигатели, нагреватели, лампы и т. д.

Стоит отметить, что система может быть внешней и внутренней. Они отличаются наличием приемника. Открытая цепь имеет его в своем составе, а закрытая – только

Электрическая цепь постоянного тока

Ток, величина которого не меняется с течением времени, называется постоянным.

Амперметр постоянного тока измеряет мгновенное или малое значение тока. Амперметр Ампер Ампер. Подробнее Иностранный словарный словарь переменного тока измеряет эффективное значение переменного тока. Для каждого из этих амперометров ток с заданным значением интенсивности вызывает максимальное опрокидывание.

Напряжение – это разность потенциалов между двумя точками схемы. Устройство измерения напряжения является вольтметром. Он включается параллельно с токовой цепью. Чтобы хорошо функционировать, его функция должна иметь бесконечно большое внутреннее сопротивление.

Цепь, через которую проходит такой источник электричества, имеет замкнутую систему. Это электрические цепи постоянного тока. Их составляют различные элементы.

Для обеспечения постоянного источника энергии в системе применяются конденсаторы. Они способны накапливать запасы электрических зарядов.

Емкость конденсатора зависит от размера его металлических пластин.

Можно выделить следующие типы вольтметров. Вольтметр измеряет напряжение, т.е. разность потенциалов между двумя точками схемы. Для каждого типа вольтметра напряжение указанного напряжения дает максимальную индикацию счетчика. Единица электрического сопротивления – ом.

Элементы электрической цепи можно комбинировать двумя способами. Один из них – последовательное соединение. В связи с этим электрический ток последовательно проходит через элементы схемы. Поэтому в каждой точке схемы ток те же. Напротив, падение напряжения на каждом из компонентов может быть рассчитано по ранее упомянутому закону Ома.

Чем они больше, тем больший заряд может накопить этот элемент электрической цепи постоянного тока. Электрическую емкость изменяют в таких единицах, как фарада (ф). На схеме этот элемент выглядит следующим образом.

Вместе с источниками и приемниками тока эти элементы образуют электрические цепи постоянного тока.

Поскольку текущий ток должен, в свою очередь, преодолевать сопротивление отдельных компонентов, общее сопротивление схемы в этом случае равно сумме сопротивлений отдельных компонентов. Второй способ подключения компонентов в цепи – подключаться параллельно. Элементы соединены таким образом, что они образуют отдельные ветви. Текучий ток на участке ветвления разделяется на ветви. Ток в ветви будет зависеть от сопротивления. Таким образом, полная интенсивность будет представлять собой сумму интенсивностей в отдельных ветвях.

Взаимосвязь полного сопротивления в этой комбинации равна сумме обратного сопротивления отдельных компонентов. Таким образом, полное сопротивление цепи меньше индивидуальных сопротивлений. Одним из ключевых вопросов при проектировании соединений является изоляция. Таким образом, хорошие электрические свойства достигаются при высоких частотах и ​​температурах.

Последовательное соединение в цепи

Большое количество электрических цепей состоят из нескольких приемников тока. Если эти элементы соединены друг с другом последовательно, то конец одного приемника присоединен к началу другого. Это последовательное соединение системы.

Контактные части покрыты различными материалами, чтобы уменьшить сопротивление соединения. Они включают золото, серебро, медь, никель, полладий и олово. Это покрытие может быть однослойным, сплавным или многослойным. Часто штыри выполнены из золота и никелевого сплава, что обеспечивает не только низкое сопротивление, но также увеличивает механическую прочность и долговременную стабильность. Хотя твердые ножки износостойкие, они характеризуются более высоким контактным сопротивлением при более низких значениях тока.

В разъемах, которые используются в аудиооборудовании, контакты покрыты золотом. Этот материал отличается более низким сопротивлением. Однако в случае переноса более высоких токов внимание уделяется низкой температуре плавления. В этом случае лучше использовать серебро. Обязательно ограничьте прерывность тока в серебряном контакте, так как полученная электрическая дуга может привести к расплавлению серебра.

Сопротивление в этой электрической цепи приравнивается к сумме сопротивлений всех проводников системы. Они удлиняют пути прохождения тока, который будет одинаковым на отдельных участках системы.

Схема электрической цепи в классическом варианте содержит последовательно присоединенные проводники и нагляднее всего описывается таким прибором, как электрогирлянда.

Латунь – это материал, который используется очень часто для производства контактов, как в разъемах, так и в розетках. Однако многие другие материалы также часто используются. Например, фосфор, в отличие от латуни, обладает хорошими весенними свойствами. Для производства высококачественных соединителей также используется бериллиевая медь.

Соединители представляют собой электроизоляционные элементы одно – или многороторные, которые используются для подключения токового тракта двух низковольтных линий электропередачи. Соединение осуществляется с помощью зажимов или других соединительных элементов, расположенных на концах каждой дорожки. Треки расположены на изоляционном основании или на корпусе.

Недостатком такой системы является тот факт, что в случае выхода из строя одного проводника, система не будет работать вся целиком.

Параллельное соединение цепи

Схема электрической цепи параллельного типа соединения элементов является системой, в которой начало содержащихся в ней проводников соединяются в одной точке, а концы их – в другой. Электрический ток в такой электрической системе имеет несколько вариантов пути прохождения. Он распределяется обратнопропорционально сопротивлению приемников энергии.

Важно отметить, что конец прилагаемой многожильной проволоки включает конец гильзы, обжимной наконечник. Терминал также может быть припаян. Если подключено больше кабелей, важно позаботиться о соединителях. Интересные решения также включают системы с реле или с выпрямительными диодами. В многодорожечных муфтах пути резьбы резьбовых муфт или пазов размещены в общем изолирующем корпусе. Важно сохранить расстояния изоляции между клеммами разъема и живыми, заземленными или чувствительными к касанию металлическими деталями.

Кроме того, рынок может приобрести системы с сигнализацией напряжения светодиодов. Также доступны резьбовые соединители с тремя или четырьмя хомутами для электронных компонентов и сигнализации. Соединения могут быть выполнены как с малыми, так и с большими секциями.

Если у потребителей величина сопротивления одинаковая, то через них будет проходить одинаковый ток. В случае когда у одного приемника энергии сопротивление меньше, через него может пройти больше тока, чем через другие элементы системы.

Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока. Сумма отдельно взятых элементов системы будет равна току в точке их соединения.

Могут быть приобретены специальные монорельсовые муфты, которые предназначены для оснащения электронными компонентами пайкой. Кроме того, полезны резьбовые муфты с выемкой или вставкой для плавких вставок и автономных припоев. Некоторые модели разъемов оснащены сигналом с плавким предохранителем. Текущие дорожки в муфтах могут быть отмечены маркерами, расположенными в углублениях корпуса муфты.

При установке промышленных разъемов ручные инструменты, безусловно, будут полезны. Например, экстракторы предназначены для удаления из контактных вставок. Кроме того, стоит позаботиться о прессе, используемом для нажимания контактов в разъемах. Инструмент оснащен механизмом, обеспечивающим повторение зажима контактов на проволоке и механизм для компенсации возможного износа.

Присоединяя к такой цепи новые элементы, сопротивление системы будет уменьшаться. Это связано с увеличением общего сечения проводников при соединении нового потребителя электроэнергии. Позитивной характеристикой такого способа соединения цепи является автономность каждого элемента.

При отключении одного потребителя, совокупное сечение проводников уменьшается, а сопротивление электрической цепи становится большим.

Промышленные разъемы используются в сочетании с проводными и силовыми и управляющими кабелями. Основные характеристики этого типа в основном состоят из материалов, которые обеспечивают не только высокую механическую прочность, но и надежность соединений, а также низкое контактное сопротивление и высокую степень герметичности. Типичный промышленный разъем состоит из мужских и женских контактных вставок, а также переносных и панельных корпусов. Некоторые производители предлагают решения, которые позволяют пользователям выбирать количество контактов, соответствующих конкретному приложению.

Смешанное соединение в цепи

Смешанный вариант соединения довольно распространен в сфере производства электротехники.

Эта цепь содержит в себе одновременно принцип последовательного и параллельного присоединения проводников.

Чтобы определить сопротивление нескольких потребителей такой схемы, находят отдельно сопротивление всех параллельно и последовательно присоединенных проводников. Их приравнивают к единому проводнику, что в итоге упрощает всю схему.

Комбинация вставного корпуса дополняется кабельными сальниками. Контактные вставки также могут быть установлены без корпусов – в разрезанных отверстиях, например, в распределительных шкафах. Как правило, доступны два типа вставок: резьбовые и нажатые. Подчеркивается, что резьбовые вставки допускают множественную проводку и разъединение проводов без использования специальных инструментов. В свою очередь, вставки для пресса по сравнению с резьбовыми вставками имеют больше контактов во вставке того же размера.

Вставки для пресса выполнены из правильных вставок и контактных контактов. Вы также можете приобрести портативный корпус, который предназначен для монтажа на кабеле, а также панельного корпуса, предназначенного для панельного монтажа. Производители предлагают коробки для ящиков, применимые на поверхности или на конструкции.

Режимы работы цепи

Опираясь на показатели нагрузки, различают такие режимы функционирования цепи: номинальный, холостой ход, замыкание и согласование.

При номинальной работе система выполняет характеристики, заявленные в техпаспорте оборудования. Холостой ход образуется в случае обрыва цепи. Этот режим работы относится к аварийным. Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. Это также аварийный режим.

Винты для разъемов предназначены для короткого замыкания резьбовых резьбовых проводников, которые монтируются на монтажных полосах. Не забудьте указать количество коротких разъемов в вашем выборе сфинктера. Стоит позаботиться о маркерах, которые позволяют отмечать каждый трек. Они обычно имеют форму белых полос или желтых профилированных лент с черным оттиском. Маркеры без надпечатки могут быть описаны с помощью ручек. Стоит подчеркнуть, что лента имеет щель, что позволяет отделить отдельные маркеры.

Полезны экраны, монтажные кронштейны, перегородки и обшивка на держателях. Также доступны в качестве аксессуара, концевые пластины для завершения серии разъемов, установленных на профильной полоске 35 мм. На рынке также предлагается соединение соседних дорожек того же размера. Они используются после резкой резки инструментом инструмента.

Согласование характеризуется перемещением наибольшей мощности от источника энергии к проводнику. В таком режиме нагрузка равняется сопротивлению источника питания.

Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования. Данное устройство работы системы применяется к любому электрическому бытовому прибору. Применяя полученные знания, можно понять причину поломки оборудования или оценить правильность его работы в соответствии с техническими характеристиками, заявленными производителем.

Кабельные разъемы также доступны на рынке, характерной особенностью которых является то, что они не требуют несущей рейки. Они устанавливаются винтами прямо на землю. Конструкция обеспечивает ножки и языки, позволяя сборку блоков, состоящих из нескольких разъемов. Каждый разъем полностью изолирован и не требует закрывающей пластины.

Что еще интересного в перекрестке

Также можно приобрести двух – и трехходовые мосты, соединители мостов, а также дополнительные разъемы, зонды, защитные крышки и описательные вывески. Разъемы питания также доступны на рынке. Они являются незаменимым элементом систем распределения электроэнергии. Правда, разъемы могут течь большими токами, но это не означает, что компоненты имеют большой размер. Напротив, мы можем купить высокоточные миниатюрные разъемы. Важной особенностью этих компонентов является высокая нагрузочная способность контактов, рассчитанная на занятый объем компонента.

Электрическая цепь это совокупность устройств, предназначенных для генерирования, передачи, преобразования и использования электрической энергии, процессы в которых могут быть описаны с помощью понятий об электрическом токе, напряжении и ЭДС

В состав электрических цепей (2.2)входит также коммутационная и защитная аппаратура. В состав электрических цепей могут включаться электрические приборы для измерения силы тока, напряжения и мощности.

При описании электрических цепей используют следующие понятия:ветвь электрической цепи, узел электрической цепи, контур, двухполюсник, четырехполюсник.

Ветвь электрической цепи – это участок, элементы которого соединены последовательно. Ток во всех элементах один и тот же.

Узел электрической цепи – это точка соединения трех и болееветвей электрической цепи (2.3).

Контур – это любой путь вдоль ветвей электрической цепи, начинающийся и заканчивающийся в одной и той же точке.

Двухполюсник – это часть электрической цепи с двумя выделенными выводами.

Четырехполюсник – часть электрической цепи с двумя парами выводов.

Режимы работы электрических цепей

Электрическая цепь в зависимости от значения сопротивления нагрузки R может работать в различных характерных режимах:

Номинальный режим – это расчетный режим, при котором элементы цепи (источники, приемники, линия электропередачи) работают в условиях, соответствующих проектным данным и параметрам.

Изоляция источника, линии электропередачи, приемников рассчитана на определенное напряжение, называемое номинальным. Превышение этого напряжения приводит к пробою изоляции, увеличению токов в цепи и другим аварийным последствиям.

Тепловой режим источников или приемников энергии рассчитан на выделение в них определенного количества тепла, то есть на определенную мощность, а последняя зависит от квадрата тока RI 2 , rI 2 .

Расчетный по тепловому режиму ток называется номинальным.

Номинальное значение мощности для источника электрической энергии – это наибольшая мощность, которую источник при нормальных условиях работы может отдать во внешнюю цепь без опасности пробоя изоляции и превышения допустимой температуры нагрева.

Для приемников электрической энергии типа двигателей – это мощность, которую могут развивать на валу при нормальных условиях работы. Для остальных приемников электрической энергии (нагревательные и осветительные приборы) – это их мощность при номинальном режиме. Номинальные значения напряжений, токов и мощностей указывают в паспортах изделий.

Согласованный режим работы – это режим, в котором работает электрическая цепь (источник и приемник), когда сопротивление нагрузки R равна внутреннему сопротивлению источника r. Этот режим характеризуется передачей от данного источника к приемнику максимально возможной мощности. Однако в согласованном режиме К.П.Д.= 0,5 – низкий и для мощных цепей работа в согласованном режиме экономически невыгодна. Согласованный режим применяется, главным образом, в маломощных цепях, если К.П.Д. не имеет существенного значения, а требуется получить в приемнике возможно большую мощность.

Режим холостого хода и короткого замыкания. Эти режимы являются предельными режимами работы электрической цепи.

В режиме холостого хода внешняя цепь разомкнута и ток равен нулю. Так как ток равен нулю, то падение напряжения на внутреннем сопротивлении источника так же равно нулю (rI = 0) и напряжение на выводах источника равно ЭДС (= U). Из этих соотношений вытекает метод измеренияЭДС (2.7)источника: при разомкнутой внешней цепи вольтметром, сопротивление которого можно считать бесконечно большим, измеряют напряжение на его выводах.

В режиме короткого замыкания выводы источника соединены между собой, например, сопротивление нагрузки замкнуто проводником с нулевым сопротивлением. Напряжение на приемнике при этом равно нулю.

Сопротивление всей цепи равно внутреннему сопротивлению источника, и ток короткого замыкания в цепи равен:

I к.з. = / r.

Он достигает максимально возможного значения для данного источника и может вызывать перегрев источника и даже его повреждение. Для защиты источников электрической энергии и питающих цепей от токов короткого замыкания в маломощных цепях устанавливают плавкие предохранители, в более мощных цепях – отключающие автоматические выключатели, а высоковольтных цепях – специальные высоковольтные выключатели.

Элементы электрической цепи

 

Известно, что электрическая цепь представляет собой совокупность различных устройств. Они обеспечивают протекание электрического тока, большинство процессов в них можно охарактеризовать различными величинами, такими, как напряжение, сила тока, сопротивление.

Исходя из вышенаписанного, можно сказать, что электрическая цепь – это совокупность определённых объектов и устройств, которые выступают как «путь» для протекания электрического тока. В электрической цепи могут протекать различные токи, как постоянные, так и переменные. Электрические цепи можно часто встретить в их графическом изображении – электрические схемы, в них указываются все присутствуютвующие в цепи элементы.

Разновидности электрических цепей

Они могут разделяться по своему строению, выделяют два основных вида: разветвлённые и неразветвлённые. Первый вид условно можно отнести к простым видам цепей. В таких электрических цепях протекает одинаковый по силе ток. Разветвлённые цепи отличаются достаточно простым, прямолинейным видом. В них, как правило, небольшое количество элементов.

Однако, и разветвлённые цепи также могут простыми, это совсем не значит, что они сложны по своему строению. Разветвлённость цепи лишь предполагает наличие узлов и ветвей в ней.

Ветвь – это заключённый между двумя узлами участок электрической цепи, элементы которого соединены последовательно. Сила тока в ветвях разветвлённых цепей может быть разная. Узел – место соединения в электрической цепи не менее трех ветвей.

Другой отличительной характеристикой цепей друг от друга, является их линейность или нелинейность. Если в цепи содержатся нелинейные элементы, то и цепь, соответственно, называют нелинейной. К таким элементам можно отнести элементы, которые обладают нелинейными вольт-амперными или кулон-вольтными характеристиками. Если в цепи имеется хотя бы один такой элемент, то и вся цепь относится к категории нелинейных.

Линейные цепи не содержат подобных элементов, в них не содержатся только такие элементы как конденсаторы, резисторы, катушки-индуктивности. Также под линейными цепями могут пониматься цепи, в которых содержаться электронные устройства с определёнными диапазонами характеристик, т. е. эти характеристики линейные. Это могут быть различные усилители, другие устройства с активными элементами и прочее.

Основные группы элементов электрической цепи

Как уже было сказано ранее, в электрической цепи обязательно присутствуют самые различные элементы, несущие свои какие-либо функции. Все их можно условно разделить на 3 группы:


Первая группа элементов – это источники питания. Сюда относятся все устройства, которые служат для питания электрической цепи. Это различные аккумуляторы, гальванические элементы, термоэлектрические и электромеханические генераторы и т. д. Они обеспечивают питание электрической цепи, их особенность в том, что их внутреннее сопротивление невелико, если сравнить его с сопротивлением остальных элементов электрической цепи.

Вторая группа элементов – собственно, нагрузка, включает все устройства, которые преобразуют электрическую энергию в любые другие её виды: механическую, тепловую, световую и т. д. Устройства этой группы также называют электроприёмниками. К электроприёмникам можно отнести различные устройства, механизмы, такие как электродвигатели, осветительные приборы, нагреватели и прочее. Их основные характеристики – это напряжение и мощность. Для того чтобы прибор работал в нормальном режиме, на его концах, клеммах, нужно всегда поддерживать нужное стабильное напряжение.

Третья группа элементов состоит из коммутационных элементов, предназначенных для передачи электрической энергии от источников питания (элементов первой группы) к электроприёмникам (элементам второй группы). Сюда относятся провода, различные устройства, поддерживающие напряжение и силу тока, устройства измерения, защиты и т. д.

Особенности соединения элементов электрической цепи

Разумеется, все элементы электрической цепи взаимодействуют между собой, т. к., обязательно соединены. Выделяют два вида соединений: последовательное и параллельное:

При последовательном подключении все элементы строго идут друг за другом – «конец» одного элемента соединён с «началом» другого, который таким-же образом соединяется со следующим элементом. В этом случае нельзя получить разветвлённую цепь. Параллельная цепь имеет разветвления, так что это более сложная и распространённая электрическая цепь.

Физика – 8

Каждая замкнутая электрическая цепь состоит из двух частей: внешней и внутренней. Внешнюю часть цепи составляют подсоединенные к клеммам источника тока соединительные провода, электрические потребители и измерительные приборы. Внутренняя часть цени находится внутри истопника тока, Если цепь замкнута,то через внешнюю часть цепи проходит ток, который приводит в действие потребители. Использование электрической энергии в цени должно привести к нейтрализации электрических зарядов на полюсах источника, однако это не происходит, так как внутри источника тока происходит непрерывное разделение электрических зарядов и на полюсах постоянно накапливаются заряды разных знаков.

ПРИМЕНИТЕ ИЗУЧЕННОЕ

ИССЛЕДОВАНИЕ-2

  • Нарисуйте схему электрической цепи карманного фонаря

Оборудование: изображение карманного фонаря и разрезе.
Ход работы: используя таблицу 6.1, нарисуйте схему электрической цепи фонаря.
Обсудите результаты исследования:

  • Из каких элементов состоит электрическая цепь карманного фонаря?

КЛЮЧЕВЫЕ СЛОВА
Условное обозначение
Внешняя часть
Элемент
Электрическая цепь
Внутренняя часть
Электрический ток

ЧТО ВЫ УЗНАЛИ?
Одним из необходимых условий существования __ является замкнутость __, через которую проходит ток. Электрическая цепь может состоять из различных __ Элементы, составляющие электрическую цепь, изображаются на схемах __. Замкнутая электрическая цепь состоит из двух частей: __ и __ .

Простейшая электрическая цепь постоянного тока


Простейшая электрическая цепь постоянного тока

Категория:

Сварка металлов



Простейшая электрическая цепь постоянного тока

Для возникновения электрического тока необходимо создать электрическую цепь. Простейшая электрическая цепь постоянного тока состоит из следующих основных элементов: источника электрической энергии, приемника (потребителя) электрической энергии, соединительных проводов. Вспомогательными элементами электрической цепи являются выключатель и электроизмерительные приборы.

В качестве источника электрической энергии использована аккумуляторная батарея, развивающая электродвижущую силу Е и имеющая собственное внутреннее сопротивление г. Потребителем, имеющим сопротивление R, может служить электродвигатель, лампочка, нагревательное устройство и др. Для измерения силы тока и напряжения в цепи имеются амперметр и вольтметр.

Источник электроэнергии, преобразуя другие виды энергии в электрическую, поддерживает электрический ток в цепи. В различных приемниках (потребителях) электроэнергия преобразуется в другие виды энергии — механическую, тепловую, лучистую и др. Соединительные провода служат для передачи электроэнергии от источника к потребителю.

Рис. 1. Участок электрической цепи

В замкнутой электрической цепи сила тока пропорциональна электродвижущей силе источника тока и обратно пропорциональна полному сопротивлению цепи.

Под полным сопротивлением цепи понимается сумма сопротивлений внешнего R и внутреннего г участков цепи. Сопротивление соединительных проводов, как правило, величина небольшая, и ее можно не учитывать. Закон Ома является одним из основных в электротехнике. Пользуясь им и выводами, которые из него следует, можно производить простейшие расчеты электрических цепей.

Закон Ома справедлив не только для полной замкнутое электрической цепи, но и для любого ее участка (рис. 2). Простейшим примером участка цепи является электроутюг, включенный в розетку. В этом случае закон Ома выражает зависимость между силой тока на участке, напряжением (разностью электрических потенциалов) на зажимах (концах) участка и его сопротивлением:

Сила тока пропорциональна напряжению на концах участка цепи и обратно пропорциональна его сопротивлению.

Из закона Ома для участка цепи следует:
1) U, напряжение на концах участка цепи численно равно произведению силы тока на сопротивление участка;
2) R, сопротивление, участка цепи численно равно падению напряжения на этом участие, деленному на силу тока в нем.


Реклама:

Читать далее:
Энергия и мощность электрического тока

Статьи по теме:

Из каких частей состоит электрическая цепь. Электрическая цепь и ее элементы

Электрической цепью называют совокупность устройств, необходимых для прохождения по ним электрического тока.

Предназначение любой электроцепи – доставка электроэнергии потребителю для ее дальнейшего преобразования в механическую, тепловую, электрохимическую энергию или в световое излучение. Понимание простых элементов цепей, их характеристик и величин необходимы для каждого образованного человека. Полученные знания помогут разбираться в электротехнических схемах, делать теоретические расчеты, а в дальнейшем – применять их в быту при ремонте простейшей техники и радиоэлектроники.

Цепи бывают с постоянным и переменным током. Постоянный – имеет постоянную полярность электродвижущей силы и не меняет своего направления. Примером сети постоянного тока может служить электропроводка автомобилей. Переменный ток меняет свое направление. В потребительской сети график зависимости переменного тока от времени имеет вид синусоиды. Полярность меняется 50 раз в секунду. Другими словами – частота тока равна 50 Гц (герц).

Под внешней частью цепи подразумевают провода, выключатели, электробытовые и измерительные приборы. Под внутренней – источники электропитания.

Независимо оттого, из каких частей состоят электрические цепи, их объединяет одно – их составляющие должны производить, передавать или потреблять электричество.

Элементы подразделяются на пассивные и активные. К первым из них относят всё, что потребляет или передает электроэнергию: лампы, нагревательные элементы, электродвигатели и т.д. Ко вторым – источники, вырабатывающие электроэнергию: генераторы, аккумуляторы, солнечные батареи и т.д. Также элементы делятся на двухполюсные (те, которые имеют 2 вывода) и многополюсные (те, которые имеют 4 и более вывода). В качестве примера двухполюсника можно привести резистор. В качестве четырехполюсника – повышающий или понижающий трансформатор.

Обязательными составляющими цепи являются:

  1. Источник (Source) – в большинстве случаев аккумулятор, гальванический элемент или генератор. Изредка – ветрогенераторы и солнечные батареи.
  2. Проводник (Conductor) – необходим для передачи электроэнергии от источника к электропотребителю.
  3. Потребитель электроэнергии (Load, consumer) (чаще всего в быту это осветительные приборы, двигатели, нагревательные приборы, электроника, бытовая техника, такая как компьютеры, пылесосы, стиральные машины).
  4. Замыкающее/размыкающее устройство (Switch) или выключатель.

Основными электроприемниками являются:

  • Резисторы – потребитель, который имеет переменное или постоянное сопротивление.
  • Конденсатор – потребитель, который имеет емкость. Он запасает энергию и имеет возможность ее возвратить.
  • Катушка индуктивности – потребитель, создающий индуктивное поле.
  • Электродвигатель – потребитель, превращающий энергию электронов, двигающихся вдоль проводника, в механическую.

Важно: Электроток протекает лишь по замкнутой цепи. Если ее разомкнуть – движение электронов в ней прекращается.

При чтении схем и расчетах пользуются следующими понятиями: контур, узел и ветвь.

  • Ветвью называют участок с одним или несколькими компонентами, соединенными последовательно.
  • Узлом называют место соединения двух и более ветвей.
  • Контуром называется совокупность ветвей, которые образуют для тока замкнутый путь. При этом один из узлов в контуре должен являться и началом, и концом пути, а остальные узлы должны встречаться не более одного раза.

Облегчить чтение схем можно с помощью вот такой таблички:

Виды цепей

Чтобы успешно пользоваться электросхемами, необходимо иметь представление, какую электрическую цепь называют замкнутой и разомкнутой.

Замкнутой называют непрерывную цепь, состоящую из электроприборов и проводников. Как только она прерывается – становится разомкнутой. В таком состоянии она неспособна проводить ток, хотя в ней может быть напряжение, так как в ней появляется диэлектрик. В подавляющем большинстве случаев в качестве такого диэлектрика выступает обычный атмосферный воздух. На этом принципе работают приборы, предназначенные для размыкания – выключатели, рубильники, предохранители, кнопки.

Неразветвленной называют электрическую цепь, состоящую из источника и последовательно соединенных компонентов. Важнейшим признаком здесь является то, что во всех участках ток имеет одинаковую величину. Разветвленной – имеющую в своем составе одно или несколько параллельно соединенных компонентов.

Каждая может иметь одновременно несколько классификаций и названий:

  • силовой – называют соединение приборов, необходимых для производства, передачи электроэнергии, ее преобразования или потребления;
  • вспомогательной – ту, которая имеет разные функциональные назначения, но которая не является силовой;
  • измерительной – называют необходимую для регистрации параметров сети и включенных в нее приборов;
  • управляющей – называют приводящую в действие приборы или изменяющую их параметры в зависимости от общего предназначения;
  • сигнализирующей называют приводящую в действия сигнальные устройства, показывающие на наличие тех или иных изменений.

Простейшей электрической цепью является источник, соединенный проводниками с электропотребителем, а простой называют любую одноконтурную. Сложными называются цепи, имеющие два и более контура. Они в свою очередь делятся на многоузловые, многоконтурные, объемные и плоскостные.

Физические величины, характеризующие цепь

Величин, которыми можно описать любую электрическую цепь несколько. Основными из них являются:

  1. Напряжение – U (измеряется в вольтах (В)).
  2. Сила тока – I (измеряется в амперах (А)).
  3. Сопротивление – R (измеряется в омах (Ом)).
  4. Мощность – P (измеряется в Ваттах (Вт)).
  5. Ёмкость – С (измеряется в Фарадах (Ф).

Знание формул позволяет проводить практические расчеты. К примеру, сопротивление резистора зависит не только от тока, но и от напряжения. Формула, которая это отражает, называется Законом Ома для участка цепи и выглядит так:

  • I – сила тока;
  • U – напряжение;
  • R – сопротивление.

Данная формула является фундаментальной. Она действует для любой среды и прочих параметров, независимо от различных составляющих и рода приборов.

Если резистор имеет постоянное сопротивление независимо от того, какой ток по нему протекает, он имеет название «линейный элемент».

Когда по резистору протекает ток, его сопротивление увеличивается из-за увеличения колебания на молекулярном уровне кристаллической решетки в проводнике. Колебания мешают движению электронов, и в результате энергия теряется понапрасну. Для того чтобы предотвратить перегорание резистора в цепь последовательно ему часто устанавливают предохранитель. Он содержит внутри легкоплавкий проводник, рассчитанный на перегорание при превышении параметров. Перегорая, предохранитель уберегает от повреждения всю схему и экономит, порой, часы при ремонте, так как поменять предохранитель легче, чем искать поврежденный компонент среди десятков таких же.

Узнать больше об электрических цепях можно с помощью видео:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

ЭЛЕКТРИЧЕСКИЙ ТОК Электрическая цепь и её составные части У читель физики ГБОУ СОШ №966 Никулина Е.В.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ Электрическая цепь – совокупность устройств, по которым течет электрический ток.

Составные части простейшей электрической цепи: Потребитель электрического тока Источник тока Ключ, выключатель Соединительные провода

Устройства, которые используют электрическую энергию, называются потребителями.

Источники тока

Роль выключателя – замыкать и размыкать электрическую цепь.

Источник тока подсоединяют в цепь в последнюю очередь с помощью соединительных проводов. В каждом доме, и квартире, И в любимой вами школе Хорошо известно вам Ток течет по ………..

Электрические схемы Электрические схемы – это чертежи, на которых показано, как электрические приборы соединены в цепь.

1.Источник тока В калькуляторе, в часах Ей везде найдется дело. Плохо, если вдруг она Почему-то сразу села. Ты ответа не жалей-ка что же это?

2 .Батарея источников тока

3 . Лампа Что как солнышко сияет И дорогу освещает? Вот какая лапочка Золотая ………… !

5. Резистор

6. Ключ Он замкнет любую цепь, Невелик он, но могуч! Остановит вмиг конвейер, Даже открывает двери! Что это такое?

Электрическая схема

Техника безопасности Начинаем электричество, с вами дети изучать, Только технику безопасности надо строго соблюдать. Не вставайте из-за парты, есть вопросы, так спроси, Но не Петю и не Сашу, а учителя зови. Все приборы аккуратно на столах своих расставь,

Убедись, что ключ разомкнут и тогда соединяй! Подключая батарейку, на полярность посмотри, Потому что амперметру может и не повезти. Ну а если вы ребята вдруг забудете наказ, То читайте все на стенде еще много-много раз.

Собрать Электрическую цепь по схеме


По теме: методические разработки, презентации и конспекты

Презентация “Электрическая цепь и ее составные части”

Данный материал может быть использован на уроке физики в 8 классе по теме “Электрическая цепь и ее составные части” при изучении или повторении данной темы….

Презентация “Электрическая цепь и её составные части”

Данная презентация предназначена для учащихся 10 класса коррекционной школы I,II вида. Она может быть использована на уроках физики в 8 классе общеобразовательной школы…

Презентация “Физический диктант. Электрическая цепь и её составные части”

Презентация для урока физики в 8 классе “Физический диктант. Электрическая цепь и её составные части”.Диктант содержит не только вопросы о электрических цепях, но и вопросы на повторение.С помощью это…

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Электрические цепи

– это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

– это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.


Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.


Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Урок физики 8 класс

Тема: «Электрическая цепь и ее составные части»

Цели: изучение составных частей электрической цепи, условных обозначений, применяемых на схемах, проводить измерительные и расчетные действия

    Дидактические – создать условия для закрепления учебного материала, используя исследовательские технологии и физический эксперимент;

    Образовательные: продолжить формирование умений и навыков собирать простейшие электрические цепи, а также пользоваться измерительными приборами (амперметром и вольтметром), проводить простейшие математические расчеты

    Воспитательные: продолжить воспитание отношение к физике как к экспериментальной науке; продолжить работу по формированию умений работать в коллективе; закрепить правила техники безопасности при сборке цепи,

    Развивающие: продолжить работу по формированию умений делать выводы и обобщения; продолжить развитие мышления, творческих и исследовательских способностей учащихся. Развивать познавательный интерес к предмету.

Оборудование : компьютер, проектор, источники тока, электрозвонок, провода, ключ, лампочка, амперметр, вольтметр, тестовый материал, таблица,

Ход урока.

1. Организационный момент.

2 Актуализация знаний.

Проверка домашнего задания: тестирование (2 варианта по 5 вопросов).

Вариант 1

1. Электрическим током называют …

а) движение заряженных частиц

б) направленное движение частиц

в) направленное движение заряженных частиц

г) направленное движение электронов

2. При прохождении электрического тока в проводниках перемещаются …

а) только электроны.

б) только протоны.

в) только положительные ионы.

г) только отрицательные ионы.

д) различные заряженные частицы.

3. Как следует поступить, чтобы удалить практически весь заряд с наэлектризованного тела?

а) привести его в соприкосновение с каким-нибудь незаряженным телом

б) соединить это тело проводником с незаряженным металлическим предметом

в) соединить его проводником с Землей

г) прикоснутся к нему телом с зарядом другого знака

4. Каково назначение источника тока?

а) Поддерживать существование в проводнике электрического поля.

б) Создавать электрические заряды в проводнике.

в) Освобождать электроны в проводнике со связи с атомами.

5. Что в гальваническом элементе служит положительным электродом, а что – отрицательным?

а) Положительным – угольный стержень, отрицательным – слой смолы.

б) Положительным – угольный стержень, отрицательным – цинковый сосуд.

в) Положительным – слой смолы, отрицательным – цинковый сосуд.

г) Положительным – угольный стержень, отрицательным – клейстер.

Вариант 2

1. Внутри источника тока …
а) происходит создание зарядов.
б) происходит разделение положительных и отрицательных зарядов.
в) образуется электрический ток.

2. Чтобы в проводнике возник электрический ток необходимо …

а) действие на электроны сил, вызывающих их движение

б) создание в проводнике электрического поля

в) наэлектризовать проводник

3. Какие источники тока используют в мотоциклах?

а) Фотоэлементы.

б) Термоэлементы.

в) Аккумуляторы.

г) Сухие элементы.

4. За счет, какой энергии происходит разделение заряженных частиц в гальваническом элементе?

а) механической б) внутренней

в) энергии химической реакции

г) энергии света

5. Аккумулятор дает электрический ток только после того как …

а) его согрели в теплом помещении

б) наэлектризовали его электроды

в) его зарядили от другого источника тока.

3. Изучение нового материала.

Мотивация : Что необходимо для того, чтобы лампа накаливания давала свет?

Представьте себе, на мгновения в домах гаснут электрические лампы, отключаются телевизоры, прекращается движения электропоездов, троллейбусов, то говорят, что в проводах исчез ток.

Электрический ток – это упорядоченное (направленное) движение заряженных частиц.

Условия возникновения электрического тока:

Наличие проводника;

Наличие электрического поля, создаваемого источником тока, в котором за счет энергии неэлектрического происхождения совершается работа по разделению заряженных частиц;

Наличие замкнутой цепи.

Источники тока используются для проведения тока к потребителям (лампы, плитки, утюги, телевизоры, компьютеры и др. электроприборы). Для того чтобы использовать энергию электрического тока, нужно иметь источник тока .

Телевизоры, компьютеры, лампы накаливания(энергосберегающие), электробытовые приборы называют приемниками или потребителями электрической энергии .

Электрическую энергию нужно доставить до потребителя. Для этого приемник соединяют с источником электрической энергии проводами .

Чтобы включать и выключать в нужное время потребители электрической энергии, применяют ключи, рубильники, кнопки, выключатели , то есть замыкающие и размыкающие устройства.

Демонстрация: продемонстрировать учащимся из лабораторного оборудования источник тока, ключи, потребители, провода.

Чтобы в цепи был ток, она должна быть замкнутой. Если в каком-нибудь месте будет обрыв, то ток в цепи прекратится. На этом основано действие выключателей.

Приборы на схемах обозначают условными знаками.

Заполняем таблицу вместе с учащимися (2 столбца).

Название

Условное обозначение

Изображение

Источник тока


Электрическая лампа


Сопротивление


Соединение проводов


Электрический звонок

Плавкий предохранитель


Нагревательный элемент


Самая простая электрическая цепь состоит из источника тока, потребителя электроэнергии, замыкающего и размыкающего устройства, соединительных проводов.

4. Первичная проверка понимания изученного

1. Основные элементы электрической цепи? (источник тока, потребитель электроэнергии, провода, замыкающие и размыкающие устройства)

2. Сколько у источников тока полюсов? (два: положительный и отрицательный)

3. Какие источники и потребители тока вам известны? (источники: аккумулятор, генератор, гальванический элемент; потребители: электроприборы, лампы).

5. Закрепления изученного (решение задач).

6. Рефлексия : назовите потребители электрической энергии, которые применяются в домашних условиях?

7. Домашнее задание : § 33 Упр. 13 № 2, 3, 5.

Литература:

    Перышкин А.В. Физика 8кл.- Москва: Дрофа, 2009.

    Лукашик В.И., Иванова Е.В. Сборник задач по физике 7-9.- Москва: Просвещение, 2008.

    Чеботарева А.В. Тесты по физике 8 класс. – Москва: Экзамен, 2010.

    Перышкин А.В. Сборник задач по физике 7-9.- Москва: Экзамен, 2010.

    Источники иллюстраций, Интернет-ресурсы: http://class-fizika.narod.ru/

Памятка по технике безопасности при работе с электрическим током.

    Не используйте при сборке электрических цепей провода с повреждённой изоляцией с видимыми повреждениями.

    Следите за исправностью всех креплений в приборах и приспособлениях.

    При сборке электрических цепей избегайте пересечения проводов.

    Источники тока подключайте в последнюю очередь.

    Все исправления в цепях проводите при отключенном источнике тока.

    Не прикасайтесь к вращающимся частям электрических машин.

    Не определяйте наличие тока в цепи на ощупь.

    Не прикасайтесь к проводам, свисающим со столбов, стен, торчащим из земли – они могут находиться под током.

Задания по сборке цепей:

а) Соберите цепь, состоящую из источника, звонка, ключа. Нарисуйте схему.

б) Соберите цепь, состоящую из источника, электрического двигателя, ключа. Нарисуйте схему.

в) Соберите цепь, состоящую из источника, двух ламп, ключа, так, чтобы ключ включал обе лампы. Нарисуйте схему.

г) Соберите цепь, состоящую из источника, двух ламп, двух ключей, так, чтобы ключи включали лампы по отдельности. Нарисуйте схему.

д) Соберите цепь, состоящую из источника, двух ламп, двух ключей, так, чтобы ключи включали лампы по отдельности. Нарисуйте схему.

е) Соберите цепь, состоящую из источника, лампы, звонка, ключа, так, чтобы ключ включал звонок и лампу вместе. Нарисуйте схему.

ё) Соберите цепь, состоящую из источника, двух электрических двигателей, двух ключей, так, чтобы ключи включали двигатели по отдельности. Нарисуйте схему.

Из каких элементов состоит электрическая цепь

Инструкция

Элементами цепи называют ее отдельные части, выполняющие определенные функции, среди них есть источники и приемники электрической энергии и сигналов. Генераторами являются различные электротехнические устройства, производящие энергию, а приемниками — устройства ее потребляющие.

Каждый элемент цепи соединяется с другими при помощи зажимов, так называемых полюсов. Выделяют двухполюсные и многополюсные элементы. К первым относят источники энергии, кроме тех, которые являются управляемыми и многофазными, а также конденсаторы, катушки индуктивности и резисторы. Различные усилители, трансформаторы и триоды относятся к многополюсным элементам.

Все элементы, входящие в электрическую цепь, можно условно разделить на пассивные и активные. К первым относятся элементы, в которых энергия рассеивается или накапливается. Рассеивается она в резисторах, а накапливается в конденсаторах и катушках индуктивности. Активными называют элементы цепи, содержащие источник электрической энергии в своей структуре.

Главными характеристиками элементов являются их кулон-вольтные, вольт-амперные и вебер-амперные показатели, их описывают дифференциальные и алгебраические уравнения. Если данные уравнения линейные, то элемент относят к классу линейных, в противном случае — к нелинейным. Цепи, которые содержат только линейные элементы, называют линейными. Если в схеме есть хотя бы один нелинейный элемент, ее относят к нелинейным.

Резистор характеризуется его резистивным сопротивлением, которое определяется свойствами материала, из которого он изготовлен, а также геометрическим размерами. Свойства материала принято описывать при помощи удельного сопротивления и его обратной величины — удельной проводимости. В общем случае можно определить сопротивление резистора, если провести расчет поля в проводящей среде, которая разделяет два электрода.

Наиболее важной характеристикой резистора является вольт-амперная зависимость. Если она представляет собой прямую линию, проходящую через начало координат, то резистивный элемент считают линейным.

Катушка относится к пассивным элементам, ее характеристикой является индуктивность. Для того чтобы рассчитать индуктивность катушки, нужно определить созданное ею магнитное поле. Индуктивность равна отношению потокосцепления к току, который протекает по виткам катушки.

Простая схема

Простая схема

Понимание основ работы с автомобильной электрической системой важно для ваших базовых навыков и помогает вам выявлять первопричины и устранять электрические неисправности. Следующая информация поможет вам изучить элементы электричества, определить методы понимания цепей, сопротивления, нагрузки, проверить напряжение холостого хода или доступное напряжение, а также падение напряжения.

Помните о трех элементах электричества; напряжение, сила тока и сопротивление.Напряжение (иногда называемое электродвижущей силой) – это представление электрической потенциальной энергии между двумя точками в электрической цепи, выраженное в вольтах. Подумайте о напряжении как об электрическом давлении, которое существует между двумя точками в проводнике, или о силе, которая заставляет электроны двигаться в электрической цепи. Другими словами, это давление или сила, которые заставляют электроны двигаться в определенном направлении внутри проводника. Когда электроны перемещаются из отрицательно заряженной области в положительно заряженную область, это движение электронов между атомами называется электрическим током.Электрический ток – это мера потока этих электронов через проводник или электричества, протекающего в цепи или электрической системе. Если вы подумаете о садовом шланге в качестве примера, ток – это количество воды, протекающей через шланг. Напряжение – это величина давления, под которым вода проходит через шланг.

Этот поток электронов измеряется в единицах, называемых амперами. Амперы или ампер – это единица измерения силы или скорости протекания электрического тока. Электрическое сопротивление описывает величину сопротивления протеканию тока.Чем больше значение сопротивления, тем больше он борется. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи. Это сопротивление или противодействие тока измеряется в Ом. Один вольт – это величина давления, необходимая для того, чтобы пропустить один ампер тока через один ом сопротивления в цепи.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ

Цепь – это законченный путь, по которому течет электричество. Основными элементами базовой электрической цепи являются: источник, нагрузка и заземление.Электричество не может течь без источника питания (батареи), нагрузки (лампочка или резистор-электрическое устройство / компонент) и замкнутого проводящего пути (соединяющих его проводов). Электрические цепи состоят из проводов, соединителей проводов, переключателей, устройств защиты цепей, реле, электрических нагрузок и заземления. Схема, показанная ниже, имеет источник питания, предохранитель, выключатель, лампу и провода, соединяющие их в петлю. Когда соединение завершено, ток течет от положительной клеммы батареи через цепь к отрицательной клемме батареи.

В замкнутой цепи напряжение источника обеспечивает электрическое давление, проталкивающее ток через цепь. Сторона источника цепи включает в себя все части цепи между положительным полюсом батареи и нагрузкой. Нагрузка – это любое устройство в цепи, которое производит свет, тепло, звук или электрическое движение при протекании тока. Нагрузка всегда имеет сопротивление и потребляет напряжение только при протекании тока. В приведенном ниже примере один конец провода от второй лампы возвращает ток в аккумулятор, поскольку он подключен к кузову или раме транспортного средства.Корпус или рама работают как заземление (то есть часть цепи, которая возвращает ток к батарее).

ТРЕБОВАНИЯ К ЦЕПИ

Полная электрическая цепь необходима для практического использования электричества. Электроны должны течь от источника питания и возвращаться к нему. Соединяя отрицательный и положительно заряженный концы источника питания с проводником, мы получаем потенциал движения электронов. Таким образом, полная цепь – это «путь» или петля, которая позволяет электричеству (току) протекать через нее.Но чтобы заставить этот контур или схему работать на нас, нам нужно добавить две вещи: источник питания (аккумулятор или генератор переменного тока) и нагрузку (пример – фары). После того, как электричество выполнило свою работу через Нагрузку, оно должно вернуться обратно к Источнику (Батареи). Если у вас где-то в этой цепи произойдет обрыв, у вас будет разрыв электрического тока. Это также известно как «разомкнутая цепь». Напряжение холостого хода измеряется при отсутствии тока в цепи.

Типы цепей

Существует три основных типа цепей: последовательные, параллельные и последовательно-параллельные.Отдельные электрические цепи обычно объединяют одно или несколько устройств сопротивления или нагрузки. Конструкция автомобильной электрической цепи будет определять, какой тип цепи используется, но все они требуют одинаковых основных компонентов для правильной работы:

1. Источник питания (аккумулятор, генератор, генератор и т. Д.) Необходим для обеспечения потока электронов (электричества).

2. Защитное устройство (предохранитель, плавкая вставка или автоматический выключатель) предотвращает повреждение цепи в случае короткого замыкания.

3. Управляющее устройство (переключатель, реле или транзистор) позволяет пользователю управлять включением или выключением цепи.

4. Нагрузочное устройство (лампа, двигатель, обмотка, резистор и т. Д.). Преобразует электричество в работу.

5. Проводник (обратный путь, заземление) обеспечивает электрический путь к источнику питания и от него.

Цепи серии

Компоненты последовательной цепи соединены встык друг за другом, чтобы образовалась простая петля для прохождения тока через цепь.Последовательная цепь имеет только один путь к земле, все нагрузки размещены последовательно, поэтому ток должен проходить через каждый компонент, чтобы вернуться на землю. Если в цепи есть разрыв (например, перегоревшая лампочка), вся цепь и любые другие лампочки гаснут. Если путь прерван, ток не течет, и никакая часть цепи не работает. Рождественские огни – хороший тому пример; когда гаснет одна лампочка, вся струна перестает работать.

Параллельные схемы

Параллельная цепь имеет более одного пути для прохождения тока.На каждую ветвь подается одинаковое напряжение. Если сопротивление нагрузки в каждой ветви одинаково, ток в каждой ветви будет одинаковым. Если сопротивление нагрузки в каждой ветви разное, ток в каждой ветви будет разным. Компоненты параллельной цепи соединены бок о бок, поэтому для протекания тока можно выбирать пути в цепи. Если одна ветвь сломана, ток продолжит течь к другим ветвям.

В приведенной ниже параллельной цепи два или более сопротивления (R1, R2 и т. Д.) соединены в цепь следующим образом: один конец каждого сопротивления подключен к положительной стороне цепи, а один конец подключен к отрицательной стороне.

Последовательно-параллельные схемы

Последовательно-параллельная схема включает некоторые компоненты, включенные последовательно, а другие – параллельно. Источник питания и устройства управления или защиты обычно включены последовательно; нагрузки обычно параллельны. Если последовательный участок прерывается, ток перестает течь по всей цепи.Если параллельная ветвь разорвана, ток продолжает течь в последовательной части и оставшихся ветвях.

Внутреннее освещение приборной панели – хороший пример соединения резисторов и ламп в последовательно-параллельную цепь. В этом примере, регулируя реостат, вы можете увеличить или уменьшить яркость света.

Диагностические схемы

Проблемы с электрической цепью обычно вызваны неисправным компонентом или низким или высоким сопротивлением в цепи.

Низкое сопротивление в цепи, как правило, может быть вызвано коротким замыканием компонента или замыканием на землю и, как правило, приводит к перегоранию предохранителя, плавкой вставки или автоматического выключателя.

Высокое сопротивление в цепи может быть вызвано коррозией или разрывом на стороне источника или на стороне заземления. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи.

УСТРОЙСТВА ЗАЩИТЫ ЦЕПИ

Устройства защиты цепей используются для защиты проводов и разъемов от повреждения избыточным током, вызванным перегрузкой по току или коротким замыканием.Избыточный ток вызывает чрезмерное нагревание, что может вызвать «разрыв цепи» защиты цепи. Предохранители, плавкие вставки и автоматические выключатели используются в качестве устройств защиты цепей. Устройства защиты цепей доступны в различных типах, формах и определенных номинальных токах.

Предохранители

Предохранитель

A является наиболее распространенным типом устройств защиты от сверхтоков. В электрическую цепь вставлен предохранитель, который получает такое же электрическое питание, что и защищаемая цепь.Короткое замыкание или заземление позволяет току течь на землю до того, как он достигнет нагрузки. Поэтому, когда подается слишком большой ток, превышающий номинал предохранителя, он «перегорает» или «перегорает», потому что металлический провод или плавкий элемент в предохранителе плавится. Это размыкает или прерывает цепь и предотвращает повреждение проводов, разъемов и электронных компонентов схемы перегрузкой по току. Размер металлического плавкого элемента (или плавкой вставки) определяет его номинал.

Помните, что чрезмерный ток вызывает избыточное тепло, и именно тепло, а не ток вызывает размыкание цепи защиты.Как только предохранитель «перегорел», его необходимо заменить новым. После того, как вы определили, что предохранитель перегорел, наиболее важным элементом является обеспечение замены предохранителя с той же номинальной силой тока, что и перегоревший. Максимальная нагрузка на один предохранитель не должна превышать семидесяти процентов от номинала предохранителя. Обычно следует выбирать предохранитель с номиналом, немного превышающим нормальный рабочий ток (сила тока), который может использоваться при любом напряжении ниже номинального напряжения предохранителя. Если новый предохранитель тоже перегорел, значит, в цепи что-то не так.Проверьте проводку к компонентам, выходящим из строя сгоревший предохранитель. Ищите плохие соединения, порезы, разрывы или шорты.

Предохранители

имеют разные характеристики время-токовой нагрузки для конечного времени работы при использовании и для скорости, с которой плавкий элемент перегорает в ответ на состояние перегрузки по току. Со временем нормальные скачки напряжения могут вызвать усталость предохранителей, что может привести к перегоранию предохранителя даже при отсутствии неисправности. На предохранителях всегда указывается номинальный ток в амперах, на который они рассчитаны в непрерывном режиме при стандартной температуре.

Расположение предохранителей

Предохранители расположены по всему автомобилю. Обычное расположение включает в себя моторный отсек, под приборной панелью за левой или правой панелью для ног или под IPDM. Предохранители обычно сгруппированы вместе и часто смешиваются с другими компонентами, такими как реле, автоматические выключатели и элементы предохранителей.

Крышки блока предохранителей

Крышки блока предохранителей / реле обычно маркируют расположение и положение каждого предохранителя, реле и элемента предохранителя, содержащегося внутри.

Типы предохранителей

Предохранители подразделяются на основные категории: предохранители ножевого типа и патронные предохранители старого образца. Используются несколько вариаций каждого из них.

Общие типы предохранителей

Лопастной предохранитель и плавкий элемент на сегодняшний день являются наиболее часто используемыми. Предохранители ножевого типа имеют пластиковый корпус и два штыря, которые вставляются в гнезда и могут быть установлены в блоки предохранителей, линейные держатели предохранителей или зажимы предохранителей. Существуют три различных типа плавких предохранителей; предохранитель Maxi, предохранитель Standard Auto и предохранитель Mini.

Базовая конструкция

Предохранитель плоского типа представляет собой компактную конструкцию с металлическим элементом и прозрачным изоляционным корпусом, который имеет цветовую кодировку для каждого номинального тока. (Стандартный автоматический режим показан ниже; однако конструкция предохранителей Mini и Maxi одинакова.)

Номинальный ток предохранителя, сила тока

Номинальные значения силы тока предохранителя для предохранителей Mini и Standard Auto идентичны. Однако для определения номинальной силы тока предохранителей макси используется другая схема цветовой кодировки.

Плавкие вставки и элементы предохранителей

Плавкие вставки делятся на две категории: патрон плавкого элемента и плавкая вставка. Конструкция и принцип действия плавких вставок и элементов предохранителей аналогичны плавким предохранителям. Основное отличие состоит в том, что плавкая вставка и плавкий элемент используются для защиты электрических цепей с более высоким током, обычно цепей на 30 ампер или более. Как и в случае с предохранителями, при перегорании плавкой вставки или плавкого элемента его необходимо заменить новым.Плавкие вставки защищают цепи между аккумулятором и блоком предохранителей.

Плавкие вставки

Плавкие вставки – это короткие отрезки проволоки меньшего диаметра, предназначенные для плавления при перегрузке по току. Плавкая вставка обычно на четыре (4) сечения провода меньше, чем цепь, которую она защищает. Изоляция плавкой вставки – специальный негорючий материал. Это позволяет проводу расплавиться, но изоляция останется нетронутой в целях безопасности. Некоторые плавкие ссылки имеют на одном конце тег, который указывает их рейтинг.Как и предохранители, плавкие вставки необходимо заменять после того, как они «перегорели» или расплавились. Многие производители заменили плавкие вставки предохранителями или предохранителями Maxi.

Картридж с предохранителем

Предохранители, плавкая вставка картриджного типа, также известна как предохранители Pacific. Элемент имеет клеммную и плавкую части как единое целое. Элементы предохранителя почти заменили плавкую перемычку. Они состоят из корпуса, в котором находятся клемма и предохранитель.Картриджи с плавкими предохранителями имеют цветовую маркировку для каждой силы тока. Хотя элементы предохранителей доступны в двух физических размерах и могут быть вставлены или закреплены на болтах, вставной тип является наиболее популярным.

Конструкция картриджа с плавким предохранителем

Конструкция элемента предохранителя довольно проста. Цветной пластиковый корпус содержит элемент термозакрепления, который виден через прозрачный верх. Номиналы предохранителей также указаны на корпусе.

Цветовая маркировка элемента предохранителя

Номинальные значения силы тока предохранителя

приведены ниже.Плавкая часть элемента предохранителя видна через прозрачное окошко. Номинальные значения силы тока также указаны на предохранительном элементе.

Плавкие элементы

Плавкие элементы часто располагаются рядом с аккумулятором сами по себе.

Плавкие элементы также могут располагаться в блоках реле / ​​предохранителей в моторном отсеке.

Автоматические выключатели

Автоматические выключатели используются вместо предохранителей для защиты сложных силовых цепей, таких как электрические стеклоподъемники, люки на крыше и цепи обогревателя.Существует три типа автоматических выключателей: тип с ручным сбросом – механический, тип с автоматическим сбросом – механический и твердотельный с автоматическим сбросом – PTC. Автоматические выключатели обычно располагаются в блоках реле / ​​предохранителей; однако в некоторые компоненты, такие как двигатели стеклоподъемников, встроены автоматические выключатели.

Конструкция автоматического выключателя (ручного типа)

Автоматический выключатель в основном состоит из биметаллической ленты, соединенной с двумя выводами и контактом между ними.Ручной автоматический выключатель при срабатывании (ток превышает номинальный) размыкается и должен быть сброшен вручную. Эти ручные автоматические выключатели называются автоматическими выключателями «без цикла».

Автоматический выключатель (ручной тип)

Автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой. Эта полоса имеет форму диска и вогнута вниз. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно.Полоса изгибается или деформируется вверх, и контакты размыкаются, чтобы остановить прохождение тока. Автоматический выключатель можно сбросить после срабатывания.

Ручной сброс Тип

Когда автоматический выключатель размыкается из-за перегрузки по току, автоматический выключатель требует сброса. Для этого вставьте небольшой стержень (канцелярскую скрепку), чтобы переустановить биметаллическую пластину, как показано.

Тип с автоматическим сбросом – механический

Автоматические выключатели с автоматическим сбросом называются «циклическими» выключателями.Этот тип автоматического выключателя используется для защиты сильноточных цепей, таких как дверные замки с электроприводом, электрические стеклоподъемники, кондиционер и т. Д. Автоматический выключатель с автоматическим возвратом в исходное положение содержит биметаллическую полосу. Биметаллическая полоса будет перегреваться и открываться из-за перегрузки по току и автоматически сбрасывается, когда температура биметаллической ленты остывает.

Устройство и работа с автоматическим сбросом

Циклический автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой.Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается вверх, и набор контактов размыкается, чтобы остановить прохождение тока. При отсутствии тока биметаллическая полоса охлаждается и возвращается к своей нормальной форме, замыкая контакты и возобновляя прохождение тока. Автоматические выключатели с автоматическим возвратом в исходное состояние считаются «циклическими», потому что они циклически размыкаются и замыкаются, пока ток не вернется к нормальному уровню.

Твердотельный тип с автоматическим сбросом – PTC

Полимерный прибор с положительным температурным коэффициентом (PTC) известен как самовосстанавливающийся предохранитель.

Полимерный PTC – это специальный тип автоматического выключателя, называемый термистором (или терморезистором). Термистор PTC увеличивает сопротивление при повышении температуры. PTC, которые сделаны из проводящего полимера, представляют собой твердотельные устройства, что означает, что они не имеют движущихся частей. PTC обычно используются для защиты электрических цепей стеклоподъемников и дверных замков.

Конструкция и эксплуатация полимеров PTC

В нормальном состоянии материал полимерного ПТК имеет форму плотного кристалла с множеством частиц углерода, упакованных вместе.Углеродные частицы обеспечивают проводящие пути для прохождения тока. Это сопротивление низкое. Когда материал нагревается от чрезмерного тока, полимер расширяется, разрывая углеродные цепи. В этом расширенном «отключенном» состоянии есть несколько путей для тока. Когда ток превышает порог срабатывания, устройство остается в состоянии «разомкнутой цепи» до тех пор, пока на цепь остается поданное напряжение. Он сбрасывается только при снятии напряжения и остывании полимера. PTC используются для защиты электрических цепей стеклоподъемников и дверных замков.

УСТРОЙСТВА УПРАВЛЕНИЯ

Управляющие устройства используются для «включения» или «выключения» протекания тока в электрической цепи. Устройства управления включают в себя различные переключатели, реле и соленоиды. Электронные устройства управления включают конденсаторы, диоды и переключающие транзисторы. Коммутационные транзисторы действуют как переключатель или реле с электронным управлением. Преимущество транзистора – это скорость открытия и закрытия цепи.

Управляющие устройства необходимы для запуска, остановки или перенаправления тока в электрической цепи.Устройство управления или переключатель позволяет включать или выключать электричество в цепи. Выключатель – это просто соединение в цепи, которое можно разомкнуть или замкнуть. Большинству переключателей для работы требуется физическое движение, в то время как реле и соленоиды работают с электромагнетизмом.

Коммутаторы

  • Однополюсный односторонний (SPST)
  • Однополюсный, двусторонний (SPDT)
  • Многополюсный многопозиционный переключатель (MPMT или групповой переключатель)
  • Мгновенный контакт
  • Меркурий
  • Температура (биметалл)
  • Задержка по времени
  • Мигалка
  • РЕЛЕ
  • СОЛЕНОИДЫ

Переключатель – это наиболее распространенное устройство управления цепями.Переключатели обычно имеют два или более набора контактов. Размыкание этих контактов называется «разрывом» или «размыканием» цепи, замыкание контактов называется «замыканием» или «завершением» цепи.

Переключатели описываются количеством полюсов и ходов, которые они имеют. «Полюса» относятся к количеству клемм входной цепи, а «Броски» относятся к количеству клемм выходной цепи. Переключатели называются SPST (однополюсные, однополюсные), SPDT (однополюсные, двухходовые) или MPMT (многополюсные, многоходовые).

Однополюсный одинарный бросок (SPST)

Самый простой тип переключателя – переключатель «шарнирная защелка» или «лезвие ножа». Он либо «завершает» (включает), либо «размыкает» (выключает) цепь в одной цепи. Этот переключатель имеет один входной полюс и один выходной ход.

Однополюсный, двойной бросок (SPDT)

Однополюсный входной двухпозиционный выходной переключатель имеет один провод, идущий к нему, и два выходных провода. Переключатель света фар является хорошим примером однополюсного двухпозиционного переключателя.Переключатель диммера фары посылает ток либо в дальний, либо в ближний свет цепи фары.

Многополюсная многоточечная (MPMT)

Многополюсный вход, многополюсные выходные переключатели, также известные как «групповые» переключатели, имеют подвижные контакты, подключенные параллельно. Эти переключатели перемещаются вместе для подачи тока на разные наборы выходных контактов. Выключатель зажигания – хороший пример многополюсного многопозиционного переключателя. Каждый переключатель посылает ток из разных источников в разные выходные цепи одновременно в зависимости от положения.Пунктирная линия между переключателями указывает, что они движутся вместе; один не будет двигаться без движения другого.

Мгновенный контакт

Переключатель мгновенного действия имеет подпружиненный контакт, который не позволяет ему замкнуть цепь, кроме случаев, когда на кнопку прикладывается давление. Это «нормально открытый» тип (показан ниже). Выключатель звукового сигнала является хорошим примером переключателя с мгновенным контактом. Нажмите кнопку звукового сигнала и раздастся звуковой сигнал; отпустите кнопку, и звуковой сигнал прекратится.

Вариантом этого типа является нормально закрытый (не показан), который работает наоборот, как описано выше. Пружина удерживает контакты в замкнутом состоянии, кроме случаев, когда кнопка нажата. Другими словами, цепь находится в состоянии «ВКЛ» до тех пор, пока не будет нажата кнопка для разрыва цепи.

Меркурий

Ртутный выключатель представляет собой герметичную капсулу, частично заполненную ртутью. На одном конце капсулы расположены два электрических контакта. Когда переключатель вращается (перемещается из истинной вертикали), ртуть течет к противоположному концу капсулы с контактами, замыкая цепь.Ртутные переключатели часто используются для обнаружения движения, например, тот, который используется в моторном отсеке на светофоре. Другие применения включают отключение подачи топлива при опрокидывании и некоторые приложения для датчиков подушки безопасности. Ртуть – опасные отходы, с которыми следует обращаться осторожно.

Температурный биметаллический

Термочувствительный переключатель, также известный как «биметаллический» переключатель, обычно содержит биметаллический элемент, который изгибается при нагревании, замыкая контакт, замыкая цепь, или размыкая контакт, размыкая цепь.В реле температуры охлаждающей жидкости двигателя, когда охлаждающая жидкость достигает предела температуры, биметаллический элемент изгибается, вызывая замыкание контактов в переключателе. Это замыкает цепь и загорается предупреждающий индикатор на панели приборов.

Время задержки

Выключатель с выдержкой времени содержит биметаллическую полосу, контакты и нагревательный элемент. Переключатель задержки времени нормально замкнут. Когда ток течет через переключатель, ток течет через нагревательный элемент, вызывая его нагрев, в результате чего биметаллическая полоса изгибается и размыкает контакты.Поскольку ток продолжает течь через нагревательный элемент, биметаллическая полоса остается горячей, сохраняя контакты переключателя открытыми. Время задержки перед размыканием контактов определяется характеристиками биметаллической ленты и количеством тепла, выделяемого нагревательным элементом. Когда питание выключателя отключается, нагревательный элемент охлаждается, и биметаллическая полоса возвращается в исходное положение, а контакты замыкаются. Обычное применение переключателя с задержкой времени – обогреватель заднего стекла.

Мигалка

Мигающий сигнал работает в основном так же, как переключатель задержки времени; кроме случаев, когда контакты размыкаются, ток перестает течь через нагревательный элемент. Это вызывает охлаждение нагревательного элемента и биметаллической ленты. Биметаллическая полоса возвращается в исходное положение, замыкая контакты, позволяя току снова проходить через контакты и нагревательный элемент. Этот цикл повторяется снова и снова, пока не будет отключено питание мигающего устройства. Обычно этот тип переключателя используется для включения сигналов поворота или четырехпозиционного указателя поворота (аварийных фонарей).

Реле

Реле – это просто переключатель дистанционного управления, который использует небольшой ток для управления большим током. Типичное реле имеет как цепь управления, так и цепь питания. Конструкция реле содержит железный сердечник, электромагнитную катушку и якорь (набор подвижных контактов). Существует два типа реле: нормально разомкнутые (показаны ниже) и нормально замкнутые (НЕ показаны). У нормально разомкнутого (Н.C.) реле имеет контакты, которые «замкнуты» до тех пор, пока реле не сработает.

Работа реле

Ток протекает через управляющую катушку, которая намотана на железный сердечник. Железный сердечник усиливает магнитное поле. Магнитное поле притягивает верхний контактный рычаг и тянет его вниз, замыкая контакты и позволяя мощности от источника питания поступать на нагрузку. Когда катушка не находится под напряжением, контакты разомкнуты, и питание на нагрузку не поступает.Однако, когда переключатель схемы управления замкнут, ток течет к реле и питает катушку. Возникающее магнитное поле тянет якорь вниз, замыкая контакты и позволяя подавать питание на нагрузку. Многие реле используются для управления большим током в одной цепи и низким током в другой цепи. Примером может служить компьютер, который управляет реле, а реле управляет цепью более высокого тока.

Соленоиды – тянущие, тип

Соленоид – это электромагнитный переключатель, который преобразует ток в механическое движение.Когда ток течет через обмотку, создается магнитное поле. Магнитное поле притянет подвижный железный сердечник к центру обмотки. Этот тип соленоида называется соленоидом «тянущего» типа, поскольку магнитное поле втягивает подвижный железный сердечник в катушку. Обычно тянущие соленоиды используются в пусковой системе. Соленоид стартера соединяет стартер с маховиком.

Работа вытяжного типа

Когда ток течет через обмотку, создается магнитное поле.Эти магнитные силовые линии должны быть как можно меньше. Если рядом с катушкой, по которой протекает ток, поместить железный сердечник, магнитное поле будет растягиваться, как резинка, протягиваясь и втягивая железный стержень в центр катушки.

Работа толкающего / толкающего типа

В соленоиде двухтактного типа в качестве сердечника используется постоянный магнит. Поскольку «одинаковые» магнитные заряды отталкиваются, а «непохожие» магнитные заряды притягиваются, при изменении направления тока, протекающего через катушку, сердечник либо «втягивается», либо «выталкивается наружу».«Обычно этот тип соленоида используется в электрических дверных замках.

УСТРОЙСТВА НАГРУЗКИ

Любое устройство, такое как лампа, звуковой сигнал, электродвигатель стеклоочистителя или обогреватель заднего стекла, потребляющее электричество, называется нагрузкой. В электрической цепи все нагрузки считаются сопротивлением. Нагрузки расходуют напряжение и контролируют величину тока, протекающего в цепи. Нагрузки с высоким сопротивлением вызывают протекание меньшего тока, в то время как нагрузки с более низким сопротивлением позволяют протекать большим токам.

Фары

Фонари бывают разной мощности, чтобы излучать больше или меньше света. Когда лампы соединяются последовательно, они разделяют доступное напряжение в системе, и излучаемый свет уменьшается. Когда лампочки расположены параллельно, каждая лампочка имеет одинаковое количество напряжения, поэтому свет будет ярче.

Двигатели

Двигатели используются в различных системах автомобиля, включая сиденья с электроприводом, дворники, систему охлаждения, системы отопления и кондиционирования воздуха.Двигатели могут работать на одной скорости, например, сиденья с электроприводом, или на нескольких скоростях, например, двигатель вентилятора системы отопления и кондиционирования воздуха. Когда двигатели работают на одной скорости, на них обычно подается системное напряжение. Однако, когда двигатели работают с разной скоростью, входное напряжение может быть в разных точках якоря, чтобы уменьшить, чтобы увеличить скорость двигателя, аналогично тому, как разработан двигатель стеклоочистителя, или они могут делить напряжение с резистором, который находится в серия с двигателем, как двигатель вентилятора для системы отопления и кондиционирования воздуха.

Нагревательные элементы

Нагревательные элементы установлены в наружных зеркалах, заднем стекле и сиденьях. На нагревательные элементы обычно подается напряжение системы в течение определенного времени для нагрева компонента по запросу.

ЧТО ТАКОЕ ЗАКОН ОМА?

Понимание взаимосвязи между напряжением, током и сопротивлением в электрических цепях важно для быстрой и точной диагностики и ремонта электрических проблем.Закон Ома гласит: ток в цепи всегда будет пропорционален приложенному напряжению и обратно пропорционален величине имеющегося сопротивления. Это означает, что если напряжение повышается, ток будет расти, и наоборот. Кроме того, когда сопротивление растет, ток падает, и наоборот. Закон Ома можно найти хорошее применение при поиске и устранении неисправностей в электрических сетях. Но вычисление точных значений напряжения, тока и сопротивления не всегда практично … да и действительно необходимо. Однако вы должны быть в состоянии предсказать, что должно происходить в цепи, в отличие от того, что происходит в аварийном транспортном средстве.

Source Voltage не зависит ни от тока, ни от сопротивления. Он либо слишком низкий, либо нормальный, либо слишком высокий. Если он слишком низкий, ток будет низким. Если это нормально, ток будет высоким, если сопротивление низкое, или ток будет низким, если сопротивление высокое. Если напряжение слишком высокое, ток будет большим.

На ток влияет напряжение или сопротивление. Если напряжение высокое или сопротивление низкое, ток будет большим. Если напряжение низкое или сопротивление велико, ток будет низким.Ток увеличивается, когда сопротивление падает.

На сопротивление не влияют ни напряжение, ни ток. Он либо слишком низкий, хорошо, либо слишком высокий. Если сопротивление слишком низкое, ток будет высоким при любом напряжении. Если сопротивление слишком велико, ток будет низким, если напряжение в норме. Мера сопротивления – насколько сложно протолкнуть поток электрического заряда.

Хорошее сопротивление: для правильной работы некоторым цепям требуется «ограничение» протекания тока. В этом случае используются «резисторы».Резисторы имеют разные номиналы в зависимости от того, насколько ток должен быть ограничен.

Плохое сопротивление: в большинстве случаев слишком большое сопротивление снижает ток и может привести к неправильной работе системы. Обычно причиной является грязь или коррозия на электрических разъемах или заземляющих соединениях.

Electricity, 10th Edition page 35


Цели
Изучив эту главу, вы
сможете ответить на следующие вопросы:
1.Какая связь между возрастом напряжения
, током и сопротивлением в цепи?
2. Что такое закон Ома и как мы можем использовать его
для решения проблем с электрическими цепями?
3. Какие типы переключателей используются в электрических цепях?
Важная информация
Слова и термины
Следующие слова и термины являются ключевыми
понятиями в этой главе. Ищите их как
, вы читали эту главу.
Простая схема
Электрические цепи – это полный путь –
путей, по которым протекает электрический ток.
Три элемента являются основными для всех цепей:
1. Источник напряжения (например, аккумулятор или генератор
). Устройство, поставляющее энергию.
2. Нагрузка (например, резистор, двигатель или лампа
). Устройство, использующее энергию
источника напряжения.
3. Проводящий провод (например, изолирующий провод или печатная плата). Путь
от источника напряжения к нагрузке и
обратно, по которому проходит электрический ток.
Цепи обычно также содержат четвертый элемент,
. Устройство управления, такое как выключатель, предохранитель / прерыватель цепи
или реле, может использоваться
для остановки, запуска и / или регулирования потока электроэнергии
.
Рисунок 4-1 представляет собой принципиальную схему простой схемы
. Символы показывают, что в схеме
есть батарея для источника напряжения; нагрузочное устройство (резистор)
, использующее энергию
от источника напряжения; переключатель «вкл / выкл»;
и соединительный провод для проведения тока.
Закон Ома
Одним из основных законов электрических цепей
является закон Ома. Это математически показывает взаимосвязь между напряжением (E),
35
проводящим
путем
управлением
электрической схемой
нагрузкой
законом Ома
источником напряжения
4
законом Ома

простых схем | Блестящая вики по математике и науке

Для любой простой системы найти V, I или R несложно, если учесть два других фактора, но это усложняется, когда источник питания управляет несколькими устройствами последовательно.Последовательность означает несколько устройств, соединенных встык, при этом положительный вывод одного устройства подключен к отрицательному устройству следующего, точно так же, как набор рождественских гирлянд. Поскольку устройства перетекают друг в друга, и заряд сохраняется, любой ток, протекающий в первое устройство, должен вытекать из последнего устройства, то есть ток через все устройства одинаков. Последовательные устройства похожи на воду, плывущую по реке: река может закручиваться, поворачиваться, сжиматься и расширяться, но количество воды, текущей в любом заданном поперечном сечении в единицу времени, должно быть одинаковым во всех точках вдоль реки, т.е.е. v1A1 = v2A2v_1A_1 = v_2A_2v1 A1 = v2 A2. Если бы это было не так, вода накапливалась бы в точках вдоль реки и выливалась бы из берегов.

Таким образом, в приведенной выше схеме i1 = i2 = i3i_1 = i_2 = i_3i1 = i2 = i3, или поскольку каждый резистор подчиняется закону Ома

I = V1R1 = V2R2 = V3R3.I = \ frac {V_1} {R_1} = \ frac {V_2} {R_2} = \ frac {V_3} {R_3}. I = R1 V1 = R2 V2 = R3 V3.

Теперь левая сторона оранжевой лампочки подключена к положительной клемме батареи, а правая сторона зеленой лампочки подключена к отрицательной клемме батареи, что означает, что сумма напряжения падает на трех резисторы равны по величине падению напряжения на батарее, т.е.е.

Vbattery = V1 + V2 + V3.V_ \ text {battery} = V_1 + V_2 + V_3.Vbattery = V1 + V2 + V3.

Это физический принцип.

Следовательно,

Vbattery = V1 + V2 + V3 = IR1 + IR2 + IR3 = I (R1 + R2 + R3) = IReff. \ Begin {выровнено} V_ \ text {батарея} & = V_1 + V_2 + V_3 \\ & = IR_1 + IR_2 + IR_3 \\ & = I \ влево (R_1 + R_2 + R_3 \ вправо) \\ & = IR_ \ text {eff}. \ end {align} Vbattery = V1 + V2 + V3 = IR1 + IR2 + IR3 = I (R1 + R2 + R3) = IReff.

Следовательно, цепь, состоящая из трех последовательно соединенных лампочек, эквивалентна одной лампочке с сопротивлением, равным сумме отдельных сопротивлений.Это доказывает общий результат для резисторов, включенных последовательно.

Резисторы последовательно

Эффективное сопротивление последовательно включенных резисторов R1,…, RNR_1, \ ldots, R_NR1,…, RN равно

.

Reff = ∑iRi.R_ \ text {eff} = \ sum_i R_i.Reff = i∑ Ri.

Хотя последовательное расположение элементов схемы имеет некоторые привлекательные особенности, такие как равномерный ток, простота установки новых батарей и т. Д., Последовательное расположение элементов схемы имеет серьезные недостатки.Во-первых, введение любых новых устройств уменьшает ток, протекающий по цепи, и, таким образом, снижает выходную мощность каждого отдельного устройства. Если несколько устройств подключены последовательно, например, духовка, компьютер и лампа для чтения, затемнение лампы для чтения (за счет увеличения ее сопротивления) означает уменьшение тока в духовке и компьютере. Другой заключается в том, что если один элемент в цепи, например, ваш телевизор, сломается, вся цепь также разорвется, потому что разрыв электрического потенциала больше не поддерживается ни на одном устройстве.Это неудобно для создания надежных схем, в которых нам бы хотелось, чтобы отказы устройств не зависели друг от друга.

Некоторые из этих недостатков можно избежать в архитектуре параллельных цепей.

Как работают электронные компоненты

Электронные гаджеты стали неотъемлемой частью нашей жизни. Они сделали нашу жизнь комфортнее и удобнее. От авиации до медицины и здравоохранения электронные гаджеты находят широкое применение в современном мире.Фактически, революция в электронике и революция в компьютерах идут рука об руку.

Большинство гаджетов имеют крошечные электронные схемы, которые могут управлять машинами и обрабатывать информацию. Проще говоря, электронные схемы – это линия жизни различных электроприборов. В этом руководстве подробно рассказывается об общих электронных компонентах, используемых в электронных схемах, и о том, как они работают.

В этой статье я дам обзор электронных схем. Затем я предоставлю дополнительную информацию о 7 различных типах компонентов.Для каждого типа я буду обсуждать состав, принцип работы, а также функцию и значение компонента.

  1. Конденсатор
  2. Резистор
  3. Диод
  4. Транзистор
  5. Катушка индуктивности
  6. Реле
  7. Кристалл кварца


Обзор электронной схемы

Электронная схема – это структура, которая направляет и управляет электрическим током для выполнения различных функций, включая усиление сигнала, вычисление и передачу данных.Он состоит из нескольких различных компонентов, таких как резисторы, транзисторы, конденсаторы, катушки индуктивности и диоды. Для соединения компонентов друг с другом используются токопроводящие провода или дорожки. Однако цепь считается завершенной, только если она начинается и заканчивается в одной и той же точке, образуя цикл.


Элементы электронной схемы

Сложность и количество компонентов в электронной схеме могут изменяться в зависимости от ее применения. Однако простейшая схема состоит из трех элементов, включая токопроводящую дорожку, источник напряжения и нагрузку.

Элемент 1: токопроводящий путь

Электрический ток течет по токопроводящей дорожке. Хотя медные провода используются в простых цепях, они быстро заменяются токопроводящими дорожками. Проводящие дорожки – это не что иное, как медные листы, наклеенные на непроводящую основу. Они часто используются в небольших и сложных схемах, таких как печатные платы (PCB).

Элемент 2: Источник напряжения

Основная функция цепи – обеспечить безопасное прохождение электрического тока через нее.Итак, первый ключевой элемент – это источник напряжения. Это двухконтактное устройство, такое как аккумулятор, генераторы или энергосистемы, которые обеспечивают разность потенциалов (напряжение) между двумя точками в цепи, так что ток может течь через них.

Элемент 3: Нагрузка

Нагрузка – это элемент в цепи, который потребляет мощность для выполнения определенной функции. Лампочка – простейшая нагрузка. Однако сложные схемы имеют разные нагрузки, такие как резисторы, конденсаторы, транзисторы и транзисторы.


Факты об электронных схемах

Факт 1: обрыв цепи

Как упоминалось ранее, цепь всегда должна образовывать петлю, чтобы через нее протекал ток. Однако, когда дело доходит до разомкнутой цепи, ток не может течь, поскольку один или несколько компонентов отключены намеренно (с помощью переключателя) или случайно (сломанные части). Другими словами, любая цепь, не образующая петли, является разомкнутой.

Факт 2: Замкнутый контур

Замкнутый контур – это контур, который образует контур без каких-либо прерываний.Таким образом, это полная противоположность разомкнутой цепи. Однако полная цепь, которая не выполняет никаких функций, остается замкнутой цепью. Например, цепь, подключенная к разряженной батарее, может не работать, но это все равно замкнутая цепь.

Факт 3: Короткое замыкание

В случае короткого замыкания между двумя точками электрической цепи образуется соединение с низким сопротивлением. В результате ток имеет тенденцию течь через это вновь образованное соединение, а не по намеченному пути.Например, если есть прямое соединение между отрицательной и положительной клеммами батареи, ток будет проходить через нее, а не через цепь.

Однако короткое замыкание обычно приводит к серьезным несчастным случаям, так как ток может протекать на опасно высоком уровне. Следовательно, короткое замыкание может повредить электронное оборудование, вызвать взрыв батарей и даже вызвать пожар в коммерческих и жилых зданиях.

Факт 4: Печатные платы (PCB)

Для большинства электронных приборов требуются сложные электронные схемы.Вот почему разработчикам приходится размещать крошечные электронные компоненты на печатной плате. Он состоит из пластиковой платы с соединительными медными дорожками с одной стороны и множества отверстий для крепления компонентов. Когда макет печатной платы наносится химическим способом на пластиковую плату, она называется печатной платой или печатной платой.

Рисунок 1: Печатная плата . [Источник изображения]
Факт 5: Интегральные схемы (ИС)

Хотя печатные платы могут предложить множество преимуществ, для большинства современных приборов, таких как компьютеры и мобильные телефоны, требуются сложные схемы, состоящие из тысяч и даже миллионов компонентов.Вот тут-то и пригодятся интегральные схемы. Это крошечные электронные схемы, которые могут поместиться внутри небольшого кремниевого чипа. Джек Килби изобрел первую интегральную схему в 1958 году в компании Texas Instruments. Единственная цель ИС – повысить эффективность электронных устройств при уменьшении их размера и стоимости производства. С годами интегральные схемы становились все более сложными, поскольку технологии продолжают развиваться. Вот почему персональные компьютеры, ноутбуки, мобильные телефоны и другая бытовая электроника с каждым днем ​​становятся все дешевле и лучше.

Рисунок 2: Интегральные схемы. [Источник изображения]

Электронные компоненты

Благодаря современным технологиям, процесс сборки электронных схем был полностью автоматизирован, особенно это касается изготовления микросхем и печатных плат. Количество и расположение компонентов в схеме может варьироваться в зависимости от ее сложности. Однако он построен с использованием небольшого количества стандартных компонентов.

Следующие компоненты используются для создания электронных схем.


Компонент 1: Конденсатор

Конденсаторы

широко используются для построения различных типов электронных схем.Конденсатор – это пассивный двухконтактный электрический компонент, который может электростатически накапливать энергию в электрическом поле. Проще говоря, он работает как небольшая аккумуляторная батарея, которая накапливает электричество. Однако, в отличие от аккумулятора, он может заряжаться и разряжаться за доли секунды.

Рисунок 3: Конденсаторы [Источник изображения]
A. Состав Конденсаторы

бывают всех форм и размеров, но обычно они состоят из одинаковых основных компонентов. Между ними уложены два электрических проводника или пластины, разделенные диэлектриком или изолятором.Пластины состоят из проводящего материала, такого как тонкие пленки из металла или алюминиевой фольги. С другой стороны, диэлектрик – это непроводящий материал, такой как стекло, керамика, пластиковая пленка, воздух, бумага или слюда. Вы можете вставить два электрических соединения, выступающих из пластин, чтобы зафиксировать конденсатор в цепи.

B. Как это работает?

Когда вы прикладываете напряжение к двум пластинам или подключаете их к источнику, на изоляторе возникает электрическое поле, в результате чего на одной пластине накапливается положительный заряд, а на другой накапливается отрицательный заряд.Конденсатор продолжает сохранять заряд, даже если вы отключите его от источника. В тот момент, когда вы подключаете его к нагрузке, накопленная энергия перетекает от конденсатора к нагрузке.

Емкость – это количество энергии, хранящейся в конденсаторе. Чем выше емкость, тем больше энергии он может хранить. Увеличить емкость можно, сдвинув пластины ближе друг к другу или увеличив их размер. В качестве альтернативы вы также можете улучшить изоляционные качества, чтобы увеличить емкость.

C. Функция и значение

Хотя конденсаторы выглядят как батареи, они могут выполнять в цепи различные типы функций, например, блокировать постоянный ток, позволяя проходить переменному току, или сглаживать выходной сигнал от источника питания. Они также используются в системах передачи электроэнергии для стабилизации напряжения и потока мощности. Одной из наиболее важных функций конденсатора в системах переменного тока является коррекция коэффициента мощности, без которой вы не сможете обеспечить достаточный пусковой момент для однофазных двигателей.

Фильтры для конденсаторов

Если вы используете микроконтроллер в цепи для запуска определенной программы, вы не хотите, чтобы его напряжение упало, поскольку это приведет к сбросу контроллера. Вот почему дизайнеры используют конденсатор. Он может обеспечить микроконтроллер необходимой мощностью на долю секунды, чтобы избежать перезапуска. Другими словами, он отфильтровывает шумы в линии питания и стабилизирует источник питания.

Применения удерживающего конденсатора

В отличие от батареи, конденсатор быстро разряжается.Вот почему он используется для кратковременного питания цепи. Батареи вашей камеры заряжают конденсатор, прикрепленный к вспышке. Когда вы делаете снимок со вспышкой, конденсатор высвобождает свой заряд за доли секунды, генерируя вспышку света.

Применение конденсатора с таймером

В резонансной или зависящей от времени схеме конденсаторы используются вместе с резистором или катушкой индуктивности в качестве элемента синхронизации. Время, необходимое для зарядки и разрядки конденсатора, определяет работу схемы.


Компонент 2: резистор

Резистор – это пассивное двухконтактное электрическое устройство, которое препятствует прохождению тока. Это, наверное, самый простой элемент в электронной схеме. Это также один из наиболее распространенных компонентов, поскольку сопротивление является неотъемлемым элементом почти всех электронных схем. Обычно они имеют цветовую маркировку.

Рисунок 4: Резисторы [Источник изображения]
A. Состав

Резистор – это совсем не модное устройство, потому что сопротивление – это естественное свойство, которым обладают почти все проводники.Итак, конденсатор состоит из медной проволоки, обернутой вокруг изоляционного материала, такого как керамический стержень. Количество витков и толщина медной проволоки прямо пропорциональны сопротивлению. Чем больше количество витков и чем тоньше провод, тем выше сопротивление.

Также можно встретить резисторы, изготовленные по спирали из углеродной пленки. Отсюда и название резисторы с углеродной пленкой. Они разработаны для схем с низким энергопотреблением, потому что резисторы с углеродной пленкой не так точны, как их аналоги с проволочной обмоткой.Однако они дешевле проводных резисторов. К обоим концам прикреплены клеммы проводов. Поскольку резисторы не учитывают полярность в цепи, ток может течь в любом направлении. Таким образом, не нужно беспокоиться о том, чтобы прикрепить их вперед или назад.

B. Как это работает?

Резистор может показаться не очень большим. Можно подумать, что он ничего не делает, кроме потребления энергии. Однако он выполняет жизненно важную функцию: контролирует напряжение и ток в вашей цепи.Другими словами, резисторы дают вам контроль над конструкцией вашей схемы.

Когда электрический ток начинает течь по проводу, все электроны начинают двигаться в одном направлении. Это похоже на воду, текущую по трубе. По тонкой трубе будет течь меньше воды, потому что у нее меньше места для ее движения.

Точно так же, когда ток проходит через тонкую проволоку в резисторе, электронам становится все труднее двигаться через него. Короче говоря, количество электронов, проходящих через резистор, уменьшается по мере увеличения длины и толщины провода.

C. Функция и значение У резисторов

есть множество применений, но три наиболее распространенных – это управление током, разделение напряжения и цепи резистор-конденсатор.

Ограничение тока

Если вы не добавите резисторы в цепь, ток будет опасно высоким. Это может привести к перегреву других компонентов и их повреждению. Например, если вы подключите светодиод напрямую к батарее, он все равно будет работать.Однако через некоторое время светодиод нагреется, как огненный шар. В конечном итоге он сгорит, поскольку светодиоды менее устойчивы к нагреву.

Но, если ввести в схему резистор, он снизит протекание тока до оптимального уровня. Таким образом, вы можете дольше держать светодиод включенным, не перегревая его.

Делительное напряжение Также используются резисторы

для понижения напряжения до нужного уровня. Иногда для определенной части схемы, такой как микроконтроллер, может потребоваться более низкое напряжение, чем для самой схемы.Здесь на помощь приходит резистор.

Допустим, ваша схема работает от аккумулятора 12 В. Однако для микроконтроллера требуется только питание 6 В. Итак, чтобы разделить напряжение пополам, все, что вам нужно сделать, это подключить последовательно два резистора с равным сопротивлением. Проволока между двумя резисторами снизит наполовину напряжение вашей цепи, к которой может быть подключен микроконтроллер. Используя соответствующие резисторы, вы можете снизить напряжение в цепи до любого уровня.

Резисторно-конденсаторные сети Резисторы

также используются в сочетании с конденсаторами для создания интегральных схем, содержащих массивы резистор-конденсатор в одной микросхеме.Они также известны как RC-фильтры или RC-сети. Они часто используются для подавления электромагнитных помех (EMI) или радиочастотных помех (RFI) в различных инструментах, включая порты ввода / вывода компьютеров и ноутбуков, локальные сети (LAN) и глобальные сети (WAN), среди прочего. Они также используются в станках, распределительных устройствах, контроллерах двигателей, автоматизированном оборудовании, промышленных приборах, лифтах и ​​эскалаторах.


Компонент 3: Диод

Диод – это устройство с двумя выводами, которое позволяет электрическому току течь только в одном направлении.Таким образом, это электронный эквивалент обратного клапана или улицы с односторонним движением. Он обычно используется для преобразования переменного тока (AC) в постоянный ток (DC). Он изготовлен либо из полупроводникового материала (полупроводниковый диод), либо из вакуумной трубки (вакуумный ламповый диод). Однако сегодня большинство диодов изготовлено из полупроводникового материала, особенно из кремния.

Рисунок 5: Диод [Источник изображения]
A. Состав

Как упоминалось ранее, существует два типа диодов: вакуумные диоды и полупроводниковые диоды.Вакуумный диод состоит из двух электродов (катода и анода), помещенных внутри герметичной вакуумной стеклянной трубки. Полупроводниковый диод состоит из полупроводников p-типа и n-типа. Поэтому он известен как диод с p-n переходом. Обычно он изготавливается из кремния, но также можно использовать германий или селен.

B. Как это работает?
Вакуумный диод

Когда катод нагревается нитью накала, в вакууме образуется невидимое облако электронов, называемое пространственным зарядом.Хотя электроны испускаются катодом, отрицательный объемный заряд отталкивает их. Поскольку электроны не могут достичь анода, через цепь не протекает ток. Однако, когда анод становится положительным, объемный заряд исчезает. В результате ток начинает течь от катода к аноду. Таким образом, электрический ток внутри диода течет только от катода к аноду и никогда от анода к катоду.

P-N переходной диод

Диод с p-n переходом состоит из кремниевых полупроводников p-типа и n-типа.Полупроводник p-типа обычно легируется бором, оставляя в нем дырки (положительный заряд). С другой стороны, полупроводник n-типа легирован сурьмой, добавляя в него несколько дополнительных электронов (отрицательный заряд). Таким образом, электрический ток может протекать через оба полупроводника.

Когда вы складываете блоки p-типа и n-типа вместе, дополнительные электроны n-типа объединяются с дырками p-типа, создавая зону обеднения без каких-либо свободных электронов или дырок. Короче, ток через диод больше не может проходить.

Когда вы подключаете отрицательную клемму батареи к кремнию n-типа, а положительную клемму к p-типу (прямое смещение), ток начинает течь, поскольку электроны и дырки теперь могут перемещаться по переходу. Однако, если вы перевернете клеммы (обратное смещение), ток через диод не будет протекать, потому что дырки и электроны отталкиваются друг от друга, расширяя зону обеднения. Таким образом, как и вакуумный диод, переходной диод может пропускать ток только в одном направлении.

С.Функция и значение

Хотя диоды являются одними из простейших компонентов электронной схемы, они находят уникальное применение в различных отраслях промышленности.

Преобразование переменного тока в постоянный

Наиболее распространенным и важным применением диодов является преобразование переменного тока в постоянный. Обычно полуволновой (один диод) или двухполупериодный (четыре диода) выпрямитель используется для преобразования мощности переменного тока в мощность постоянного тока, особенно в бытовых источниках питания. Когда вы пропускаете источник питания переменного тока через диод, через него проходит только половина формы волны переменного тока.Поскольку этот импульс напряжения используется для зарядки конденсатора, он создает устойчивые и непрерывные постоянные токи без каких-либо пульсаций. Различные комбинации диодов и конденсаторов также используются для создания различных типов умножителей напряжения для умножения небольшого переменного напряжения на высокие выходы постоянного тока.

Обходные диоды

Обходные диоды часто используются для защиты солнечных панелей. Когда ток от остальных элементов проходит через поврежденный или пыльный солнечный элемент, это вызывает перегрев.В результате общая выходная мощность снижается, создавая горячие точки. Диоды подключаются параллельно солнечным элементам, чтобы защитить их от проблемы перегрева. Эта простая конструкция ограничивает напряжение на неисправном солнечном элементе, позволяя току проходить через неповрежденные элементы во внешнюю цепь.

Защита от скачков напряжения

Когда источник питания внезапно прерывается, он создает высокое напряжение в большинстве индуктивных нагрузок.Этот неожиданный скачок напряжения может повредить нагрузку. Однако вы можете защитить дорогое оборудование, подключив диод к индуктивным нагрузкам. В зависимости от типа безопасности эти диоды известны под разными названиями, включая демпферный диод, обратный диод, подавляющий диод и диод свободного хода, среди других.

Демодуляция сигнала

Они также используются в процессе модуляции сигнала, поскольку диоды могут эффективно удалять отрицательный элемент сигнала переменного тока.Диод выпрямляет несущую волну, превращая ее в постоянный ток. Звуковой сигнал извлекается из несущей волны, этот процесс называется звуковой частотной модуляцией. Вы можете слышать звук после некоторой фильтрации и усиления. Следовательно, диоды обычно используются в радиоприемниках для извлечения сигнала из несущей волны.

Защита от обратного тока

Изменение полярности источника постоянного тока или неправильное подключение батареи может привести к протеканию значительного тока через цепь.Такое обратное подключение может повредить подключенную нагрузку. Вот почему защитный диод включен последовательно с плюсовой стороной клеммы аккумулятора. В случае правильной полярности диод становится смещенным в прямом направлении, и ток течет по цепи. Однако в случае неправильного подключения он становится смещенным в обратном направлении, блокируя ток. Таким образом, это может защитить ваше оборудование от возможных повреждений.


Компонент 4: Транзистор

Один из важнейших компонентов электронной схемы, транзисторы произвели революцию в области электроники.Эти крошечные полупроводниковые устройства с тремя выводами существуют уже более пяти десятилетий. Их часто используют как усилители и переключающие устройства. Вы можете думать о них как о реле без каких-либо движущихся частей, потому что они могут включать или выключать что-то без какого-либо движения.

Рисунок 6: Транзисторы [Источник изображения]
A. Состав

Вначале германий использовался для создания транзисторов, которые были чрезвычайно чувствительны к температуре. Однако сегодня они изготавливаются из кремния, полупроводникового материала, обнаруженного в песке, потому что кремниевые транзисторы гораздо более устойчивы к температуре и дешевле в производстве.Есть два разных типа биполярных переходных транзисторов (BJT), NPN и PNP. Каждый транзистор имеет три контакта, которые называются базой (b), коллектором (c) и эмиттером (e). NPN и PNP относятся к слоям полупроводникового материала, из которых изготовлен транзистор.

B. Как это работает?

Когда вы помещаете кремниевую пластину p-типа между двумя стержнями n-типа, вы получаете транзистор NPN. Эмиттер присоединен к одному n-типу, а коллектор – к другому.Основание прикреплено к р-образному. Избыточные дырки в кремнии p-типа действуют как барьеры, блокирующие прохождение тока. Однако, если вы приложите положительное напряжение к базе и коллектору и отрицательно зарядите эмиттер, электроны начнут течь от эмиттера к коллектору.

Расположение и количество блоков p-типа и n-типа остаются инвертированными в транзисторе PNP. В этом типе транзистора один n-тип находится между двумя блоками p-типа. Поскольку распределение напряжения отличается, транзистор PNP работает иначе.Транзистор NPN требует положительного напряжения на базу, в то время как PNP требует отрицательного напряжения. Короче говоря, ток должен течь от базы, чтобы включить PNP-транзистор.

C. Функция и значение

Транзисторы функционируют как переключатели и усилители в большинстве электронных схем. Разработчики часто используют транзистор в качестве переключателя, потому что, в отличие от простого переключателя, он может превратить небольшой ток в гораздо больший. Хотя вы можете использовать простой переключатель в обычной цепи, для усовершенствованной схемы может потребоваться различное количество токов на разных этапах.

Транзисторы в слуховых аппаратах

Одно из самых известных применений транзисторов – слуховой аппарат. Обычно небольшой микрофон в слуховом аппарате улавливает звуковые волны, преобразовывая их в колеблющиеся электрические импульсы или токи. Когда эти токи проходят через транзистор, они усиливаются. Затем усиленные импульсы проходят через динамик, снова преобразуя их в звуковые волны. Таким образом, вы можете слышать значительно более громкую версию окружающего шума.

Транзисторы в компьютерах и калькуляторах

Все мы знаем, что компьютеры хранят и обрабатывают информацию, используя двоичный язык «ноль» и «единица». Однако большинство людей не знают, что транзисторы играют решающую роль в создании чего-то, что называется логическими вентилями, которые являются основой компьютерных программ. Транзисторы часто соединяются с логическими вентилями, чтобы создать уникальный элемент устройства, называемый триггером. В этой системе транзистор остается включенным, даже если вы уберете ток базы.Теперь он переключается или выключается всякий раз, когда через него проходит новый ток. Таким образом, транзистор может хранить ноль, когда он выключен, или единицу, когда он включен, что является принципом работы компьютеров.

Транзисторы Дарлингтона

Транзистор Дарлингтона состоит из двух соединенных вместе транзисторов с полярным соединением PNP или NPN. Он назван в честь своего изобретателя Сидни Дарлингтона. Единственная цель транзистора Дарлингтона – обеспечить высокий коэффициент усиления по току при низком базовом токе.Вы можете найти эти транзисторы в приборах, которым требуется высокий коэффициент усиления по току на низкой частоте, таких как регуляторы мощности, драйверы дисплея, контроллеры двигателей, световые и сенсорные датчики, системы сигнализации и усилители звука.

IGBT и MOSFET транзисторы

Биполярные транзисторы с изолированным затвором (IGBT) часто используются в качестве усилителей и переключателей в различных инструментах, включая электромобили, поезда, холодильники, кондиционеры и даже стереосистемы.С другой стороны, полевые транзисторы металл-оксид-полупроводник (MOSFET) обычно используются в интегральных схемах для управления уровнями мощности устройства или для хранения данных.


Компонент 5: Индуктор

Катушка индуктивности, также известная как реактор, представляет собой пассивный компонент цепи, имеющей два вывода. Это устройство хранит энергию в своем магнитном поле, возвращая ее в цепь при необходимости. Было обнаружено, что когда две катушки индуктивности помещаются рядом, не касаясь друг друга, магнитное поле, создаваемое первой катушкой индуктивности, воздействует на вторую катушку индуктивности.Это был решающий прорыв, который привел к изобретению первых трансформаторов.

Рисунок 7: Катушки индуктивности [Источник изображения]
A. Состав

Это, вероятно, простейший компонент, состоящий только из мотка медной проволоки. Индуктивность прямо пропорциональна количеству витков в катушке. Однако иногда катушка наматывается на ферромагнитный материал, такой как железо, слоистое железо и порошковое железо, для увеличения индуктивности. Форма этого сердечника также может увеличить индуктивность.Тороидальные (в форме бублика) сердечники обеспечивают лучшую индуктивность по сравнению с соленоидными (стержневыми) сердечниками на такое же количество витков. К сожалению, соединить индукторы в интегральную схему сложно, поэтому их обычно заменяют резисторами.

B. Как это работает?

Когда ток проходит по проводу, он создает магнитное поле. Однако уникальная форма индуктора приводит к созданию гораздо более сильного магнитного поля. Это мощное магнитное поле, в свою очередь, сопротивляется переменному току, но пропускает через него постоянный ток.Это магнитное поле также хранит энергию.

Возьмем простую схему, состоящую из батареи, переключателя и лампочки. Лампа будет ярко светиться, как только вы включите выключатель. Добавьте в эту цепь индуктивность. Как только вы включаете выключатель, лампочка переключается с яркой на тусклую. С другой стороны, когда переключатель выключен, он становится очень ярким, всего на долю секунды до полного выключения.

Когда вы включаете переключатель, индуктор начинает использовать электричество для создания магнитного поля, временно блокируя прохождение тока.Но только постоянный ток проходит через индуктор, как только магнитное поле заполнено. Вот почему лампочка переключается с яркой на тусклую. Все это время индуктор накапливает некоторую электрическую энергию в виде магнитного поля. Итак, когда вы выключаете выключатель, магнитное поле поддерживает постоянный ток в катушке. Таким образом, лампочка некоторое время горит ярко перед тем, как погаснуть.

C. Функция и значение

Хотя индукторы полезны, их сложно включить в электронные схемы из-за их размера.Поскольку они более громоздкие по сравнению с другими компонентами, они увеличивают вес и занимают много места. Следовательно, их обычно заменяют резисторами в интегральных схемах (ИС). Тем не менее, индукторы находят широкое применение в промышленности.

Фильтры в настроенных схемах

Одним из наиболее распространенных применений индукторов является выбор желаемой частоты в настроенных схемах. Они широко используются с конденсаторами и резисторами, подключенными параллельно или последовательно, для создания фильтров.Импеданс катушки индуктивности увеличивается с увеличением частоты сигнала. Таким образом, автономная катушка индуктивности может действовать только как фильтр нижних частот. Однако, когда вы объединяете его с конденсатором, вы можете создать режекторный фильтр, потому что импеданс конденсатора уменьшается с увеличением частоты сигнала. Таким образом, вы можете использовать различные комбинации конденсаторов, катушек индуктивности и резисторов для создания различных типов фильтров. Они встречаются в большинстве электронных устройств, включая телевизоры, настольные компьютеры и радио.

Дроссели как дроссели

Если через дроссель протекает переменный ток, он создает противоположный ток. Таким образом, он может преобразовывать источник переменного тока в постоянный. Другими словами, он подавляет подачу переменного тока, но позволяет постоянному току проходить через него, отсюда и название «дроссель». Обычно они встречаются в цепях питания, которым необходимо преобразовать подачу переменного тока в подачу постоянного тока.

Ферритовые бусины

Ферритовый шарик или ферритовый дроссель используется для подавления высокочастотного шума в электронных схемах.Некоторые из распространенных применений ферритовых шариков включают компьютерные кабели, телевизионные кабели и кабели для зарядки мобильных устройств. Эти кабели иногда могут действовать как антенны, взаимодействуя с аудио- и видеовыходами вашего телевизора и компьютера. Таким образом, индукторы используются в ферритовых шариках, чтобы уменьшить такие радиочастотные помехи.

Индукторы в датчиках приближения

Большинство датчиков приближения работают по принципу индуктивности. Индуктивный датчик приближения состоит из четырех частей, включая индуктор или катушку, генератор, схему обнаружения и выходную схему.Осциллятор генерирует флуктуирующее магнитное поле. Когда объект приближается к этому магнитному полю, начинают накапливаться вихревые токи, уменьшая магнитное поле датчика.

Схема обнаружения определяет силу датчика, в то время как выходная схема вызывает соответствующий ответ. Индуктивные датчики приближения, также называемые бесконтактными датчиками, ценятся за их надежность. Они используются на светофорах для определения плотности движения, а также в качестве датчиков парковки легковых и грузовых автомобилей.

Асинхронные двигатели

Асинхронный двигатель, вероятно, является наиболее распространенным примером применения индукторов. Обычно в асинхронном двигателе индукторы устанавливаются в фиксированном положении. Другими словами, им не разрешается выравниваться с близлежащим магнитным полем. Источник питания переменного тока используется для создания вращающегося магнитного поля, которое затем вращает вал. Потребляемая мощность регулирует скорость вращения. Следовательно, асинхронные двигатели часто используются в приложениях с фиксированной скоростью.Асинхронные двигатели очень надежны и прочны, поскольку нет прямого контакта между двигателем и ротором.

Трансформаторы

Как упоминалось ранее, открытие индукторов привело к изобретению трансформаторов, одного из основных компонентов систем передачи энергии. Вы можете создать трансформатор, объединив индукторы общего магнитного поля. Обычно они используются для повышения или понижения напряжения в линиях электропередач до желаемого уровня.

Накопитель энергии

Катушка индуктивности, как и конденсатор, также может накапливать энергию. Однако, в отличие от конденсатора, он может накапливать энергию в течение ограниченного времени. Поскольку энергия хранится в магнитном поле, она схлопывается, как только отключается источник питания. Тем не менее, индукторы функционируют как надежные устройства хранения энергии в импульсных источниках питания, таких как настольные компьютеры.


Компонент 6: реле

Реле – это электромагнитный переключатель, который может размыкать и замыкать цепи электромеханическим или электронным способом.Для работы реле необходим относительно небольшой ток. Обычно они используются для регулирования малых токов в цепи управления. Однако вы также можете использовать реле для управления большими электрическими токами. Реле – это электрический эквивалент рычага. Вы можете включить его небольшим током, чтобы включить (или усилить) другую цепь, использующую большой ток. Реле могут быть либо электромеханическими, либо твердотельными.

Рисунок 8: Реле [Источник изображения]
A. Состав

Электромеханическое реле (ЭМИ) состоит из корпуса, катушки, якоря, пружины и контактов.Рама поддерживает различные части реле. Якорь – это подвижная часть релейного переключателя. Катушка (в основном из медной проволоки), намотанная на металлический стержень, создает магнитное поле, которое перемещает якорь. Контакты – это токопроводящие части, которые размыкают и замыкают цепь.

Твердотельное реле (SSR) состоит из входной цепи, цепи управления и выходной цепи. Входная цепь эквивалентна катушке электромеханического реле. Схема управления действует как связующее устройство между входными и выходными цепями, в то время как выходная цепь выполняет ту же функцию, что и контакты в ЭМИ.Твердотельные реле становятся все более популярными, поскольку они дешевле, быстрее и надежнее электромеханических реле.

B. Как это работает?

Используете ли вы электромеханическое реле или твердотельное реле, это нормально замкнутое (NC) или нормально разомкнутое (NO) реле. В случае реле NC контакты остаются замкнутыми при отсутствии питания. Однако в нормально разомкнутом реле контакты остаются разомкнутыми при отсутствии питания.Короче говоря, всякий раз, когда через реле протекает ток, контакты либо размыкаются, либо замыкаются.

В ЭМИ источник питания возбуждает катушку реле, создавая магнитное поле. Магнитная катушка притягивает металлическую пластину, установленную на якоре. Когда ток прекращается, якорь возвращается в исходное положение под действием пружины. EMR также может иметь один или несколько контактов в одном пакете. Если в цепи используется только один контакт, она называется цепью с одиночным разрывом (SB). С другой стороны, цепь двойного размыкания (DB) идет с буксировочными контактами.Обычно реле с одинарным размыканием используются для управления маломощными устройствами, такими как индикаторные лампы, в то время как контакты с двойным размыканием используются для управления мощными устройствами, такими как соленоиды.

Когда дело доходит до работы SSR, вам необходимо подать напряжение выше, чем указанное напряжение срабатывания реле, чтобы активировать входную цепь. Вы должны подать напряжение ниже установленного минимального напряжения падения реле, чтобы деактивировать входную цепь. Схема управления передает сигнал из входной цепи в выходную.Выходная цепь включает нагрузку или выполняет желаемое действие.

C. Функция и значение

Поскольку они могут управлять сильноточной цепью с помощью слаботочного сигнала, в большинстве процессов управления используются реле в качестве первичных устройств защиты и переключения. Они также могут обнаруживать неисправности и нарушения в системах распределения электроэнергии. Типичные приложения включают телекоммуникации, автомобили, системы управления дорожным движением, бытовую технику и компьютеры.

Защитные реле

Защитные реле используются для отключения или отключения цепи при обнаружении каких-либо нарушений. Иногда они также могут подавать сигнал тревоги при обнаружении неисправности. Типы реле защиты зависят от их функции. Например, реле максимального тока предназначено для определения тока, превышающего заданное значение. При обнаружении такого тока реле срабатывает, отключая автоматический выключатель, чтобы защитить оборудование от возможного повреждения.

Дистанционное реле или реле импеданса, с другой стороны, может обнаруживать отклонения в соотношении тока и напряжения, а не контролировать их величину независимо. Он срабатывает, когда отношение V / I падает ниже заданного значения. Обычно защитные реле используются для защиты оборудования, такого как двигатели, генераторы, трансформаторы и т. Д.

Реле автоматического повторного включения

Реле автоматического повторного включения предназначено для многократного повторного включения автоматического выключателя, который уже отключен с помощью защитного реле.Например, при резком падении напряжения в электрической цепи вашего дома может наблюдаться несколько кратковременных перебоев в подаче электроэнергии. Эти сбои происходят из-за того, что реле повторного включения пытается автоматически включить защитное реле. В случае успеха питание будет восстановлено. В противном случае произойдет полное отключение электроэнергии.

Тепловые реле

Тепловое воздействие электрической энергии – принцип работы теплового реле. Короче говоря, он может обнаруживать повышение температуры окружающей среды и соответственно включать или выключать цепь.Он состоит из биметаллической полосы, которая нагревается при прохождении через нее сверхтока. Нагретая полоса изгибается и замыкает замыкающий контакт, отключая автоматический выключатель. Наиболее распространенное применение теплового реле – защита электродвигателя от перегрузки.


Компонент 7. Кристалл кварца

Кристаллы кварца находят несколько применений в электронной промышленности. Однако в основном они используются в качестве резонаторов в электронных схемах. Кварц – это встречающаяся в природе форма кремния.Однако теперь его производят синтетически, чтобы удовлетворить растущий спрос. Он проявляет пьезоэлектрический эффект. Если вы приложите физическое давление к одной стороне, возникающие в результате вибрации создадут переменное напряжение на кристалле. Резонаторы на кварцевом кристалле доступны во многих размерах в зависимости от требуемых применений.

Рисунок 9: Кристалл кварца [Источник изображения]
A. Состав

Как упоминалось ранее, кристаллы кварца либо производятся синтетическим путем, либо встречаются в природе.Их часто используют для создания кварцевых генераторов для создания электрического сигнала с точной частотой. Обычно форма кристаллов кварца гексагональная с пирамидами на концах. Однако для практических целей их разрезают на прямоугольные плиты. К наиболее распространенным типам форматов резки относятся X, Y и AT. Эта плита помещается между двумя металлическими пластинами, называемыми удерживающими пластинами. Внешняя форма кварцевого кристалла или кварцевого генератора может быть цилиндрической, прямоугольной или квадратной.

Б.Как это работает?

Если подать на кристалл переменное напряжение, он вызовет механические колебания. Огранка и размер кристалла кварца определяют резонансную частоту этих колебаний или колебаний. Таким образом, он генерирует постоянный сигнал. Кварцевые генераторы дешевы и просты в изготовлении синтетическим способом. Они доступны в диапазоне от нескольких кГц до нескольких МГц. Поскольку кварцевые генераторы имеют более высокую добротность или добротность, они очень стабильны во времени и температуре.

C. Функция и значение

Исключительно высокая добротность позволяет использовать кристаллы кварца и резонансный элемент в генераторах, а также в фильтрах в электронных схемах. Вы можете найти этот высоконадежный компонент в радиочастотных приложениях, в качестве тактовых схем генератора в платах микропроцессоров, а также в качестве элемента синхронизации в цифровых часах.

Кварцевые часы

Проблема традиционных часов с винтовой пружиной заключается в том, что вам нужно периодически заводить катушку.С другой стороны, маятниковые часы зависят от силы тяжести. Таким образом, они по-разному показывают время на разных уровнях моря и высотах из-за изменений силы тяжести. Однако на характеристики кварцевых часов не влияет ни один из этих факторов. Кварцевые часы питаются от батареек. Обычно крошечный кристалл кварца регулирует шестеренки, которые управляют секундной, минутной и часовой стрелками. Поскольку кварцевые часы потребляют очень мало энергии, батарея часто может работать дольше.

Фильтры

Вы также можете использовать кристаллы кварца в электронных схемах в качестве фильтров.Они часто используются для фильтрации нежелательных сигналов в радиоприемниках и микроконтроллерах. Большинство основных фильтров состоят из одного кристалла кварца. Однако усовершенствованные фильтры могут содержать более одного кристалла, чтобы соответствовать требованиям к рабочим характеристикам. Эти кварцевые фильтры намного превосходят фильтры, изготовленные с использованием ЖК-компонентов.


Заключение

От общения с близкими, живущими на разных континентах, до приготовления горячей чашки кофе – электронные устройства затрагивают практически все аспекты нашей жизни.Однако что заставляет эти электронные устройства выполнять, казалось бы, трудоемкие задачи всего за несколько минут? Крошечные электронные схемы – основа всего электронного оборудования. Чтение о различных компонентах электронной схемы поможет вам понять их функции и значение. Поделитесь своими предложениями и мнениями по этому поводу в разделе комментариев ниже.

// Эта статья изначально была опубликована на ICRFQ.

пассивных элементов | Renesas

Введение в электронные схемы: 1 из 3

Электронные устройства, с которыми мы сталкиваемся повсюду, приводятся в действие и управляются потоком электрического тока через электронные схемы.Каждая цепь представляет собой набор электрических элементов, предназначенных для выполнения определенных функций. Цепи могут быть спроектированы для выполнения широкого спектра операций, от простых действий до сложных задач, в соответствии с работой (ями), которую должна выполнять система.

Давайте начнем с рассмотрения того, как работают ключевые пассивные элементы, присутствующие в большинстве электронных схем.

Пассивный элемент – это электрический компонент, который не генерирует мощность, а вместо этого рассеивает, накапливает и / или высвобождает ее.К пассивным элементам относятся сопротивления, конденсаторы и катушки (также называемые индукторами). Эти компоненты обозначены на принципиальных схемах как Rs, Cs и Ls соответственно. В большинстве схем они подключены к активным элементам, обычно полупроводниковым устройствам, таким как усилители и микросхемы цифровой логики.

Резисторы

Резистор – это основной тип физического компонента, который используется в электронных схемах. Имеет два (сменных) вывода. Материал, помещенный внутри между двумя выводами резистора, препятствует (ограничивает) прохождение тока.Величина этого сопротивления называется его сопротивлением, которое измеряется в омах (Ом). Резисторы используются для управления различными токами в областях цепи и для управления уровнями напряжения в различных точках в ней путем создания падений напряжения. Когда на резистор подается напряжение, через него течет ток. Закон Ома для резисторов: E = IR, где E – напряжение на резисторе, R – сопротивление резистора, а I – ток, протекающий через резистор. Этот ток пропорционален приложенному напряжению и обратно пропорционален сопротивлению.Таким образом, по мере увеличения сопротивления ток через элемент падает, так что при высоких сопротивлениях ток очень мал.

Закон

Ома позволяет вычислить любое из трех значений цепи (ток, напряжение или сопротивление) из двух других.

Конденсаторы

Конденсатор – это еще один основной тип физических компонентов, используемых в электронных схемах. Он имеет два вывода и используется для хранения и высвобождения электрического заряда. Способность конденсатора накапливать заряд называется его емкостью, измеряемой в фарадах (Ф).

Типичный конденсатор представляет собой две проводящие пластины, разделенные изолятором (диэлектриком). Этот тип элемента схемы не может пропускать постоянный ток (DC), потому что электроны не могут проходить через диэлектрик. Однако конденсатор пропускает переменный ток (AC), потому что переменное напряжение заставляет конденсатор многократно заряжаться и разряжаться, накапливая и высвобождая энергию. Действительно, одним из основных применений конденсаторов является пропускание переменного тока при блокировке постоянного тока, функция, называемая «связь по переменному току».

Когда в конденсатор протекает постоянный ток, положительный заряд быстро накапливается на положительной пластине, а соответствующий отрицательный заряд заполняет отрицательную пластину (см. Рисунок 1). Накопление продолжается до тех пор, пока конденсатор не будет полностью заряжен, то есть когда пластины накопят столько заряда (Q), сколько они могут удерживать. Эта величина определяется значением емкости (C) и напряжением, приложенным к компоненту: (Q = CV). В этот момент ток перестает течь (см. Рисунок 2).

Рисунок 1: Конденсатор заряжается / Рисунок 2: Конденсатор заряжен (и стабильно)

Однако, когда в цепи протекает переменный ток, результат совсем другой.

Поскольку переменный ток постоянно изменяется, конденсатор постоянно заряжается и разряжается (см. Рисунок 3). Несмотря на то, что диэлектрик в конденсаторе не пропускает электроны, ток, который в данном случае называется током смещения, эффективно проходит через конденсатор. Противодействие конденсатора переменному току называется его емкостным реактивным сопротивлением, которое, как и сопротивление, измеряется в омах (Ом).

Рисунок 3: Многократная зарядка и разрядка

Катушки

Катушка, также называемая индуктором, является еще одним основным типом физического компонента, который используется в электронных схемах.Он имеет два вывода и обычно представляет собой одну или несколько витков (петель) проводящего провода. Этот провод часто, но не обязательно, формируется вокруг сердечника из железа, стали или другого магнитного материала. Ток через катушку индуцирует магнитное поле, которое служит накопителем энергии. Индуктивность измеряется в генри (H).

Более конкретно, ток, протекающий по проводу, создает магнитное поле, направление которого направлено вправо относительно потока тока, как описано «правилом правой руки» (см. Рисунок 4).Если проволока свернута, потоки совпадают. Согласно закону Ленца, изменения магнитного поля катушки создают противоэлектродвижущую силу (и индуцированный ток), которая противодействует этим изменениям. Таким образом, катушки могут использоваться в электронных схемах для ограничения потока переменного тока, позволяя при этом проходить постоянному току.

Рисунок 4: Ток и магнитное поле

Правило правой руки:

Ток (I), протекающий по проводнику, создает магнитное поле (B), которое вращается вправо вокруг проводника.

Рис. 5: Закон Ленца: Индуцированный ток в катушке протекает таким образом, чтобы противодействовать изменениям в количестве силовых линий магнитного поля, проходящих через катушку.

Цепи фильтров (ФВЧ и ФНЧ)

Схема фильтра – это электрическая функция, состоящая из соединенных элементов, которая используется для устранения нежелательных электрических сигналов, позволяя проходить полезным сигналам определенных частот. Например, распространенным типом схемы фильтра является последовательная RC-цепь, в которой сопротивление и емкость соединены последовательно.

В

RC-фильтрах можно использовать либо фильтр высоких частот (HPF), либо фильтр низких частот (LPF). RC-фильтр, в котором падение напряжения на резисторе (Vr) принимается за выход, будет пропускать высокочастотные сигналы напряжения со входа, при этом отфильтровывая (ослабляя) низкие частоты на входе (см. Рисунок 6). RC-фильтр, в котором падение напряжения на конденсаторе (Vc) принимается в качестве выходного сигнала, позволяет пропускать низкочастотные компоненты входного сигнала, но снижает или устраняет высокие частоты (см. рисунок 7).

Рисунок 6: Фильтр высоких частот (HPF) / Рисунок 7: Фильтр низких частот (LPF)

Список модулей

  1. Пассивные элементы
  2. Диоды, транзисторы и полевые транзисторы
  3. Операционные усилители, схема компаратора

Как работают электрические схемы | Основы освещения

Основные схемы

Электрическая цепь – это непрерывный путь, по которому электрический ток существует и / или может течь.Простая электрическая схема состоит из источника питания, двух проводов (один конец каждого подсоединяется к каждой клемме ячейки) и небольшой лампы для к которым прикреплены свободные концы проводов, идущих от ячейки.

Когда соединения выполнены правильно, цепь «замкнется», и ток пройдет через цепь и зажжет лампу.

Простая электрическая схема

После того, как один из проводов отсоединен от источника питания или в потоке сделан «разрыв», цепь теперь «разомкнута» и лампа больше не будет светиться.

На практике цепи «размыкаются» такими устройствами, как переключатели, предохранители и автоматические выключатели. Две общие схемы классификации бывают последовательными и параллельными.

Элементы последовательной цепи соединены встык; один и тот же ток течет по его частям одну за другой.

Цепи серии

В последовательной цепи ток через каждый из компонентов одинаков, и напряжение на компонентах – это сумма напряжений по каждому компоненту.

Пример последовательной цепи

Параллельные схемы

В параллельной цепи напряжение на каждом из компонентов одинаково, а полный ток представляет собой сумму токов. через каждый компонент.

Если два или более компонента подключены параллельно, они имеют одинаковую разность потенциалов ( напряжение) на их концах. Потенциальные различия между компоненты одинаковы по величине и имеют одинаковую полярность.Одно и то же напряжение применимо ко всем цепям компоненты соединены параллельно.

Если каждая лампочка подключена к аккумулятору отдельным контуром, считается, что лампы параллельны.

Пример параллельной схемы.

Пример схемы

Рассмотрим очень простую схему, состоящую из четырех лампочек и одной на 6 В. аккумулятор. Если провод соединяет батарею с одной лампочкой, второй лампочкой, третьей лампочкой, а затем обратно с батареей в одну непрерывную петлю, говорят, что луковицы соединены последовательно.Если три лампочки соединены последовательно, через все их, а падение напряжения на каждой лампочке составляет 1,5 В, и этого может быть недостаточно, чтобы они светились.

Если лампочки соединены параллельно, ток, протекающий через лампочки, объединяется, образуя ток. протекает в батарее, а падение напряжения на каждой лампочке составляет 6,0 В, и все они светятся.

В последовательной цепи каждое устройство должно функционировать, чтобы цепь была замкнутой.Одна лампочка перегорела в последовательной цепи разрывает цепь. В параллельных цепях каждый фонарь имеет свою собственную цепь, поэтому все лампы, кроме одного, могут перегореть, и последний по-прежнему будет работать.

открытых учебников | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 7A

        • Марка 7Б

        • 7 класс (A и B вместе)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 8A

        • Сорт 8Б

        • 8 класс (A и B вместе)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • 9 класс (A и B вместе)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • Класс 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5A

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 6А

        • Марка 6Б

        • 6 класс (A и B вместе)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколь угодно часто. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственное ограничение заключается в том, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки каким-либо образом, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (версии без бренда)

Эти небрендовые версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, преобразовывать, модифицировать или дополнять их любым способом, с единственным требованием – дать соответствующую оценку Siyavula.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *