Как чертить сечение: Учимся строить сечения многогранников. Часть 2.

Содержание

Учимся строить сечения многогранников. Часть 2.

Учимся строить сечения многогранников. Часть 2.

Эта статья для тех, кто хочет научиться строить сечения. Она содержит 11 заданий для построения сечений, подсказки и ответы к каждому заданию. Рекомендую сначала прочитать эту статью и посмотреть это видео.

Вспомним, что сечение многогранника плоскостью представляет собой плоский многоугольник, вершины которого принадлежат сторонам, а ребра – граням многогранника. Две соседние вершины принадлежат одной грани многогранника. 

Чтобы найти точку, лежащую одновременно в двух плоскостях, нужно найти точку пересечения прямой, лежащей в первой плоскости, с прямой, лежащей во второй плоскости.

 

В подсказках и ответах изображение  дополнительных прямых, используемых при построении сечения, сплошными линиями или пунктирными, не зависит от того, видимы эти прямые или нет.

Рядом с каждой дополнительной прямой указан ее порядковый номер при построении сечения.

Все прямые проведены через две точки, принадлежащие определенной плоскости. Прямые пронумерованы в порядке их построения. Рекомендуется при использовании подсказки и воспроизведении построения сечения проговаривать, какой плоскости принадлежит данная прямая, каким плоскостям принадлежит точка их пересечения.

Постройте сечения, проходящие через точки .

Задание 1:

Подсказка. показать

Ответ. показать

Задание 2:

Подсказка: показать

 

Ответ: показать

Задание 3:

Подсказка: показать

 

Ответ: показать

Задание 4:

 

Подсказка: показать

 

Ответ: показать

 

Задание 5:

Подсказка: показать

 

Ответ: показать

 

Задание 6:

Подсказка: показать

Ответ: показать

 

Задание 7:

Подсказка: показать

Ответ: показать

Задание 8:

Подсказка: показать

Ответ: показать

 

Задание 9:

Подсказка: показать

Ответ: показать

 

Задание 10:

 

Подсказка: показать

Ответ: показать

 

 

Задание 11:

 

Подсказка: показать

Ответ: показать

И. В. Фельдман, репетитор по математике.

Построение сечений

Определение

Сечение — это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

 

Замечание

Для построения сечений различных пространственных фигур необходимо помнить основные определения и теоремы о параллельности и перпендикулярности прямых и плоскостей, а также свойства пространственных фигур. Напомним основные факты.

Для более подробного изучения рекомендуется ознакомиться с темами “Введение в стереометрию. Параллельность” и “Перпендикулярность. Углы и расстояния в пространстве”.

 

Важные определения

1. Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

 

2. Две прямые в пространстве скрещиваются, если через них нельзя провести плоскость.

\circ\).

 

Важные аксиомы

1. Через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

 

2. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

 

3. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

 

Важные теоремы

1. Если прямая \(a\), не лежащая в плоскости \(\pi\), параллельна некоторой прямой \(p\), лежащей в плоскости \(\pi\), то она параллельна данной плоскости.


 

2. Пусть прямая \(p\) параллельна плоскости \(\mu\). Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\), то линия пересечения плоскостей \(\pi\) и \(\mu\) — прямая \(m\) — параллельна прямой \(p\).


 

3. Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

 

4. Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\), то линии пересечения плоскостей также параллельны:

\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]

 

5. Пусть прямая \(l\) лежит в плоскости \(\lambda\). Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\), не лежащей на прямой \(l\), то прямые \(l\) и \(s\) скрещиваются.


 

6. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.

 

7. Теорема о трех перпендикулярах.

Пусть \(AH\) – перпендикуляр к плоскости \(\beta\). Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\). Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.


 

8. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.

 

Замечание

Еще один важный факт, часто использующийся для построения сечений:

для того, чтобы найти точку пересечения прямой и плоскости, достаточно найти точку пересечения данной прямой и ее проекции на эту плоскость.


 

Для этого из двух произвольных точек \(A\) и \(B\) прямой \(a\) проведем перпендикуляры на плоскость \(\mu\) – \(AA’\) и \(BB’\) (точки \(A’, B’\) называются проекциями точек \(A,B\) на плоскость). Тогда прямая \(A’B’\) – проекция прямой \(a\) на плоскость \(\mu\). Точка \(M=a\cap A’B’\) и есть точка пересечения прямой \(a\) и плоскости \(\mu\).

 

Причем заметим, что все точки \(A, B, A’, B’, M\) лежат в одной плоскости.

 

Пример 1.

Дан куб \(ABCDA’B’C’D’\). \(A’P=\dfrac 14AA’, \ KC=\dfrac15 CC’\). Найдите точку пересечения прямой \(PK\) и плоскости \(ABC\).

 

Решение

1) Т.к. ребра куба \(AA’, CC’\) перпендикулярны \((ABC)\), то точки \(A\) и \(C\) — проекции точек \(P\) и \(K\). \circ, \angle E\) – общий), значит, \[\dfrac{PA}{KC}=\dfrac{EA}{EC}\]

Если обозначить ребро куба за \(a\), то \(PA=\dfrac34a, \ KC=\dfrac15a, \ AC=a\sqrt2\). Тогда:

\[\dfrac{\frac34a}{\frac15a}=\dfrac{a\sqrt2+EC}{EC} \Rightarrow EC=\dfrac{4\sqrt2}{11}a \Rightarrow AC:EC=4:11\]

Пример 2.

Дана правильная треугольная пирамида \(DABC\) с основанием \(ABC\), высота которой равна стороне основания. Пусть точка \(M\) делит боковое ребро пирамиды в отношении \(1:4\), считая от вершины пирамиды, а \(N\) – высоту пирамиды в отношении \(1:2\), считая от вершины пирамиды. Найдите точку пересечения прямой \(MN\) с плоскостью \(ABC\).

 

Решение

1) Пусть \(DM:MA=1:4, \ DN:NO=1:2\) (см. рисунок). Т.к. пирамида правильная, то высота падает в точку \(O\) пересечения медиан основания. Найдем проекцию прямой \(MN\) на плоскость \(ABC\). Т.к. \(DO\perp (ABC)\), то и \(NO\perp (ABC)\). Значит, \(O\) – точка, принадлежащая этой проекции.

Найдем вторую точку. Опустим перпендикуляр \(MQ\) из точки \(M\) на плоскость \(ABC\). Точка \(Q\) будет лежать на медиане \(AK\).
Действительно, т.к. \(MQ\) и \(NO\) перпендикулярны \((ABC)\), то они параллельны (значит, лежат в одной плоскости). Следовательно, т.к. точки \(M, N, O\) лежат в одной плоскости \(ADK\), то и точка \(Q\) будет лежать в этой плоскости. Но еще (по построению) точка \(Q\) должна лежать в плоскости \(ABC\), следовательно, она лежит на линии пересечения этих плоскостей, а это – \(AK\).


 

Значит, прямая \(AK\) и есть проекция прямой \(MN\) на плоскость \(ABC\). \(L\) – точка пересечения этих прямых.

 

2) Заметим, что для того, чтобы правильно нарисовать чертеж, необходимо найти точное положение точки \(L\) (например, на нашем чертеже точка \(L\) лежит вне отрезка \(OK\), хотя она могла бы лежать и внутри него; а как правильно?).

 

Т.к. по условию сторона основания равна высоте пирамиды, то обозначим \(AB=DO=a\). \circ, \ \angle L\) – общий). Значит,

\[\dfrac{MQ}{NO}=\dfrac{QL}{OL} \Rightarrow \dfrac{\frac45 a}{\frac 23a} =\dfrac{\frac{7}{10\sqrt3}a+x}{\frac1{2\sqrt3}a+x} \Rightarrow x=\dfrac a{2\sqrt3} \Rightarrow OL=\dfrac a{\sqrt3}\]

Следовательно, \(OL>OK\), значит, точка \(L\) действительно лежит вне отрезка \(AK\).

 

Замечание

Не стоит пугаться, если при решении подобной задачи у вас получится, что длина отрезка отрицательная. Если бы в условиях предыдущей задачи мы получили, что \(x\) – отрицательный, это как раз значило бы, что мы неверно выбрали положение точки \(L\) (то есть, что она находится внутри отрезка \(AK\)).

 

Пример 3

Дана правильная четырехугольная пирамида \(SABCD\). Найдите сечение пирамиды плоскостью \(\alpha\), проходящей через точку \(C\) и середину ребра \(SA\) и параллельной прямой \(BD\).

 

Решение

1) Обозначим середину ребра \(SA\) за \(M\). Т.к. пирамида правильная, то высота \(SH\) пирамиды падает в точку пересечения диагоналей основания. Рассмотрим плоскость \(SAC\). Отрезки \(CM\) и \(SH\) лежат в этой плоскости, пусть они пересекаются в точке \(O\).


 

Для того, чтобы плоскость \(\alpha\) была параллельна прямой \(BD\), она должна содержать некоторую прямую, параллельную \(BD\). Точка \(O\) находится вместе с прямой \(BD\) в одной плоскости – в плоскости \(BSD\). Проведем в этой плоскости через точку \(O\) прямую \(KP\parallel BD\) (\(K\in SB, P\in SD\)). Тогда, соединив точки \(C, P, M, K\), получим сечение пирамиды плоскостью \(\alpha\).

 

2) Найдем отношение, в котором делят точки \(K\) и \(P\) ребра \(SB\) и \(SD\). Таким образом мы полностью определим построенное сечение.

 

Заметим, что так как \(KP\parallel BD\), то по теореме Фалеса \(\dfrac{SB}{SK}=\dfrac{SD}{SP}\). Но \(SB=SD\), значит и \(SK=SP\). Таким образом, можно найти только \(SP:PD\).

 

Рассмотрим \(\triangle ASC\). \circ\), то \(\triangle ABD=\triangle CBD\), следовательно, \(AD=CD\), следовательно, \(\triangle DAC\) – тоже равнобедренный и \(DK\perp AC\).

 

Применим теорему о трех перпендикулярах: \(BH\) – перпендикуляр на \(DAC\); наклонная \(BK\perp AC\), значит и проекция \(HK\perp AC\). Но мы уже определили, что \(DK\perp AC\). Таким образом, точка \(H\) лежит на отрезке \(DK\).


 

Соединив точки \(A\) и \(H\), получим отрезок \(AN\), по которому плоскость \(\alpha\) пересекается с гранью \(DAC\). Тогда \(\triangle ABN\) – искомое сечение пирамиды плоскостью \(\alpha\).

 

2) Определим точное положение точки \(N\) на ребре \(DC\).

 

Обозначим \(AB=CB=DB=x\). Тогда \(BK\), как медиана, опущенная из вершины прямого угла в \(\triangle ABC\), равна \(\frac12 AC\), следовательно, \(BK=\frac12 \cdot \sqrt2 x\).

 

Рассмотрим \(\triangle BKD\). Найдем отношение \(DH:HK\).


 

Заметим, что т.к. \(BH\perp (DAC)\), то \(BH\) перпендикулярно любой прямой из этой плоскости, значит, \(BH\) – высота в \(\triangle DBK\). Тогда \(\triangle DBH\sim \triangle DBK\), следовательно

\[\dfrac{DH}{DB}=\dfrac{DB}{DK} \Rightarrow DH=\dfrac{\sqrt6}3x \Rightarrow HK=\dfrac{\sqrt6}6x \Rightarrow DH:HK=2:1\]


 

Рассмотрим теперь \(\triangle ADC\). Медианы треугольника точной пересечения делятся в отношении \(2:1\), считая от вершины. Значит, \(H\) – точка пересечения медиан в \(\triangle ADC\) (т.к. \(DK\) – медиана). То есть \(AN\) – тоже медиана, значит, \(DN=NC\).

Сечение куба плоскостью

Задачи на построение сечений куба плоскостью, как правило, проще чем, например, задачи на сечения пирамиды.

Провести прямую можем через две точки, если они лежат в одной плоскости. При построении сечений куба возможен еще один вариант построения следа секущей плоскости. Поскольку две параллельные плоскости третья плоскость пересекает по параллельным прямым, то, если в одной из граней уже построена прямая, а в другой есть точка, через которую проходит сечение, то можем провести через эту точку прямую, параллельную данной.

Рассмотрим на конкретных примерах, как построить сечения куба плоскостью.

1) Построить сечение куба плоскостью, проходящей через точки A, C и M.

Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1). Треугольник ACM — искомое сечение.

 

 

 

2) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.

 

Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).

Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).

Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.

Пятиугольник MNLPS — искомое сечение.

3) Построить сечение куба плоскостью, проходящей через точки M, N, P.

 

Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).

 

 

 

Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.

Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую. Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).

Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.

Шестиугольник MNHEPF — искомое сечение.

 

Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.

Работа с прямой PE дает то же сечение MNHEPF.

 

4) Построить сечение куба плоскостью, проходящей через точку M, N, P.

Здесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

 

 

 

 

Продолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости ( ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.

 

Можно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.

 

 

 

 

Сечения – Черчение

Производственные чертежи содержат различные типы изо­бражений — виды, разрезы, сечения.

Сечения и разрезы позволяют выявить внешнюю и внутрен­нюю (рис. 147, а, б) форму детали. Названные изображения по­лучают в результате мысленного рассечения детали секущей плоскостью, положение которой выбирают в зависимости от формы изображаемой детали. Сечения и разрезы дополняют и уточняют геометрическую информацию о предмете и тем самым увеличивают возможности выявления формы изображаемого объекта на чертеже. В некоторых случаях они имеют большую информационную емкость, чем виды. Разрезы и сечения являют­ся проекционными изображениями и выполняются по правилам прямоугольного проецирования.

Рис. 147. Сечение (а) и разрез (б)

 

Сечение — изображение фигуры, получающейся при мыслен­ном рассечении предмета секущей плоскостью. В сечении пока­зывается только то, что находится в секущей плоскости.

Деталь проецируют на плоскость проекций V (рис. 148, а). Затем ее мысленно рассекают секущей плоскостью в том месте, где необходимо уточнить форму изделия. В секущей плоскости получают фигуру сечения. После этого секущую плоскость (вме­сте с фигурой сечения) мысленно вынимают, поворачивают во­круг вертикальной оси, перемещают параллельно плоскости про­екций и совмещают с плоскостью V так, чтобы изображения вида спереди и фигуры сечения не заслоняли друг друга (рис. 148, б). Обратите внимание на то, что при таком перемеще­нии секущей плоскости вид спереди находится в проекционной связи с сечением. Полученное изображение фигуры сечения на­зывают сечением, выполненным в проекционной связи.

Секущую плоскость с фигурой сечения допускается переме­щать в произвольном направлении, совмещая ее с плоскостью проекций, без учета проекционной связи. Такое сечение называ­ется сечением, выполненным на свободном месте чертежа (рис. 148, в). Сечение можно располагать и на продолжении сле­да секущей плоскости (рис. 148, г). Оно называется сечением, выполненным на продолжении следа секущей плоскости.

Если сечение располагается на продолжении следа секущей плоскости, то сечение не обозначается (см. рис. 148, г). Если се­чение располагается на свободном месте чертежа, то его обозна­чают надписью типа «А — А» (см. рис. 148, б, в).

Если секущая плоскость проходит вдоль оси цилиндрической или фонической поверхности, ограничивающих отверстие или уг­лубление, то их контур на сечении показывают полностью, на­пример изображение углубления конической формы (см. рис. 148).

Для выявления формы некоторых деталей иногда требуется выполнить несколько сечений, которые на чертеже обозначают буквами русского алфавита (рис. 149).

ГОСТ 2.305—68 устанавливает правила изображения и обозначения сечений.

Контуры фигуры сечения детали изображают сплошной ос­новной линией. Внутри этих контуров дают условное графическое обозначение материала детали (табл. 12).

Рис. 148. Сечения:

а — получение сечения; б – сечение, построенное в проекционной связи с видом; в – сечение, выполненное на свободном месте чертежа; г — се­чение, выполненное на продолжении следа секущей плоскости

Рис. 149. Обозначение сечений буквами русского алфавита

 

12. Графические обозначения некоторых материалов на чертежах

Правила построения сечений. Практическое занятие:” Построение сечений параллелепипеда”

Сечение – изображение фигуры, получающееся при мысленном рассечении предмета одной или несколькими плоскостями.
На сечении показывается только то, что получается непосредственно в секущей плоскости .

Сечения обычно применяют для выявления поперечной формы предмета. Фигуру сечения на чертеже выделяют штриховкой. Штриховые линии наносят в соответствии с общими правилами.

Порядок формирования сечения:
1. Вводится секущая плоскость в том месте детали, где необходимо более полно выявить ее форму. 2. Мысленно отбрасывается часть детали, расположенная между наблюдателем и секущей плоскостью. 3. Фигура сечения мысленно поворачивается до положения, параллельного основной плоскости проекций P. 4. Изображение сечения формируют в соответствии с общими правилами проецирования.

Сечения, не входящие в состав , разделяют на:

Вынесенные;
– наложенные.

Вынесенные сечения являются предпочтительными и их допускается располагать в разрыве между частями одного и того же вида.
Контур вынесенного сечения, а также сечения, входящего в состав разреза, изображают сплошными основными линиями.

Наложенным называют сечение , которое располагают непосредственно на виде предмета. Контур наложенного сечения выполняют сплошной тонкой линией. Фигуру сечения располагают в том месте основного вида, где проходит секущая плоскость, и заштриховывают.


Наложение сечений: а) симметричное; б) несимметричное

Ось симметрии наложенного или вынесенного сечения указывают штрихпунктирной тонкой линией без обозначения буквами и стрелками и линию сечения не проводят.

Сечения в разрыве. Такие сечения располагают в разрыве основного изображения и выполняют сплошной основной линией.
Для несимметричных сечений, расположенных в разрыве или наложенных линию сечения проводят со стрелками, но буквами не обозначают.

Сечение в разрыве: а) симметричное; б) несимметричное

Вынесенные сечения располагают:
– на любом месте поля чертежа;
– на месте основного вида;
– с поворотом с добавлением знака «повернуто»

Если секущая плоскость проходит через ось поверхности вращения, ограничивающие отверстие или углубления, то их контур в сечении показывают полностью, т. е. выполняют по правилу разреза.

Если сечение получается состоящим из двух и более отдельных частей, то следует применить разрез, вплоть до изменения направления взгляда.
Секущие плоскости выбирают так, чтобы получить нормальные поперечные сечения.
Для нескольких одинаковых сечений, относящихся к одному предмета, линию сечения обозначают одной буквой и вычерчивают одно сечение.

Выносные элементы.
Выносной элемент – отдельное увеличенное изображение части предмета для представления подробностей, не указанных на соответствующем изображении; может отличаться от основного изображения по содержанию. Например, основное изображение является видом, а выносной элемент – разрезом.

На основном изображении часть предмета выделяют окружностью произвольного диаметра, выполненной тонкой линией, от нее идет линия-выноска с полочкой, над которой ставят прописную букву русского алфавита, высотой более, чем высота размерных чисел. Над выносным элементом пишут эту же букву и справа от нее в круглых скобках, без буквы М, указывают масштаб выносного элемента.

Задачи на построение сечений многогранников занимают значительное место как школьном курсе геометрии для старших классов, так и на экзаменах разного уровня. Решение этого вида задач способствует усвоению аксиом стереометрии, систематизации знаний и умений, развитию пространственного представления и конструктивных навыков. Общеизвестны трудности, возникающие при решении задач на построение сечений.

С самого раннего детства мы сталкиваемся с сечениями. Режем хлеб, колбасу и другие продукты, обстругиваем палочку или карандаш ножом. Секущей плоскостью во всех этих случаях является плоскость ножа. Сечения (срезы кусочков) оказываются различными.

Сечение выпуклого многогранника есть выпуклый многоугольник, вершины которого в общем случае являются точками пересечения секущей плоскости с ребрами многоугольника, а стороны- линиями пересечения секущей плоскости с гранями.

Для построения прямой пересечения двух плоскостей достаточно найти две общие точки этих плоскостей и провести через них прямую. Это основано на следующих утверждениях:

1.если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости;

2.если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Как я уже сказал ппостроение сечений многогранников можно осуществлять на основании аксиом стереометрии и теорем о параллельности прямых и плоскостей. Вместе с тем, существуют определенные методы построения плоских сечений многогранников. Наиболее эффективными являются следующие три метода:

Метод следов

Метод внутреннего проектирования

Комбинированный метод.

В изучении геометрии и, в особенности, тех её разделов, где рассматриваются изображения геометрических фигур, изображения геометрических фигур помогают использования компьютерных презентаций. С помощью компьютера многие уроки геометрии становятся более наглядной и динамичной. Аксиомы, теоремы, доказательства, задачи на построения, задачи на построения сечений можно сопровождать последовательными построениями на экране монитора. Сделанные с помощью компьютера чертежи можно сохранять и вставлять их в другие документы.

Хочу показать несколько слайдов по теме: «Построения сечений в геометрических телах»

Для построения точки пересечения прямой и плоскости находят в плоскости прямую, пересекающую данную прямую. Тогда искомая точка является точкой пересечения найденной прямой с данной. Проследим это на следующих слайдах.

Задача 1.

На ребрах тетраэдра DABC отмечены две точки М и N; М GAD, N б DC. Укажите точку пересечения прямой MN с плоскостью основания.

Решение: для того, чтобы найти точку пересечения прямой MN с плоскостью

основания мы продолжим АС и отрезок MN. Отметим точку пересечения этих прямых через X. Точка X принадлежит прямой MN и грани АС, а АС лежит в плоскости основания, значит точка X тоже лежит в плоскости основания. Следовательно, точка X есть точка пересечения прямой MN с плоскостью основания.

Рассмотрим вторую задачу. Немного усложним его.

Задача 2.

Дан тетраэдр DABC точки М и N, где М € DA, N С (DBC). Найти точку пересечения прямой MN с плоскостью ABC .

Решение: точка пересечения прямой MN с плоскостью ABC должна лежать в плоскости, которая содержит прямую MN и в плоскости основания. Продолжим отрезок DN до точки пересечения с ребром DC. Точку пересечения отметим через Е. Продолжим прямую АЕ и MN до точки их пересечения. Отметим X. Точка X принадлежит MN, значит она лежит на плоскости которая содержит прямую MN и X принадлежит АЕ, а АЕ лежит на плоскости ABC. Значит X тоже лежит в плоскости ABC. Следовательно X и есть точка пересечения прямой MN и плоскости ABC.

Усложним задачу. Рассмотрим сечение геометрических фигур плоскостями, проходящими через три данные точки.

Задача 3

На ребрах AC, AD и DB тетраэдра DABC отмечены точки М, N и Р. Построить сечение тетраэдра плоскостью MNP.

Решение: построим прямую, по которой плоскость MNP. Пересекается с плоскостью грани ABC. Точка М является общей точкой этих плоскостей. Для построения ещё одной общей точки продолжим отрезок АВ и NP. Точку пересечения отметим через X, которая и будет второй общей точкой плоскости MNP и ABC. Значит эти плоскости пересекаются по прямой MX . MX пересекает ребро ВС в некоторой точке Е. Так как Е лежит на MX, а MX прямая принадлежащей плоскости MNP, значит РЕ принадлежит MNP. Четырёхугольник MNPE искомое сечение.

Задача 4

Построим сечение прямой призмы АВСА1В1С1 плоскостью проходящей через точки P, Q ,R, где R принадлежит (AA 1C 1C ), Р принадлежит В 1С1,

Q принадлежит АВ

Решение: Все три точки P,Q,R лежат в разных гранях, поэтому построить линию пересечения секущей плоскости с какой- либо гранью призмы мы пока не можем. Найдем точку пересечения PR с ABC. Найдем проекции точек Р и R на плоскость основания PP1 перпендикулярно ВС и RR1 перпендикулярна АС. Прямая P1R1 пересекается с прямой PR в точке X. X точка пересечения прямой PR с плоскостью ABC. Она лежит в искомой плоскости К ив плоскости основания, как и точка Q. XQ- прямая пересекающая К с плоскостью основания. XQ пересекает АС в точке К. Следовательно, KQ отрезок пересечения плоскости Х с гранью ABC. К и R лежат в плоскости Х и в плоскости грани АА1С1С. Проведем прямую KR и точку пересечения с A1Q отметим Е. КЕ является линией пересечения плоскости Х с этой гранью. Найдем линию пересечения плоскости Х с плоскостью граней BB1A1A. КЕ пересекается с А1А в точке У. Прямая QY есть линия пересечения секущей плоскости с плоскостью AA1B1B. FPEKQ- искомое сечение.

Практическое занятие: «Параллелепипед. Построение сечений параллелепипеда ».

1. Цель практической работы : . Закрепить знания теоретического материала о многогранниках, навыки решения задач на построение сечений, умения анализировать чертеж.

2.Дидактическое оснащение практической работы : АРМ, модели и развёртки многогранников, измерительные инструменты, ножницы, клей, плотная бумага.

Время:2 часа

Задания к работе:

Задание 1

Построить сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки M, N, P, лежащие, на прямых, соответственно, A 1 B 1, А D , DC

Образец и последовательность решения задачи:

1.Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проходящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.

2.Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.

3.Так как точка M также принадлежит плоскости сечения и пересекает прямую АА 1 в некоторой точке Х.

4.Точки X и N лежат в одной плоскости грани АА 1 D 1 D, соединим их и получим прямую XN.

5.Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A 1 B 1 C 1 D 1 , параллельную прямой NP. Эта прямая пересечет сторону В 1 С 1 в точке Y.

6.Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.

Задание 2

Вариант1. Построить сечение параллелепипеда АВСDА1В1С1D1 плоскостью, заданной следующими точками M , N и P

1 Уровень: Все три точки лежит на рёбрах, выходящих из вершиныА

2 Уровень. M лежит в грани AA1D1D, N лежит в грани АА1В1В, P лежит в грани СС1D1D.

3 Уровень. M лежит на диагонали B1D, N лежит на диагонали АС1, P лежит на ребре С1D1.

Вариант2. Построить сечение параллелепипеда АВСDА1В1С1D1 плоскостью, проходящей через прямую DQ, где точка Q лежит на ребре СС1 и точку Р, заданную следующим образом

1 Уровень: Все три точки лежит на рёбрах, выходящих из вершиныС

2 Уровень: М лежит на продолжении ребра А1В1, причем точка А1 находится между точками В1 и Р.

3 Уровень: Р лежит на диагонали В1D

Порядок выполнения работы:

1.Изучите теоретический материал по темам:

Параллелепипед.

Прямой параллелепипед.

Наклонный параллелепипед.

Противолежащие грани параллелепипеда.

Свойства диагоналей параллелепипеда.

П онятие секущей плоскости и правила её построения.

Какие виды многоугольников получаются в сечении куба и параллелепипеда.

2. Постройте параллелепипед ABCDA 1 B 1 C 1 D 1

3.Разберите решение задачи № 1

4.Последовательно постройте сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки P, Q, R задачи № 1.

5.Постройте ещё три параллелепипеда и выделите на них сечения к задачам 1, 2, и 3 уровней

Критерии оценивания :

Литература: Атанасян Л.С. Геометрия: Учебник для 10-11 кл. общеобразоват. учреждений. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кодомцев и др. – М.: Просвещение, 2010г Зив Б.Г. Задачи по геометрии: Пособие для учащихся 7-11 кл. общеобразоват. учреждений. / Б.Г. Зив, В.М. Мейлер, А.Г. Баханский. – М.: Просвещение, 2010. В. Н. ЛитвиненкоЗадачи на развитие пространственных представлений. Книга для учителя. – М.: Просвещение, 2010г

Дидактический материал к заданию практического занятия

К задаче № 1:

Некоторые возможные сечения:

Построить сечения параллелепипеда плоскостью, проходящей через данные точки

Цели урока: рассмотреть решение задач на построение сечений, если две точки сечения принадлежат одной грани.

Ход урока

Изучение новых понятий
Определение 1.
Секущая плоскость многогранника – любая плоскость, по обе стороны от которой имеются точки данного многогранника.
Определение 2. Сечение многогранника – это многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.
Задание. Назовите отрезки, по которым секущая плоскость пересекает грани параллелепипеда (рис. 1). Назовите сечение параллелепипеда.

Основные действия при построении сечений

Теоретическая основа

Ответ

1. Как проверить: построено сечение или нет Определение сечения Это должен быть многоугольник, стороны которого принадлежат граням многогранника
2. До начала работы определить: можно ли по данным задачи построить сечение Способы задания плоскости Можно, если данные элементы задают однозначно плоскость, то есть даны три точки, не лежащие на одной прямой, точка и прямая и т.д.
3. В плоскости какой-то грани есть две точки секущей плоскости
Если две точки принадлежат плоскости, то вся прямая принадлежит плоскости Через эти точки провести прямую
4. В одной из параллельных граней есть сторона сечения, а в другой – точка сечения Свойство параллельных плоскостей Через эту точку провести прямую, параллельную данной
5. В одной грани есть точка сечения и известно, что секущая плоскость проходит через прямую, параллельную этой грани Признак параллельности прямой и плоскости. Свойство параллельных плоскостей Построить прямую пересечения плоскостей, параллельную данной прямой
6. Две точки сечения принадлежат одной грани, а третья точка лежит в смежной Аксиомы стереометрии Секущая плоскость пересекает грани по отрезкам OC и AB, которые называются следом секущей плоскости на гранях

Решение задач

Задача 1. Какой из четырехугольников, EFKM или EFKL, может быть сечением данного многогранника (рис. 2)? Почему?

Задача 2. Ученик изобразил сечение тетраэдра (рис. 3). Возможно ли такое сечение?

Решение . Нужно доказать, что N, M и H, L лежат в одной плоскости. Пусть точки N и M принадлежат задней грани, H и L – нижней грани, то есть точка пересечения NM и HL должна лежать на прямой, принадлежащей обеим граням, то есть AC. Продлим прямые NM и HL и найдем точку их пересечения. Эта точка не будет принадлежать прямой AC. Значит, точки N, M, L, H не образуют плоский многоугольник. Невозможно.

Задача 3. Построить сечение тетраэдра ABCS плоскостью, проходящей через точки K, L, N, где K и N – середины ребер SA и SB соответственно (рис. 4).

1. В какой грани можно построить стороны сечения?

2. Выбираем одну из точек, на которой оборвалось сечение.
Решение. Способ I. Выбираем точку L.
Определяем грань, в которой лежит выбранная точка и в которой надо построить сечение.

Определяем грань, в которой лежит прямая KN, не проходящая через выбранную точку L.

Находим линию пересечения граней ABC и ASB.

Каково взаимное расположения прямых KN и AB (рис. 5)?
[Параллельны.]

Что нужно построить, если секущая плоскость проходит через прямую, параллельную линии пересечения плоскостей?
[Через точку L провести прямую, параллельную AB. Эта прямая пересекает ребро CB в точке P.]
Соединяем точки, принадлежащие одной грани. KLPN – искомое сечение.
Способ II . Выбираем точку N (рис. 6).


Определяем грани, в которых лежат точка N и прямая KL.

Линией пересечения этих плоскостей будет прямая SC. Находим точку пересечения прямых KL и SC. Обозначим ее Y.
Соединяем точки N и Y. Прямая NY пересекает ребро CB в точке P.
Соединяем точки, принадлежащие одной грани.
KLNP – искомое сечение.
Объясните данное решение.
Один учащийся работает у доски, остальные в тетрадях.

Задача 4 . Построить сечение параллелепипеда, проходящее через точки M, P и H, H ` (A1B1C1) (рис. 7).

Решение. 1. Соедините точки, принадлежащие одной грани.
2. Какую прямую и точку выбираем для построения сечения?
3. Что определяем дальше?
4. Каково взаимное расположение выбранной прямой и линии пересечения граней (рис. 8)?

5. Как построить след секущей плоскости на грани B1C1D1A1, проходящий через точку H?
6. Соедините точки, принадлежащие одной грани.
7. Какую прямую и точку нужно выбрать для построения следа секущей плоскости на грани AA1D1D?
8. Каково взаимное расположение граней BB1C1C и AA1D1D?
9. Каким свойством необходимо воспользоваться для построения следа секущей плоскости на грани AA1D1D?
10. Назовите искомое сечение.

Задача 5. Построить сечение пирамиды SABCD, проходящее через точки M, P и H,
H` (ABC) (рис. 9).

Ответ: см. рисунок 10.

Задание на дом

Задача . Как изменятся построения, если точ-
ка H изменит свое положение? Построить сечения, используя разные варианты (рис. 11).

Само же задание обычно звучит так: “построить натуральный вид фигуры сечения” . Конечно же, мы решили не оставлять этот вопрос в стороне и постараться по возможности объяснить, как происходит построение наклонного сечения.

Для того, чтобы объяснить, как строится наклонное сечение, я приведу несколько примеров. Начну конечно же с элементарного, постепенно наращивая сложность примеров. Надеюсь, что проанализировав эти примеры чертежей сечений, вы разберетесь в том, как это делается, и сможете сами выполнить свое учебное задание.

Рассмотрим “кирпичика” с размерами 40х60х80 мм произвольной наклонной плоскостью. Секущая плоскость разрезает его по точкам 1-2-3-4. Думаю, тут все понятно.

Перейдем к построению натурального вида фигуры сечения.
1. Первым делом проведем ось сечения. Ось следует чертить параллельно плоскости сечения – параллельно линии, в которую проецируется плоскость на главном виде – обычно именно на главном виде задают задание на построение наклонного сечения (Далее я всегда буду упоминать про главный вид, имея в виду что так бывает почти всегда в учебных чертежах).
2. На оси откладываем длину сечения. На моем чертеже она обозначена как L. Размер L определяется на главном виде и равен расстоянию от точки вхождения сечения в деталь до точки выхода из нее.
3. Из получившихся двух точек на оси перпендикулярно ей откладываем ширины сечения в этих точках. Ширину сечения в точке вхождения в деталь и в точке выхода из детали можно определить на виде сверху. В данном случае оба отрезка 1-4 и 2-3 равны 60 мм. Как видно из рисунка выше, края сечения прямые, поэтому просто соединяем два наших получившихся отрезка, получив прямоугольник 1-2-3-4. Это и есть – натуральный вид фигуры сечения нашего кирпичика наклонной плоскостью.

Теперь давайте усложним нашу деталь. Поставим кирпичик на основание 120х80х20 мм и дополним фигуру ребрами жесткости. Проведем секущую плоскость так, чтобы она проходила через все четыре элемента фигуры (через основание, кирпичик и два ребра жесткости). На рисунке ниже вы можете увидеть три вида и реалистичое изображение этой детали


Попробуем построить натуральный вид этого наклонного сечения. Начнем опять с оси сечения: проведем ее параллельно плоскости сечения обозначенного на главном виде. На ней отложим длину сечения равную А-Е. Точка А является точкой входа сечения в деталь, а в частном случае – точкой входа сечения в основание. Точкой выхода из основания является точка В. Отметим точку В на оси сечения. Аналогичным образом отметим и точки входа-выхода в ребро, в “кирпичик” и во второе ребро. Из точек А и В перпендикулярно оси отложим отрезки равные ширине основания (в каждую сторону от оси по 40, всего 80мм). Соединим крайние точки – получим прямоугольник, являющийся натуральным видом сечения основания детали.

Теперь настал черед построить кусочек сечения, являющийся сечением ребра детали. Из точек В и С отложим перпендикуляры по 5 мм в каждую сторону – получатся отрезки по 10 мм. Соединим крайние точки и получим сечение ребра.

Из точек С и D откладывем перпендикулярные отрезки равные ширине “кирпичика” – полностью аналогично первому примеру этого урока.

Отложив перпендикуляры из точек D и Е равные ширине второго ребра и соединив крайние точки получим натуральный вид его сечения.

Остается стереть перемычки между отдельными элементами получившегося сечения и нанести штриховку. Должно получиться что-то вроде этого:


Если же по заданному сечению произвести разделение фигуры, то мы увидим следующий вид:


Я надеюсь, что вас не запугали нудные абзацы описания алгоритма. Если вы прочли все вышенаписанное и еще не до конца поняли, как начертить наклонное сечение , я очень советую вам взять в руки лист бумаги и карандаш и попытаться повторить все шаги за мной – это почти 100% поможет вам усвоить материал.

Когда-то я пообещал продолжение данной статьи. Наконец-то я готов представить вам пошагового построения наклонного сечения детали, более приближенной к уровню домашних заданий. Более того, наклонное сечение задано на третьем виде (наклонное сечение задано на виде слева)

или запишите наш телефон и расскажите о нас своим друзьям – кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки – и кто-то еще сможет освоить черчение.

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое на более сложной детали, с фасками и конусовидным отверстием например.

Спасибо. А разве на разрезах ребра жесткости не штрихуются?
Именно. Именно они и не штрихуются. Потому что таковы общие правила выполнения разрезов. Однако их обычно штрихуют при выполнении разрезов в аксонометрических проекциях – изометрии, диметрии и т.д. При выполнении наклонных сечений, область относящаяся к ребру жесткости так же заштриховывается.

Спасибо,очень доступно.Скажите,а наклонное сечение можно выполнить на виде с верху,или на виде слева?Если да,то хотелось бы увидеть простейший пример.Пожалуйста.

Выполнить такие сечения можно. Но к сожалению у меня сейчас нет под рукой примера. И есть еще один интересный момент: с одной стороны, там ничего нового, а с другой стороны на практике такие сечения чертить реально сложнее. Почему-то в голове все начинает путаться и у большинства студентов возникают сложности. Но вы не сдавайтесь!

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое, но с отверстиями (сквозными и несквозными), а то в элипс они в голове так и не превращаются

помогите мне по комплексной задаче

Жаль, что вы именно тут написали. Написали бы в почту – может мы смогли бы успеть все обсудить.

Хорошо объясняете. Как быть если одна из сторон детали полукруглая? А также в детали есть отверстия.

Илья, используйте урок из раздела по начертательной геометрии “Сечение цилиндра наклонной плоскостью”. С его помощью сможете разобраться, что делать с отверстиями (они же по сути тоже цилиндры) и с полукруглой стороной.

благодарю автора за статью!кратко и доступно пониманию.лет 20 назад сам грыз гранит науки,теперь сыну помогаю. многое забыл,но Ваша статья вернула фундаментальное понимание темы.Пойду с наклонным сечением цилиндра разбираться)

Добавьте свой комментарий.

Как научиться строить сечения. Построения сечений многогранников

А вы знаете, что называется сечением многогранников плоскостью? Если вы пока сомневаетесь в правильности своего ответа на этот вопрос, то можете довольно просто себя проверить. Предлагаем пройти небольшой тест, представленный ниже.

Вопрос. Назовите номер рисунка, на котором изображено сечение параллелепипеда плоскостью?

Итак, правильный ответ – на рисунке 3.

Если вы ответите правильно, это подтверждает то, что вы понимаете, с чем имеете дело. Но, к сожалению, даже правильный ответ на вопрос-тест не гарантирует вам наивысших отметок на уроках по теме «Сечения многогранников». Ведь самым сложным является не распознавание сечений на готовых чертежах, хотя это тоже очень важно, а их построении.

Для начала сформулируем определение сечения многогранника. Итак, сечением многогранника называют многоугольник, вершины которого лежат на ребрах многогранника, а стороны – на его гранях.

Теперь потренируемся быстро и безошибочно строить точки пересечения данной прямой с заданной плоскостью. Для этого решим следующую задачу.

Построить точки пересечения прямой MN с плоскостями нижнего и верхнего оснований треугольной призмы ABCA 1 B 1 C 1 , при условии, что точка M принадлежит боковому ребру CC 1 , а точка N – ребру BB 1 .

Начнем с того, что продлим на чертеже прямую MN в обе стороны (рис. 1). Затем, чтобы получить необходимые по уловию задачи точки пересечения, продлеваем и прямые, лежащие в верхнем и нижнем основаниях. И вот наступает самый сложный момент в решении задачи: какие именно прямые в обоих основаниях необходимо продлить, так как в каждом из них имеется по три прямые.

Чтобы правильно сделать заключительный шаг построения, необходимо определить, какие из прямых оснований находятся в той же плоскости, что и интересующая нас прямая MN. В нашем случае – это прямая CB в нижнем и C 1 B 1 в верхнем основаниях. И именно их и продлеваем до пересечения с прямой NM (рис. 2).

Полученные точки P и P 1 и есть точки пересечения прямой MN с плоскостями верхнего и нижнего оснований треугольной призмы ABCA 1 B 1 C 1 .

После разбора представленной задачи можно перейти непосредственно к построению сечений многогранников. Ключевым моментом здесь будут рассуждения, которые и помогут прийти к нужному результату. В итоге постараемся в итоге составить шаблон, который будет отражать последовательность действий при решении задач данного типа.

Итак, рассмотрим следующую задачу. Построить сечение треугольной призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки X, Y, Z, принадлежащие ребрам AA 1 , AC и BB 1 соответственно.

Решение: Выполним чертеж и определим, какие пары точек лежат в одной плоскости.

Пары точек X и Y, X и Z можно соединить, т.к. они лежат в одной плоскости.

Построим дополнительную точку, которая будет лежать в той же грани, что и точка Z. Для этого продлим прямые XY и СС 1 , т.к. они лежат в плоскости грани AA 1 C 1 C. Назовем полученную точку P.

Точки P и Z лежат в одной плоскости – в плоскости грани CC 1 B 1 B. Поэтому можем их соединить. Прямая PZ пересекает ребро CB в некоторой точке, назовем ее T. Точки Y и T лежат в нижней плоскости призмы, соединяем их. Таким образом, образовался четырехугольник YXZT, а это и есть искомое сечение.

Подведем итог. Чтобы построить сечение многогранника плоскостью, необходимо:

1) провести прямые через пары точек, лежащих в одной плоскости.

2) найти прямые, по которым пересекаются плоскости сечения и грани многогранника. Для этого нужно найти точки пересечения прямой, принадлежащей плоскости сечения, с прямой, лежащей в одной из граней.

Процесс построения сечений многогранников сложен тем, что в каждом конкретном случае он различен. И никакая теория не описывает его от начала и до конца. На самом деле есть только один верный способ научиться быстро и безошибочно строить сечения любых многогранников – это постоянная практика. Чем больше сечений вы построите, тем легче в дальнейшем вам будет это делать.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В этом методе мы первым действием (после нахождения вторичных проекций данных точек) строим след секущей плоскости на плоскости верхнего или нижнего основания призмы или усечённой пирамиды или на основании пирамиды

Зад 2. Дано изображение треугольной призмы ABCA 1 B 1 C 1 и трёх точек M , N , P , которые лежат соответственно на ребре СС 1 и гранях ABB 1 A 1 , BCC 1 B 1 . Построить сечение призмы плоскостью , проходящей через M , N , P .

Решение. Мы уже имеем одну точку на верхнем основании призмы, поэтому и след мы будем строить на верхнем основании. Строим вторичные проекции точек N и P на верхнее основание.Затем: 1 .N P N 3 P 3 =X ; 2 .M X =p –след; 3 .p B 1 C 1 =D .

Дальнейшие действия уже были показаны выше на чертеже.

Зад 3. Реш. Мы будем строить след секущей плоскости на нижнем основании призмы.

Строим:1. M N E D =X , M P EP 3 =Y ;

2. p =XY – след;3. p B C =G , p D C =H .

Нам нужно найти точку на ребре BB 1 или на ребре AA 1 .

ВграниABB 1 A 1 мы уже имеем одну точку P . Поэтому нижнее ребро этой грани, т.е. AB , мы продолжаем до пересечения со следом.

4. A B p =Z .

5. P Z AA 1 =F ; P Z BB 1 =K .Дальнейшие действия уже показаны выше.

Если окажется, что линия AB не пересекается со следом, то искомая FK тоже будет параллельна следу. Зад 4. Реш. 1. P N P o N o =X ;

2. M N CN o =Y ;3. p =XY – след;

3. C B p =Z ;4. Z M S B =E ;

5. E N S A =G 6. GEMF – иск сечение.

17. Построение сечения цилиндра.

Если секущая плоскость задана тремя точками, то мы всегда можем найти её след на плоскости основания цилиндра или конуса и точку (P , O ) на его оси. Поэтому считаем, что секущая плоскость задана именно этими элементами.

Сначала рас-им случай, когда плоскость пересекает только боковую поверхность цилиндра. Тогда сечением цилиндра будет эллипс (;¯ и его изображение – тоже эллипс. Мы знаем способ построения эллипса, если известны два его сопряжённых диаметра. Мы сейчас покажем, как можно найти изображение главных диаметров эллипса (;¯.

Пусть  и  1 – эллипсы, изображающие нижнее и верхнее основания цилиндра, O и O 1 – их центры. Проведём диаметр A 3 B 3 нижнего основания, параллельный следу и сопряжённый ему диаметр C 3 D 3 . Для построения C 3 D 3 мы используем хорду K 3 L 3 , один конец которой принадлежит контурной образующей. Напомним, что A 3 B 3 и C 3 D 3 изображают перпендикулярные диаметры. Продолжим C 3 D 3 до пересечения со следом. Получим точ X . Прям.PX наз-ём осью сечения.

Поднимем точки C 3 и D 3 до оси сечения. Получим C и D . Отрезок CD является изображением большогодиаметра сечения. Поднимем отрезок A 3 B 3 на высоту OP . Получим отрезок AB , который является изображением малого диаметра сечения. Отр-и AB и CD –сопряж-ые диам. эллипса .

Найти ещё точки, в которых эллипс переходит с видимой стороны цилиндра на невидимую, а значит, сплошная линия переходит в пунктир. Это точки пересечения секущей плоскости с контурными образующими. ПустьY 3 =K 3 L 3 C 3 D 3 . Поднимем Y 3 до оси сечения. Получим точку Y . Поднимем хорду K 3 L 3 на высоту YY 3 . Получим отрезок KL . Мы нашли требуемую точку K , а попутно, ещё одну дополнительную точку L . Точка M , изобр-щая пересечение секущей плоск-и со второй контурной образующей симметрична точкеK относительно точкиP .Допол-но построим точN , симметричнуюL относ-нточки P

Покажем способ, как можно найти любое кол-во точек на сечении без испол-ия этих диаметров.

выбираем люб. точкуV 3 на эллипсе . Проводим диаметрV 3 T 3 и продолжаем его до пересечения со следом.Получим точкуU . Поднимаем точки V 3 и T 3 до прямой UP . Получаем две точки V и T на сечении. Выбирая вместо V 3 другую точку, получим др. 2 точки на сеч.Если выбрать точку K 3 , лежащую на контурно образующей, мы найдём точки K и M , в которых сплошная линия на сечении должна перейти в пунктирную.

Само же задание обычно звучит так: “построить натуральный вид фигуры сечения” . Конечно же, мы решили не оставлять этот вопрос в стороне и постараться по возможности объяснить, как происходит построение наклонного сечения.

Для того, чтобы объяснить, как строится наклонное сечение, я приведу несколько примеров. Начну конечно же с элементарного, постепенно наращивая сложность примеров. Надеюсь, что проанализировав эти примеры чертежей сечений, вы разберетесь в том, как это делается, и сможете сами выполнить свое учебное задание.

Рассмотрим “кирпичика” с размерами 40х60х80 мм произвольной наклонной плоскостью. Секущая плоскость разрезает его по точкам 1-2-3-4. Думаю, тут все понятно.

Перейдем к построению натурального вида фигуры сечения.
1. Первым делом проведем ось сечения. Ось следует чертить параллельно плоскости сечения – параллельно линии, в которую проецируется плоскость на главном виде – обычно именно на главном виде задают задание на построение наклонного сечения (Далее я всегда буду упоминать про главный вид, имея в виду что так бывает почти всегда в учебных чертежах).
2. На оси откладываем длину сечения. На моем чертеже она обозначена как L. Размер L определяется на главном виде и равен расстоянию от точки вхождения сечения в деталь до точки выхода из нее.
3. Из получившихся двух точек на оси перпендикулярно ей откладываем ширины сечения в этих точках. Ширину сечения в точке вхождения в деталь и в точке выхода из детали можно определить на виде сверху. В данном случае оба отрезка 1-4 и 2-3 равны 60 мм. Как видно из рисунка выше, края сечения прямые, поэтому просто соединяем два наших получившихся отрезка, получив прямоугольник 1-2-3-4. Это и есть – натуральный вид фигуры сечения нашего кирпичика наклонной плоскостью.

Теперь давайте усложним нашу деталь. Поставим кирпичик на основание 120х80х20 мм и дополним фигуру ребрами жесткости. Проведем секущую плоскость так, чтобы она проходила через все четыре элемента фигуры (через основание, кирпичик и два ребра жесткости). На рисунке ниже вы можете увидеть три вида и реалистичое изображение этой детали


Попробуем построить натуральный вид этого наклонного сечения. Начнем опять с оси сечения: проведем ее параллельно плоскости сечения обозначенного на главном виде. На ней отложим длину сечения равную А-Е. Точка А является точкой входа сечения в деталь, а в частном случае – точкой входа сечения в основание. Точкой выхода из основания является точка В. Отметим точку В на оси сечения. Аналогичным образом отметим и точки входа-выхода в ребро, в “кирпичик” и во второе ребро. Из точек А и В перпендикулярно оси отложим отрезки равные ширине основания (в каждую сторону от оси по 40, всего 80мм). Соединим крайние точки – получим прямоугольник, являющийся натуральным видом сечения основания детали.

Теперь настал черед построить кусочек сечения, являющийся сечением ребра детали. Из точек В и С отложим перпендикуляры по 5 мм в каждую сторону – получатся отрезки по 10 мм. Соединим крайние точки и получим сечение ребра.

Из точек С и D откладывем перпендикулярные отрезки равные ширине “кирпичика” – полностью аналогично первому примеру этого урока.

Отложив перпендикуляры из точек D и Е равные ширине второго ребра и соединив крайние точки получим натуральный вид его сечения.

Остается стереть перемычки между отдельными элементами получившегося сечения и нанести штриховку. Должно получиться что-то вроде этого:


Если же по заданному сечению произвести разделение фигуры, то мы увидим следующий вид:


Я надеюсь, что вас не запугали нудные абзацы описания алгоритма. Если вы прочли все вышенаписанное и еще не до конца поняли, как начертить наклонное сечение , я очень советую вам взять в руки лист бумаги и карандаш и попытаться повторить все шаги за мной – это почти 100% поможет вам усвоить материал.

Когда-то я пообещал продолжение данной статьи. Наконец-то я готов представить вам пошагового построения наклонного сечения детали, более приближенной к уровню домашних заданий. Более того, наклонное сечение задано на третьем виде (наклонное сечение задано на виде слева)

или запишите наш телефон и расскажите о нас своим друзьям – кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки – и кто-то еще сможет освоить черчение.

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое на более сложной детали, с фасками и конусовидным отверстием например.

Спасибо. А разве на разрезах ребра жесткости не штрихуются?
Именно. Именно они и не штрихуются. Потому что таковы общие правила выполнения разрезов. Однако их обычно штрихуют при выполнении разрезов в аксонометрических проекциях – изометрии, диметрии и т.д. При выполнении наклонных сечений, область относящаяся к ребру жесткости так же заштриховывается.

Спасибо,очень доступно.Скажите,а наклонное сечение можно выполнить на виде с верху,или на виде слева?Если да,то хотелось бы увидеть простейший пример.Пожалуйста.

Выполнить такие сечения можно. Но к сожалению у меня сейчас нет под рукой примера. И есть еще один интересный момент: с одной стороны, там ничего нового, а с другой стороны на практике такие сечения чертить реально сложнее. Почему-то в голове все начинает путаться и у большинства студентов возникают сложности. Но вы не сдавайтесь!

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое, но с отверстиями (сквозными и несквозными), а то в элипс они в голове так и не превращаются

помогите мне по комплексной задаче

Жаль, что вы именно тут написали. Написали бы в почту – может мы смогли бы успеть все обсудить.

Хорошо объясняете. Как быть если одна из сторон детали полукруглая? А также в детали есть отверстия.

Илья, используйте урок из раздела по начертательной геометрии “Сечение цилиндра наклонной плоскостью”. С его помощью сможете разобраться, что делать с отверстиями (они же по сути тоже цилиндры) и с полукруглой стороной.

благодарю автора за статью!кратко и доступно пониманию.лет 20 назад сам грыз гранит науки,теперь сыну помогаю. многое забыл,но Ваша статья вернула фундаментальное понимание темы.Пойду с наклонным сечением цилиндра разбираться)

Добавьте свой комментарий.

Цели урока: рассмотреть решение задач на построение сечений, если две точки сечения принадлежат одной грани.

Ход урока

Изучение новых понятий
Определение 1.
Секущая плоскость многогранника – любая плоскость, по обе стороны от которой имеются точки данного многогранника.
Определение 2. Сечение многогранника – это многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.
Задание. Назовите отрезки, по которым секущая плоскость пересекает грани параллелепипеда (рис. 1). Назовите сечение параллелепипеда.

Основные действия при построении сечений

Теоретическая основа

Ответ

1. Как проверить: построено сечение или нет Определение сечения Это должен быть многоугольник, стороны которого принадлежат граням многогранника
2. До начала работы определить: можно ли по данным задачи построить сечение Способы задания плоскости Можно, если данные элементы задают однозначно плоскость, то есть даны три точки, не лежащие на одной прямой, точка и прямая и т.д.
3. В плоскости какой-то грани есть две точки секущей плоскости
Если две точки принадлежат плоскости, то вся прямая принадлежит плоскости Через эти точки провести прямую
4. В одной из параллельных граней есть сторона сечения, а в другой – точка сечения Свойство параллельных плоскостей Через эту точку провести прямую, параллельную данной
5. В одной грани есть точка сечения и известно, что секущая плоскость проходит через прямую, параллельную этой грани Признак параллельности прямой и плоскости. Свойство параллельных плоскостей Построить прямую пересечения плоскостей, параллельную данной прямой
6. Две точки сечения принадлежат одной грани, а третья точка лежит в смежной Аксиомы стереометрии Секущая плоскость пересекает грани по отрезкам OC и AB, которые называются следом секущей плоскости на гранях

Решение задач

Задача 1. Какой из четырехугольников, EFKM или EFKL, может быть сечением данного многогранника (рис. 2)? Почему?

Задача 2. Ученик изобразил сечение тетраэдра (рис. 3). Возможно ли такое сечение?

Решение . Нужно доказать, что N, M и H, L лежат в одной плоскости. Пусть точки N и M принадлежат задней грани, H и L – нижней грани, то есть точка пересечения NM и HL должна лежать на прямой, принадлежащей обеим граням, то есть AC. Продлим прямые NM и HL и найдем точку их пересечения. Эта точка не будет принадлежать прямой AC. Значит, точки N, M, L, H не образуют плоский многоугольник. Невозможно.

Задача 3. Построить сечение тетраэдра ABCS плоскостью, проходящей через точки K, L, N, где K и N – середины ребер SA и SB соответственно (рис. 4).

1. В какой грани можно построить стороны сечения?

2. Выбираем одну из точек, на которой оборвалось сечение.
Решение. Способ I. Выбираем точку L.
Определяем грань, в которой лежит выбранная точка и в которой надо построить сечение.

Определяем грань, в которой лежит прямая KN, не проходящая через выбранную точку L.

Находим линию пересечения граней ABC и ASB.

Каково взаимное расположения прямых KN и AB (рис. 5)?
[Параллельны.]

Что нужно построить, если секущая плоскость проходит через прямую, параллельную линии пересечения плоскостей?
[Через точку L провести прямую, параллельную AB. Эта прямая пересекает ребро CB в точке P.]
Соединяем точки, принадлежащие одной грани. KLPN – искомое сечение.
Способ II . Выбираем точку N (рис. 6).


Определяем грани, в которых лежат точка N и прямая KL.

Линией пересечения этих плоскостей будет прямая SC. Находим точку пересечения прямых KL и SC. Обозначим ее Y.
Соединяем точки N и Y. Прямая NY пересекает ребро CB в точке P.
Соединяем точки, принадлежащие одной грани.
KLNP – искомое сечение.
Объясните данное решение.
Один учащийся работает у доски, остальные в тетрадях.

Задача 4 . Построить сечение параллелепипеда, проходящее через точки M, P и H, H ` (A1B1C1) (рис. 7).

Решение. 1. Соедините точки, принадлежащие одной грани.
2. Какую прямую и точку выбираем для построения сечения?
3. Что определяем дальше?
4. Каково взаимное расположение выбранной прямой и линии пересечения граней (рис. 8)?

5. Как построить след секущей плоскости на грани B1C1D1A1, проходящий через точку H?
6. Соедините точки, принадлежащие одной грани.
7. Какую прямую и точку нужно выбрать для построения следа секущей плоскости на грани AA1D1D?
8. Каково взаимное расположение граней BB1C1C и AA1D1D?
9. Каким свойством необходимо воспользоваться для построения следа секущей плоскости на грани AA1D1D?
10. Назовите искомое сечение.

Задача 5. Построить сечение пирамиды SABCD, проходящее через точки M, P и H,
H` (ABC) (рис. 9).

Ответ: см. рисунок 10.

Задание на дом

Задача . Как изменятся построения, если точ-
ка H изменит свое положение? Построить сечения, используя разные варианты (рис. 11).

В ходе урока все желающие смогут получить представление о теме « Задачи на построение сечений в параллелепипеде». Вначале мы повторим четыре основные опорные свойства параллелепипеда. Затем, используя их, решим некоторые типовые задачи на построение сечений в параллелепипеде и на определение площади сечения параллелепипеда.

Тема: Параллельность прямых и плоскостей

Урок: Задачи на построение сечений в параллелепипеде

В ходе урока все желающие смогут получить представление о теме «Задачи на построение сечений в параллелепипеде» .

Рассмотрим параллелепипед АВСDА 1 B 1 C 1 D 1 (рис. 1). Вспомним его свойства.

Рис. 1. Свойства параллелепипеда

1) Противоположные грани (равные параллелограммы) лежат в параллельных плоскостях.

Например, параллелограммы АВСD и А 1 B 1 C 1 D 1 равны (то есть их можно совместить наложением) и лежат в параллельных плоскостях.

2) Длины параллельных ребер равны.

Например, AD = BC = A 1 D 1 = B 1 C 1 (рис. 2).

Рис. 2. Длины противоположных ребер параллелепипеда равны

3) Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Например, диагонали параллелепипеда BD 1 и B 1 D пересекаются в одной точке и делятся этой точкой пополам (рис. 3).

4) В сечение параллелепипеда может быть треугольник, четырехугольник, пятиугольник, шестиугольник.

Задача на сечение параллелепипеда

Например, рассмотрим решение следующей задачи. Дан параллелепипед АВСDА 1 B 1 C 1 D 1 и точки M, N, K на ребрах AA 1 , A 1 D 1 , A 1 B 1 соответственно (рис. 4). Постройте сечения параллелепипеда плоскостью MNK. Точки M и N одновременно лежат в плоскости AA 1 D 1 и в секущей плоскости. Значит, MN – линия пересечения двух указанных плоскостей. Аналогично получаем MK и KN. То есть, сечением будет треугольник MKN.

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М.: Мнемозина, 2008. – 288 с.: ил.

Задания 13, 14, 15 стр. 50

2. Дан параллелепипед АВСDА 1 B 1 C 1 D 1 . М и N – середины ребер DC и A 1 B 1 .

а) Постройте точки пересечения прямых АМ и AN плоскостью грани ВВ 1 С 1 С.

б) Постройте линию пересечения плоскостей AMN и ВВ 1 С 1

3. Постройте сечения параллелепипеда АВСDА 1 B 1 C 1 D 1 плоскостью, проходящей через ВС 1 и середину М ребра DD 1 .

Как построить сечение параллельное прямой. Аксиоматический метод построения сечений

Само же задание обычно звучит так: “построить натуральный вид фигуры сечения” . Конечно же, мы решили не оставлять этот вопрос в стороне и постараться по возможности объяснить, как происходит построение наклонного сечения.

Для того, чтобы объяснить, как строится наклонное сечение, я приведу несколько примеров. Начну конечно же с элементарного, постепенно наращивая сложность примеров. Надеюсь, что проанализировав эти примеры чертежей сечений, вы разберетесь в том, как это делается, и сможете сами выполнить свое учебное задание.

Рассмотрим “кирпичика” с размерами 40х60х80 мм произвольной наклонной плоскостью. Секущая плоскость разрезает его по точкам 1-2-3-4. Думаю, тут все понятно.

Перейдем к построению натурального вида фигуры сечения.
1. Первым делом проведем ось сечения. Ось следует чертить параллельно плоскости сечения – параллельно линии, в которую проецируется плоскость на главном виде – обычно именно на главном виде задают задание на построение наклонного сечения (Далее я всегда буду упоминать про главный вид, имея в виду что так бывает почти всегда в учебных чертежах).
2. На оси откладываем длину сечения. На моем чертеже она обозначена как L. Размер L определяется на главном виде и равен расстоянию от точки вхождения сечения в деталь до точки выхода из нее.
3. Из получившихся двух точек на оси перпендикулярно ей откладываем ширины сечения в этих точках. Ширину сечения в точке вхождения в деталь и в точке выхода из детали можно определить на виде сверху. В данном случае оба отрезка 1-4 и 2-3 равны 60 мм. Как видно из рисунка выше, края сечения прямые, поэтому просто соединяем два наших получившихся отрезка, получив прямоугольник 1-2-3-4. Это и есть – натуральный вид фигуры сечения нашего кирпичика наклонной плоскостью.

Теперь давайте усложним нашу деталь. Поставим кирпичик на основание 120х80х20 мм и дополним фигуру ребрами жесткости. Проведем секущую плоскость так, чтобы она проходила через все четыре элемента фигуры (через основание, кирпичик и два ребра жесткости). На рисунке ниже вы можете увидеть три вида и реалистичое изображение этой детали


Попробуем построить натуральный вид этого наклонного сечения. Начнем опять с оси сечения: проведем ее параллельно плоскости сечения обозначенного на главном виде. На ней отложим длину сечения равную А-Е. Точка А является точкой входа сечения в деталь, а в частном случае – точкой входа сечения в основание. Точкой выхода из основания является точка В. Отметим точку В на оси сечения. Аналогичным образом отметим и точки входа-выхода в ребро, в “кирпичик” и во второе ребро. Из точек А и В перпендикулярно оси отложим отрезки равные ширине основания (в каждую сторону от оси по 40, всего 80мм). Соединим крайние точки – получим прямоугольник, являющийся натуральным видом сечения основания детали.

Теперь настал черед построить кусочек сечения, являющийся сечением ребра детали. Из точек В и С отложим перпендикуляры по 5 мм в каждую сторону – получатся отрезки по 10 мм. Соединим крайние точки и получим сечение ребра.

Из точек С и D откладывем перпендикулярные отрезки равные ширине “кирпичика” – полностью аналогично первому примеру этого урока.

Отложив перпендикуляры из точек D и Е равные ширине второго ребра и соединив крайние точки получим натуральный вид его сечения.

Остается стереть перемычки между отдельными элементами получившегося сечения и нанести штриховку. Должно получиться что-то вроде этого:


Если же по заданному сечению произвести разделение фигуры, то мы увидим следующий вид:


Я надеюсь, что вас не запугали нудные абзацы описания алгоритма. Если вы прочли все вышенаписанное и еще не до конца поняли, как начертить наклонное сечение , я очень советую вам взять в руки лист бумаги и карандаш и попытаться повторить все шаги за мной – это почти 100% поможет вам усвоить материал.

Когда-то я пообещал продолжение данной статьи. Наконец-то я готов представить вам пошагового построения наклонного сечения детали, более приближенной к уровню домашних заданий. Более того, наклонное сечение задано на третьем виде (наклонное сечение задано на виде слева)

или запишите наш телефон и расскажите о нас своим друзьям – кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки – и кто-то еще сможет освоить черчение.

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое на более сложной детали, с фасками и конусовидным отверстием например.

Спасибо. А разве на разрезах ребра жесткости не штрихуются?
Именно. Именно они и не штрихуются. Потому что таковы общие правила выполнения разрезов. Однако их обычно штрихуют при выполнении разрезов в аксонометрических проекциях – изометрии, диметрии и т.д. При выполнении наклонных сечений, область относящаяся к ребру жесткости так же заштриховывается.

Спасибо,очень доступно.Скажите,а наклонное сечение можно выполнить на виде с верху,или на виде слева?Если да,то хотелось бы увидеть простейший пример.Пожалуйста.

Выполнить такие сечения можно. Но к сожалению у меня сейчас нет под рукой примера. И есть еще один интересный момент: с одной стороны, там ничего нового, а с другой стороны на практике такие сечения чертить реально сложнее. Почему-то в голове все начинает путаться и у большинства студентов возникают сложности. Но вы не сдавайтесь!

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое, но с отверстиями (сквозными и несквозными), а то в элипс они в голове так и не превращаются

помогите мне по комплексной задаче

Жаль, что вы именно тут написали. Написали бы в почту – может мы смогли бы успеть все обсудить.

Хорошо объясняете. Как быть если одна из сторон детали полукруглая? А также в детали есть отверстия.

Илья, используйте урок из раздела по начертательной геометрии “Сечение цилиндра наклонной плоскостью”. С его помощью сможете разобраться, что делать с отверстиями (они же по сути тоже цилиндры) и с полукруглой стороной.

благодарю автора за статью!кратко и доступно пониманию.лет 20 назад сам грыз гранит науки,теперь сыну помогаю. многое забыл,но Ваша статья вернула фундаментальное понимание темы.Пойду с наклонным сечением цилиндра разбираться)

Добавьте свой комментарий.

Как известно, любой экзамен по математике содержит в качестве основной части решение задач. Умение решать задачи – основной показатель уровня математического развития.

Достаточно часто на школьных экзаменах, а так же на экзаменах, проводимых в ВУЗах и техникумах, встречаются случаи, когда ученики, показывающие хорошие результаты в области теории, знающие все необходимые определения и теоремы, запутываются при решении весьма простых задач.

За годы обучения в школе каждый ученик решает большое число задач, но при этом для всех учеников задачи предлагаются одни и те же. И если некоторые ученики усваивают общие правила и методы решения задач, то другие, встретившись с задачей незнакомого вида, даже не знают, как к ней подступиться.

Одной из причин такого положения является то, что если одни ученики вникают в ход решения задачи и стараются осознать и понять общие приёмы и методы их решения, то другие не задумываются над этим, стараются как можно быстрее решить предложенные задачи.

Многие учащиеся не анализируют решаемые задачи, не выделяют для себя общие приёмы и способы решения. В таких случаях задачи решаются только ради получения нужного ответа.

Так, например, многие учащиеся даже не знают, в чём суть решения задач на построение. А ведь задачи на построение являются обязательными задачами в курсе стереометрии. Эти задачи не только красивы и оригинальны в методах своего решения, но и имеют большую практическую ценность.

Благодаря задачам на построение развивается способность мысленно представлять себе ту или иную геометрическую фигуру, развивается пространственное мышление, логическое мышление, а так же геометрическая интуиция. Задачи на построение развивают навыки решения проблем практического характера.

Задачи на построения не являются простыми, так как единого правила или алгоритма для их решения не существует. Каждая новая задача уникальна и требует индивидуального подхода к решению.

Процесс решения любой задачи на построение – это последовательность некоторых промежуточных построений, приводящих к цели.

Построение сечений многогранников базируется на следующих аксиомах:

1) Если две точки прямой лежат в некоторой плоскости, то и вся прямая лежит в данной плоскости;

2) Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Теорема: если две параллельные плоскости пересечены третьей плоскостью, то прямые пересечения параллельны.

Построить сечение многогранника плоскостью, проходящей через точки А, В и С. Рассмотрим следующие примеры.

Метод следов

I. Построить сечение призмы плоскостью, проходящей через данную прямую g (след) на плоскости одного из оснований призмы и точку А.

Случай 1.

Точка А принадлежит другому основанию призмы (или грани, параллельной прямой g) – секущая плоскость пересекает это основание (грань) по отрезку ВС, параллельному следу g.

Случай 2.

Точка А принадлежит боковой грани призмы:

Отрезок ВС прямой AD и есть пересечение данной грани с секущей плоскостью.


Случай 3.

Построение сечения четырехугольной призмы плоскостью, проходящей через прямую g в плоскости нижнего основания призмы и точку А на одном из боковых ребер.

II. Построить сечение пирамиды плоскостью, проходящей через данную прямую g (след) на плоскости основания пирамиды и точку А.

Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью.

Случай 1.

Если точка А принадлежит грани, параллельной прямой g, то секущая плоскость пересекает эту грань по отрезку ВС, параллельному следу g.

Случай 2.

Если точка А, принадлежащая сечению, расположена на грани, не параллельной грани следу g, то:

1) строится точка D, в которой плоскость грани пересекает данный след g;

2) проводится прямая через точки А и D.

Отрезок ВС прямой АD и есть пересечение данной грани с секущей плоскостью.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с секущей плоскостью. И т. д.

Случай 3.

Построение сечения четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из боковых ребер.

Задачи на построение сечений через точку на грани

1. Построить сечение тетраэдра АВСD плоскостью, проходящей через вершину С и точки М и N на гранях АСD и АВС соответственно.

Точки С и М лежат на грани АСD, значит, и прямая СМ лежит в плоскости этой грани (рис. 1).

Пусть Р – точка пересечения прямых СМ и АD. Аналогично, точки С и N лежат в грани АСВ, значит прямая СN лежит в плоскости этой грани. Пусть Q – точка пересечения прямых СN и АВ. Точки Р и Q принадлежат и плоскости сечения, и грани АВD. Поэтому отрезок РQ – сторона сечения. Итак, треугольник СРQ – искомое сечение.

2. Построить сечение тетраэдра АВСD плоскостью MPN, где точки M, N, P лежат соответственно на ребре АD, в грани ВСD и в грани АВС, причем MN не параллельно плоскости грани АВС (рис. 2) .

Остались вопросы? Не знаете, как построить сечение многогранника?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В этом методе мы первым действием (после нахождения вторичных проекций данных точек) строим след секущей плоскости на плоскости верхнего или нижнего основания призмы или усечённой пирамиды или на основании пирамиды

Зад 2. Дано изображение треугольной призмы ABCA 1 B 1 C 1 и трёх точек M , N , P , которые лежат соответственно на ребре СС 1 и гранях ABB 1 A 1 , BCC 1 B 1 . Построить сечение призмы плоскостью , проходящей через M , N , P .

Решение. Мы уже имеем одну точку на верхнем основании призмы, поэтому и след мы будем строить на верхнем основании. Строим вторичные проекции точек N и P на верхнее основание.Затем: 1 .N P N 3 P 3 =X ; 2 .M X =p –след; 3 .p B 1 C 1 =D .

Дальнейшие действия уже были показаны выше на чертеже.

Зад 3. Реш. Мы будем строить след секущей плоскости на нижнем основании призмы.

Строим:1. M N E D =X , M P EP 3 =Y ;

2. p =XY – след;3. p B C =G , p D C =H .

Нам нужно найти точку на ребре BB 1 или на ребре AA 1 .

ВграниABB 1 A 1 мы уже имеем одну точку P . Поэтому нижнее ребро этой грани, т.е. AB , мы продолжаем до пересечения со следом.

4. A B p =Z .

5. P Z AA 1 =F ; P Z BB 1 =K .Дальнейшие действия уже показаны выше.

Если окажется, что линия AB не пересекается со следом, то искомая FK тоже будет параллельна следу. Зад 4. Реш. 1. P N P o N o =X ;

2. M N CN o =Y ;3. p =XY – след;

3. C B p =Z ;4. Z M S B =E ;

5. E N S A =G 6. GEMF – иск сечение.

17. Построение сечения цилиндра.

Если секущая плоскость задана тремя точками, то мы всегда можем найти её след на плоскости основания цилиндра или конуса и точку (P , O ) на его оси. Поэтому считаем, что секущая плоскость задана именно этими элементами.

Сначала рас-им случай, когда плоскость пересекает только боковую поверхность цилиндра. Тогда сечением цилиндра будет эллипс (;¯ и его изображение – тоже эллипс. Мы знаем способ построения эллипса, если известны два его сопряжённых диаметра. Мы сейчас покажем, как можно найти изображение главных диаметров эллипса (;¯.

Пусть  и  1 – эллипсы, изображающие нижнее и верхнее основания цилиндра, O и O 1 – их центры. Проведём диаметр A 3 B 3 нижнего основания, параллельный следу и сопряжённый ему диаметр C 3 D 3 . Для построения C 3 D 3 мы используем хорду K 3 L 3 , один конец которой принадлежит контурной образующей. Напомним, что A 3 B 3 и C 3 D 3 изображают перпендикулярные диаметры. Продолжим C 3 D 3 до пересечения со следом. Получим точ X . Прям.PX наз-ём осью сечения.

Поднимем точки C 3 и D 3 до оси сечения. Получим C и D . Отрезок CD является изображением большогодиаметра сечения. Поднимем отрезок A 3 B 3 на высоту OP . Получим отрезок AB , который является изображением малого диаметра сечения. Отр-и AB и CD –сопряж-ые диам. эллипса .

Найти ещё точки, в которых эллипс переходит с видимой стороны цилиндра на невидимую, а значит, сплошная линия переходит в пунктир. Это точки пересечения секущей плоскости с контурными образующими. ПустьY 3 =K 3 L 3 C 3 D 3 . Поднимем Y 3 до оси сечения. Получим точку Y . Поднимем хорду K 3 L 3 на высоту YY 3 . Получим отрезок KL . Мы нашли требуемую точку K , а попутно, ещё одну дополнительную точку L . Точка M , изобр-щая пересечение секущей плоск-и со второй контурной образующей симметрична точкеK относительно точкиP .Допол-но построим точN , симметричнуюL относ-нточки P

Покажем способ, как можно найти любое кол-во точек на сечении без испол-ия этих диаметров.

выбираем люб. точкуV 3 на эллипсе . Проводим диаметрV 3 T 3 и продолжаем его до пересечения со следом.Получим точкуU . Поднимаем точки V 3 и T 3 до прямой UP . Получаем две точки V и T на сечении. Выбирая вместо V 3 другую точку, получим др. 2 точки на сеч.Если выбрать точку K 3 , лежащую на контурно образующей, мы найдём точки K и M , в которых сплошная линия на сечении должна перейти в пунктирную.

Разберем, как построить сечение пирамиды, на конкретных примерах. Поскольку в пирамиде нет параллельных плоскостей, построение линии пересечения (следа) секущей плоскости с плоскостью грани чаще всего предполагает проведение прямой через две точки, лежащие в плоскости этой грани.

В простейших задачах требуется построить сечение пирамиды плоскостью, проходящей через данные точки, уже лежащие в одной грани.

Пример.

Построить сечение плоскостью (MNP)

Треугольник MNP — сечение пирамиды

Точки M и N лежат в одной плоскости ABS, следовательно, через них можем провести прямую. След этой прямой — отрезок MN. Он видимый, значит, соединяем M и N сплошной линией.

Точки M и P лежат в одной плоскости ACS, поэтому через них проведем прямую. След — отрезок MP. Мы его не видим, поэтому отрезок MP проводим штрихом. Аналогично строим след PN.

Треугольник MNP — искомое сечение.

Если точка, через которую требуется провести сечение, лежит не на ребре, а на грани, то она не будет концом следа-отрезка.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки B, M и N, где точки M и N принадлежат, соответственно, граням ABS и BCS.

Здесь точки B и M лежат в одной грани ABS, поэтому можем через них провести прямую.

Аналогично проводим прямую через точки B и P. Получили, соответственно, следы BK и BL.

Точки K и L лежат в одной грани ACS, поэтому через них можем провести прямую. Ее след — отрезок KL.

Треугольник BKL — искомое сечение.

Однако не всегда через данные в условии точки удается провести прямую. В этом случае нужно найти точку, лежащую на прямой пересечения плоскостей, содержащих грани.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскость ABS, поэтому через них можно провести прямую. Получаем след MN. Аналогично — NP. Оба следа видимые, поэтому соединяем их сплошной линией.

Точки M и P лежат в разных плоскостях. Поэтому соединить их прямой не можем.

Продолжим прямую NP.

Она лежит в плоскости грани BCS. NP пересекается только с прямыми, лежащими в этой же плоскости. Таких прямых у нас три: BS, CS и BC. С прямыми BS и CS уже есть точки пересечения — это как раз N и P. Значит, ищем пересечение NP с прямой BC.

Точку пересечения (назовем ее H), получаем, продолжая прямые NP и BC до пересечения.

Эта точка H принадлежит как плоскости (BCS), поскольку лежит на прямой NP, так и плоскости (ABC), поскольку лежит на прямой BC.

Таким образом мы получили еще одну точку секущей плоскости, лежащей в плоскости (ABC).

Через H и точку M, лежащую в этой же плоскости, можем провести прямую.

Получим след MT.

T — точка пересечения прямых MH и AC.

Так как T принадлежит прямой AC, то через нее и точку P можем провести прямую, так как они обе лежат в одной плоскости (ACS).

4-угольник MNPT — искомое сечение пирамиды плоскостью, проходящей через данные точки M,N,P.

Мы работали с прямой NP, продлевая ее для отыскания точки пересечения секущей плоскости с плоскостью (ABC). Если работать с прямой MN, приходим к тому же результату.

Рассуждаем так: прямая MN лежит в плоскости (ABS), поэтому пересекаться может только с прямыми, лежащими в этой же плоскости. У нас таких прямых три: AB, BS и AS. Но с прямыми AB и BS уже есть точки пересечения: M и N.

Значит, продлевая MN, ищем точку пересечения ее с прямой AS. Назовем эту точку R.

Точка R лежит на прямой AS, значит, она лежит и в плоскости (ACS), которой принадлежит прямая AS.

Поскольку точка P лежит в плоскости (ACS), через R и P можем провести прямую. Получаем след PT.

Точка T лежит в плоскости (ABC), поэтому через нее и точку M можем провести прямую.

Таким образом, получили все то же сечение MNPT.

Рассмотрим еще один пример такого рода.

Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Через точки M и N, лежащие в одной плоскости (BCS), проводим прямую. Получаем след MN (видимый).

Через точки N и P, лежащие в одной плоскости (ACS), проводим прямую. Получаем след PN (невидимый).

Через точки M и P прямую провести не можем.

1) Прямая MN лежит в плоскости (BCS), где есть еще три прямые: BC, SC и SB. С прямыми SB и SC уже есть точки пересечения: M и N. Поэтому ищем точку пересечения MN с BC. Продолжив эти прямые, получаем точку L.

Точка L принадлежит прямой BC, а значит, она лежит в плоскости (ABC). Поэтому через L и P, которая также лежит в плоскости (ABC) можем провести прямую. Ее след — PF.

F лежит на прямой AB, а значит, и в плоскости (ABS). Поэтому через F и точку M, которая также лежит в плоскости (ABS), проводим прямую. Ее след — FM. Четырехугольник MNPF — искомое сечение.

2) Другой путь — продолжить прямую PN. Она лежит в плоскости (ACS) и пересекается с прямыми AC и CS, лежащими в этой плоскости, в точках P и N.

Значит, ищем точку пересечения PN с третьей прямой этой плоскости — с AS. Продолжаем AS и PN, на пересечении получаем точку E. Поскольку точка E лежит на прямой AS, принадлежащей плоскости (ABS), то через E и точку M, которая также лежит в (ABS), можем провести прямую. Ее след — FM. Точки P и F лежат водной плоскости (ABC), проводим через них прямую и получаем след PF (невидимый).

Цели урока: рассмотреть решение задач на построение сечений, если две точки сечения принадлежат одной грани.

Ход урока

Изучение новых понятий
Определение 1.
Секущая плоскость многогранника – любая плоскость, по обе стороны от которой имеются точки данного многогранника.
Определение 2. Сечение многогранника – это многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.
Задание. Назовите отрезки, по которым секущая плоскость пересекает грани параллелепипеда (рис. 1). Назовите сечение параллелепипеда.

Основные действия при построении сечений

Теоретическая основа

Ответ

1. Как проверить: построено сечение или нет Определение сечения Это должен быть многоугольник, стороны которого принадлежат граням многогранника
2. До начала работы определить: можно ли по данным задачи построить сечение Способы задания плоскости Можно, если данные элементы задают однозначно плоскость, то есть даны три точки, не лежащие на одной прямой, точка и прямая и т.д.
3. В плоскости какой-то грани есть две точки секущей плоскости
Если две точки принадлежат плоскости, то вся прямая принадлежит плоскости Через эти точки провести прямую
4. В одной из параллельных граней есть сторона сечения, а в другой – точка сечения Свойство параллельных плоскостей Через эту точку провести прямую, параллельную данной
5. В одной грани есть точка сечения и известно, что секущая плоскость проходит через прямую, параллельную этой грани Признак параллельности прямой и плоскости. Свойство параллельных плоскостей Построить прямую пересечения плоскостей, параллельную данной прямой
6. Две точки сечения принадлежат одной грани, а третья точка лежит в смежной Аксиомы стереометрии Секущая плоскость пересекает грани по отрезкам OC и AB, которые называются следом секущей плоскости на гранях

Решение задач

Задача 1. Какой из четырехугольников, EFKM или EFKL, может быть сечением данного многогранника (рис. 2)? Почему?

Задача 2. Ученик изобразил сечение тетраэдра (рис. 3). Возможно ли такое сечение?

Решение . Нужно доказать, что N, M и H, L лежат в одной плоскости. Пусть точки N и M принадлежат задней грани, H и L – нижней грани, то есть точка пересечения NM и HL должна лежать на прямой, принадлежащей обеим граням, то есть AC. Продлим прямые NM и HL и найдем точку их пересечения. Эта точка не будет принадлежать прямой AC. Значит, точки N, M, L, H не образуют плоский многоугольник. Невозможно.

Задача 3. Построить сечение тетраэдра ABCS плоскостью, проходящей через точки K, L, N, где K и N – середины ребер SA и SB соответственно (рис. 4).

1. В какой грани можно построить стороны сечения?

2. Выбираем одну из точек, на которой оборвалось сечение.
Решение. Способ I. Выбираем точку L.
Определяем грань, в которой лежит выбранная точка и в которой надо построить сечение.

Определяем грань, в которой лежит прямая KN, не проходящая через выбранную точку L.

Находим линию пересечения граней ABC и ASB.

Каково взаимное расположения прямых KN и AB (рис. 5)?
[Параллельны.]

Что нужно построить, если секущая плоскость проходит через прямую, параллельную линии пересечения плоскостей?
[Через точку L провести прямую, параллельную AB. Эта прямая пересекает ребро CB в точке P.]
Соединяем точки, принадлежащие одной грани. KLPN – искомое сечение.
Способ II . Выбираем точку N (рис. 6).


Определяем грани, в которых лежат точка N и прямая KL.

Линией пересечения этих плоскостей будет прямая SC. Находим точку пересечения прямых KL и SC. Обозначим ее Y.
Соединяем точки N и Y. Прямая NY пересекает ребро CB в точке P.
Соединяем точки, принадлежащие одной грани.
KLNP – искомое сечение.
Объясните данное решение.
Один учащийся работает у доски, остальные в тетрадях.

Задача 4 . Построить сечение параллелепипеда, проходящее через точки M, P и H, H ` (A1B1C1) (рис. 7).

Решение. 1. Соедините точки, принадлежащие одной грани.
2. Какую прямую и точку выбираем для построения сечения?
3. Что определяем дальше?
4. Каково взаимное расположение выбранной прямой и линии пересечения граней (рис. 8)?

5. Как построить след секущей плоскости на грани B1C1D1A1, проходящий через точку H?
6. Соедините точки, принадлежащие одной грани.
7. Какую прямую и точку нужно выбрать для построения следа секущей плоскости на грани AA1D1D?
8. Каково взаимное расположение граней BB1C1C и AA1D1D?
9. Каким свойством необходимо воспользоваться для построения следа секущей плоскости на грани AA1D1D?
10. Назовите искомое сечение.

Задача 5. Построить сечение пирамиды SABCD, проходящее через точки M, P и H,
H` (ABC) (рис. 9).

Ответ: см. рисунок 10.

Задание на дом

Задача . Как изменятся построения, если точ-
ка H изменит свое положение? Построить сечения, используя разные варианты (рис. 11).

Как рисовать дома в разрезе

Комплект строительных чертежей дома будет включать: несколько сечений. И местный отдел планирования, и Строительной бригаде понадобятся эти чертежи. Это руководство будет объясните, как составить эти разделы вручную.

Более сложные (и дорогие) программы домашнего дизайна имеют инструменты для создания поперечных сечений. Однако время, необходимое для того, чтобы научиться использовать программу проектирования для точка создания точных секций может быть длиннее, чем время, необходимое, чтобы нарисовать их вручную.Также возможно сделайте понемногу и то, и другое. Вы можете использовать программу домашнего дизайна, чтобы создать свой основные планы, а затем детализировать вручную произведенные основные поперечные сечения по программе.

Завершите чертежи плана этажа перед тем, как рисовать поперечные сечения. Инструкции по созданию подробных планов этажей см. В нашем руководстве «Сделайте свой собственный чертеж». Если вы только начинаете заниматься дизайном дома, ознакомьтесь с нашим бесплатным руководством по дизайну дома.

Что такое поперечные сечения?

На чертежах в разрезе показаны виды дома в виде хотя вы прорезали дом сверху пилой и заглянул из образовавшегося отверстия.Такой взгляд поможет строитель лучше разбирается в вашей внутренней и внешней конструкции Детали.

Чем сложнее дизайн дома, тем более кросс разделы, которые вы должны предоставить. Эти рисунки используются для демонстрации таких такие вещи, как детали каркаса стен и крыши, наружные слои стен, лестницы конструкция и даже детали интерьера, такие как перепады пола и высота потолков, софиты, молдинги и шкафы. Поперечные сечения также показать детали окна, такие как размеры, точное расположение относительно к внутренним стенам и их высоте относительно потолка или пола.Поперечные сечения обычно не показывают готовую стену или пол. материалы, кроме разделов, в которых подробно расписаны стены или пол. слои.

Сколько требуется поперечных сечений?

Количество необходимых сечений полностью зависит от сложности дизайна, вашего отдела планирования требования и кто строит дом. Если у вас очень опытная строительная бригада, и вы планируете быть на стройплощадке часто, чтобы ответить на вопросы, вам не нужно подробно описывать элементы, которые задействовать общие строительные детали для вашего региона.Однако если вы проектируют дом, который не соответствует стандартам для вашего области, например, вы планируете оформить внешние стены в уникальный способ размещения утеплителя другого типа или внешняя отделка, важно будет детально проработать крест секции для этих элементов.

Как правило, вы должны создавать поперечные сечения для следующих элементов:

  • Слои наружных стен
  • Несущие стены, столбы или балки
  • Детали каркаса лестницы
  • Высота пола и потолка и отклонения
  • Формовочные и отделочные работы (только один требуется для интерьера дома, если все двери, окна и плинтусы обрезать аналогично)
  • Мебель или изготовление на заказ мебель (даже если строительная бригада за это не несет ответственности работы, хорошо бы включить их, чтобы они понимали, где шкафы или мебель необходимо будет прикрепить к обрамлению)
  • Любые другие подробности, которые будут помочь строителю разобраться в домашнем дизайне

Поперечные сечения создаются сразу после вашего пола планы и фасады закончены.Вам необходимо заполнить конструктивное проектирование дома, то есть определены необходимые размеры и расположение всех несущих стен, стоек и балок. Наш Модуль «Проектирование конструкций жилых домов» содержит несколько страниц, на которых объясняется проектирование конструкций и размеры балок для домов с деревянным каркасом.

Насколько толсто поперечное сечение?

Толщина поперечного сечения зависит от детали, которые вы хотите выделить. Скажем, например, вы хотите показать детали П-образной лестничной конструкции.Если бы вы предоставили поперечное сечение только очень узкой линии, проведенной через лестницу, вы В итоге будет видна только одна сторона U-образного лестничного пролета. Однако, если вы выбрали секцию толщиной около четырех футов, с центром на центральной линии буквы U, вы увидите оба сегменты лестницы.

Это полностью зависит от вас, насколько толстый раздел вы хотите детализировать. Просто нарисуйте линию поперечного сечения на планах этажей со стрелкой поперечного сечения, указывающей направление, в котором будет детализировано сечение.Быть осторожно создавайте очень толстые поперечные сечения, так как количество слои стен и виды через дверные проемы и проемы сделают рисунок сбивает с толку.

Примечание по шкале

Выберите масштаб чертежа подходит для размера и деталь поперечного сечения. Если в разделе показаны подробности через по всей ширине или длине дома в масштабе 1/4 дюйма: 1 ‘ должно быть адекватным. Если, однако, вы показываете детали слои наружных стен, где некоторые слои очень тонкие, вам может понадобиться использовать более крупный масштаб, чтобы разделы были более читабельны.

Этапы построения поперечного сечения

1. Выберите линию поперечного сечения

Чтобы создать поперечное сечение, сначала проведите линию на ваш план этажа, который проходит через часть дома, для которой вам нужно показать детали поперечного сечения.

На чертеже плана этажа вверху и внизу слева есть две буквы «А», окруженные круглыми значками со стрелкой. Эти значки указывают на то, что строительные чертежи будут содержать подробные поперечный разрез для этого кусочка дома.Стрелка указывает на в каком направлении «смотрит» поперечное сечение. Обратите внимание, что поперечные сечения также указаны для сечений B-B, C-C и D-D.

На приведенном ниже рисунке показано поперечное сечение A-A. Этот учебник продемонстрирует, как нарисовать это поперечное сечение.

Назначение поперечного сечения A-A – показать основную оболочку дома, несущие стойки балка крыши, приблизительная высота проема окон и потолка высоты, в том числе заниженный потолок в подъезде.Эти структурные стойки, балки и окна будут отображаться на других чертежах но с высоты птичьего полета. Эти виды в сочетании делают дом еще более привлекательным. понятно, а также дать дополнительные детали дизайна.

2. Нарисуйте конверт дома

Начните с рисования ширины внешняя оболочка вашего дома через заданное поперечное сечение линия. Используйте размеры на чертежах плана этажа, дома возвышения и другие заметки по проекту для создания точных и масштабные линии. Включите:

  • Фундамент
  • Фундамент стены
  • Надземные наружные стены
  • Любые окна, которые раздел прорезает
  • Внешние линии крыши

3.Чертеж полов и потолков

Затем нарисуйте верхнюю и нижнюю линии всех полы и потолки. Вам нужно знать толщину напольного покрытия или потолочные балки и любой прикрепленный пол (обычно фанера, ориентированно-стружечная плита или ДСП). Высота от каждого этажа до перекрытия потолка или пола должны быть точно выполнены в масштабе. Включайте в этот чертеж только обрамляющие материалы, а не готовую потолочные и напольные материалы.

4. Окна, двери и рама боковых стен

Для двух боковых стенок по обе стороны от рисунок, проект в любом наружном окне или дверных коллекторах, подоконниках или стене пластины, а также внутренний размер всех вышеперечисленных элементов на первом этапе.См. Рисунок выше.

5. Внутренние стены и элементы конструкций

Следующий проект внутренних стен, включая их плиты и любые несущие стойки или балки, видимые в этом разделе. См. Рисунок в разрезе выше.

6. Облицовочные окна и двери

Затем нарисуйте грубые проемы всех фасадных дверей и окон. На разрезе выше также показано остекление окон, но не наличник.

7. Различия в высоте потолка или пола

Добавьте любые подвесные или приподнятые полы или потолки.См. Рисунок на следующем шаге ниже.

8. Маркировка

В заключение отметьте грубые проемы для всех дверей и окон. Отметьте высоту окон от пола или потолка. Также детализируйте высоту потолка, названия зон и любые другие элементы, чтобы сделать рисунок более ясным. См. Рисунок выше.

Важно, чтобы все элементы были точно нарисованы в масштабе, поскольку строители на стройплощадке часто используют масштаб архитектора, чтобы определить, где разместить грубые проемы окон или дверей, высоту потолка и т. Д.Недостаточно маркировать эти числа. Их нужно аккуратно прорисовать.

9. Добавьте основную надпись

Добавьте основную надпись в правом нижнем углу, которая указывает:

  • Название дома или проекта
  • Дата
  • Имя дизайнера
  • Просмотреть имя
  • Масштаб чертежа

Дополнительные примеры поперечного сечения

Используйте ту же технику для создания оставшихся поперечных сечений. Для поперечных сечений, охватывающих всю ширину или длину дома, начните с оболочки здания и продвигайтесь внутрь.На рисунке ниже показано сечение D-D, показанное на плане этажа из шага 1 «Выбор линии поперечного сечения».

Для слоев стен просто начните с левой или правой стороны и продвигайтесь по горизонтали, рисуя каждый слой в точном масштабе. Вы можете использовать гораздо больший масштаб для слоев стен. Необязательно показывать всю высоту какой-либо стены. Достаточно одного сегмента со всеми слоями. На рисунке ниже показано поперечное сечение стен, крыши и фундамента дома, отличного от приведенного выше.

Некоторые чертежи могут также потребоваться для отдельных элементов, таких как декоративные опоры свеса крыши или сложные отделочные работы, необходимые в конкретном помещении.


Никакая часть этого веб-сайта не может быть воспроизведена или скопирована без письменного разрешения. Нелегальные копии в Интернете будут обнаружены Copyscape.

Глава 4. Рисование фасада и разрезов – Учебные пособия по программам визуальной графической коммуникации для дизайна интерьера

Цели сеанса

По завершении этой сессии студенты смогут:

(CO 1) Нарисуйте разрез
(CO 2) Нарисуйте отметку на плане этажа
(CO 3) Добавление / редактирование текста и аннотации (в пространстве модели с аннотациями) – текст M, стиль текста, выноска M и мультивыноска Стиль


Основные моменты сессии

В конце занятия студенты могут создать рисунки, представленные ниже.



Содержание лекции

(CO 1) Нарисуйте разрез

«Секция – это прорезь пространства, которая показывает больше деталей комнаты. Это также позволяет показать некоторые структурные детали. Линию сечения можно вырезать из любой части пространства, в зависимости от того, что вы хотите показать ».
Получено с https://www.nda.ac.uk/blog/identify-plans-elevations-sections/

«Чертеж в разрезе, разрез» или «чертеж в разрезе» показывает вид конструкции, как если бы она была разрезана пополам или разрезана по другой воображаемой плоскости.”
Получено с https://www.designingbuildings.co.uk/wiki/Section_drawing
Для получения дополнительной информации о чертеже сечения здания, пожалуйста, прочтите эту страницу: https://www.designingbuildings.co.uk/wiki/Section_drawing

В этом уроке ученики будут рисовать секцию здания на основе чертежа Eames House, House, Section A-A ‘, южного плана плана (вы можете загрузить изображение из модуля Canvas по этой ссылке Eames_House_House_Section_A-A’.jpg) и планирование вашего пространства (мебель, оборудование и оборудование).

Изображение предоставлено: снимок экрана, сделанный автором с http://www.loc.gov/pictures/collection/hh/item/ca4169/ (чертеж здания Eames House, общественное достояние)

  • [ШАГ 01] Откройте файл CAD для проекта Eames House.
  • [ШАГ 02] Скопируйте планы этажей (1-й и 2-й этажи) на правую сторону 100 ′. Этот шаг не является обязательным, но я предпочитаю сохранить исходные планы и использовать скопированные планы для создания разреза.
  • [ШАГ 03] подтвердите, что вы находитесь на слое [0], и нарисуйте линию разреза (рекомендуется использовать [ПЛИНИЯ]) на первом этаже для разреза.Скопируйте линию сечения в то же положение для второго этажа. Вы можете полагаться на линию сетки столбцов. (Для линии разреза вы можете разорвать и сместить линию, чтобы сосредоточиться на ключевых внутренних и / или архитектурных элементах. Линия должна начинаться и заканчиваться за пределами плана, и вы должны добавить небольшую перпендикулярную рамку, чтобы указать направление вида в разрезе. . Обновите линии разреза до уровня [A-ANNO].
  • [ШАГ 4] Нарисуйте перпендикулярную линию от линии разреза на первом этаже, чтобы обозначить границу здания и границу чертежа.
  • [ШАГ 5] Вставьте чертеж сечения (Eames_House_House_Section_A-A’.jpg), щелкнув [вставка]> щелкните [прикрепить]> выберите файл Eames_House_House_Section_A-A’.jpg из папки вашего проекта> щелкните [открыть]> щелкните [ok ] в окне «Прикрепить изображение»> щелкните базовую точку и вторую точку, чтобы вставить изображение> настройте «Затухание изображения» на 50> щелкните изображение правой кнопкой мыши> щелкните [Порядок рисования]> щелкните [На задний план]
  • [ШАГ 6] Переместите (используйте команду [move]) и масштабируйте (используйте команду [scale]) вставленное изображение, чтобы оно соответствовало границе здания для линий сечения.
    Обратите внимание: при настройке масштаба необходимо правильно использовать привязку объекта [F3]. Иногда объектная привязка отлично работает, чтобы щелкнуть объект САПР. Иногда команда не работает, чтобы щелкнуть точку на растровом изображении.
  • [ШАГ 7] Теперь вы готовы нарисовать секцию со вставленным изображением.
    • Примечание 1. Вы будете полагаться на размеры вставленного изображения, линии на плане этажа. Используйте числовые значения для рисования линий (пожалуйста, не нажимайте просто на изображение, кроме винтовой лестницы.Изображение является справочным только потому, что масштабированное изображение всегда немного нечеткое).
    • Примечание 2. Создайте три новых слоя.
      • [A-LWT-OBJECT] 0,2 мм – края объектов и представляют изменение глубины
      • [A-LWT-SECTION] 0,5 мм – линии представляют границу прорезанного предмета.
      • [A-LWT-SURFACE] 0,05 мм – линии – это линии деталей на объекте. Они не представляют значительных (если вообще есть) изменений в глубине
    • Примечание 3. Используйте [LINE]. Команды [ПЛИНИЯ], [СПЛАЙН], [КРУГ], [ОБРЕЗКА], [СМЕЩЕНИЕ], [ФИЛЕНО], [РАСШИРЕНИЕ] и [РАСТЯНЕНИЕ].
    • Примечание 4. Также вы вручную обновляете тип линии для дверных и оконных проемов.
    • Примечание 5. Сначала вы рисуете направляющие. Вы используете [xline] для создания строки бесконечной длины.
    • Затем вы рисуете линии сечения.
    • После этого вы рисуете линии объекта.
    • Нарисуйте линии поверхности для деталей.
    • Наконец, вы добавляете мебель и должны редактировать детали и объекты, скрытые от передней части объекта.
  • [ШАГ 8] Переместите нарисованный разрез и линии разреза, за исключением вставленного изображения 100 ′, влево, чтобы сохранить рисунок разреза в безопасной области рисования.
  • [ШАГ 9] Создайте блок для раздела. Выберите все элементы в разделе> Тип [B] для создания блока> Определите имя [000_Section A-A ’]> Нажмите [OK]

(CO 2) Нарисуйте отметку на плане этажа

«Фасад – это вид сбоку объекта при рисовании внутренних фасадов; это будет представлять одну из стен.Это будет включать любые окна или двери, а также любую встроенную мебель, которая находится в непосредственном контакте со стеной ».
Получено с https://www.nda.ac.uk/blog/identify-plans-elevations-sections/

«Термин« возвышение »относится к ортогональной проекции внешних (или иногда внутренних) поверхностей здания, то есть двухмерному чертежу фасадов здания».
Получено с https://www.designingbuildings.co.uk/wiki/Elevations

В этом учебном пособии ученики нарисуют внутренний фасад на основе чертежа Дома Имса, дома, секции C-C ‘, плана западного фасада гостиной.Студенты не будут рисовать секции. Вам нужно будет понять концепцию фасада и нарисуйте только внутренний фасад.

  • [ШАГ 01] Выберите вид на возвышении.
  • [ШАГ 02] Нарисуйте контур отметки, используя [xline], чтобы нарисовать границу отметки.
  • [ШАГ 03] Поверните и переместите разрез c-c ’вставленного изображения, чтобы он соответствовал границе возвышения. Вам нужно будет повернуть на 90 градусов по часовой стрелке.
  • [ШАГ 04] Поверните скопированный план этажа и вставленное изображение на 90 градусов против часовой стрелки.Причина этого шага – быстро нарисовать отметку. Обычно требуется меньше времени, чтобы нарисовать отметку в правильном направлении (вверх-север, вниз-юг, влево-запад и вправо-восток).
  • [ШАГ 05] Удалите ненужные элементы из скопированного плана этажа. Убедитесь, что вы сохранили исходный план этажа. Вы удаляете только элементы из КОПИРОВАННЫЙ план этажа.
  • [ШАГ 06] Теперь вы можете нарисовать отметку
    • Начертите уровень пола и уровень потолка (8 футов -1 ″ AFF) (Обычно внутренний фасад отражает только внутренние элементы.Вы не рисуете толщину стены, прорезь окна, структуру потолка и структуру крыши.)> Измените линии для концов стен, уровня пола и уровня потолка на [A-LWT-SECTION]
    • Переключите слой на [A-LWT-OBJECT]> Нарисуйте стену и мебель, используя [LINE], [PLINE], [CIRCLE], [FILLET]. [TRIM]
    • При необходимости переключите слой на [A-LWT-SURFACE]> Нарисуйте все, что не важно с точки зрения конструкции.
  • [ШАГ 07] Добавьте размеры и проем для получения дополнительной информации.
    • В строке состояния приложения переключите масштаб на 3/8 дюйма = 1 ’0”
    • Введите [ddim] и нажмите [ввод], чтобы открыть [Диспетчер размерных стилей]
    • Щелкните [Annotative-3-32]> щелкните [Set Current]> щелкните [Close]
    • Введите [размер] и нажмите [ввод], чтобы добавить размер
    • .
    • Вам нужно будет щелкнуть начало первой выносной линии> щелкнуть начало второй выносной линии> указать положение размерной линии.Повторите этот процесс, чтобы добавить размеры для корпуса.
  • [ШАГ 08] Сделайте блок для отметки.
    • Выберите отметку, включая линии и размеры.
    • Введите [b], нажмите [ввод], чтобы открыть [Определение блока]
    • Задайте имя [000_Elevation-A]
    • Щелкните [OK], чтобы завершить команду
  • [ШАГ 09] Организуйте свои рисунки.
    • Переместите вставленные опорные изображения на север в плане 75 футов.
    • Переместите свой разрез и отметку в правую часть планов этажей.

(CO 3) Добавить / редактировать текст и аннотацию (в пространстве модели – аннотативно) – текст M, стиль текста, выноска M и стиль мультивыноски

В этом руководстве учащиеся узнают, как добавлять и редактировать текст и аннотации в области рисования с помощью [МНОГОЛИНИЙНЫЙ ТЕКСТ], [ТЕКСТСИЛЬ], [МНОГОЛИНИЙНЫЙ ЛИДЕР] и [ЛИДЕРСКИЙ СТИЛЬ]

Добавьте названия комнат и номера комнат на план этажа.
  • [STEP 01] Переключиться на уровень [A-ANNO-TEXT]
  • [ШАГ 02] Настройте единицы, набрав [UN] и нажмите [ввод], чтобы открыть [Единицы чертежа].
    • Текущая точность единицы измерения составляет 0 ′ -0 1/16 ″
    • Измените точность единицы на 0 ′ -0 1/32 ″
    • Нажмите [OK], чтобы закрыть окно «Единицы чертежа».
  • [ШАГ 03] Добавьте два стиля текста для названий комнат и номеров комнат.
    • На вкладке «Аннотации» панели «Текст» на ленте щелкните [Стандартный]> щелкните [Управление стилями текста].
    • В окне [Стиль текста] нажмите [Создать]
    • Введите имя стиля [Аннотативный 1-8] и нажмите [OK]
    • Подтвердите, что установлен флажок [Аннотативный], обновите высоту текста на бумаге до [0′-0 1/8 ″]
    • Нажмите [Применить]
    • Нажмите [Set Current]
    • Нажмите [New]
    • Введите имя стиля [Аннотативный 3-32] и нажмите [OK]
    • Подтвердите, что установлен флажок [Аннотативный], обновите высоту текста на бумаге до [0′-0 3/32 ″]
    • Нажмите [Применить], а затем [Закрыть]
  • [ШАГ 04] Добавить название комнаты
    • Убедитесь, что стиль текста – [Аннотативный 1-8] на вкладке [Аннотации] на панели [Текст]
    • Щелкните [Многострочный текст] на вкладке [Аннотация] на панели [Текст]
      или введите [mt] и нажмите [Enter]
    • Определите текстовое поле для имени комнаты.Для названия комнаты рекомендуется использовать заглавные буквы. Иногда используйте аббревиатуру. (например, LIVING RM)
    • Введите [название комнаты] и щелкните точку за пределами текстового поля.
  • [ШАГ 05] Добавить номер комнаты
    • Убедитесь, что стиль текста – [Аннотативный 3-32] на вкладке [Аннотации] на панели [Текст]
    • Щелкните [Многострочный текст] на вкладке [Аннотация] на панели [Текст]
      или введите [mt] и нажмите [Enter]
    • Определите текстовое поле для номера комнаты.
    • Введите [название комнаты] и щелкните точку за пределами текстового поля.Обычно для каждой комнаты требуется одно число, например 102 (Первая цифра (1) указывает номер этажа. В этом случае гостиная расположена на первом уровне. Вторая и третья цифры (02) указывают номер комнаты, начинается от главного входа по часовой стрелке. В данном случае ЗАЛ – 101, ЖИВОЙ RM – 102.
    • Нарисуйте рамку, используя [ПРЯМОУГОЛЬНИК]
  • [ШАГ 06] Создайте блок для имени и номера комнаты, который вы только что создали. Назовите блок [000_Room name and number]
    Note.Эта стратегия полезна, потому что после обновления блока на плане этажа названия комнат и номера комнат автоматически обновляются на других планах, таких как план потолка, план отделки и т. Д.
  • [ШАГ 07] Используйте [Edit Block-in Place], чтобы скопировать имя и номер комнаты во все комнаты> Отредактируйте имена и номера, дважды щелкнув имя и номер> Нажмите [Сохранить изменения], чтобы закрыть [Edit Block- in Place]
  • [ШАГ 08] Обновить блок от уровня [A-ANNO-TEXT] до уровня [0]
Добавить текст и аннотации на плане этажа
  • [STEP 01] Перейти на уровень [A-ANNO]
  • [ШАГ 02] Нарисуйте линии для проемов и измените [тип линии] на [Пунктир]
  • [ШАГ 03] Добавить многострочный текст
    • Добавьте текст [OPEN TO BELOW] на втором уровне над LIVING RM-102.Убедитесь, что масштаб 3/16 ″ = 1 ′ -0 ″ при добавлении текста
    • Добавьте надписи [ОТКРЫТЬ В ЗАЛ] и [ОТКРЫТЬ НА КУХНУ] на [ПОДЪЕМ А]. При добавлении текста
    • убедитесь, что масштаб равен 3/8 ″ = 1 ′ -0 ″.
Добавить аннотации на отметке A
  • [STEP 01] Переключиться на [A-ANNO-TEXT]
  • [ШАГ 02] Щелкните [Управление стилями мультивыноски] на вкладке “Аннотации” панели “Выноска” в разделе “Стандарт”
  • [ШАГ 03] Щелкните [НОВОЕ]> Добавить новое имя для стиля выноски [Аннотативный 3-32]> Установите флажок “Аннотативный”> Щелкните [Продолжить]
  • [ШАГ 04] Обновите эти значения до 3/32 ″ – высоту текста на вкладке «Содержимое», зазор между полями на вкладке «Содержимое», размер стрелки из формата выноски, размер разрыва из формата выноски и установите расстояние между выносками из структуры выноски> Нажмите [OK] закрыть окно
  • [ШАГ 05] Щелкните [Установить текущий]
  • [ШАГ 06] Щелкните [Мультивыноска] на вкладке “Аннотации” на панели “Выноска”
    или введите [MLD], чтобы добавить выноску и текст

СОХРАНИТЕ файл перед закрытием приложения.

Сохранить в другом месте для резервной копии (например, в облачной папке)


Список литературы

Вики по проектированию зданий. (2020, 30 августа). Возвышения. Получено 19 октября 2020 г. с сайта https://www.designingbuildings.co.uk/wiki/Elevations

.

Вики по проектированию зданий. (2020, 28 августа). Чертеж разреза. Получено 19 октября 2020 г. с https://www.designingbuildings.co.uk/wiki/Section_drawing

.

Обзор исторических зданий Америки. (нет данных). Eames House, 203 Chautauqua Boulevard, Лос-Анджелес, округ Лос-Анджелес, Калифорния.Получено 19 октября 2020 г. с сайта http://www.loc.gov/pictures/collection/hh/item/ca4169/

.

Национальная академия дизайна. (2020, 28 сентября). В чем разница между планом, отметкой и разрезом? Получено 19 октября 2020 г. с https://www.nda.ac.uk/blog/identify-plans-elevations-sections/

.

Чертеж в разрезе – Designing Buildings Wiki

«Чертеж в разрезе», «разрез» или «чертеж в разрезе» показывает вид конструкции, как если бы она была разрезана пополам или разрезана по другой воображаемой плоскости.

Для зданий это может быть полезно, так как дает вид через пространства и окружающие конструкции (обычно в вертикальной плоскости), который может выявить взаимосвязи между различными частями зданий, которые могут быть не видны на чертежах плана. Чертежи плана на самом деле являются разновидностью разреза, но они прорезают здание в горизонтальной, а не вертикальной плоскости.

Направление плоскости, через которую разрезается разрез, часто отображается на чертежах плана и фасадах линией длинных и коротких штрихов, называемой плоскостью разреза.Если есть несколько секций, линия может иметь буквы на каждом конце, указывающие имя чертежа разреза, и стрелку, показывающую направление, в котором принимает вид.

Линия разреза может проходить через здание косвенным путем, если это помогает показать наиболее важные элементы или перекрестки в здании, как показано на рисунке ниже.

В этом случае чертеж сечения будет называться «Разрез B-B».

Затенение, перекрестная штриховка или другие стили заливки и / или более толстые линии могут использоваться для обозначения прорезанных частей конструкции, таких как стены, крыши и полы.

Масштаб чертежа в разрезе будет зависеть от размера нарисованного здания и уровня детализации, который необходимо показать. Разделы могут отображать все здание или могут быть сосредоточены на конкретном компоненте, соединении или сборке. В этом случае они могут быть похожи на сборочные чертежи, но отличаться тем, что обычно не содержат деталей фактического процесса сборки.

Различные типы перекрестной штриховки могут использоваться для различения различных типов компонентов на подробных чертежах в разрезе.Существуют стандарты штриховки, которую следует использовать на некоторых распространенных материалах, например, двойные диагональные линии указывают на кирпичную кладку, волна указывает на изоляцию и так далее.

Перспективные разрезы включают трехмерную проекцию пространств за плоскостью сечения и могут использоваться для графической иллюстрации взаимосвязи между пространствами и компонентами здания, а также их глубины, что может быть очень полезно при попытке интерпретировать сложный дизайн.

Все чаще чертежи разрезов могут создаваться автоматически с помощью программного обеспечения для трехмерного моделирования, включая перспективные разрезы, где это необходимо.

[править] Статьи по теме “Проектирование зданий” Wiki

[править] Внешние ссылки

  • «Справочник по строительству» (6-е изд.), ЧАДЛИ, Р. и ГРИНО, Р., Баттерворт-Хайнеманн (2007)

Мы не можем найти эту страницу

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}} *

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

Типы чертежей разрезов – Строительные чертежи

Можно нарисовать сечения всего здания, внутреннего пространства или объекта. Они называются полными разделами.Однако, если нужно проиллюстрировать только изолированную область, можно нарисовать и частичный разрез. Разделы можно разрезать разными способами, чтобы отображалась более подробная информация. Секция может быть прорезана на всем протяжении здания (так называемая секция здания) или только через стену (секция стены).

Могут понадобиться и то, и другое, потому что небольшие размеры и сложность строительной секции обычно означают, что материалы и детали, относящиеся к стенам, не могут быть там нарисованы. Символ на секции здания, показанной на Рисунке 8-4, отмечает площадь стены, которую необходимо увеличить.Сечение стены (рис. 8-5) нарисовано, чтобы точно показать многие детали и материалы, необходимые для сборки.

фин. напольный плавник. жалюзи пол

ДЕРЕВЯННЫЕ ДОМА

1/16 ‘НАБ. ХОРОШАЯ ОБОЛОЧКА

р-40 изоляция

ДЕРЕВЯННЫЕ ДОМА

1/16 ‘НАБ. ХОРОШАЯ ОБОЛОЧКА

р-40 ребро изоляционное. напольный плавник. Louer floor

/2 “ceiuns chase

Рис. 8-6. Увеличенный разрез может просто показать часть сборки здания, чтобы изобразить определенные детали, такие как конструкция встроенного шкафа.

/2 “ceiuns chase

ОТДЕЛЕНИЕ СТЕНЫ

Рисунок 8-5 Это увеличенная часть стены, обозначенная на разрезе здания на Рисунке 8-4.

Рис. 8-6. Увеличенный разрез может просто показать часть сборки здания, чтобы изобразить определенные детали, такие как конструкция встроенного шкафа.

НАБОР ВЫШЕ

раскрыть – покрасить в черный цвет дверцы шкафа –

2 регулируемые полки ■ 3/4 ‘мдф блокирующий бетон законченный drtujall

РАЗДЕЛ ШКАФА

НАБОР ВЫШЕ

раскрыть – покрасить в черный цвет дверцы шкафа –

2 регулируемые полки ■ 3/4 дюйма МДФ с блокировкой из бетона с отделкой «drtujall» отделка нижней стороны шкафа “для соответствия вертикальным поверхностям в полную высоту обратная заслонка

МДФ 3/4 дюйма с выдвижным ящиком на кромку 1-1 / 2 ‘с Accuride (OR equal / glides

3-футовые тяги для проволоки из нержавеющей стали – тип.• нижний ящик «шкафы регулируемая полка f3 / 4 ‘мдф; на системе отверстий под штифт – с шагом 1/4 дюйма с хромированными опорами для полок дверцы шкафа – МДФ 3/4 дюйма и основание

В дополнение к секциям здания и стен может также потребоваться провести секцию через встроенные или нестандартные компоненты в пространстве, такие как стеллажи, стойки регистрации, учетные записи, штанги, витрины, шкафы и прилавки. На Рис. 8-6 показана секция встроенного шкафа. Эти типы разделов более подробно обсуждаются в главе 9.

СЕКЦИЯ ШКАФА

На чертежах внутренних конструкций иногда термины «раздел» и «деталь» меняются местами, что вызывает некоторую путаницу. Например, разрезы небольших участков конструкции или объектов часто называют деталями. Но детали не всегда прорисовываются в разрезе. Они также могут включать увеличенные части плана этажа или фасада.

Масштаб чертежей в разрезе может варьироваться от y% “до 3” (от 3,17 мм до 76 мм), в зависимости от размера бумаги для рисования, размера здания (или компонента) и желаемых элементов изображения.Конкретная информация, отображаемая в разделе, может варьироваться в зависимости от того, является ли это проектным или строительным чертежом. На строительных чертежах показаны только те элементы или компоненты пространства, которые встроены в конструкцию или прикреплены к ней. Подвижная мебель на этом типе чертежа не показана.

Прочтите здесь: Стандарты разработки

Была ли эта статья полезной?

Разрезы и виды в разрезе – технический чертеж

Сечение используется, чтобы показать детали компонента или сборки на определенной плоскости, которая известна как плоскость сечения.На рис. 8.1 показан простой кронштейн, на котором необходимо нарисовать три вида в разрезе. Предположим, у вас был кронштейн, и вырежьте его ножовкой по линии, обозначенной B-B. Если вы посмотрите в направлении стрелок, то вид с торца B-B в решении (рис. 8.2) будет обращен к наблюдателю, а поверхность, обозначенная перекрестной штриховкой, будет реальным металлом, который пила прорезала. В качестве альтернативы, если бы мы разрезали по линии C-C, то результатом был бы план в решении. Довольно частный случай существует вдоль плоскости A-A, когда на самом деле тонкая ткань в этой точке была разрезана.Теперь, если бы мы заштриховали всю поверхность, которую мы прорезали на этой плоскости, мы бы создали ложное впечатление твердости. Чтобы обеспечить более реалистичный рисунок, полотно определяется сплошной линией, а только базовая и перпендикулярные части заштрихованы. Обратите внимание, что перекрестная штриховка никогда не выполняется между пунктирными линиями, следовательно, полная линия между полотном и остальной частью детали. Тем не менее, граница в этой точке теоретически представляет собой пунктирную линию

, поскольку отливка сформирована как единое целое, и соединения здесь не существует.Это стандартное соглашение о рисовании часто проверяется на экзаменационных работах.

Плоскости резки обозначены на чертеже длинной цепочкой толщиной 0,35 мм с утолщением на обоих концах до 0,7 мм. Режущая плоскость обозначена буквами, а стрелки указывают направление взгляда. В этом случае вид в разрезе или план должен быть обозначен буквами A-A или другими буквами, соответствующими плоскости разреза. Поперечная штриховка всегда должна быть под углом 45 ° к осевым линиям, с непрерывными линиями толщиной 0,35 мм.

Если исходный чертеж должен быть микрофильмирован, последовательные линии не должны быть ближе 4 мм, так как линии штриховки имеют тенденцию сливаться с сильно уменьшенным масштабом.При штриховке очень маленьких участков минимальное расстояние между линиями должно быть не менее 1 мм.

В случае очень больших областей штриховка может быть ограничена зоной, которая повторяет контур заштрихованной области. На некоторых подробных чертежах компонентов может потребоваться добавить размеры к чертежу в разрезе, и практика заключается в прерывании штриховки, чтобы буквы и цифры были четко видны.

A-A

Читать дальше: R

Была ли эта статья полезной?

Что такое разрез? 6 типов разрезов

План этажа – это план здания, который наиболее знаком большинству людей: вид здания с высоты птичьего полета со всеми элементами, расположенными на горизонтальной плоскости.Однако разрез дает вертикальный вид, что не менее важно.

Что такое разрез?

Профессиональный строитель Джордан Смит сравнивает виды в разрезе с лазерным разрезом части конструкции, чтобы вы могли увидеть, как элементы здания сочетаются друг с другом по вертикали. В своем классе «Введение в чтение чертежей» он объясняет:

«На плане этажа мы берем лазер и разрезаем дом пополам по горизонтали. Мы откладываем крышу в сторону, смотрим сверху вниз и видим наши стены и пол, но крыша не мешает нам.Секции очень похожи на план этажа, но вместо того, чтобы смотреть сверху вниз, мы смотрим на вертикальную секцию дома. Мы смотрим на дом снаружи, затем берем лазер и вырезаем кусок дома. Мы удаляем этот кусок, и когда мы заглядываем внутрь дома, мы видим, как все пространства соотносятся друг с другом по вертикали, , а не только по горизонтали ».

Вид в разрезе дает архитекторам и подрядчикам еще один способ понять, как будет стоять конструкция, поскольку он показывает детали конструкции стен, а также толщину и высоту балок и других опор.В то время как план этажа позволяет увидеть, как стены стоят по отношению друг к другу, разрез показывает, где стена встречается с полом, и расстояние, которое отделяет один этаж от другого.

Наконец, разделы позволяют лучше понять, как помещения здания будут приспособлены к будущим жильцам и будут ли ощущаться потолки, например, такими, как будто они вырисовываются или парит над головой.

На изображении выше в разрезе вы видите лестницу, идущую снаружи, вверх к входной двери, от входной двери, на второй этаж или из подвала на первый этаж.

Виды в разрезе – это только один из компонентов чертежей объекта недвижимости. Узнайте все, что вам нужно знать о чтении чертежей, в онлайн-классе MT Copeland , который преподает профессиональный строитель и мастер Джордан Смит.

Что такое режущая плоскость?

Разрез – это вид, который никогда не увидишь в реальной жизни, так как это вид на комнату или здание, если часть его была вырезана.Место, где вырезается здание, называется «секущей плоскостью», а положение воображаемой секущей плоскости обычно обозначается линией секущей плоскости, которая состоит из длинных черточек, разделенных двумя более короткими.

6 Типы разрезов

  1. Полные разделы. Это наиболее распространенная секция (называемая полной секцией), когда воображаемый лазер прорезает линию через всю конструкцию, открывая вид на часть здания, остальную часть которой отложили в сторону.
  2. Половинки или виды. В этом типе сечения вырезана только половина пространства или объекта. Это позволяет вам видеть часть его на высоте, в то время как другая часть рисунка дает возможность заглянуть внутрь.
  3. Смещенные разрезы или виды. В смещенном сечении плоскость сечения не следует по прямой. Это может быть использовано, например, если архитектор или инженер хотел показать часть одной комнаты, но также часть другой, которая расположена за ней.Другими словами, хотя плоскости разреза параллельны, плоскость в одной части чертежа может находиться на некотором расстоянии от плоскости в другой части.
  4. Разбитые секции или вид с нарушением целостности. На этих чертежах только небольшая часть объекта или пространства показана в разрезе. Вместо линии разреза часть, показанная в разрезе, обозначается неправильной линией разреза.
  5. Вращающиеся секции или вид. В этом типе разреза пространство или деталь отображается с плоскостью разреза под углом, а затем разрез поворачивается так, чтобы плоскость разреза была обращена к наблюдателю.
  6. Удаленные разделы. При удаленном разрезе только часть чертежа показана в разрезе, и эта деталь удалена в сторону. Масштаб разреза будет отличаться от основного чертежа, что обеспечит более детальную перспективу.

MT Copeland предлагает онлайн-классы на основе видео, которые дают вам фундамент в области строительства с использованием реальных приложений.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *