Как на счетах умножать – Как умножать и делить на счетах?

Как умножать и делить на счетах?

Умножение на 2 и на 3 заменяется двукратным и троекратным сложением.
При умножении на 4 умножают сначала на 2 и складывают этот результат с самим собою.

Умножение числа на 5 выполняется на счетах так: переносят все число одной проволокой выше, — т. е. умножают его на 10, а затем делят это 10-кратное число пополам
Вместо умножения на 6, умножают на 5 и прибавляют умножаемое.
Вместо умножения на 7, множат на 10 и отнимают умножаемое три раза.
Умножение на 8 заменяют умножением на 10 без 2-х. Точно так же множат на 9 : заменяют умножением на
10 без 1.

При умножении на 10 — переносят, все число одной проволокой выше.

Множитель 11 надо заменить 10+1. Множитель 12 заменяют 10+2, или практически 2+10, т. -е. сначала откладывают удвоенное число, а затем прибавляют удесятеренное. Множитель 13 заменяется 10+3 и т. д.

20=10*2 32=22+10

22=11*2 42=22+20

25=(100:2):2 43=33+10

26 =25 — 1 45=50 — 5

27 =30 — 3 63=33+30 и т. д.

С помощью счетов очень удобно умножать на такие числа, как на 22, 33, 44, 55 и т. п. ; поэтому надо стремиться при разбивке множителей пользоваться подобными числами с одинаковыми цифрами.

К сходным приемам прибегают и при умножении на числа, большие 100. Если подобные искусственные приемы утомительны, мы всегда, конечно, можем умножить помощью счетов по общему правилу, умножая каждую цифру множителя и записывая частные произведения — это все же дает некоторое сокращение времени.

Выполнять деление помощью счетов гораздо труднее, чем умножать; для этого нужно запомнить целый ряд особых приемов, подчас довольно замысловатых. Интересующимся ими придется обратиться к специальным руководствам. Здесь укажу лишь, ради примера, удобные приемы деления помощью счетов на числа первого десятка (кроме числа 7, способ деления на которое черезчур сложен) .

Пример как делить на два
Например, 150. Откинуть из 5 косточек (десятков) 2, отдав 5 единиц нижнему ряду косточек; потом из 1 косточки на проволоке сотен отдать 5 десятков нижнему ряду: получилось 7 десятков и 5 единиц, т- е. 75.

Гораздо сложнее прием деления на 3 : он состоит в замене деления умножением на бесконечную периодическую

дробь 3,3333… (известно, что 0,333…=1/3 ). Умножать

помощью счетов на 3 мы умеем; уменьшать в 10 раз тоже несложно: надо лишь переносить делимое одной проволокой ниже. После недолгого упражнения этот прием деления на 3. на первый взгляд длинноватый, оказывается довольно удобным на практике.

Деление на 4, конечно, заменяется двукратным делением на 2.

Еще проще деление на 5 : его заменяют делением на 10 и удвоением результата.

На 6 делят помощью счетов в два приема: сначала делят на 2, потом полученное делят на 3.

На 8 делят в три приема : сначала на 2, потом полученное вновь на 2, и затем еще раз на 2.

Очень интересен прием деления на 9. Он основан на том, что 1/3 =0,1111… Отсюда ясно, что, вместо деления на 9, можно последовательно складывать 0,1 делимого+0,1 его+0,01 его и т. д.
Всего проще, делить на 2, 10 и 5, — и, конечно, на такие кратные им числа, как 4, 8, 16, 20, 25, 40, 50, 75, 80, 100.

otvet.mail.ru

Как считать на счетах?

В советское время таким приспособлением, как русские арифметические счеты, пользовались продавцы практически во всех магазинах, а также финансисты в банках, кассиры, бухгалтеры и представители других профессий. Однако о том, как считать на счетах, в наше время имеют представление далеко не все, так как место этого счетного приспособления вытеснили более современные приборы.

Как считать на счетах: основные принципы

Когда все костяшки счет выровнены по краю с правой стороны, это означает, что счеты выставлены на нулевое положение. Всего на счетах 8 (или 10) рядов, каждый из которых обозначает определенный класс цифр – от единиц до десятков тысяч (или сотен и миллионов, если на счетах 10 рядов). Так, самый верхний ряд обозначает десятки тысяч, второй сверху – тысячи, третий – сотни, четвертый – десятки, пятый – единицы, шестой (в нем всего четыре костяшки) – четверти, седьмой – десятые (0,1), и восьмой – сотые (0,01).

Как работать на счетах: чтобы набрать любое число, требуется костяшки соответствующего класса цифр подвинуть влево. Например, чтобы набрать число 5 844,75, нужно передвинуть 5 тысяч, 8 сотен, 4 десятка, 4 единицы и три четвертака (или 7 десятых и 5 сотых). Если осталось непонятно, как считать, то советуем ознакомиться с нашей статьей Как научиться считать.

Арифметические действия на счетах

Можно научиться считать на счетах как самостоятельно, так и под руководством кого-то, кто уже умеет это делать. Совершать сложение на счетах очень просто: необходимо сначала набрать костяшками первое число, а после этого перенести справа налево второе число из оставшихся костяшек. Если их не хватает, то нужно отодвинуть одну костяшку на один класс выше, при этом сложение всегда начинают с нижних рядов.

Вычитание – обратный процесс, только начинать вычитать необходимо с верхних рядов. При этом от большего числа, разумеется, отнимают меньшее, и, если костяшек в каком-то ряду не хватает, отнимают одну классом ниже.

Чтобы посчитать на счетах, как на калькуляторе, нужно иметь большой опыт. Так, умножение и де

elhow.ru

Ретро-калькулятор. Как пользоваться счётами деревянными? :: BusinessMan.ru

Счёты деревянные – давно забытый предмет. На смену этому инструменту для вычислений давно пришли калькуляторы и компьютеры. К сожалению, не многие современные люди понимают, насколько может быть полезным умение применять такой инструмент. Предлагаем попробовать заняться развитием своего мышления и разобраться в том, как пользоваться счётами деревянными.

Появление вычислительного инструмента

История предметов для вычисления началась именно со счётов. Этот инструмент был популярен во всех странах мира. Бухгалтеры, торговцы и все, кто имел дело с финансами, широко его использовали. Первое название деревянного вычислительного инструмента было «абак». Оно переводилось как «счётная доска». У многих народов счёты имели свою форму и изготавливались из различных материалов.

На Руси длительный период счёт производился с помощью косточек, которые раскладывали в своеобразные кучки. В дальнейшем счёты приобрели дощатый вид. Предполагается, что «дощатый счёт» жители Руси позаимствовали у западных купцов, завозящих текстиль и другие виды товаров. Новые вычислительные устройства представляли собой деревянную рамку с верёвочками, которые были закреплены в ней горизонтально друг другу. На эти верёвочки были нанизаны косточки из ягод вишни или плодов сливы.

Эволюция счёт не сильно изменила их внешнего вида, скорее, повлияла на практичность и срок службы. Старые счёты были популярны в СССР и использовались во всех местах, которые каким-либо образом были связаны с финансами или просто математическими расчётами. Габариты этих инструментов были довольно крупные (длина – 40 см; ширина – 26 см; высота – 3 см), и в карман их точно не было возможности спрятать. Тем не менее практически каждый советский человек знал, как считать на счётах.

Последнее преобразование счёт и определение их составляющих

Счёты представляли собой деревянную рамку, внутри которой были закреплены 12 металлических спиц. На каждую из них нанизывались деревянные костяшки. В общей сложности их было 114 штук. В некоторых моделях счёт костяшки были сделаны из пластмассы, но популярнее были всё же деревянные устройства.

Костяшки были нанизаны на каждую спицу по 10 штук, и лишь одна спица была исключением. На четвёртую было нанизано всего 4 штуки. Эта спица была выделена для двух случаев: во-первых, для операций с использованием четвертей; во вторых, она служила визуальным ориентиром для того, чтобы определить значение одного из рядов. Ряды, которые находились от четвёртого, представляли собой целые числа от единиц до миллионов. Левые ряды – это десятые, сотые и тысячные. Но стоит заметить, что модификации счёт могли иметь различное количество спиц. Тем не менее, руководствуясь общими критериями, можно понять смысл того, как пользоваться счётами деревянными любого вида.

Исчисление на старый лад

Итак, пора разобраться в том, как пользоваться счётами деревянными и какие действия с ними можно выполнять. Счёты способны делать вычисление четырьмя методами: сложение, вычитание, умножение и деление. Те немногие, кто знаком с «деревянным калькулятором», могут знать лишь два первых способа. Как умножать на счётах и выполнять деление на них, знают лишь опытные умельцы. Эти способы требуют определенных навыков, особенно это касается деления чисел.

К большому сожалению, инструкции о том, как пользоваться счётами деревянными, в комплекте с инструментом не предусмотрено. Большинство людей предпочитают выполнять задачи с умножением и делением в столбик, считая этот метод более практичным. Но самое главное, что необходимо для понимания, – это хорошая память и умение складывать и вычитать числа в уме.

Принцип использования счёт

Для того чтобы понять принцип использования ретрокалькулятора, необходимо разобраться с каждым рядом отдельно. Расположение счёт должно быть следующим: четвёртый ряд, который насчитывает минимальное количество костяшек, должен находиться снизу.

Сложение выполняется следующим образом: набор чисел начинается с первого ряда от 1 до 10. На одну спицу вверх идут числа 10, 20 и так далее. При передвижении костяшек справа налево набирается необходимое число. Заполнив один ряд на спице, необходимо воспользоваться числами, имеющими большее значение. Так, одна костяшка верхнего ряда заменяет 10 костяшек нижнего. Сложение чисел выполняется путём добавления костяшек в соответствующие ряды. Окончательный результат подсчитывается сложением всех значений, начиная с верхнего заполненного ряда.

Чтобы вычесть числа, необходимо проделать то же, что и при сложении, только в обратном порядке – справа налево. О том, как считать на счётах, можно найти довольно много информации. Деление не является особо распространённым способом, а вот умножению стоит уделить внимание.

В отличие от сложения и вычитания, для умножения существует много разных способов. Умножение единичных чисел производиться путём сложения одного числа столько раз, во сколько его необходимо увеличить. К примеру, если необходимо увеличить число 2 в 3 раза, то число 2 складывается три раза. Если необходимо какое-либо число умножить на 5, для этого потребуется перенести все костяшки на верхний ряд, при этом происходит умножение на 10. После чего полученное число делиться на 2 в уме.

Для того чтобы умножить какое-то число на 6, выполните те же действия, что и при умножении на 5, и прибавьте к результату число, которое увеличивали изначально. Умножение на 7 выполняется с помощью увеличения числа в 10 раз, после чего первое его значение отнимается три раза от полученного результата.

Для того, чтобы умножить числа типа 11, 12, 13 и так далее, необходимо разложить множитель на составляющие, то есть 10 и 1, 2, 3… После чего выполняется умножение числа на каждый множитель отдельно, а полученные результаты складываются.

В заключение хотелось бы добавить, что вычисления с помощью ретрокалькулятора –очень занимательная и интересная вещь. Это занятие будет полезно тем, кому необходимо улучшить логическое мышление, натренировать память и развить внимательность.

businessman.ru

Как научиться считать на счетах

Еще осталось в памяти то время, когда простейшие калькуляторы были роскошью, а о компьютерах и речи не было. Продавцы, почтовые работники и даже банковские служащие пользовались счетами.

Инструкция

1. Счеты – примитивный вычислительный агрегат, тот, что представляет собой счетные кольца, нанизанные на тонкие спицы. Обрамленные цельной канвой, счеты заключают в себе всю систему чисел – единицы, десятки, сотни и т.д. На верхних рядах счет расположены целые числа, причем их значение уменьшается с всей дальнейшей спицей: от сотен тысяч к единицам. Под коротким рядом «костяшек» расположены дробные числа: от десятых до тысячных.

2. Самыми примитивными вычислениями на счетах являются сложение и вычитание. Числа набираются начиная с первого ряда целых: от 1 до 10. Дальнейший рад (на одну спицу вверх) – от 11 до 20 и т.д. Набирайте нужное число, передвигая «костяшки» из соответствующего ряда справа налево. Когда один ряд на спице заполнится, воспользуйтесь числами большего значения – то есть одна «костяшка» верхнего ряда заменяет 10 «костяшек» нижнего. Складывая числа, добавляйте «костяшки» в соответствующие ряды. Дабы посчитать окончательный итог, «спускайтесь» внизу вверх – миллионы, тысячи, сотни и т.д.

3. Вычитание на счетах производится таким же методом, что и сложение, только в обратном порядке. То есть вычитая из одного числа другое, убирайте «костяшки» из соответствующих рядов. Таким образом, во время подсчета двигайтесь сверху вниз. Окончательную сумму вы узнаете, подсчитав кольца, оставшиеся в левой стороне счет.

4. Для всякого числа умножение на счетах производится различными методами. Если вам необходимо умножить на 2 либо 3, замените это действие сложением, «плюсуя» число 2 либо 3 раза соответственно. Умножение на 4 – это сложение (2*2).

5. Дабы умножить на 5, перенесите все косточки счет на одну линию вверх (то есть умножьте его на 10), после этого разделяете число напополам в уме.

6. Дабы умножить число на 6, его необходимо умножить на 5 описанным выше методом, после этого к полученному итогу прибавить число, которое было в начале вычислений.

7. Дабы умножить на 7, вначале умножьте число на 10, а после этого от полученного значения отнимите умножаемое число три раза.

8. Умножение на 8 либо 9 заменяют умножением на 10, но без переноса 2х либо 1й (при умножении на 8 и 9 соответственно) косточки наверх.

9. Множители, следующие позже 10, «раскладывают» на составляющие. Скажем, вам необходимо умножить на 12 – вы раскладываете данный множитель на 10 и 2. Сложите число с самим собой (умножьте на 2), после этого прибавьте к нему удесятеренное значение.

10. Деление на счетах – процесс непростой и доступный только специалистам. В бывшие времена необходимо было проходить особое обучение, дабы освоить деление.

Умножение – одна из четырех арифметических операций, постигаемых с первого класса школы. Наравне со сложением она, вероятно, почаще каждого используется в повседневной жизни. При этом под рукой не неизменно есть калькулятор либо лист бумаги. Именно следственно умение того, как умножать в уме числа, примитивно нужно любому современному человеку. Тем больше что производительность устного умножения достигается путем применения каждого одного правила и нескольких примитивных приемов.

Вам понадобится

  • Знание таблицы умножения чисел от 0 до 9. Знание складывать и вычитать числа.

Инструкция

1. Проверьте, не описывается ли задача одним из случаев, дозволяющих произвести стремительное умножение. Для этого проанализируйте, не является ли один из сомножителей числом 4, 5, 8, 9, 10, 11, 25 либо числом, образованным путем умножения перечисленных чисел на степени числа 10 (скажем, 40, 500, 1000, 250). В случае если это так, произведите стремительное умножение. При умножении на число 10 и его степени, допишите позже умножаемого числа столько нулей, сколько содержится в множителе, кратном десяти. Это будет итогом. Так, 52 * 100 = 5200. При умножении на 4 двукратно удвойте умножаемое число. При умножении на 8 трижды удвойте умножаемое число. При умножении на 5, умножьте число на 10, а после этого поделите на 2. При умножении на 25, умножьте число на 100, а после этого двукратно поделите на 2. Для умножения числа на 9, умножьте его на 10 (допишите один нуль) и вычтите его же из итога. Скажем, 56 * 9 = 56 * 10 – 56 = 560 – 56 = 504. Для умножения числа на 11, умножьте его на 10 и прибавьте его же к итогу. Так, 56 * 11 = 56 * 10 + 56 = 560 + 56 = 616. Если задача не допускает стремительного умножения, перейдите к дальнейшему шагу.

2. Расположите множители в последовательности убывания порядка их чисел. Для этого примитивно сравните длину сомножителей в символьном представлении и поставьте на первое место больше длинный множитель. Скажем, требуется помножить 47 на 526. Умножение легче будет изготавливать, если представить задачу как 526 * 47.

3. Мысленно разбейте всякий множитель на сумму чисел с точностью до порядка. Представьте задачу умножения в виде произведения этих сумм. Так, 526 * 47 = (500 + 20 + 6) * (40 + 7).

4. Умножьте в уме числа. Произведите последовательное умножение чисел суммы, на которую был разбит 1-й сомножитель на числа суммы второго сомножителя. Позже всякого умножения складывайте полученное число с предыдущим итогом. Используйте примитивные правила умножения, приведенные в первом шаге. Скажем, 526 * 47 = (500 + 20 + 6) * (40 + 7) = 500 * 40 + 20 * 40 + 6 * 40 + 500 * 7 + 20 * 7 + 6 * 7 = 20000 + 800 + 240 + 3500 + 140 + 42 = 24722.

Обратите внимание!
Изготавливаете главные расчеты только на калькуляторе либо в электронных таблицах на компьютере.

Полезный совет
Выучите таблицу умножения от 1*1 до 9*9. Это дозволит вам стремительно находить произведения маленьких чисел.

jprosto.ru

Ментальная Арифметика Умножение

Урок № 4. Ментальная Арифметика Умножение.

Умножение есть не что иное как многократное сложение. Но вместо того, что бы 23 раза прибавлять одно и тоже число, легче выполнить его умножение. Существует особая техника выполнения умножения в окне соробана. Есть несколько различных методов. Здесь приводится метод, который был рекомендован Японским Комитетом по Абакусу. Этот метод считается дающим меньше ошибок и простым в обучении.

Теперь поставим перед собой задачу умножения 23Х47. Число 23 будет называться множимым, а число 47 — множителем. Прежде всего расположим множимое (а это число 23) вблизи центра счетной доски. Пропустив пустую линейку, число 47 (множитель) расположим слева

Между числами пропущены линейки для лучшей наглядности, при не таких маленьких счетах можно пропускать и больше.

Процесс умножения подобен тому, как мы делаем это на бумаге, но отличается последовательностью выполнения действий

Сначала берем правую цифру множимого ( 3) и умножаем на крайнюю левую цифру множимого 3×4=12. Число 12 откладываем слева от множимого (на линейках FG)

затем эту же цифру множимого умножаем на следующую слева направо цифру множителя 3×7=21, получившееся число 21 прибавляем к результату, но уже сдвинув вправо на один разряд (линейки GH ) :

Теперь мы не нуждаемся в цифре 3, так как с ней уже все проделано, очистим эту линейку (E ) для дальнейшей работы

Теперь берем следующее число множимого — в нашем случае это 2. Умножаем его на левую крайнюю цифру множителя. Результат (2×4=08) прибавляем к линейкам EF. Поскольку в общем случае результат занимает 2 разряда, одноразрядный результат надо представлять в виде 08, что бы правильно разместить его на линейках, так получается следующая картина:

В заключение мы должны умножить 2 на оставшуюся цифру множителя 7 и получившийся результат 14 прибавить на линейки FG

К линейке F надо прибавить 1, но она полностью заполнена, поэтому по правилам сложения, прибавляется 1 к следующему разряду (E), а здесь отнимается 9. Затем к линейке G прибавляется 4

получившееся число является результатом действия 23×47=1081

[SWF]http://mentalar.ru/wp-content/uploads/2017/09/000.swf,700,500[/SWF]

mentalar.ru

Как считать на счетах | Рождённые в СССР

Здравствуйте, дорогие читатели! Я заметил, что современные дети почти разучились совершать в уме простейшие арифметические действия. До того дошло, что вполне обычной стала картина: стоит стайка сорванцов в магазине с пакетами чипсов и мороженым в общей на всех корзинке – и нетерпеливо наблюдает за несложными манипуляциями самого смышленого их собрата. А тот с помощью смартфона высчитывает, хватит ли им ещё и на бутылку «Кока-колы». Да-а, представляю удивление ребят, если бы их любимая Марь Иванна заявила на очередном уроке математики: «А сегодня мы узнаем, как считать на счетах!»

Но ведь, скорее всего, многие из сегодняшних школьников и не слыхивали, что это за диво такое – деревянные счеты. А я помню, как весело было стучать приятными на ощупь костяшками и представлять себя самым важным по детскому разумению человеком в магазине – кассиром, счастливым обладателем больших, «настоящих» счетов! Можно было целый час простоять рядом с кассой, завороженно наблюдая, как кошка за мышкиной беготней, за веселыми деревяшками под ловкими пальцами молодой кассирши, резво облетающими счеты. Как считать, она, конечно, ни на секунду не задумывалась, это же было основным навыком в её профессии.

Если вам удастся раздобыть счеты, или с детства оставили на память – давайте вместе попробуем вспомнить эти навыки. Хотя бы сложение и вычитание припомним, ведь умножение и деление – более сложные операции на этом инструменте. Хотя я слышал, что сейчас есть люди, желающие и находящие такую возможность, чтобы их детей обучали так называемой ментальной математике. Для этих целей они приобретают малышам счеты абакус. Как считать на них, и что это за счеты? Я думаю, информации на эту тему в сети хватает.

Мы же с вами попытаемся вспомнить уроки счета. Итак, как считать на счетах – инструкция ). Сначала «обнуляем» наши счеты, сбрасывая все кругляшки на правый край. Числа представлены костяшками над тем рядом, где их четыре. Располагаются по разрядам – от единиц над вышеупомянутым рядом разряды увеличиваются к десяткам, сотням и далее. Ниже единиц размещаются четверти, десятые и сотые. Почему центральные костяшки обычно окрашены в черный цвет? Для более удобной ориентации при счете.

Для сложения набираем число, скажем, 937. Для этого влево отбрасываем нужное количество костяшек соответствующего разряда. Теперь, чтобы прибавить к этому, допустим, число 134 – добавляем его поразрядно, начиная с младшего разряда. Это делается для того, чтобы если в одном из разрядов не хватает костяшек – оставить их в данном ряду в том количестве, которого не хватило, и прибавить одну костяшку в старшем над этим ряду.

Разность чисел можно вычислить похожим на нахождение суммы способом, сверху вниз. В ряду, где имеется недостаток костяшек, следует оставить их в количестве, равном 10 минус Х. За Х принимаем число недостающих костяшек и сдвигаем одну костяшку верхнего ряда вправо. Думаю, если вы проделывали эти манипуляции на вытащенных из закромов счетах – разобрались быстро. Но не торопитесь давать объявление: «Учим считать на счетах!» Вот научитесь самостоятельно умножать и делить на них – тогда пора обзаводиться учениками ).

А я во время нашего урока вспомнил еще одно применение этого инструмента для счета, не самое математическое, возможно. После уроков берешь возле пустынной асфальтовой дорожки с уклоном у троих друзей волшебные колесики – и вот уже только ветер свистит в ушах, да как! Считать на счетах любой может научиться, а вы попробуйте удержаться на четвереньках на этом предвестнике скейтборда!

up-partner.ru

Ментальная арифметика — уроки на умножение и деление, видео

Развитие ребенка – главная цель родителей. Если на первых порах жизни ему достаточно того, чему научили родители, то со временем потребность знаний возрастает. Так и в ментальной математике. После знакомства с абакусом и полученных навыков сложения и вычитания ребенку хочется чего-то большего. Малыши переходят на новую ступень – ментальная арифметика — уроки на умножение и деление.

Читайте также Ментальная арифметика — уроки на плюс и минус

Сама по себе методика только пробивает дорогу в России, хотя во многих странах мира, в том числе и Казахстане, ее ввели в государственную программу обучения в школе. Ведь умение считать в уме быстро и правильно необходимо каждому человеку.

Польза менара для детей

Как считают исследователи и преподаватели ментальной арифметики, при работе на соробане развиваются одновременно оба полушария головного мозга. Ведь детям приходится работать правой и левой рукой. Ментальная или воображаемая арифметика позволяет расширять возможности мозга, учит выполнять действия в нестандартной ситуации.

В отличие от счета на калькуляторе, который полностью отключает деятельность мозга, абакус, наоборот, призван его тренировать. Начинать занятия менаром лучше с 4-х лет и до 16. Люди старшего возраста не всегда могут научиться быстрому счету посредством новой методики, поскольку пользуются уже имеющимися навыками счета, не могут быстро переключаться на новый вид деятельности.

Читайте также Ментальная арифметика — миф или реальность

Дети, изучающие ментальную математику, как отмечают исследователи, становятся успешными во многих сферах деятельности, учатся лучше и с увлечением. Но главное, у них повышается самооценка.

Выучили таблицу умножения — что дальше

Ментальная арифметика — уроки на умножение и деление

Таблица умножения в школе изучается со 2 класса. Ее заучивали до автоматизма, зачастую не показывали особенности и взаимосвязи. К сожалению, в более взрослом возрасте, когда таблица уходит на второй план, особенно при наличии калькулятора, устно выполнить умножение не всегда могут.

В ментальной арифметике тоже необходимо выучить наизусть таблицу умножения, но учат ее не на автомате, а с объяснением взаимосвязей.

Вам в помощь Таблица умножения для детей

Ведь, по сути, и учить-то много не нужно, если выделить 4 группы примеров на умножение:

  1. легкие — таблицы на 2, 5, 9
  2. рифмы- 6*4, 5*5, 6*8, 6*6
  3. повторяющиеся — с одинаковыми множителями 3*3, 4*4, 7*7
  4. сложные — 3*4, 3*6, 3*7, 3*8, 4*7, 4*8, 6*7, 7*8

Заучивают, как правило, на занятиях по менару таблицу в игровой форме. Способов заучивания немало, все они пользуются большим успехом у детей. После того, как ребенок научился выполнять на соробане сложение и вычитание, выучил таблицу умножения, подходит время учиться умножать и делить на инструменте. Позднее переходить к абстрактному счету в уме, воображая перед своими глазами соробан.

Ребенок способен умножать и делить любые многозначные числа. Постараемся разобраться на примерах, как выполняются эти математические действия.

Умножение в ментальной арифметике

Выполнение умножения на соробане отличается от сложения тем, что начинают работу не с первой колонки справа, а со спицы с точкой. Разряды присваивают те же самые.

Давайте рассмотрим сначала простые примеры.

  • 34 х 3. Сначала умножим 30 х3 = 90. Откладываем 9 десятков на второй колонке слева от точки. 4 х 3 =12. Это десяток и 2 единицы. Добавляем 1 к десяткам, сбрасываем косточки и переходим в разряд сотен – получается 1 сотня. На колонке с единицами добавляем 2 косточки. В итоге получилось 102.

Умножая двухзначные или трехзначные числа, работу на соробане начинают с крайней левой колонки. Действуют по схеме ab х cd =, то есть набираем первый множитель, оставляем пустую колонку, набираем второй множитель и снова пустая колонка. В работе будут 6 колонок. На оставшихся спицах набирается результат.

  • Например, 23 х 14. Набираем 23, пробел и 14. Теперь 2 х 1 = 2, набираем в 7 колонке 2 бусинки. Затем 3 х 1 = 3, набираем это число на 8 спице. Затем 2 х 4 справа, получается 8, но у нас на восьмой спице уже есть три. Сбрасываем косточки, добавляем 1 к сотням и поднимаем 1 косточку на 8-ой. Осталось 3 х 4 = 12. Две косточки поднимаем на 9-ой спице, а одну добавляем на 8-ой. Получилось, что 23 х 14 = 322.

Навык умножения разных чисел отрабатывается ежедневно.

Видео «Ментальная арифметика — умножение»

Суть деления в ментальной арифметике

В делении больше динамики, чем в умножении. Делимое и делитель нужно отделить свободными колонками, чтобы потом ни них набирать ответ. Работу так же начинают с самой крайней колонки слева. На них набирается делитель. Делимое набирают на последних колонках справа.

Как же выполнить деление? Для примера возьмем частное 36: 2. Набираем число 36, оставляем пустые спицы не меньше 3, затем набираем число 2.

Итак, начнем:

  • 3 разделить на 2. По 2 можно взять один раз. Откладываем в промежутке для ответа одну косточку на месте десятков.
  • Умножим 2 на 1, получим два.
  • Отнимаем 3 – 2 = 1 – это остаток.
  • Смотрим, какое число еще нужно разделить. Получается 16.
  • При делениии 16 на 2 получается 8. Проверяем – 2 х 8 = 16. Вычитаем полученный результат, остается нуль.
  • Набираем ответ 8 левее от первого числа. У нас получилось 18.

Видео «Ментальная арифметика — деление»

Несмотря на то, что к ментальной арифметике, в том числе и к урокам на умножения и деления отношение у россиян неоднозначное, можно с уверенностью сказать, что взяв в руки соробан, даже взрослый человек не сможет не заинтересоваться особенностью вычислений.

 

razvitiedetei.info

Отправить ответ

avatar
  Подписаться  
Уведомление о