Как обозначается латунь в таблице менделеева: Латунь сплав | Профлазермет

Содержание

Латунь сплав | Профлазермет

Латунь представляет собой сплав с медью. Основной легирующей добавкой, определяющей технологические характеристики: прочность, гибкость, пластичность, хорошую устойчивость к коррозионным процессам и пр., является цинк. Дополнительно могут быть введены и другие легирующие элементы, в том числе и олово, с тем условием, что олова будет меньше, чем цинка. Помимо олова, латунь может содержать никель, свинец, марганец, железо и некоторые другие элементы в процентном соотношении, регламентированном ГОСТом 15527-2004.

По содержанию химических элементов латуни подразделяются на простые (состоящие из Cu и Zn) и специальные (включающие Cu+Zn, а также несколько легирующих элементов: Pb, Fe, Al, Sn и пр.), по типу обработки – на деформируемые для создания разного типа проволок, латунных листов, труб и пр., а также литейные для изготовления деталей путем литья.

Разновидности латунного металлопроката

Основные разновидности латунного металлопроката сводятся к следующему:

  • латунные прутки – длинные детали с круглым, квадратным, прямоугольным сечением;
  • латунные плиты – плоские заготовки толщиной 2,5 см и больше;
  • латунная проволока для электротехники и прочих отраслей промышленности;
  • латунная труба для проведения линий коммуникаций;
  • латунные круги для изготовления станков, приборостроения и пр. ;
  • латунные листы для разных отраслей промышленности и пр.

Для каждого типа латунного металлопроката необходим металл определенной марки со строго регламентированным химическим составом.

Маркировка латуней

По содержанию компонентов принято выделять простые и специальные многокомпонентные латуни. Простые разновидности латуни имеют свою маркировку, которая позволяет сразу отличить наименование марки сплава в тексте. Маркировка включает в себя букву «Л» – латунь и цифру, равную среднему содержанию Cu. В латуни марки Л80 содержится 80% меди и 20% цинка.

Для многокомпонентных (специальных) латуней принята следующая маркировка. Сначала также идет буква «Л», за ней буквы, которые показывают все легирующие компоненты сплава, кроме основного компонента – цинка. Цинк в наименовании маркировки не указывается. За буквами, указывающими на то, какие элементы содержатся в сплаве, пишутся цифры, которые показывают содержания компонентов сплава. Первая цифра обозначает содержание меди, далее последовательность цифр соответствует последовательности букв в аббревиатуре марки. Содержание цинка не указывается, оно определяется разницей между 100% и суммарным содержанием всех прочих элементов.

ЛАЖМц66-6-3-2 – латунь со следующими содержаниями:

C – 66%,

A l – 6%,

Fe – 3%,

Mn – 2%.

Цинка содержится соответственно 23%.

В таблице ниже можно ознакомиться с основными марками латуни. Они могут быть литейные или деформируемые для производства проката. Также стоит отметить, что некоторые типы латунных сплавов подходят для пайки. Эти типы регламентируются ГОСТом 16130-90, они выделены в таблице цветом.

 

ПРОСТЫЕ

АЛЮМИНИЕВЫЕ КРЕМНИСТЫЕ ОЛОВЯННЫЕ СВИНЦОВЫЕ
Л96 ЛА85-0.5 ЛК80-3 ЛО90-1 ЛС74-3
Л90 ЛА77-2 ЛК62-0.5 ЛО70-1 ЛС64-2
Л85 ЛА67-2.5 ЛКС65-1. 5-3 ЛО62-1 ЛС63-3
Л80 ЛАЖ60-1-1   ЛО60-1 ЛС59-1
Л75 ЛАН59-3-2 МАРГАНЦЕВЫЕ ЛОК59-1-0.3 ЛС59-2
Л70   ЛЖМц59-1-1   ЛС58-2
Л68 ЛАНКМц75-2-2.5-0.5-0.5 ЛМц58-2 НИКЕЛЕВЫЕ ЛС58-3
Л63 ЛМцА57-3-1 ЛН65-5

ЛЖС58-1-1

 

Каждая марка латуни предназначена для решения конкретных задач в соответствии с химическими составами и технологическими параметрами.

Примеры применения некоторых марок латуни приведены ниже.

Типы латуней

Принято выделять латуни однофазные или так называемые латуни альфа-типа, содержащие до 30-35% цинка, и двухфазные разновидности альфа-бета типа с большим (до 47-50 %), чем в однофазных, содержанием основного легирующего компонента. Однофазные латуни более пластичны, с увеличением же добавок возрастает прочность латуни, но существенно снижается ее пластичность.

Двухфазные латунные сплавы существенно менее пластичны, чем однофазные. Такое изменение свойств в связи с изменением состава объясняется тем, что при увеличении числа легирующих добавок неизменно меняется и структура сплава. При этом прочность двухфазных латунных разновидностей существенно выше, чем у однофазных. Двухфазные латунные сплавы могут содержать до 6% свинца в качестве дополнительной легирующей добавки.

Латунные сплавы с относительно невысоким содержанием цинка до 10% принято называть томпаками, при содержании цинка 10-20% – полутомпаками.

Химический состав латуни

Латунь по своему химическому составу близка к бронзе, и латунь, и бронза имеют в своей основе медь. Существенное отличие заключается в том, что основным легирующим компонентом в латунных сплавах является цинк, содержание которого может достигать 45%.

Рассмотрим подробнее свойства основных компонентов латуни.

Zn (цинк) элемент таблицы Менделеева, атомный номер 30. Элемент относится к побочной подгруппе 2 группы IV периода. Металл является переходным, для него характерно такое свойство, как проявление в атомах электронов на d- и f-орбиталях. Металл имеет светло-голубой оттенок, который на воздухе темнеет, покрываясь оксидной пленкой.

Cu – основной компонент сплава. Элемент относится к 11 группе IV периода периодической системы Менделеева и имеет атомный номер 29. Металл как и цинк является переходным. У металла красивый желтовато-золотистый цвет. При образовании оксидной пленки медь приобретает красноватый оттенок.

Как говорилось выше, латунь может иметь структуру, которая состоит из альфа-фазы или из альфа-бета фазы.

В качестве легирующих компонентов латунь может включать в себя:

  • Mn для повышения прочности сплавов, в том числе и антикоррозионной. Дополнительное введение помимо Mn еще Al, Sn, Fe усиливает прочностные и антикоррозионные характеристики металла.
  • Sn для повышения устойчивости к соленой воде. Такие латунные сплавы приобрели «негласное» название – морская латунь и широко применяются в местах контакта с морской водой.
  • Ni придает соединению высокие прочностные характеристики и также повышает антикоррозионные свойства.
  • Pb применяется в том случае, если латунная деталь будет подвергаться резке. Этот элемент делает металл более податливым при механической обработке. Латуни, легированные свинцом называют автоматными.
  • Si необходим для усиления антифрикционных характеристик сплава, что позволяет спокойно использовать его наряду с бронзой в некоторых технологических узлах, подшипниках и пр. Но, стоит отметить, что кремний существенно снижает твердость и прочность латунных изделий.

В таблице ниже приведены химические составы некоторых марок латунных сплавов. По таблице видно, что все марки имеют разный состав, содержание меди в некоторых марках может достигать 91%.

Свойства латуни в зависимости от процентного соотношения компонентов, температуры нагрева

При изменении процентного соотношения компонентов твердого раствора, введении дополнительных легирующих элементов меняются и свойства получаемого металла.

Попробуем проследить, как меняются свойства металла при изменении содержания Zn:

  • При содержании цинка менее или равном 30% увеличиваются твердость и эластичность металла.
  • При дальнейшем увеличении содержания цинка эластичность начинает снижаться в связи с уплотнением альфа-раствора. Твердость при этом увеличивается.
  • Но при достижении содержания цинка 45% твердость тоже падает.

За счет своей эластичности латуни хорошо обрабатываются давлением. Особенно это относится к однофазным сплавам. Температурный режим для изменения формы не должен попадать в диапазон 300-700°C, это «хрупкая зона» металла. Альфа-бета разновидности проявляют повышенную пластичность при увеличении температуры нагрева выше 700°C.

Таким образом, содержание химических элементов в металле напрямую влияет на его технологические параметры, свойства. Альфа-латунные сплавы отличаются повышенной пластичностью, альфа-бета разновидности – прочные и крепкие, но они не подходят для деформационной обработки.

Латунный сплав обладает повышенной устойчивостью к коррозии и морской воде за счет добавления легирующих компонентов, что позволяет использовать его в участках постоянного воздействия агрессивных сред.

По всем вопросам относительно содержания химических элементов в латунном сплаве, маркировок, характерных технологических особенностей и области применения каждой конкретной марки всегда можно обратиться к специалистам ООО «Профлазермет» по контактным телефонам +7(495) 928-96-58 или 8 (800) 775-32-83. Также можно подать заявку на расчет стоимости продукции или работ непосредственно на сайте. Услуги гибки металла и лазерной резки металла. 

Латунь | это… Что такое Латунь?

Латунная игральная кость, рядом слиток меди и цинк

Макроструктура отшлифованного и протравленного латунного сплава под 400-кратным увеличением

Латунь — это двойной или многокомпонентный сплав на основе меди, где основным легирующим элементом является цинк, иногда с добавлением олова, никеля, свинца, марганца, железа и других элементов.

Содержание

  • 1 История и происхождение названия
  • 2 Физические свойства
  • 3 Диаграмма состояния Cu — Zn
  • 4 Порядок маркировки
  • 5 Применение
    • 5.1 Деформируемые латуни
    • 5.2 Литейные латуни
    • 5.3 Ювелирные сплавы
  • 6 Примечания
  • 7 Литература
  • 8 Ссылки

История и происхождение названия

Несмотря на то, что цинк был открыт только в XVI веке, латунь была известна уже древним римлянам[1]. Они получали её, сплавляя медь с галмеем[2], то есть с цинковой рудой. Путём сплавления меди с металлическим цинком, латунь впервые была получена в Англии в 1781 году. В XIX веке в Западной Европе и России латунь использовали в качестве поддельного золота.

Во времена Августа в Риме латунь называлась «аурихалк», из которой чеканились сестерции и дупондии. Аурихалк получил название от цвета сплава, похожего на цвет золота.

Физические свойства

  • Плотность — 8300—8700 кг/м³
  • Удельная теплоёмкость при 20 °C — 0,377 кДж·кг−1·K−1
  • Удельное электрическое сопротивление — (0,07-0,08)·10−6 Ом·м
  • Температура плавления латуни в зависимости от состава достигает 880—950 °C. С увеличением содержания цинка температура плавления понижается. Латунь достаточно хорошо сваривается (однако нельзя сваривать латунь сваркой плавлением — можно, например, контактной сваркой) и прокатывается. Хотя поверхность латуни, если не покрыта лаком, чернеет на воздухе, но в массе она лучше сопротивляется действию атмосферы, чем медь. Имеет жёлтый цвет и отлично полируется.
  • Висмут и свинец имеют вредное влияние на латунь, так как уменьшают способность к деформации в горячем состоянии. Тем не менее легирование свинцом применяют для получения сыпучей стружки что облегчает ее удаление при обработке резанием.
    [3]

Диаграмма состояния Cu-Zn

Медь с цинком образуют кроме основного α-раствора ряд фаз электронного типа β, γ, ε. Наиболее часто структура латуней состоит из α- или α+β’- фаз: α-фаза — твёрдый раствор цинка в меди с кристаллической решёткой меди ГЦК, а β’-фаза — упорядоченный твёрдый раствор на базе химического соединения CuZn с электронной концентрацией 3/2 и примитивной элементарной ячейкой.

При высоких температурах β-фаза имеет неупорядоченное расположение ([ОЦК]) атомов и широкую область гомогенности. В этом состоянии β-фаза пластична. При температуре ниже 454—468 °C расположение атомов меди и цинка в этой фазе становится упорядоченным, и она обозначается β’. Фаза β’ в отличие от β-фазы является более твёрдой и хрупкой; γ-фаза представляет собой электронное соединение Cu5Zn8.

Однофазные латуни характеризуются высокой пластичностью; β’-фаза очень хрупкая и твёрдая, поэтому двухфазные латуни имеют более высокую прочность и меньшую пластичность, чем однофазные.

Влияние содержания цинка в меди на механические свойства отожжённых латуней:

При содержании цинка до 30 % возрастают одновременно и прочность, и пластичность. Затем пластичность уменьшается, вначале за счёт усложнения α — твёрдого раствора, а затем происходит резкое её понижение в связи с появлением в структуре хрупкой β’-фазы. Прочность увеличивается до содержания цинка около 45 % , а затем уменьшается так же резко, как и пластичность.

Большинство латуней хорошо обрабатывается давлением. Особенно пластичны однофазные латуни. Они деформируются при низких и при высоких температурах. Однако в интервале 300—700 °C существует зона хрупкости, поэтому при таких температурах латуни не деформируют.

Двухфазные латуни пластичны при нагреве выше температуры β’-превращения, особенно выше 700 °C, когда их структура становится однофазной (β-фаза). Для повышения механических свойств и химической стойкости латуней в них часто вводят легирующие элементы: алюминий (Al), никель (Ni), марганец (Mn), кремний (Si) и т. д.

Порядок маркировки

Принята следующая маркировка. Латунный сплав обозначают буквой «Л», после чего следуют буквы основных элементов, образующих сплав. В марках деформируемых латуней первые две цифры после буквы «Л» указывают среднее содержание меди в процентах. Например, Л70 — латунь, содержащая 70 % Cu. В случае легированных деформируемых латуней указывают ещё буквы и цифры, обозначающие название и количество легирующего элемента, ЛАЖ60-1-1 означает латунь с 60 % Cu, легированную алюминием (А) в количестве 1 % и железом в количестве 1 %. Содержание Zn определяется по разности от 100 %. В литейных латунях среднее содержание компонентов сплава в процентах ставится сразу после буквы, обозначающей его название. Например, латунь ЛЦ40Мц1,5 содержит 40 % цинка (Ц) и 1,5 % марганца (Мц).

Применение

Дверная задвижка из латуни

Деформируемые латуни

Томпак (фр. tombac, от малайск. tambaga — медь) — латунь с содержанием меди 90—97 %. Обладает высокой пластичностью, антикоррозионным и антифрикционными свойствами, хорошо сваривается со сталью, его применяют для изготовления биметалла сталь-латунь. Благодаря золотистому цвету, томпак используют для изготовления художественных изделий, знаков отличия и фурнитуры.

Двойные деформируемые латуни
МаркаОбласть применения
Л96, Л90Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др.
Л85Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др.
Л80Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др.
Л70Гильзы химической аппаратуры, отдельные штампованные изделия
Л68Большинство штампованных изделий
Л63Гайки, болты, детали автомобилей, конденсаторные трубы
Л60Толстостенные патрубки, гайки, детали машин.
Многокомпонентные деформируемые латуни
МаркаОбласть применения
ЛА77-2Конденсаторные трубы морских судов
ЛАЖ60-1-1Детали морских судов.
ЛАН59-3-2Детали химической аппаратуры, электромашин, морских судов
ЛЖМа59-1-1Вкладыши подшипников, детали самолетов, морских судов
ЛН65-5Манометрические и конденсаторные трубки
ЛМц58- 2Гайки, болты, арматура, детали машин
ЛМцА57-3-1Детали морских и речных судов
ЛO90-1Конденсаторные трубы теплотехнической аппаратуры
ЛO70-1Конденсаторные трубы теплотехнической аппаратуры
ЛO62-1Конденсаторные трубы теплотехнической аппаратуры
ЛO60-1Конденсаторные трубы теплотехнической аппаратуры
ЛС63-3Детали часов, втулки
ЛС74-3Детали часов, втулки
ЛС64-2Полиграфические матрицы
ЛС60-1Гайки, болты, зубчатые колеса, втулки
ЛС59-1Гайки, болты, зубчатые колеса, втулки
ЛЖС58-1-1Детали, изготовляемые резанием
ЛК80-3Коррозионностойкие детали машин
ЛМш68-0,05Конденсаторные трубы
ЛАНКМц75- 2- 2,5- 0,5- 0,5Пружины, манометрические трубы

Литейные латуни

Коррозионно стойкие,
обычно с хорошими антифрикционными свойствами
хорошие механические, технологические свойства
хорошая жидкотекучесть
малая склонность к ликвации

Литейные латуни
МаркаОбласть применения
ЛЦ16К4Детали арматуры
ЛЦ23А6ЖЗМц2Массивные червячные винты, гайки нажимных винтов
ЛЦЗОАЗКоррозионно-стойкие детали
ЛЦ40СЛитые детали арматуры, втулки, сепараторы, подшипники
ЛЦ40МцЗЖДетали ответственного назначения, работающие при температуре до 300 °C
ЛЦ25С2Штуцера гидросистемы автомобилей

Ювелирные сплавы

Ювелирные сплавы
Вид обработкиЦветНаименование сплава
литьёжёлтыйЛатунь в гранулах M67/33
литьёзелёныйЛатунь в гранулах M60/40
литьёзолотистыйЛатунь в гранулах M75/25
литьёжёлтыйЛатунь в гранулах M90

Примечания

  1. История открытия элементов таблицы Менделеева. Часть 5 (№ 26 — 30)[неавторитетный источник?]
  2. Галмей // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  3. Автоматная латунь — статья из Большой советской энциклопедии (3-е издание)

Литература

  • Латунь // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.

Ссылки

  • Электронный конспект лекций по материаловедению
  • Техническая информация
  • Удельные электрические сопротивления

Определение меди в латуни | Эксперимент

Попробуйте этот микромасштабный практический урок, чтобы определить, сколько меди содержится в латуни с помощью азотной кислоты

В этом эксперименте учащиеся определяют содержание меди в латуни (сплав меди и цинка), растворяя латунную стружку в азотной кислоте и сравнивая цвет раствора с растворами различных концентраций меди. Это должно занять примерно 25 минут.

Эксперимент имеет возможность использования в качестве оцениваемого практического. Доступны две версии рабочего листа для учащихся — версии A и B. В версии A учащимся в конце предлагаются расчеты. Эту версию можно использовать для оценки навыков проведения эксперимента/следования инструкциям. В версии B помощь с расчетами не предоставляется. Эту версию можно использовать для оценки навыков обработки результатов.

Оборудование

Аппаратура

  • Защита глаз
  • Рабочий лист для учащихся
  • Лист белой бумаги
  • Доступ к балансу
  • Доступ к вытяжному шкафу
  • Стакан, 10 см 3
  • Мерная колба, 10 см 3
  • Пластиковый планшет с лунками, 24 лунки (например, Sigma ref: CLS3526)
  • Пластиковая пипетка (например, Aldrich ref: Z13, 503-8, тонкий наконечник)

Химические вещества

Примечание

Растворы должны содержаться в пластиковых пипетках. См. прилагаемое руководство по оборудованию и методам микрохимии, которое включает инструкции по приготовлению различных растворов.

  • Кислота азотная, 5 моль дм –3
  • Вода деионизированная
  • Медь азотнокислая раствор, 0,50 моль дм –3
  • Латунная стружка

Здоровье, безопасность и технические примечания

  • Прочтите наше стандартное руководство по охране труда и технике безопасности.
  • Всегда используйте защитные очки (брызгозащитные очки в соответствии с BS EN166 3).
  • Инструкции по приготовлению растворов см. в нашем руководстве по оборудованию и методам микрохимии.
  • Азотная кислота, 5 М HNO 3 (водн.) (КОРРОЗИОННОЕ) – см. карточку опасности CLEAPSS HC067 и книгу рецептов CLEAPSS RB061. Рассмотрите возможность использования защитных перчаток.
  • Раствор нитрата меди – см. карточку опасности CLEAPSS HC027B и книгу рецептов CLEAPSS RB031.
  • УТИЛИЗАЦИЯ: собрать и сохранить растворы меди/цинка для соответствующей утилизации.

Процедура

Приготовление раствора латуни

  1. Точно взвесьте около 0,3 г латуни в 10-сантиметровом стакане 3 .
  2. Поместите стакан в вытяжной шкаф.
  3. Добавьте десять капель азотной кислоты.
  4. Когда реакция утихнет, добавить еще десять капель азотной кислоты.
  5. Повторяйте, пока вся латунь не растворится.
  6. С помощью пипетки перенесите раствор в мерную колбу 3 объемом 10 см. Добавьте капли воды в стакан, чтобы промыть, а затем перенесите промывные воды в колбу. Доведите объем в колбе до отметки с большим количеством воды. Закройте колбу пробкой и несколько раз переверните ее, чтобы перемешать.

Приготовление стандартных растворов меди

Источник: Королевское химическое общество

Используйте эту диаграмму, чтобы систематизировать различные реакции в этом эксперименте

Для использования с студенческим листом А (включает руководство по расчетам)
  1. Заполните луночный планшет (см. схему) растворами, как указано в таблице ниже. Всего в каждой лунке должно быть 40 капель.
Well #  A1  A2  A3  A4  A5  A6 
Drops of 0.50 mol dm –3 copper nitrate solution  22  24  10  12  14 
Капли воды 32  30  28  26  24  22 
Well #  C1  C2  C3  C4  C5  C6 
Капли 0,50 моль дм –3 раствор нитрата меди 16 18  20  26  28  30 
Капли воды 20  18  16  14  12  10 
  1. Добавьте 40 капель раствора латуни в лунку B3 (см. схему).
  2. Сравните интенсивность цвета вашего латунного раствора с лунками вокруг него. Ячейка, которая соответствует интенсивности цвета вашего раствора латуни, представляет собой концентрацию меди в вашем растворе латуни – например, если лунка A6 соответствует цвету вашего раствора латуни, тогда концентрация меди будет 0,50 × 18/40 моль дм -3 .
Для использования с студенческим листом B (без руководства по расчетам)
  1. Заполните луночный планшет (см. схему) растворами, как указано в таблице ниже. Всего в каждой лунке должно быть 40 капель.
Well #  A1  A2  A3  A4  A5  A6 
Drops of 0.50 mol dm –3 copper nitrate solution  10  12  14  16  18  20 
Капли воды 30  28  26  24  22 20 
Well #  C1 C2  C3  C4  C5  C6 
Drops of 0. 50 mol dm –3 copper nitrate solution  22 24  26  28  30  32 
Капли воды 18  16  14  12  10 
  1. Добавьте 40 капель раствора латуни в лунку B3 (см. схему). Сравните интенсивность цвета вашего раствора латуни с лунками вокруг него.
  2. По вашим результатам рассчитайте содержание меди в латуни, выразив ответ в виде процентов.

Руководство по расчетам

  1. Рассчитать количество молей меди в 10 см 3  (объем раствора латуни).
  2. Умножьте значение, полученное в (1), на относительную атомную массу меди (63,5), чтобы получить массу меди в растворе латуни.
  3. Разделить на массу использованной латуни и выразить результат в процентах.

Вопросы учащихся

  1. Влияет ли цинк каким-либо образом на этот анализ? Обоснуйте свой ответ.
  2. Можете ли вы предложить способ повысить точность этого эксперимента?

Учебные заметки

Наблюдения

Латунь быстро растворяется, образуя раствор голубого цвета. Этот цвет обусловлен наличием меди в латуни. (Эта часть эксперимента должна проводиться в вытяжном шкафу, так как образуется диоксид азота.)

Интенсивность окраски этого раствора должна находиться в диапазоне интенсивностей окраски стандартных растворов. Учащиеся находят ближайшее цветовое соответствие, а затем вычисляют содержание меди в латуни.

Обсуждение

Большая часть латуни содержит около 60% меди (остальное – цинк). Латунь представляет собой интересный предмет для обсуждения структуры металлов и сплавов. Металлическая медь имеет гранецентрированную кубическую структуру (ГЦК), тогда как структура цинка является гексагональной. Когда цинк добавляется к меди, он замещается в решетке, образуя искаженную ГЦК-структуру (атомы цинка примерно на 13 % больше, чем у меди). Эту искаженную структуру трудно деформировать, что объясняет большую прочность латуни по сравнению с чистой медью.

Когда содержание цинка достигает примерно 36%, появляется новая объемно-центрированная кубическая фаза, и прочность заметно увеличивается, хотя пластичность снижается. Оптимальные свойства прочности и пластичности для большинства применений латуни достигаются при содержании цинка около 40%.

Дополнительная информация

Этот ресурс является частью нашей коллекции “Микромасштабная химия”, в которой собраны эксперименты меньшего масштаба, чтобы заинтересовать ваших учащихся и изучить ключевые химические идеи. Ресурсы первоначально появились в книге Микрохимия: эксперименты в миниатюре , опубликовано Королевским химическим обществом в 1998 году. Факты, свойства и использование

серебряный самородок

Просмотреть все материалы

Связанные темы:
химический элемент обработка серебра золото изделия из серебра серебрение

Просмотреть весь связанный контент →

Резюме

Прочтите краткий обзор этой темы

серебро (Ag) , химический элемент, белый блестящий металл, ценимый за свою декоративную красоту и электропроводность. Серебро находится в группе 11 (Ib) и периоде 5 периодической таблицы, между медью (период 4) и золотом (период 6), а его физические и химические свойства занимают промежуточное положение между этими двумя металлами.

9011 электронная конфигурация0116
Element Properties
atomic number 47
atomic weight 107.868
melting point 960.8 °C (1,861.4 °F)
boiling point 2,212 °C (4014 °F)
удельный вес 10,5 (20 °C [68 °F])
степени окисления +1, +2, +3 [Kr]4 d 10 5 s 1

называются драгоценными металлами. Из-за своей сравнительной редкости, ярко-белого цвета, ковкости, пластичности и стойкости к атмосферному окислению серебро уже давно используется в производстве монет, украшений и ювелирных изделий.

Серебро обладает самой высокой из всех известных металлов электро- и теплопроводностью и используется при изготовлении печатных электрических схем и в качестве осажденного из паровой фазы покрытия для электронных проводников; он также легирован такими элементами, как никель или палладий, для использования в электрических контактах. Серебро также находит применение в качестве катализатора благодаря своей уникальной способности превращать этилен в оксид этилена, который является предшественником многих органических соединений. Серебро — один из самых благородных, то есть наименее химически активных переходных элементов.

Britannica Quiz

36 вопросов из самых популярных научных викторин Britannica

Насколько хорошо вы знаете астрономию? Как насчет квантовой механики? Эта викторина проведет вас через 36 самых сложных вопросов из самых популярных викторин Britannica о естественных науках. Только лучшие викторины закончат его.

Серебряные украшения и украшения были найдены в царских гробницах, датируемых 4000 г. до н.э. Вполне вероятно, что и золото, и серебро использовались в качестве денег к 800 г. до н. э. во всех странах между Индом и Нилом.

Серебро широко распространено в природе, но его общее количество довольно мало по сравнению с другими металлами; металл составляет 0,05 части на миллион земной коры. Практически все сульфиды свинца, меди и цинка содержат некоторое количество серебра. Серебросодержащие руды могут содержать количество серебра от следов до нескольких тысяч тройских унций на тонну эвердупуа, или около 10 процентов.

В отличие от золота, серебро присутствует во многих природных минералах. Для серебра более важными месторождениями с коммерческой точки зрения являются такие соединения, как минералы тетраэдрит и аргентит (сульфид серебра, Ag 2 S), который обычно связан с другими сульфидами, такими как сульфиды свинца и меди, а также с некоторыми другими сульфидами, некоторые из которых также содержат сурьму. Серебро обычно встречается в свинцовых рудах, медных рудах и рудах арсенида кобальта, а также часто связано с золотом в природе. Большая часть серебра получается как побочный продукт из руд, которые добываются и обрабатываются для получения этих других металлов. Месторождения самородного (химически свободного или несвязанного) серебра также имеют промышленное значение.

Поскольку большинство руд, содержащих серебро, также содержат такие важные металлы, как свинец, медь или цинк или их комбинацию, серебросодержащая фракция этих руд часто извлекается как побочный продукт производства меди и свинца. . Затем из сырой фракции извлекают чистое серебро путем плавки в сочетании с огневым или электрорафинированием. (Для получения информации о восстановлении и аффинаже серебра, см. обработка серебра.)

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Серебряный
страна добыча на руднике в 2016 г. (метрические тонны)* % мировой добычи полезных ископаемых доказанные запасы 2016 г. (метрические тонны)* % мировых доказанных запасов**
*Оценивать.
** Включая серебро, получаемое из руд цветных металлов.
*** Детали не добавляются к общему количеству из-за округления.
Источник: Министерство внутренних дел США, Сводные данные о минеральном сырье, 2017 г.
Мексика 5600 20,7 37000 6,5
Перу 4100 15.2 120 000 21.1
Китай 3600 13. 3 39000 6,8
Чили 1500 5.6 77000 13,5
Австралия 1400 5.2 89000 15,6
Польша 1400 5.2 85 000 14,9
Россия 1400 5.2 20 000 3,5
Боливия 1300 4,8 22000 3,9
Соединенные Штаты 1100 4. 1 25000 4.4
другие страны 5400 20 57000 10
мировой итог 27000 100*** 570 000 100***

Исторически сложилось так, что серебро в основном использовалось в денежной форме в виде резервов серебряных слитков и монет. Однако к 1960-м годам спрос на серебро для промышленных целей, в частности для фотоиндустрии, превысил общий годовой мировой объем производства. В начале 21 века цифровые камеры вытеснили те, в которых использовалась пленка, но спрос на серебро в других секторах, таких как столовое серебро и изделия из серебра с покрытием, украшения, ювелирные изделия, монеты, электронные компоненты и фотогальванические элементы, продолжал оставаться важным.

Сплавы серебра с медью тверже, прочнее и легче плавятся, чем чистое серебро, и используются для ювелирных изделий и чеканки монет. Доля серебра в этих сплавах указывается в пробе, что означает количество частей серебра на тысячу сплава. Стерлинговое серебро содержит 92,5 процента серебра и 7,5 процента другого металла, обычно меди; т. е. оно имеет пробу 925. Ювелирное серебро представляет собой сплав, содержащий 80 процентов серебра и 20 процентов меди (чистота 800). Желтое золото, используемое в ювелирных изделиях, состоит из 53 процентов золота, 25 процентов серебра и 22 процентов меди. (Для рассмотрения использования серебра в декоративных и бытовых предметах, см. металлоконструкции.)

Серебро природное состоит из смеси двух стабильных изотопов: серебра-107 (51,839%) и серебра-109 (48,161%). Металл не реагирует с влажным воздухом или сухим кислородом, а поверхностно окисляется влажным озоном. Он быстро тускнеет при комнатной температуре из-за воздействия серы или сероводорода. В расплавленном состоянии серебро может растворять до 22-кратного объема кислорода; при затвердевании большая часть кислорода удаляется, явление, известное как выплескивание серебра. Это можно контролировать, добавляя в расплавленное серебро раскислитель, такой как древесный уголь. Серебро легко растворяется в азотной кислоте и в горячей концентрированной серной кислоте. Металл также растворяется в окисляющих кислотах и ​​в растворах, содержащих ионы цианидов, в присутствии кислорода или перекисей. Растворение в растворах цианидов связано с образованием очень стабильного дицианоаргентата [Ag(CN) 2 ] , ион.

Подобно меди, серебро имеет единственный s электрон вне завершенной оболочки d , но, несмотря на сходство электронных структур и энергий ионизации, между серебром и медью мало сходства.

Соединения

Для серебра наиболее важной степенью окисления во всей его обычной химии является состояние +1, хотя известны состояния +2 и +3.

Оставить комментарий