Как решать матрицы методом гаусса: Как решить методом Гаусса СЛАУ (систему линейных уравнений). Правила, примеры

404 Cтраница не найдена

Мы используем файлы cookies для улучшения работы сайта МГТУ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом ФГБОУ ВО “МГТУ” и согласны с нашими правилами обработки персональных данных.

Размер:

AAA

Изображения Вкл. Выкл.

Обычная версия сайта

К сожалению запрашиваемая страница не найдена.

Но вы можете воспользоваться поиском или картой сайта ниже

  • Университет

    Майкопский государственный технологический университет – один из ведущих вузов юга России.

    • История университета
    • Анонсы
    • Объявления
    • Медиа
      • Представителям СМИ
      • Газета “Технолог”
      • О нас пишут
    • Ректорат
    • Структура
      • Филиал
      • Политехнический колледж
      • Медицинский институт
        • Лечебный факультет
        • Педиатрический факультет
        • Фармацевтический факультет
        • Стоматологический факультет
        • Факультет послевузовского профессионального образования
      • Факультеты
      • Кафедры
    • Ученый совет
    • Дополнительное профессиональное образование
    • Бережливый вуз – МГТУ
      • Новости
      • Объявления
      • Лист проблем
      • Лист предложений (Кайдзен)
      • Реализуемые проекты
      • Архив проектов
      • Фабрика процессов
      • Рабочая группа “Бережливый вуз-МГТУ”
    • Вакансии
    • Профсоюз
    • Противодействие терроризму и экстремизму
    • Противодействие коррупции
    • WorldSkills в МГТУ
    • Научная библиотека МГТУ
    • Реквизиты и контакты
    • Управление имущественным комплексом
    • Опрос в целях выявления мнения граждан о качестве условий оказания образовательных услуг
    • Работа МГТУ в условиях предотвращения COVID-19
    • Документы, регламентирующие образовательную деятельность
    • Система менеджмента качества университета
    • Региональный центр финансовой грамотности
    • Аккредитационно-симуляционный центр
  • Абитуриентам
    • Подача документов онлайн
    • Абитуриенту 2023
    • Экран приёма 2022
    • Иностранным абитуриентам
      • Международная деятельность
      • Общие сведения
      • Кафедры
      • Новости
      • Центр международного образования
      • Академическая мобильность и международное сотрудничество
        • Академическая мобильность и фонды
        • Индивидуальная мобильность студентов и аспирантов
        • Как стать участником программ академической мобильности
    • Дни открытых дверей в МГТУ
      • День открытых дверей online
      • Университетские субботы
      • Дни открытых дверей на факультетах
    • Подготовительные курсы
      • Подготовительное отделение
      • Курсы для выпускников СПО
      • Курсы подготовки к сдаче ОГЭ и ЕГЭ
      • Онлайн-курсы для подготовки к экзаменам
      • Подготовка школьников к участию в олимпиадах
    • Малая технологическая академия
      • Профильный класс
        • Социально-экономический профиль
        • Медико-биологический профиль
        • Инженерный профиль
      • Индивидуальный проект
      • Кружковое движение юных технологов
      • Олимпиады, конкурсы, фестивали
    • Веб-консультации для абитуриентов и их родителей
      • Веб-консультации для абитуриентов
      • Родительский университет
    • Олимпиады для школьников
      • Отборочный этап
      • Заключительный этап
      • Итоги олимпиад
    • Профориентационная работа
    • Стоимость обучения
  • Студентам
    • Студенческая жизнь
      • Стипендии
      • Организация НИРС в МГТУ
      • Студенческое научное общество
      • Студенческие научные мероприятия
      • Конкурсы
      • Академическая мобильность и международное сотрудничество
    • Образовательные программы
    • Расписание занятий
    • Расписание звонков
    • Онлайн-сервисы
    • Социальная поддержка студентов
    • Общежития
    • Трудоустройство обучающихся и выпускников
      • Вакансии
    • Обеспеченность ПО
    • Инклюзивное образование
      • Условия обучения лиц с ограниченными возможностями
      • Доступная среда
    • Ассоциация выпускников МГТУ
    • Перевод из другого вуза
    • Вакантные места для перевода
    • Студенческое пространство
      • Студенческое пространство
      • Запись на мероприятия
  • Наука и инновации
    • Научная инфраструктура
      • Проректор по научной работе и инновационному развитию
      • Научно-технический совет
      • Управление научной деятельностью
      • Управление аспирантуры и докторантуры
      • Точка кипения МГТУ
        • О Точке кипения МГТУ
        • Руководитель и сотрудники
        • Документы
        • Контакты
      • Центр коллективного пользования
      • Центр народной дипломатии и межкультурных коммуникаций
      • Студенческое научное общество
    • Новости
    • Научные издания
      • Научный журнал «Новые технологии»
      • Научный журнал «Вестник МГТУ»
      • Научный журнал «Актуальные вопросы науки и образования»
    • Публикационная активность
    • Конкурсы, гранты
    • Научные направления и результаты научно-исследовательской деятельности
      • Основные научные направления университета
      • Отчет о научно-исследовательской деятельности в университете
      • Результативность научных исследований и разработок МГТУ
      • Финансируемые научно-исследовательские работы
      • Объекты интеллектуальной собственности МГТУ
      • Результативность научной деятельности организаций, подведомственных Минобрнауки России (Анкеты по референтным группам)
    • Студенческое научное общество
    • Инновационная инфраструктура
      • Федеральная инновационная площадка
      • Проблемные научно-исследовательские лаборатории
        • Научно-исследовательская лаборатория «Совершенствование системы управления региональной экономикой»
        • Научно-исследовательская лаборатория проблем развития региональной экономики
        • Научно-исследовательская лаборатория организации и технологии защиты информации
        • Научно-исследовательская лаборатория функциональной диагностики (НИЛФД) лечебного факультета медицинского института ФГБОУ ВПО «МГТУ»
        • Научно-исследовательская лаборатория «Инновационных проектов и нанотехнологий»
      • Научно-техническая и опытно-экспериментальная база
      • Центр коллективного пользования
      • Научная библиотека
    • Экспортный контроль
    • Локальный этический комитет
    • Конференции
      • Международная научно-практическая конференция «Актуальные вопросы науки и образования»
      • VI Международная научно-практическая онлайн-конференция
    • Наука и университеты
  • Международная деятельность
    • Иностранным студентам
    • Международные партнеры
    • Академические обмены, иностранные преподаватели
      • Академическая мобильность и фонды
      • Индивидуальная мобильность студентов и аспирантов
    • Факультет международного образования
      • Новости факультета
      • Информация о факультете
      • Международная деятельность
      • Кафедры
        • Кафедра русского языка как иностранного
        • Кафедра иностранных языков
      • Центр Международного образования
      • Центр обучения русскому языку иностранных граждан
        • Приказы и распоряжения
        • Курсы русского языка
        • Расписание
      • Академическая мобильность
      • Контактная информация
    • Контактная информация факультета международного образования
  • Сведения об образовательной организации
    • Основные сведения
    • Структура и органы управления образовательной организацией
    • Документы
    • Образование
    • Образовательные стандарты и требования
    • Руководство. Педагогический (научно-педагогический) состав
    • Материально-техническое обеспечение и оснащённость образовательного процесса
    • Стипендии и меры поддержки обучающихся
    • Платные образовательные услуги
    • Финансово-хозяйственная деятельность
    • Вакантные места для приёма (перевода)
    • Международное сотрудничество
    • Доступная среда
    • Организация питания в образовательной организации

MathOnWeb — исключение Гаусса


  • Что такое система линейных уравнений?
  • Некоторые уроки, которые можно извлечь из построения графика двух уравнений с двумя неизвестными
  • Расширенная матрица
  • Элементарные операции со строками
  • Исключение Гаусса
  • Резервный корпус
  • Противоречивый случай



Что такое система линейных уравнений?

Линейное уравнение на n неизвестных x 1 , x 2 , …, x N – это уравнение формы:

A 1 x 1 + A 2 x 2 + + 2 x 2 + 2 + 2 x 2 + 2 x . … + a n x n = b

где a 1 , a 6 62 , … , a n и b — константы.

Название линейный происходит от того факта, что такое уравнение с двумя неизвестными или переменными представляет собой прямую линию. Набор таких уравнений называется системой . Пример системы трех линейных уравнений с тремя неизвестными х , у и z это:




Некоторые уроки, которые можно извлечь из построения графика 2 уравнений с 2 ​​неизвестными

Графический метод не очень полезен в качестве вычислительного инструмента, но полезен для визуализации такие понятия, как уникальность решения или значение противоречивых или избыточных систем. Рассмотрим следующую систему двух линейных уравнений с двумя неизвестными:

В этом методе мы просто рисуем графики уравнений, как мы делали справа. Обратите внимание, что график каждого уравнения представляет собой прямую линию. (Это отличительная черта линейной системы. Здесь нет кривых, только прямые линии.)

Любая точка на одной прямой является решением одного уравнения, а любая точка на другой прямой является решением другого уравнения. Точка пересечения линий { x =3,6, y =0,4} является решением которая удовлетворяет обоим уравнениям одновременно. Заметим, что решение единственное. Это потому что линии прямые и есть только одна точка, где они могут пересекаться.


Система линейных уравнений с единственным решением является «нормальной» ситуацией. Однако это можно иметь систему уравнений без решения. Такая система уравнений называется противоречивый . Часто это результат неточного или неправильного анализа физического состояния. система описывается системой уравнений.

Рассмотрим следующую систему двух линейных уравнений с двумя неизвестными:

Эта система уравнений несовместима, так как x + y никак не могут равняться 2 и 4 одновременно. На рисунке справа показано, что граф этой системы состоит двух параллельных прямых, которые никогда не пересекаются. Таким образом, решения нет.


Также возможна система уравнений с бесконечным числом решений. Такая система уравнений называется избыточной . Часто это результат неполного анализ физической системы.

Рассмотрим следующую систему уравнений:

Эта система является избыточной, поскольку второе уравнение эквивалентно первому. График состоит из двух линий, лежащих одна над другой. Они «пересекаются» в бесконечном числе точек, поэтому существует бесконечное количество решений.


Подводя итог, линейная система с двумя неизвестными должна иметь как минимум два уравнения, чтобы получить единственное решение. Иметь 1 уравнение недостаточно, потому что 1 уравнение с 2 неизвестными представлено целой строкой. Достаточно двух уравнений, если они не избыточны и не противоречат друг другу. Наличие 3 (или более) уравнений — это слишком много. Третье уравнение должно быть либо избыточным, либо противоречивым.

Эти идеи можно обобщить на линейные системы уравнений с большим количеством неизвестных:
Линейное уравнение в n переменных представляет собой «гиперплоскость» в пространстве n измерений. Линейная система уравнений с n неизвестными должна иметь по крайней мере n уравнений, чтобы получить уникальное решение. Иметь меньшее количество недостаточно; решение не будет единственным. Достаточно иметь n уравнений, если они не являются избыточными или противоречивыми. Имея более n уравнений слишком много; система будет либо избыточной, либо непоследовательной.




Расширенная матрица

Мы представим систему уравнений прямоугольным массивом чисел, называемым дополненная матрица . Вот расширенная матрица для приведенного выше примера:


Немного терминологии:

  • Элементы расширенной матрицы называются элементами .
  • Строки проходят через всю матрицу.
  • Столбцы идут вниз по матрице.
  • Диагональ матрицы представляет собой набор элементов, который начинается в верхнем, левом углу и идет по диагонали вниз и вправо. Диагональ вышеуказанной матрицы состоит из чисел 4, 1 и 2.
  • Любые элементы в позиции a считаются лежащими на выше диагонали , а любой в позиции B на ниже диагонального :

Имейте в виду следующее:

  • I -THTH -ряд -ТИТ.
  • j -й столбец (слева от вертикальной черты) представляет собой (коэффициенты) j -я переменная или неизвестная
  • вертикальная линия представляет знаки равенства



Элементарные операции с строками

Напомним, что такое уравнение, как:

7( x −4)=14,

можно решить для разрешения x , применив следующие операции:

  • Разделив обе части уравнения на одно и то же значение, а именно на 7, получим x -4=2,
  • , затем прибавив одинаковое количество к обеим сторонам, а именно 4, чтобы получить х = 6.

Решение x = 6, в чем можно убедиться, подставив его обратно в исходное значение. уравнение и нахождение тождества 14=14.

Аналогично, решением системы уравнений является любой набор значений всех переменных, удовлетворяющих всем уравнениям одновременно. Например, система:

имеет решение:

{ x = 7, y = 5, z = 3}.

Это можно проверить, подставив эти значения во все три уравнения и создание трех тождеств.

Система уравнений может быть решена путем обобщения двух операций, описанных выше, и заметив, что решение системы уравнений не меняется при:

  • делении обеих частей уравнения на константу, или
  • вычитание кратного одного уравнения из другого уравнения.

Эти же операции можно применить к строкам расширенной матрицы, поскольку каждая строка просто представляет уравнение. Затем они называются Elementary Row Operations .



Элементарные операции со строками (E.R.O.):

  • E.R.O.#1: Выберите строку расширенной матрицы и разделите (каждый элемент) строку константой.
Пример:
Обозначение означает разделить первую строку расширенной матрицы на 2, чтобы получить новую расширенную матрицу.
  • E.R.O.#2: Выберите любую строку расширенной матрицы и вычтите кратное любой другую строку из него (поэлементно).
Пример:
Обозначение означает взять строку 2 и вычесть из нее 3 раза строку 1, чтобы получить новую расширенную матрицу.

Мы будем применять E.R.O. в определенной последовательности (метод исключения Гаусса, описанный ниже) преобразовать расширенную матрицу в треугольную эшелонированную форму . В этой форме расширенная матрица имеет 1 по диагонали, 0 по диагонали и любые числа по диагонали. Например, расширенная матрица:

в виде треугольного эшелона:

Эта новая расширенная матрица представляет собой систему уравнений:

Она решается обратной подстановкой. Подставляя z = 3 из третьего уравнения в второе уравнение дает y = 5, а подстановка z = 3 и y = 5 в первое уравнение дает x = 7 . Таким образом, полное решение:

{ x = 7, y = 5, z = 3}.



Исключение по Гауссу

В методе исключения по Гауссу элементарные операции со строками (E.R.O.) применяются в определенном чтобы максимально эффективно преобразовать расширенную матрицу в треугольную эшелонированную форму.

В этом суть метода: Дана система m уравнений в n переменных или неизвестных, выберите первое уравнение и вычтите подходящие множители его из оставшиеся м -1 уравнения. В каждом случае выберите кратное так, чтобы вычитание отменяет или исключает ту же самую переменную, скажем, x 1 . В результате оставшиеся m -1 уравнения содержат только n -1 неизвестных ( x 1 больше не появляется).

Теперь отложите первое уравнение и повторите вышеуказанный процесс с оставшимися м -1 уравнения в n -1 неизвестных.

Продолжайте повторять процесс. Каждый цикл уменьшает количество переменных и количество уравнений. Процесс останавливается, когда:

  • Остается одно уравнение с одной переменной. В этом случае существует единственное решение а обратная замена используется для поиска значений других переменных.
  • Остались переменные, но нет уравнений. В этом случае нет единственного решения.
  • Остались уравнения, но нет переменных (т. е. самые нижние строки расширенной матрицы содержат только нули слева от вертикальной линии). Это свидетельствует о том, что либо система уравнения противоречивы или избыточны. В случае несоответствия информации, содержащейся в уравнениях противоречиво. В случае избыточности все еще может быть уникальное решение и обратная замена может использоваться для поиска значений других переменных.

Примеры всех этих возможностей приведены ниже.



Алгоритм исключения Гаусса:

Преобразование столбцов расширенной матрицы по одному в треугольную ступенчатую форму. Столбец, который в настоящее время преобразуется, называется сводным столбцом . Продолжайте слева направо, пусть основной столбец будет первым столбцом, затем вторым столбцом, и т. д. и, наконец, последний столбец перед вертикальной чертой. Для каждого сводного столбца выполните следующие два шага, прежде чем перейти к следующему сводному столбцу:

  1. Найдите диагональный элемент в опорном столбце. Этот элемент называется стержнем . Строка, содержащая сводную строку, называется сводной строкой . Разделите каждый элемент в своде ряд по оси (т. е. используйте E.R.O. #1), чтобы получить новую строку оси с 1 в позиции оси.
  2. Получите 0 в каждой позиции ниже точки поворота, вычитая подходящее кратное значение точки поворота. строку из каждой из строк под ней (т. е. с помощью E.R.O. #2).

По завершении этой процедуры расширенная матрица будет иметь форму треугольного эшелона и можно решить обратной заменой.


Пример: Используйте исключение Гаусса для решения системы уравнений:

Решение: Выполните эту последовательность E. R.O. на расширенной матрице. Установите сводной столбец в столбец 1. Получите 1 в диагональной позиции (подчеркнуто):

Затем установите 0 под опорной точкой (подчеркнуто):

Теперь пусть опорная колонка = вторая колонка. Сначала получите 1 в диагональной позиции:

Затем получите 0 в позиции ниже опорной:

Теперь пусть опорная колонка = третья колонка. Получите 1 в диагональной позиции:

Эта матрица, которая теперь имеет форму треугольного эшелона, представляет:

Она решается обратной подстановкой. Замена z = 3 из третьего уравнения в второе уравнение дает y = 5, а подстановка z = 3 и y = 5 в первое уравнение дает x = 7 . Таким образом, полное решение:

{ x = 7, y = 5, z = 3}.



Пример применения исключения Гаусса к избыточной системе линейных уравнений решите, если возможно:

Решение: Выполните эту последовательность E.R.O. на расширенной матрице. Установить сводную колонку в столбец 1. 1 уже находится в опорной позиции, поэтому продолжайте получать 0 под опорной точкой:

Теперь установите опорную колонку на вторую колонку. Сначала получите 1 в диагональной позиции:

Затем получите 0 в позиции ниже опорной:

Теперь установите опорную колонку в третью колонку. Первое, что нужно сделать, это получить 1 в диагональное положение, но нет возможности сделать это. На самом деле эта матрица уже в виде треугольного эшелона и представляет собой:

Эта система уравнений не может быть решена обратной подстановкой, потому что у нас нет значения для z . Последнее уравнение просто утверждает, что 0=0. Единого решения не существует, потому что z могут принимать на любом значении.

Обычно одна или несколько строк нулей внизу расширенной матрицы, которая была помещена в треугольную эшелонированную форму указывает на избыточную систему уравнений.




Пример применения исключения Гаусса к противоречивой системе линейных уравнений

Используйте исключение Гаусса, чтобы привести эту систему уравнений к решите, если возможно:

Решение: Выполните эту последовательность E.R.O. на расширенной матрице. Установить точку опоры от столбца к столбцу 1. В опорной позиции уже есть 1, поэтому продолжайте получать 0 ниже опорной точки:

Теперь установите опорный столбец на второй столбец. В позиции поворота уже есть 1, поэтому продолжайте, чтобы получить 0 ниже опорной:

Теперь установите опорную колонку на третью колонку.

Оставить комментарий