Какая формула выражает закон ома для участка цепи: Страница не найдена — Сам электрик

Содержание

Закон Ома для однородного участка цепи: Закон Ома простым языком

Содержание

Классическая формулировка

Этот простой вариант трактовки, известный нам со школы.


Однородный открытый участок электроцепи

Формула в интегральной форме будет иметь следующий вид:


Формула в интегральной форме

То есть, поднимая напряжение, мы тем самым увеличиваем  ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I».  Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

Свойства электрического тока

Направлением электрического тока принято считать движение свободных положительных зарядов. Ток называется постоянным, если его направление и сила постоянны во времени.

Электрическое поле величиной E действует на заряд величиной q с силой F, которая равна:

$ F = q * E $ (1).

В результате в проводнике возникает электрический ток. Для создания электрического поля E, к концам проводника должно быть приложено напряжение U, которое равно разности потенциалов φ1 и φ2 на концах проводника:

$ U = φ2 – φ1 $ (2),

при этом φ2 > φ1.

Единица электрического тока — ампер (А) — названа в честь французского физика Ампера. Эта единица является одной семи основных единиц в Международной системе СИ. Единицей измерения напряжений является вольт (В), названная в честь итальянского исследователя Алессандро Вольта.

Опыты Георга Ома

В 1826 г. Георг Ом на основании данных своих многочисленных экспериментов открыл однозначную связь между силой тока I и напряжением U. Ученый измерял зависимости тока от напряжения (вольт-амперные характеристики) и строил графики, из которых он обнаружил не просто пропорциональность (чем больше напряжение, тем больше ток), а линейную математическую зависимость тока от напряжения, т. е. I ∼ U.

Рис. 1. График линейной зависимости силы тока от напряжения в проводниках:.

Из графиков было видно, что угол наклона линейных зависимостей для разных материалов разный, т.е. каждый проводник обладал различной степенью сопротивляемости или проводимости. Эта величина была названа электрическим сопротивлением R. Формула закона Ома для однородного участка цепи выглядит следующим образом:

$ I = {U over R} $ (3).

Полностью формулировка закона Ома звучит так: сила тока I для проводника на однородном участке цепи прямо пропорциональна напряжению U на этом участке и обратно пропорциональна сопротивлению проводника R.

Любую электрическую цепь можно разделить на отдельные участки. Участки цепи, на которых отсутствует действие сторонних сил (т.е. участки, где отсутствуют источники тока), называются однородными. Участки цепи, на которых имеются источники тока, называются неоднородными.

Принятые единицы измерения

Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:

  • напряжение – в вольтах;
  • ток в амперах
  • сопротивление в омах.

Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.


Памятник Георгу Симону Ому

Мощность электрического тока

Мощность электрического тока равна отношению работы тока ко времени, в течение которого она совершается.

Обозначение – ​( P )​, единица измерения в СИ – ватт (Вт).

Вычисляется по формуле:

Можно записать еще несколько формул для вычисления мощности электрического тока на участке цепи:

Полная мощность источника тока:

Коэффициент полезного действия источника тока:

При решении задач на тепловое действие тока нужно учитывать следующее:

1. Если на участке есть источник тока, то необходимо использовать для решения формулу закона Джоуля–Ленца:

2. Если сила тока в цепи постоянна, то удобно использовать формулу закона Джоуля–Ленца:

3. Если постоянно напряжение, то формулу:

4. Количество теплоты можно находить, используя формулы термодинамики.

Электрическое сопротивление. Удельное сопротивление вещества

Электрическое сопротивление – свойство материала проводника препятствовать прохождению через него электрического тока.

Обозначение – ​( R )​, единица измерения в СИ – Ом.

Объяснить наличие сопротивления можно на основе строения металлических проводников. Свободные электроны при движении по проводнику встречают на своем пути ионы кристаллической решетки и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток.

Сопротивление различных проводников зависит от материала, из которого они изготовлены, их длины, геометрической формы и температуры. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 м².

Обозначение – ​( rho )​, единица измерения в СИ – Ом·м.

Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 1,7·10-8 Ом·м, т. е. медный проводник длиной 1 м и сечением 1 м2 обладает сопротивлением 1,7·10-8 Ом. На практике часто используют единицу удельного сопротивления (Ом·мм2)/м. Электрическое сопротивление проводника прямо пропорционально длине проводника и обратно пропорционально площади поперечного сечения проводника.

Формула для вычисления:

Сопротивление проводника увеличивается с ростом температуры. Удельное сопротивление зависит от температуры:

где ​( rho_0 )​ – удельное сопротивление при ​( T_0 )​ = 293 К (20°С), ​( Delta T=T-T_0 )​, ​( alpha )​ – температурный коэффициент сопротивления.

Единица измерения температурного коэффициента сопротивления – К-1. При нагревании увеличивается интенсивность движения частиц вещества. Это создает трудности для направленного движения электронов. Увеличивается число столкновений свободных электронов с ионами кристаллической решетки.

Свойство изменения сопротивления при изменении температуры используется в термометрах сопротивления. Эти приборы могут измерять температуру, основываясь на зависимости сопротивления от температуры. У термометров сопротивления высокая точность измерений.

Электродвижущая сила. Внутреннее сопротивление источника тока

Для создания электрического поля в проводниках используют источник тока. Внутри источника тока происходит перераспределение зарядов, в результате которого на полюсах источника возникает избыток зарядов разных знаков.

Виды источников тока:

  • электрофорная машина;
  • термопара;
  • фотоэлемент;
  • аккумулятор;
  • гальванический элемент.

Сторонними называются силы неэлектрической природы, действующие внутри источника тока. Когда проводник соединяют с полюсами источника, то на внешнем участке цепи заряженные частицы движутся под действием электростатической силы. А внутри источника на заряды действуют сторонние и электростатические силы.

Под действием этих сил внутри источника происходит перемещение положительных зарядов от отрицательного полюса источника к положительному. Это перемещение происходит до тех пор, пока сторонние силы не станут равными электростатическим. При переносе заряда эти силы совершают работу. Работа сторонних сил по перемещению заряда компенсирует потери энергии заряженными частицами при их движении по цепи.

Электродвижущей силой (ЭДС) называется отношение работы сторонних сил по перемещению положительного заряда к величине этого заряда.

Обозначение – ​( varepsilon )​, единица измерения в СИ – вольт (В).

Формула для вычисления:

где ​( Delta q )​ – модуль перенесенного заряда.

Если электрическая цепь содержит несколько источников тока с ЭДС ​( varepsilon_1,varepsilon_2,,…,varepsilon_T )​, то суммарная ЭДС ( varepsilon=varepsilon_1+varepsilon_2+…,varepsilon_T ).

ЭДС считается положительной, если направление обхода цепи против часовой стрелки совпадает с переходом внутри источника тока от отрицательного полюса источника к положительному полюсу.

На рисунке: ​( varepsilon_1>0,,varepsilon_2<0,,varepsilon_3>0. )​

Суммарная ЭДС: ( varepsilon=varepsilon_1-varepsilon_2+varepsilon_3. )

При подключении проводника к полюсам источника тока происходит перераспределение заряда на поверхности проводника, а внутри проводника возникает постоянное электрическое поле. Заряды начинают перемещаться по замкнутой цепи, в которой устанавливается постоянная сила тока.

Сопротивление источника тока называется внутренним сопротивлением.

Обозначение внутреннего сопротивления – ​( r )​. Единица измерения в СИ – Ом.

Закон Ома для участка цепи

Взаимосвязь между силой тока, протекающей по проводнику, и напряжением на его концах была экспериментально установлена Г. Омом и носит название закона Ома для участка цепи.

Закон Ома для участка цепи

Сила тока прямо пропорциональна напряжению на концах участка и обратно пропорциональна его сопротивлению:

График зависимости силы тока от напряжения называется вольт-амперной характеристикой. Из закона Ома для участка цепи следует, что при постоянном сопротивлении сила тока прямо пропорциональна напряжению. Следовательно, вольт-амперная характеристика для металлического проводника представляет собой прямую линию, проходящую через начало координат.

Проводник с такими свойствами называется резистором.

Угол наклона графика к оси напряжений зависит от сопротивления проводника. Тангенс угла наклона графика равен проводимости резистора.

Формулировка для полной цепи

Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.


Схема с подключенным с источником

Учитывая «r» ЭДС, формула предстанет в следующем виде:

Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.

Напряжение будет  меньше ЭДС, определить его можно по формуле:

Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

Неоднородный участок цепи постоянного тока

Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.


Схема неоднородного участка

Формула для такого участка (обобщенный закон) будет иметь следующий вид:


Формула для неоднородного участка цепи

Переменный ток

Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:

Где «Z» представляет  собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

Параллельное и последовательное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно.

Последовательное соединение проводников

При последовательном соединении начало одного проводника соединяется с концом другого.

При последовательном соединении сила тока во всех проводниках одинакова:

Общее напряжение ​( U )​ на проводниках равно сумме напряжений на отдельных проводниках:

Напряжение на проводниках прямо пропорционально их сопротивлениям:

Общее сопротивление равно сумме сопротивлений проводников, образующих цепь:

Если проводники имеют одинаковое сопротивление, то общее сопротивление находится по формуле:

где ​( n )​ – число проводников, ​( R_i )​ – сопротивление проводника.

Параллельное соединение проводников

При параллельном соединении проводники подключаются между одной и той же парой точек. Если в этой точке соединяются три и более проводников, то она называется узлом электрической цепи.

При параллельном соединении напряжение на всех проводниках одинаково:

Сумма сил токов, протекающих по проводникам, равна силе тока в неразветвленной цепи:

Это следствие того факта, что в точках разветвления цепи заряды не могут накапливаться.

Силы токов в разветвленных частях цепи обратно пропорциональны их сопротивлениям:

Величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников:

Если проводники имеют одинаковое сопротивление, то общее сопротивление находится по формуле:

где ​( n )​ – число проводников, ​( R_1 )​ – сопротивление проводника.

Если параллельно соединены два проводника, от общее сопротивление вычисляется по формуле:

Смешанное соединение проводников

Смешанное соединение проводников – соединение, при котором часть проводников соединена последовательно, а часть – параллельно.

Чтобы рассчитать общее сопротивление такого участка или найти силу тока и напряжение при таком соединении, нужно:

  1. разбить его на простые участки с последовательно или параллельно соединенными проводниками;
  2. найти общее (эквивалентное) сопротивление каждого из этих участков;
  3. составить эквивалентную схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений;
  4. рассчитать сопротивление полученной схемы.

Если в схеме не удается выделить участки с последовательным или параллельным соединением проводников, то можно использовать такое правило: точки с одинаковыми потенциалами можно соединять и разъединять, ток между такими точками не идет.

На рисунке, если ​( R_1=R_2,R_4=R_5, )​ то потенциалы точек 1 и 2 равны. Резистор ​( R_3 )​ можно убрать на эквивалентной схеме – ток по нему не идет. Точки с одинаковыми потенциалами есть в схемах с осью или плоскостью симметрии относительно точек подключения источника тока.

Если схема симметрична относительно оси, проходящей через точки входа и выхода тока, то точки равного потенциала находятся на концах симметричных сопротивлений (по ним идут одинаковые токи). Если схема симметрична относительно оси, перпендикулярной линии, на которой лежат точки входа и выхода тока, то точки равного потенциала находятся на пересечении этой оси с проводниками.

Если в схеме нет участков с известным видом соединения и нет точек с равным потенциалом, то для расчета таких цепей используют правила Кирхгофа.

Правила Кирхгофа:

  • Алгебраическая сумма сил токов, сходящихся в узле, равна нулю:

Положительными считают токи, входящие в узел, отрицательными – выходящие из узла.

  • В любом замкнутом контуре, произвольно выбранном в разветвленной цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС, имеющихся в контуре:

Порядок расчета цепи:

  • выбрать направление токов во всей цепи;
  • записать уравнения токов для узлов;
  • записать уравнения для выделенных контуров. Произвольные замкнутые контуры выделяются так, чтобы каждый новый контур содержал хотя бы один участок, не входящий в ранее рассмотренные контуры;
  • решить полученную систему уравнений.

Алгоритм решения задач на определение силы тока, напряжения или сопротивления на участке цепи:

  • начертить схему цепи и указать на ней все элементы;
  • установить, какие элементы цепи включены последовательно, какие – параллельно;
  • расставить токи и напряжения на каждом участке цепи и записать для каждой точки разветвления (если они есть) уравнения токов и уравнения, связывающие напряжения на участках цепи;
  • используя закон Ома, установить связь между токами, напряжениями и ЭДС;
  • если в схеме делают какие-либо переключения сопротивлений или источников, уравнения составить для каждого режима работы цепи;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Работа электрического тока. Закон Джоуля–Ленца

Работа тока – работа сил электрического поля, создающего электрический ток.

Работа тока на участке цепи вычисляется по формуле:

Используя формулу закона Ома для участка цепи, можно работу тока вычислить так:

Работа тока в замкнутой цепи находится по формуле:

При протекании постоянного тока по металлическому проводнику электроны сталкиваются с положительными ионами, расположенными в узлах кристаллической решетки. При этом электроны передают им энергию. Это приводит к нагреванию проводника. Количество теплоты, выделяющееся в проводнике за время ​( t )​, равно:

Эта формула выражает закон Джоуля–Ленца: количество теплоты, выделяющееся при прохождении тока по проводнику, прямо пропорционально квадрату силы тока, времени его прохождения и сопротивлению проводника.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе.  Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.


Ток в проводнике

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Основные формулы раздела «Законы постоянного тока»

Магнитное поле → ← Электрическое поле Законы постоянного тока3.9 (77.5%) 8 votes

Практическое использование

Пример приведен на рисунке.
Применяем закон к любому участку цепи

Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

  • R=0,2 МОм;
  • U=400 В.

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

  • R=20 кОм;
  • I=10 мА.

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом


Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Что мы узнали?

Итак, мы узнали, что закон Ома для однородного участка цепи формулируется так: сила тока I для проводника на однородном участке цепи прямо пропорциональна напряжению U на этом участке и обратно пропорциональна сопротивлению проводника R. Участки электрической цепи, на которых отсутствуют источники тока, называются однородными. Удельное электрическое сопротивление вещества ρ — величина, характеризующая способность вещества к сопротивлению.

Вывод

Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.

Видеоурок

Источники

  • https://www.asutpp.ru/zakon-oma-dlya-uchastka-cepi.html
  • https://obrazovaka.ru/fizika/zakon-oma-dlya-odnorodnogo-uchastka-cepi-formula.html
  • https://Zaochnik.ru/blog/zakon-oma-dlya-chajnikov/
  • https://fizi4ka.ru/egje-2018-po-fizike/zakony-postojannogo-toka.html

Закон ома на практике

В природе существует два основных вида материалов, проводящие ток и не проводящие диэлектрики. Отличаются эти материалы наличием условий для перемещения в них электрического тока электронов. Из токопроводящих материалов медь, алюминий, графит, и многие другие , делают электрические проводники, в них электроны не связаны и могут свободно перемещаться. В диэлектриках электроны привязаны к атомам намертво, поэтому ток в них течь не может.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Применение закона Ома
  • Закон Ома для участка цепи простым языком
  • Закон Ома и его применение
  • Закон Ома для участка цепи теория и практика
  • Закон Ома для «чайников»: понятие, формула, объяснение
  • Какая формула выражает закон Ома?
  • Закон Ома. Для цепей и тока. Формулы и применение
  • Закон Ома для полной цепи и для участка цепи: варианты записи формулы, описание и объяснение

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Урок 7. ЗАКОН ОМА простыми словами с примерами

Применение закона Ома


Закон Ома — основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением. Итак, строгая формулировка закона Ома записывается так: Сила тока в проводнике прямо пропорциональна напряжению на его концах разности потенциалов и обратна пропорциональна сопротивлению этого проводника.

Формула закона Ома записывается так:. Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза.

Сразу после создания заказа авторы начнут предлагать свои услуги. Вы сами выбираете самого подходящего исполнителя. Узнать стоимость. Переключить навигацию Научные Статьи. Помощь в написании работ. Леонид спросил 1 год назад.

Скажите пожалуйста, какая формула выражает закон Ома? Какая формула выражает закон Ома? Елена Вечоркина ответил 1 год назад. Формула закона Ома записывается так: , где — сила тока в проводнике, единица измерения силы тока — А Ампер , — электрическое напряжение разность потенциалов , единица измерения напряжения — вольт В , — электрическое сопротивление проводника, единица измерения электрического сопротивления — ом ОМ. Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза Ответить на Какая формула выражает закон Ома?

Помощь в решении задач. Выберите город. Отправить заявку Отправить заявку. Без предоплаты. Вы вносите средства в систему, но автор получит оплату после сдачи работы.

Бесплатная доработка. В течение ти дней вы имеете право обратиться с замечаниями по качеству работы. Качество и сроки. Добавить отзыв.


Закон Ома для участка цепи простым языком

Электрика и электрооборудование, электротехника и электроника — информация! В этой работе Фурье представлял тепловой поток между двумя точками как разницу температур, а изменение теплового потока связывал с его прохождением через препятствие неправильной формы из теплоизолирующего материала. Аналогично этому Ом обуславливал возникновение электрического тока разностью потенциалов. Исходя из этого Ом стал экспериментировать с разными материалами проводника.

Так как же применить Закон Ома на практике? Возьмем, к примеру, светодиод, который необходимо “запитать” от 9 В. Источником питания будет.

Закон Ома и его применение

Регистрация Вход. Ответы Mail. Вопросы – лидеры Задача по физике 1 ставка. Провод КСПВ, вопрос к электрикам 1 ставка. Мощность рассеивания транзистора? Зачем электродрели нужен редуктор, точнее большая шестеренка? Лидеры категории Антон Владимирович Искусственный Интеллект.

Закон Ома для участка цепи теория и практика

Закон Ома — основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением. Итак, строгая формулировка закона Ома записывается так: Сила тока в проводнике прямо пропорциональна напряжению на его концах разности потенциалов и обратна пропорциональна сопротивлению этого проводника. Формула закона Ома записывается так:. Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза.

Содержание: Историческая справка Закон Ома для участка цепи Закон Ома для параллельной и последовательной цепи Закон Ома для полной цепи Закон Ома в дифференциальной и интегральной форме Закон Ома для переменного тока Как запомнить закон Ома. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника.

Закон Ома для «чайников»: понятие, формула, объяснение

Этот рисунок напоминает, что электрический ток — это упорядоченное движение заряженных частиц в определенной среде. Передвижение их возможно под действием приложенной внешней энергии, создающей разность потенциалов — напряжение. Однако, внутренние силы проводников и элементов схемы уменьшают величину тока, оказывают сопротивление его перемещению. Рассмотрим простую схему 2, поясняющую действие закона Ома для участка электрической цепи постоянного тока. В качестве источника напряжения U используем аккумуляторную батарею , которую подключим к сопротивлению R толстыми и одновременно короткими проводами в точках А и В.

Какая формула выражает закон Ома?

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой. Про закон Ома в популярном изложении. Электрический ток и опасное напряжение невозможно услышать за исключением гудящих высоковольтных линий и электроустановок. Токоведущие части, находящиеся под напряжением, ничем не отличаются по внешнему виду.

Закон Ома часто называют основным законом электричества. . Закон Ома широко применяется на практике при проектировании.

Закон Ома. Для цепей и тока. Формулы и применение

Вся прикладная электротехника базируется на одном догмате — это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам. Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.

Закон Ома для полной цепи и для участка цепи: варианты записи формулы, описание и объяснение

ВИДЕО ПО ТЕМЕ: Запрещенный опыт нарушающий ЗАКОН ОМА. Все физики в ШОКЕ.

Доброго дня уважаемые радиолюбители! В школе Вы, несомненно, проходили, а, если еще нет — обязательно будете изучать Закон Ома. Он определяет соотношение между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома. Суть закона следующая : порождаемый напряжением ток обратно пропорционален сопротивлению, которое ему приходится преодолевать, и прямо пропорционален порождающему напряжению. Именно такое определение содержит учебник по физике.

Все те, кто знаком с основами электротехники, представляют себе значение закона Ома в теории и практике электрических цепей.

Так давайте же узнаем вспомним , что это за закон, и смело пойдем гулять. Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления. Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц — допустим, это электроны. В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Многие были для меня загадкой, но некоторые просто резали глаз пренебрежением основными законами физики. Хотя видел я и талантливые, тщательно продуманные решения, когда от полубытовой полуигрушечной техники добивались всего, на что она способна и даже чуть больше. Вот я и подумал: наверное, многие уже забыли, чему их учили в школе.


Закон Ома для цепи переменного тока. Мощность

RIR=UR; 1ωCIC=UC; ωLIL=UL.

Указанные выше формулы внешне могут напоминать закон Ома  на участке цепи постоянного тока, но стоит заметить, что в этом случае вместо величин постоянных токов и напряжений на участке цепи, в них входят амплитудные значения напряжений и переменных токов.

Формулы, указанные выше, выражают собой закон Ома для переменного тока, который содержит один из элементов R, L и C.

Определение 1

R – активное сопротивление резистора.

1ωС  – емкостное сопротивление конденсатора.

ωL – индуктивное сопротивление катушки в цепи переменного тока.

Движение переменного тока по участку цепи провоцирует электромагнитное поле выполнять работу, благодаря чему выделяется джоулево тепло.

Определение 2

Мгновенной мощностью в цепи называется произведение мгновенных значений тока и напряжения: p=J·u.

Прикладной интерес у нас вызывает среднее значение мощности за некоторый период переменного тока:

P=Pcα=I0U0cos ωt cos ωt+φ.

В приведенной выше формуле I0 и U0 являются амплитудными значениями тока и напряжения на выбранном участке цепи, а φ – фазовым сдвигом между током и напряжением. Черта же представляет собой символ усреднения. В случае, когда цепь содержит только резистор с сопротивлением R, то фазовый сдвиг φ будет равен нулю: 

PR=IRURcos2ωt=IRUR2=IR2R2.

Действующие значения силы тока и напряжения

Определение 3

По причине необходимости совпадения с уравнением для мощности постоянного тока, нам приходится ввести определения действующих значений силы тока и напряжения: 

IД=l02; UД=U02.

Мощность переменного тока на участке цепи

Определение 4

Средняя величина мощности переменного тока на участке цепи, включающем в себя резистор, равняется: 

PR=IДUД.

Если в цепи содержится лишь конденсатор емкости C, то φ=π2. Отсюда, справедливо следующее выражение:

PC=ICUCcos ωt cosωt+π2=ICUCcos ωt-sin ωt=0.

Таким же способом можно проиллюстрировать, что PL=0.

Исходя из описанного выше получим следующие определение.

Определение 5

Мощность в цепи переменного тока выделяется только на активном сопротивлении, а среднее значение мощности переменного тока на конденсаторе и катушке индуктивности равняется нулю.

Теперь стоит рассмотреть электрическую цепь, включающую последовательно соединенные резистор, конденсатор и катушки, и подключенную к источнику переменного тока некой частоты ω. Следует выделить, что на всех участках цепи, соединенных последовательно, проходит один и тот же ток. Между напряжением внешнего источника e(t) и током J(t) проявляется фазовый сдвиг на определенный угол φ.

Исходя из приведенных выше фактов, мы можем записать:

J(t)=I0cos ωt; e(t)=δ0cos ωt+φ.

Данные формулы мгновенных значений тока и напряжения подходят к построениям, выполненным на векторной диаграмме (рис. 2.3.2).

Рисунок 2.3.2. Гармонические колебания A cos (ωt+φ1), B cos (ωt+φ2) и их суммы C cos (ωt+φ) на векторной диаграмме.

Средняя величина мощности, развиваемой источником переменного тока, может быть найдена из следующего выражения:

P=I0δ0cos ωt cos ωt+φ=I0δ02cos φ=IДδД cos φ.

Исходя из данных векторной диаграммы можно заявить, что UR=δ0·cos φ, следовательно,

P=I0UR2, а вся мощность, которую развивает источник питания, теряется в виде джоулева тепла на резисторе.

В прошлых темах нами было получено выражение, являющееся соотношением амплитуд тока I0 и напряжений δ0 в условиях последовательной RLC-цепи: 

I0=δ0R2+ωL-1ωC2

Определение 6

Z=R2+ωL-1ωC2– это величина, имеющая название полное сопротивление цепи переменного тока.

Определение 7

Связь между амплитудными значениями тока и напряжения в цепи имеет вид:

ZI0=δ0.

Данное выражение представляет собой закон Ома для цепи переменного тока.

Закон Ома в условиях параллельной RLC-цепи

В различных расчетах, связанных с работой над цепями переменного тока, очень важное место занимает понятие полного сопротивления. Для его определения в цепи в большей части случаев практично использовать метод векторных диаграмм. В качестве примера, приведем параллельный подключенный к внешнему источнику переменного тока (рис. 2.4.1) RLC-контур:

Рисунок 2.4.1. Параллельный RLC-контур.

При построении диаграммы важно учесть, что в условиях параллельного соединения напряжение на всех элементах R, C и L идентично и равняется напряжению внешнего источника питания. Ток, текущий в разных ветвях цепи, различается не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Следовательно, полное сопротивление цепи невозможно вычислить опираясь на законы параллельного соединения цепей постоянного тока. Векторную диаграмму для параллельного RLC-контура можно увидеть на рис. 2.4.2.

Рисунок 2.4.2. Векторная диаграмма для параллельного RLC-контур.

Исходя из вида диаграммы, следует:

I0=δ01R2+ωL-1ωC2.

Определение 8

Соответственно, полное сопротивление параллельного RLC-контура выражается в виде следующего соотношения:

Z=11R2+ωL-1ωC2.

Определение 9

При параллельном резонансе (ω2=1LC) полное сопротивление цепи принимает свое максимальное значение, которое эквивалентно активному сопротивлению резистора:

Z=Zmax=R.

А значение фазового сдвига φ между током и напряжением при параллельном резонансе равняется нулю.

Решение задач от 1 дня / от 150 р. Курсовая работа от 5 дней / от 1800 р. Реферат от 1 дня / от 700 р.

Открытый урок по физикев в 8 классе по теме” Закон Ома для участка цепи”

Раздел долгосрочного планирования: 8.4А 

Закон Ома для участка цепи

Школа:  КГУ « Большенарымский сельский лицей»

 

Дата :24. 01. 2019 г

ФИО учителя:Нечаева Н.С.

 

класс: 8 б

Участвовали: 12

 

Тема урока

Закон Ома для участка цепи

 

 

Цели обучения, достигаемые на этом уроке 

8.4.2.6 – применять закон Ома для участка цепи при решении задач

 

Цель урока

Все учащиеся:  будут знать физичекие величины ; основные понятия  сила тока, напряжение, сопротивление.  измерение физических величин, решать простые задачи на формулу закона Ома и формулу сопротивления проводника

 Большинство учащихся:  будут уметь, работать с основными единицами, измерние силы тока, напряжения, сопротивления, и переводить в систему СИ.
уметь  объснять связь между силой тока, напряжением и сопротивлением

Некоторые ученики: Уметь, применять при решении задач  математическую формулу закона Ома для участка цепи.

 

Критерии оценивания

-называют форму закона Ома и величины входящие в нее,

-применяют формулу для решения расчетных задач

 -объясняют при помощи вольт-амперной характеристики зависимость силы тока от напряжения.

 

Языковые задачи

 

Используют ключевые слова: сила тока, напряжение, сопротивление.

Полезные фразы для диалога:

Сила прямо пропорциональна ……

Сила тока обратно пропорциональна…..

В системе Си сила тока измеряется……

Вольтамперная характеристика….

 

Воспитание ценностей 

 

 

Общество всеобщего труда: сотрудничество при групповой и парной работе, трудолюбие, уметь принимать чужую точку зрения, уважение к друг другу.

 

 

 

Межпредметная связь

Самопознание . Создание в классе благоприятной психологической обстановки Круг  «От сердца к сердцу»

 

Предыдущие знания

 

Электрический ток,  напряжение и сопротивление, соединение проводников, схематические обозначения амперметра, вольтметра, резистора

 

 

Ход урока

 

Запланированные этапы урока

Виды упражнений, запланированных на урок: 

 

Ресурсы

 

 «Начало»

5 минут

1. Организационный момент. Создание в классе благоприятной психологической обстановки  Доброе утро, ребята! Пусть оно действительно будет для нас сегодня добрым. 
– Какое у вас настроение? Ваше настроение я предлагаю вам выразить при помощи домиков разного цвета, которые лежат у вас на парте. Красный домик- настроение отличное, зелёный-хорошее, синий- так себе. 
– Я тоже покажу вам своё настроение. 

– Ребята, я вижу, не у всех настроение в начале урока отличное, но давайте проведём наш урок так, чтобы в конце урока у всех ребят нашего класса настроение было прекрасное. 
– Повернитесь лицом к соседу, улыбнитесь и скажите ему: Я желаю тебе добра; Если тебе будет трудно, я помогу.

 

2.Актуализация: проверка домашнего задания: Форматиное оценивание в виде тестов из 4 вопросов:

Критерии оценивания:

– знает единицы измерение сила тока,

-знает единицы измерения сопротивления,

– знает единицы измерения напряжения,

– рассчитывает силу тока  по формуле,

–  рассчитывает напряжение по формуле,

– знает схематические обозначения приборов.

 

 

 

 

 

 

(приложение 1)

 

Середина урока

На определение новой темы 3 минут

 

 

 

 

 

 

 

На обсуждение новой темы 10 минут

и на оформление постера 10 минут

На закрепление

Т.е. решение задач

7  минут

  Определение темы и целей урока

 Слова-подсказки: закон Ома, решение задач, объяснение взаимосвязи силы тока от напряжения, знать единицы измерения силы тока, напряжения и сопротивления

   

1)  С помощью  подсказок  вы  определили новую тему ,  решение задач на закон Ома для участка цепи.

А сейчас нам необходимо разделится на  три группы.   Стратегия «мозаика»

  

   2)Актуализация знаний

 

ФО:По таблице

ФО

Знаю

Хочу знать

Могу предложить помощь

 

 

 

 

 

 

 

Дифференциация:

Просто: задания на уровне повторения(физические величины, термины, измерения

Задания среднего уровня; требуют обобщение нового материала,побуждают к подведению итогов,применению знаний в новых условиях.

Задания высокого уровня:  требуют обобщение нового материала, подведение итога урока

Слайд 2 с портретами ученных

 

 

 

 

 

 

 

 

 

 

Раздаточный материал «Карточки с проводами»

 

 

 

 

 

 

 

 

 

 

Раздаточный материал: листы с условием задач

 

 

 

 

Приложение 2

Карточки с формативным оцени4ванием

 

Конец урока

         5 минут

Рефлексия.

 

 

Домашнее задание: по стратегии «цепочка»..

Критерий оценивания:

– Первые два ученика пишут дано,

–  вторые переводят в систему Си,

– третья пара записывает формулы решения задач по физике, находят неизвестные величины, преобразовывают формулы для решения задач.

 

 

Карточки для заполнения

 

Дифференциация – каким способом вы хотите больше оказывать поддержку? Какие задания вы даете ученикам более способным по сравнению с другими? 

Оценивание – как Вы планируете проверять уровень усвоения материала учащимися?  

Охрана здоровья и соблюдение техники безопасности 

 

 Разноуровневые задания,задачи разной сложности(простые задачи на одну формулу, задачи с переводом в систему СИ, задачи с применением графической зависимости) ,диалог и поддержка, оценивание ,группировка

Взаимооценивание при решении тестов (обмениваются листами ответов)Формативное оценивание на каждом этапе урока. Оценивание самим учителем (решение задач),самооценивание,и взаимооценивание при работе с изучением новой темы и составлением постера

Ознакомление с правилами техники безопасности , используемых на данном уроке.

 

 

Краткосрочный план

 

1 группа               ( для всех учеников)

1)    заполните пустые ячейки в таблице, применяя формулу закона Ома для участка цепи.

I (А)

 

4

15

6

U( В)|

10

 

45

 

R( Ом)

5

8

 

2,5

2) решите задачу, используя чертеж. ( Для некоторых учеников)

На чертеже изображена зависимость силы тока от напряжения. Чему равно сопротивление  проводника? Назовите силу тока, которая  соответствует  8 В.

 (Для большинства учеников)

 3)Через проводник длиной 22 м с сечением  1 мм2,  находящийся под напряжением 220 В, протекает ток силой 10 А. Из какого материала изготовлена проволока? ( воспользуйтесь таблицей  10, удельных  cопротивлений в конце учебника)                                                                                                                        Дескрипторы: -Знает формулу , которая выражает закон Ома                                                                                        – Правильно выражает  сопротивление из формулы закона Ома                                                                                                      – Правильно вычисляет сопротивление                                                                                                             —-Правильно  выражает удельное сопротивление из формулы сопротивления                                                                                                                              -Знает формулу, по которой вычисляется сопротивление                                                                                    -Переводит мм2 в м2  ;                                                                  –                                                                                                 -правильно определяет по таблице вещество, из которого изготовлен проводник                                       Дополнительное задание   4) начертить схему электрической цепи, состоящей из источника тока, лампочки, ключа, амперметра,  вольтметра, звонка.

 

 

 

 

 

 

 

 

 

 

2 группа               ( для всех учеников)

1)    Заполните пустые ячейки в таблице, применяя формулу закона Ома для участка цепи

I (А)

 

4

 

4

U( В)|

10

 

420

100

R( Ом)

4

10

100

 

2) решите задачу, используя чертеж. ( Для некоторых учеников)

 

На чертеже изображена зависимость силы тока от напряжения. Чему равно сопротивление  проводника? Назовите силу тока, которая  соответствует  10 В.

 

(Для большинства учеников)

3)Во сколько раз уменьшится сила тока в проводнике, если при неизменном  сопротивлении, напряжение уменьшится в 2 раза?

Дополнительное задание

4) начертить схему электрической цепи, состоящей из источника тока,  резистора, ключа, амперметра, вольтметра 

 

 

 

 

 

 

3)Группа ( для всех учеников)                                                                                                                          1) Заполните пустые ячейки в таблице, применяя формулу закона Ома для участка цепи.

I (А)

 

4

15

6

U( В)|

10

 

45

 

R( Ом)

5

8

 

2,5

2) решите задачу, используя чертеж. ( Для некоторых учеников)                                                                                   На чертеже изображена зависимость силы тока от напряжения. Чему равно сопротивление  проводника? Назовите силу тока, которая  соответствует 4 В.

(Для большинства учеников)

 3) Известно, что через поперечное сечение проводника, вклю­ченного в цепь на 2 мин, прошел заряд, равный 36 Кл. Какова была сила тока в этом проводнике?  Чему равно напряжение , если сопротивление равно  220 В                                                                                                                                А) 0,3 А ;  66  В   В) 18 А; 3960 Ом   С) 36 А ; 72 В  Д) 72 А; 144 В                                                                                                                  

Дополнительное задание  4) начертить схему электрической цепи, состоящей из источника тока, лампочки, ключа, амперметра,  вольтметра, звонка.

 

 

 

 

 

 

1 )  Закончи  предложение:

1)Силой тока называется физическая величина, которая показывает, какой величины заряд проходит  через…….

2)Напряжение- физическая величина, которая показывает, какую работу совершает электрическое поле  при……..

3)Электрическим сопротивлением называется физическая величина, характеризующая способность проводника препятствовать……..

4) Сила тока, напряжение, электрическое  сопротивление  обозначаются ……………, и имеют единицы измерения……….

5) Сила тока, напряжение, электрическое  сопротивление измеряются приборами……….

2 )Заполни таблицу:

Название физической величины

Обозначение буквой

Единица измерения

Формула вычисления

Каким прибором измеряется

 сила тока

 

 

 

 

напряжение

 

 

 

 

сопротивление

 

 

 

 

3)Стратегия: верю, не верю, графический диктант

1)Силой тока называется физическая величина, которая показывает, какой величины заряд проходит  через  длинный проводник.                                                                                                                          2)Напряжение- физическая величина, которая показывает, какую работу совершает электрическое поле  при перемещении единичного заряда по проводнику.                                                                                               3)Электрическим сопротивлением называется физическая величина, характеризующая способность проводника препятствовать прохождению тока по нему                                                                                                                      4) Сила тока, напряжение, электрическое  сопротивление  обозначаются  I,     U,     R   и имеют единицы измерения B, Oм, А                                                                                                                                                             5)  Сила тока, напряжение, электрическое  сопротивление измеряются приборами амперметр, вольтметр, омметр

 

1 )  Закончи  предложение:

1)Силой тока называется физическая величина, которая показывает, какой величины заряд проходит  через поперечное сечение проводника за единицу времени                                                                          2)Напряжение– физическая величина, которая показывает, какую работу совершает электрическое поле  при перемещении единичного заряда по проводнику.                                                                      3)Электрическим сопротивлением называется физическая величина, характеризующая способность проводника препятствовать прохождению тока по нему                                                                        4) Сила тока, напряжение, электрическое  сопротивление  обозначаются  буквами I, U , R и имеют единицы измерения A, B, Oм.                                                                                                                                 5) Сила тока, напряжение, электрическое  сопротивление измеряются приборами амперметр, вольтметр , омметр.                                                                                                                                          2 )Заполни таблицу:

Название физической величины

Обозначение буквой

Единица измерения

Формула вычисления

Каким прибором измеряется

 сила тока

I

A( ампер)

I  

амперметр

напряжение

U

В( вольт)

U

вольтметр

 сопротивление

R

Ом( ом)

R

омметр

3)Стратегия: верю, не верю, графический диктант

—–    —– 

 

 

 

 

 

 

 

 

 

1 группа               ( для всех учеников)

1)    заполните пустые ячейки в таблице, применяя формулу закона Ома для участка цепи.

I (А)

2

4

15

6

U( В)|

10

32

45

15

R( Ом)

5

8

3

2,5

2) решите задачу, используя чертеж. ( Для некоторых учеников)

На чертеже изображена зависимость силы тока от напряжения. Чему равно сопротивление  проводника? Назовите силу тока, которая  соответствует  8 В.

    R= =4 Oм,  I=2A                                    (Для большинства учеников)                                                                                    3)Через проводник длиной 22 м с сечением 0,01 мм2,  находящийся под напряжением 220 В, протекает ток силой 10 А. Из какого материала изготовлена проволока? ( воспользуйтесь таблицей  10, удельных сопротивлений в конце учебника.     = = = 1Ом ( из железа)                                                                                          Дескрипторы: -Знает формулу , которая выражает закон Ома                                                                                        – Правильно выражает  сопротивление из формулы закона Ома                                                                                                      – Правильно вычисляет сопротивление                                                                                                             —-Правильно  выражает удельное сопротивление из формулы сопротивления                                                                                                                              -Знает формулу, по которой вычисляется сопротивление                                                                                    -Переводит мм2 в м2  ;                                                                  –                                                                                                 -правильно определяет по таблице вещество, из которого изготовлен проводник                           Дополнительное задание : 4) начертить схему электрической цепи, состоящей из источника тока, лампочки, ключа, амперметра,  вольтметра, звонка.

 

 

2     группа               ( для всех учеников)

1)Заполните пустые ячейки в таблице, применяя формулу закона Ома для участка цепи

I (А)

2,5

4

4,2

4

U( В)|

10

40

420

100

R( Ом)

4

10

100

25

2) решите задачу, используя чертеж. ( Для некоторых учеников)                                                                                              На чертеже изображена зависимость силы тока от напряжения. Чему равно сопротивление  проводника? Назовите силу тока, которая  соответствует  10 В.

 R= =4 Oм,  I=2,5A

(Для большинства учеников) 3)Во сколько раз уменьшится сила тока в проводнике, если при неизменном  сопротивлении, напряжение уменьшится в 2 раза?  ( Уменьшится в 2 раза, потому что сила тока прямопропорциональна напряжению)

 

Дополнительное задание

4) начертить схему электрической цепи, состоящей из источника тока,  резистора, ключа, амперметра, вольтметра 

 

 

3)Группа ( для всех учеников)                                                                                                                          1) Заполните пустые ячейки в таблице, применяя формулу закона Ома для участка цепи.

I (А)

2

4

15

6

U( В)|

         10

64

450

18

R( Ом)

5

16

30

3

2) решите задачу, используя чертеж. ( Для некоторых учеников)                                                                                   На чертеже изображена зависимость силы тока от напряжения. Чему равно сопротивление  проводника? Назовите силу тока, которая  соответствует  напряжению 4 В.

 R= =4 Oм,  I=1 A                                                (Для большинства учеников)

 3) Известно, что через поперечное сечение проводника, вклю­ченного в цепь на 2 мин, прошел заряд, равный 36 Кл. Какова была сила тока в этом проводнике?  Чему равно напряжение , если сопротивление равно  220 В                                                                                                                                А) 0,3 А ;  66  В   В) 18 А; 3960 Ом   С) 36 А ; 72 В  Д) 72 А; 144 В         ответ  А           

2 мин=120 с,I=   =  = 0,3 А, U=I66 B

Дескрипторы:- Переводит минуты в секунды.                                                                                                                   -Записывает формулу  силы тока                                                                                                                                    -Правильно вычисляет силу тока                                                                                                                                          -Правильно выражает из формулы закона Ома напряжение                                                                                               – Правильно вычисляет напряжение                                                                                                                                        Дополнительное задание  4) начертить схему электрической цепи, состоящей из источника тока, лампочки, ключа, амперметра,  вольтметра, звонка.

 

 

Закон Ома для неоднородного участка цепи » Kupuk.net

Участки электрических цепей принято разделять на однородные и неоднородные. Закон Ома выполняется для обоих видов цепей. Однако математические выражения, которые отражают действие этого закона, несколько отличаются. Это связано с действием сторонних сил на электрические заряды, когда они проходят через неоднородные участки цепей.

Стационарное электрическое поле

Электрический ток возникает при наличии электрического поля и свободных носителей заряда. Соединив проводником разноименно заряженные тела, можно получить электрический ток, протекающий в течение короткого промежутка времени. Стационарное электрическое поле — это поле постоянных во времени электрических токов при условии неподвижности проводников с электрическими токами. Участки цепи, где на заряды действует только стационарное поле, называются однородными.

Сторонние силы

Для того, чтобы в проводнике электрический ток был длительное время, необходимо создать определенные условия. Для этого на отдельных участках цепи, кроме сил стационарного поля, действуют, так называемые, сторонние силы. Участки цепи, на которых имеется действие дополнительных, сторонних, сил называются неоднородными. В этом случае перемещение зарядов возникает под действием сил не электростатической природы, действующих в устройствах, называемых источниками постоянного тока.

Силы, приводящие в движение электрические заряды внутри источника постоянного тока против направления действия сил электростатического поля, называются сторонними силами. Сторонние силы в гальваническом элементе или аккумуляторе возникают в результате электрохимических реакций, происходящих между частицами металлического электрода и молекулами электролита. В генераторах постоянного тока сторонней силой является сила, возникающая от действия магнитного поля на движущийся электрический заряд. Работа источника тока похожа на функцию насоса, который заставляет двигаться жидкость (качает) по трубам замкнутого гидравлического контура. Под воздействием сторонних сил заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи длительное время поддерживается постоянный электрический ток.

Рис. 1. Источники постоянного тока, аккумуляторы, гальванические элементы, генераторы.

В организме человека имеется множество химических веществ, которые вступая друг с другом в различные реакции, способствуют возникновению электрической энергии. Например, в сердце есть клетки, которые в процессе поддержания сердечного ритма поглощают натрий и выделяют калий, что приводит к образованию электрических зарядов. При достижении определенной величины заряда, возникает импульс электрического поля, заставляющий сокращаться сердечную мышцу. Эти импульсы регистрируют с помощью кардиографа в больницах и поликлиниках при снятии электрокардиограммы (ЭКГ), дающей информацию о работе сердца..

Закон Ома для неоднородного участка цепи

Физическая величина, равная отношению работы сторонних сил Aст при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой (ЭДС) источника Eэдс:

$ E_{эдс} = {A_{cт}over q} $ (1).

Таким образом, ЭДС равна работе, совершаемой сторонними силами при перемещении единичного положительного заряда. При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа электростатического поля равна нулю, а работа сторонних сил равна сумме всех ЭДС, действующих в этой цепи.

Работа электростатических сил по перемещению единичного заряда равна разности потенциалов $ Δφ = φ_1 – φ_2 $ между начальной и конечной точками 1 и 2 неоднородного участка. Работа сторонних сил равна, по определению, электродвижущей силе Eэдс, действующей на данном участке. Поэтому полная работа равна:

$ U_п = φ_1 – φ_2 + E_{эдc} $ (2).

Величина Uп называется напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

$ U_п = φ_1 – φ_2 $ (3).

Немецкий исследователь Георг Симон Ом в начале XIX века установил, что сила тока I, текущего по однородному проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

$ I = {U over R} $ (4).

Рис. 2. Портрет Георга Ома.

Величина R — это электрическое сопротивление. Уравнение (4) выражает закон Ома для однородного участка цепи. Для участка цепи, содержащего ЭДС, закон Ома записывается в следующем виде:

$ U_п = I * R = φ_1 – φ_2 + E_{эдс} = Δ φ_{12} + E_{эдс}$ (5).

Данное уравнение называется обобщенным законом Ома для неоднородного участка цепи.

Закон Ома для полной цепи

Если замкнутая цепь состоит из сопротивления цепи, равного R, и источника тока с электродвижущей силой Eэдс и внутренним сопротивлением r, то в этом случае ток цепи I будет равен:

$ I = {E_{эдс} over R + r} $ (6).

Выражение (6) называется законом Ома для полной цепи: сила тока в полной цепи равна ЭДС источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Проводники, в точности соответствующие закону Ома, называются линейными, так как график зависимости тока I от напряжения U изображается прямой линией. Следует отметить, что существуют много материалов, которые не подчиняются закону Ома, например, полупроводники или газоразрядные лампы. У металлических проводников отклонения от линейной зависимости появляются при больших токах, так как сопротивление металлов возрастает с ростом температуры.

Рис. 3. График зависимости сопротивления металлических проводников от температуры.

Что мы узнали?

Итак, мы узнали, что участки электрической цепи, на которых кроме стационарного электрического поля имеется действие дополнительных, сторонних сил, называются неоднородными. Сторонние силы возникают в результате работы источников тока: аккумуляторов, гальванических элементов и электрических генераторов тока. Получены уравнения закона Ома для неоднородного участка цепи и для полной цепи.

Согласно закону ома сила тока вычисляется по формуле найти

Формулировка и объяснение

Человеком, который смог получить основной закон электротехники, стал ученый Георг Ом из Германии. Выведенный им постулат имеет довольно простое определение — сила тока на участке цепи обратно пропорциональна сопротивлению и прямо пропорциональна напряжению.

При этом она является самой простой и применяется для внешнего однородного участка цепи, на котором отсутствуют источники ЭДС. Говоря проще, в рассматриваемой электроцепи не должно находиться батарейки, иначе формула, выражающая закон, примет слегка измененный вид: I = E / (R + r). В ней E соответствует потенциальной энергии источника ЭДС, а r представляет собой его внутреннее сопротивление. Таким образом, появилось еще несколько новых понятий:

  • однородный участок электроцепи;
  • полная цепь;
  • внешний и внутренний участок.

Зная простейшую формулу закона Ома, на экзамене можно легко дать его определение и решать несложные практические задачи. При дальнейшем изучении электротехники предстоит углубиться в тонкости этого предмета, например, познакомиться с понятиями реактивного и активного сопротивления, а также записать более сложную формулу.

Электрический ток и его характеристики

Определение 9

Проводники, которые подчинены закону Ома, получили название линейных.

Для изображения графической зависимости силы тока I от U (графики называют вольт-амперными характеристиками, ВАХ) используется прямая линия, проходящая через начало координат.

Существуют устройства, не подчиняющиеся закону Ома. К ним относят полупроводниковый диод или газоразрядную лампу. Металлические проводники имеют отклонения от закона Ома при токах большой силы. Это связано с ростом температуры.

Определение 10

Участок цепи, содержащий ЭДС, позволяет записывать закон Ома таким образом:

IR=U12=φ1-φ2+δ=∆φ12+δ.

Формула получила название обобщенного закона Ома или закон Ома для неоднородного участка цепи.

Рисунок 1.8.2 показывает замкнутую цепь с постоянным током, причем ток цепи (cd) считается однородным.

Рисунок 1.8.2. Цепь постоянного тока.

Исходя из закона Ома IR=∆φcd, участок (ab) содержит источник тока с ЭДС, равной δ. Тогда для неоднородного участка формула примет вид Ir=∆φab+δ. Сумма обоих равенств дает в результате выражение I(R+r)=∆φcd+∆φab+δ. Но ∆φcd=∆φba=-∆φab, тогда I=δR+r.

Определение 11

Формула I=δR+r выражает закон Ома для полной цепи. Запишем ее, как определение: сила тока в полной цепи равняется электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Рисунок 1.8.2 говорит о том, что R неоднородного тела может быть рассмотрено как внутреннее сопротивление источника тока. Тогда (ab) участок будет являться внутренним участком источника.

Определение 12

При замыкании a и b с помощью проводника с малым по сравнению с внутренним сопротивлением источника получим, что в цепи имеется ток короткого замыкания Iкз=δr.

Сила тока короткого замыкания является максимальной, получаемой от источника с ЭДС и внутренним сопротивлением r. Если внутренне сопротивление мало, тогда ток короткого замыкания может вызвать разрушение электрической цепи или источника.

Пример 1

Свинцовые аккумуляторы автомобилей имеют силу тока короткого замыкания в несколько сотен ампер. Особую опасность представляют замыкания в осветительных сетях, которые имеют подпитку от подстанций. Во избежание разрушительных действий предусмотрены предохранители или автоматы для защиты сетей.

Чтобы при превышении допустимых значений силы тока не произошло короткого замыкания, используют внешнее сопротивление. Если сопротивление r равняется сумме внутреннего и внешнего сопротивления источника, сила тока не будет превышать норму.

При наличии разомкнутой цепи разность потенциалов на полюсах разомкнутой батареи равняется ее ЭДС. Когда внешнее R включено и ток I подается через батарею, то разность потенциалов на полюсах запишется, как ∆φba=δ-Ir.

Рисунок 1.8.3 дает точное схематическое изображение источника постоянного тока с ЭДС, равной δ, внутренним r в трех режимах: «холостой ход», работа на нагрузку, режим короткого замыкания. E→ является напряженностью внутри электрического поля внутри батареи, a – силами, действующими на положительные заряды, Fст→– сторонней силой. Исчезновение электрического поля возникает при коротком замыкании.

Рисунок 1.8.3. Схематическое изображение источника постоянного тока: 1 – батарея разомкнута;2 – батарея замкнута на внешнее сопротивление R; 3 – режим короткого замыкания.

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы “трётся”, соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

Из формулы также следует –  чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление  0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом – будет неравномерный нагрев в месте скрутки. В итоге –  подгорание с последующим пропаданием контакта.

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать  электрические цепи. В 1832 году  Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что  существует некая  зависимость между силой тока, электрическим сопротивлением  и температурой проводника.

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился  спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена  были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося  раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Кулон и электрический заряд

Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.

Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией».

Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.

Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.

Где может пригодиться этот закон Джоуля-Ленца?

В электротехнике есть понятие длительно допустимого тока протекающего по проводам. Это такой ток, который провод способен выдержать длительное время (то есть, бесконечно долго), без разрушения провода (и изоляции, если она есть, потому что провод может быть и без изоляции). Конечно, данные вы теперь можете взять из ПУЭ (Правила устройства электроустановок), но получали эти данные исключительно на основе закона Джоуля-Ленца.

В электротехнике так же используются плавкие предохранители. Их основное качество – надёжность срабатывания. Для этого используется проводник определенного сечения. Зная температуру плавления такого проводника можно вычислить количество теплоты, которое необходимо, чтобы проводник расплавился от протекания через него больших значений тока, а вычислив ток, можно вычислить и сопротивление, которым такой проводник должен обладать. В общем, как вы уже поняли, применяя закон Джоуля-Ленца можно рассчитать сечение или сопротивление (величины взаимозависимы) проводника для плавкого предохранителя.

А ещё, помните, мы говорили про . Там на примере лампочки я рассказывал парадокс, что более мощная лампа в последовательном соединении светит слабее. И наверняка помните почему: падение напряжения на сопротивлении тем сильнее, чем меньше сопротивление. А поскольку мощность — это , а напряжение очень сильно падает, то и выходит, что большое сопротивление выделит большое количество тепла, то есть, току придется больше потрудиться, чтобы преодолеть большое сопротивление. И количество тепла, которое выделит ток при этом можно посчитать с помощью закона Джоуля-Ленца. Если брать последовательное соединение сопротивлений, то использовать лучше выражение через квадрат тока, то есть, изначальный вид формулы:

А для параллельного соединения сопротивлений, поскольку ток в параллельных ветвях зависит от сопротивления, в то время, как напряжение на каждой параллельной ветви одинаковое, то формулу лучше всего представить через напряжение:

Примерами работы закона Джоуля-Ленца вы все пользуетесь в повседневной жизни – в первую очередь это всевозможные нагревательные приборы. Как правило, в них используется нихромовая проволока и толщина (поперечное сечение) и длина проводника подбираются с учётом того, чтобы длительное тепловое воздействие не приводило к стремительному разрушению проволоки. Точно таким же образом добиваются свечения вольфрамовой нити в лампе накаливания. По этому же закону определяют степень возможного нагрева практически любого электротехнического и электронного устройства.

В общем, несмотря на кажущуюся простоту, закон Джоуля-Ленца играет в нашей жизни очень огромную роль. Этот закон дал большой толчок для теоретических расчётов: выделение тепла токами , вычисление конкретной температуры дуги, проводника и любого другого электропроводного материала, потери электрической мощности в тепловом эквиваленте и т.д.

Вы можете спросить, а как перевести Джоули в Ватты и это довольно частый вопрос в интернете. Хотя вопрос несколько неверный, читая далее, вы поймёте почему. Ответ довольно прост: 1 дж = 0.000278 Ватт*час, в то время, как 1 Ватт*час = 3600 Джоулей. Напомню, что в Ваттах измеряется потребляемая мгновенная мощность, то есть непосредственно используемая пока включена цепь. А Джоуль определяет работу электрического тока, то есть мощность тока за промежуток времени. Помните, в законе Ома я приводил аллегорическую ситуацию. Ток – деньги, напряжение – магазин, сопротивление – чувство меры и денег, мощность – количество продуктов, которые вы сможете на себе унести (увезти) за один раз, а вот как далеко, как быстро и сколько раз вы сможете их увезти – это работа. То есть, сравнить работу и мощность никак не получается, но можно выразить в более понятных нам единицам: Ваттах и часах.

Думаю, что теперь вам не составит труда применить закон Джоуля-Ленца в практике и теории, если таковое потребуется и даже сделать перевод Джоулей в Ватты и наоборот. А благодаря пониманию, что закон Джоуля-Ленца это произведение электрической мощности на время, вы сможете более легко его запомнить и даже, если вдруг забыли основную формулу, то помня всего лишь закон Ома можно снова получить закон Джоуля-Ленца. А я на этом с вами прощаюсь.

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Простые примеры расчета

Бытовая сеть переменного тока

Пример №1. Проверка ТЭНа.

В стиральную машину встроен трубчатый электронагреватель 1,25 кВт на 220 вольт. Требуется проверить его исправность замером сопротивления.По мощности рассчитываем ток и сопротивление.

Проверяем расчет сопротивления калькулятором по току и напряжению. Данные совпали. Можно приступать к электрическим замерам.

Пример №2. Проверка сопротивления двигателя

Допустим, что мы купили моющий пылесос на 1,6 киловатта для уборки помещений. Нас интересует ток его потребления и сопротивление электрического двигателя в рабочем состоянии. Считаем ток:

Вводим в графы калькулятора напряжение 220 вольт и ток 7,3 ампера. Запускаем расчет. Автоматически получим данные:

  • сопротивление двигателя — 30,1 Ома;
  • мощность 1600 ватт.

Цепи постоянного тока

Рассчитаем сопротивление нити накала галогенной лампочки на 55 ватт, установленной в фаре автомобиля на 12 вольт.

Считаем ток:

Вводим в калькулятор 12 вольт и 4,6 ампера. Он вычисляет:

  • сопротивление 2,6 ома.
  • мощность 5 ватт.

Здесь обращаю внимание на то, что если замерить сопротивление в холодном состоянии мультиметром, то оно будет значительно ниже. Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников

Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников.

Другими словами: изменение сопротивления вольфрама при нагреве до раскаленного состояния ограничивает возрастание тока через него. Но в холодном состоянии металла происходит бросок тока. От него нить может перегореть.

Для продления ресурса работы подобных лампочек используют схему постепенной, плавной подачи напряжения от нуля до номинальной величины.

В качестве простых, но надежных устройств для автомобиля часто используется релейная схема ограничения тока, работающая ступенчато.

При включении выключателя SA сопротивление резистора R ограничивает бросок тока через холодную нить накала. Когда же она разогреется, то за счет изменения падения напряжения на лампе HL1 электромагнит с обмоткой реле KL1 поставит свой контакт на удержание.

Он зашунтирует резистор, чем выведет его из работы. Через нить накала станет протекать номинальный ток схемы.

Закон Ома — формула

Формула закона Ома может быть использована, когда известно две из трех переменных. Соотношение между сопротивлением, током и напряжением может быть записано по-разному.  Для усвоения и запоминания может быть полезен «треугольник Ома».

или

или

  Ниже приведены два примера использования такого треугольного калькулятора.

Имеем резистор сопротивлением в 1 Ом в цепи с падением напряжения от 100В до 10В на своих выводах.Какой ток протекает через этот резистор?Треугольник напоминает нам, что: 
Имеем резистор сопротивлением в 10 Ом через который протекает ток в 2 Ампера при напряжении 120В.Какое будет падение напряжения на этом резисторе?Использование треугольника показывает нам, что:Таким образом, напряжение на выводе будет 120-20 = 100 В. 

Закон Ома для полной цепи

Подробности
Просмотров: 479

«Физика — 10 класс»

Сформулируйте закон Ома для участка цепи.
Из каких элементов состоит электрическая цепь?
Для чего служит источник тока?

Рассмотрим простейшую полную (т. е. замкнутую) цепь, состоящую из источника тока (гальванического элемента, аккумулятора или генератора) и резистора сопротивлением R (рис. 15.10). Источник тока имеет ЭДС Ε и сопротивление r.

В генераторе r — это сопротивление обмоток, а в гальваническом элементе сопротивление раствора электролита и электродов.

Сопротивление источника называют внутренним сопротивлением в отличие от внешнего сопротивления R цепи.

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи R + r. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля—Ленца (15.14).

Пусть за время Δt через поперечное сечение проводника проходит электрический заряд Δq. Тогда работу сторонних сил при перемещении заряда Δq можно записать так: Аст = ΕΔq. Согласно определению силы тока (15.1) Δq = IΔt. Поэтому

Аст = ΕIΔt.         (15.17)

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых г и Я, выделяется некоторое количество теплоты. По закону Джоуля—Ленца оно равно:

Q = I2RΔt + I2rΔt.         (15.18)

По закону сохранения энергии Аст = Q, откуда получаем

Ε = IR + 1r.         (15.19)

Произведение силы тока и сопротивления участка цепи называют падением напряжения на этом участке.

Таким образом, ЭДС равна сумме падений напряжения на внутреннем и внешнем участках замкнутой цепи.

Закон Ома для замкнутой цепи:

Сила тока в замкнутой цепи равна отношению ЭДС источника тока к полному сопротивлению цепи.

Согласно этому закону сила тока в цепи зависит от трёх величин: ЭДС Ε сопротивлений R внешнего и г внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи (R >> r). При этом напряжение на зажимах источника примерно равно ЭДС: U = IR = Ε — Ir ≈ Ε

При коротком замыкании, когда R ≈ 0, сила тока в цепи и определяется именно внутренним сопротивлением источника и при электродвижущей силе в несколько вольт может оказаться очень большой, если r мало (например, у аккумулятора r ≈ 0,1 — 0,001 Ом). Провода могут расплавиться, а сам источник выйти из строя.

Если цепь содержит несколько последовательно соединённых элементов с ЭДС Ε1, Ε2, Ε3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов.

Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура.
На рисунке (15.11) положительным (произвольно) считают направление обхода против часовой стрелки.

Если при обходе цепи данный источник стремится вызвать ток в направлении обхода, то его ЭДС считается положительной: Ε > 0. Сторонние силы внутри источника совершают при этом положительную работу.

Если же при обходе цепи данный источник вызывает ток против направления обхода цепи, то его ЭДС будет отрицательной: Ε < 0. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображённой на рисунке 15.11, при обходе контура против часовой стрелки получаем следующее уравнение:

Εп = Ε1 + Ε2 + Ε3 = lΕ1| — |Ε2| + |Ε3|

Если Εп > 0, то согласно формуле (15. 20) сила тока I > 0, т. е. направление тока совпадает с выбранным направлением обхода контура. При Εп < 0, наоборот, направление тока противоположно выбранному направлению обхода контура. Полное сопротивление цепи Rп равно сумме всех сопротивлений (см. рис. 15.11):

Rп = R + r1 + r2 + r3.

Для любого замкнутого участка цепи, содержащего несколько источников токов, справедливо следующее правило: алгебраическая сумма падений напряжения равна алгебраической сумме ЭДС на этом участке (второе правило Кирхгофа):

I1R1+ I2R2 + … + InRn = Ε1 + Ε2 + … + Εm

Следующая страница «Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»»

Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика

Электрический ток. Сила тока —
Закон Ома для участка цепи. Сопротивление —
Электрические цепи. Последовательное и параллельное соединения проводников —
Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» —
Работа и мощность постоянного тока —
Электродвижущая сила —
Закон Ома для полной цепи —
Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»

Классическая формулировка

Этот простой вариант трактовки, известный нам со школы.


Однородный открытый участок электроцепи

Формула в интегральной форме будет иметь следующий вид:


Формула в интегральной форме

То есть, поднимая напряжение, мы тем самым увеличиваем ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I». Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

Опытное определение зависимости силы тока от сопротивления при постоянном напряжении

Для того, чтобы определить зависимость силы тока от сопротивления проводника, мы проведем еще один опыт. Теперь мы будем знать электрическое сопротивление тех проводников, которые будем использовать.

Обратите внимание, что в ходе опыта напряжение на концах используемых проводников должно быть постоянным. Эта величина не должна изменяться, чтобы мы могли корректно оценить зависимость силы тока от сопротивления

Соберем электрическую цепь из источника тока, ключа, амперметра, проводника. К проводнику параллельно подсоединим вольтметр (рисунок 1).

Проводников у нас будет три разных. Они обладают разными сопротивлениями. Мы будем поочередно подключать их в цепь. Каждый раз мы будем фиксировать показания амперметра.

По показаниям вольтметра необходимо следить, чтобы напряжение на концах каждого проводника было одинаковым.

Рисунок 1. Установление зависимости силы тока от сопротивления проводника

{"questions":,"explanations":,"answer":}}}]}

Закон Ома для участка цепи – расчет цепей

Простейший вариант наглядно представлен на рисунке. Это однородный участок цепи открытого типа.

Для его описания применяется известная формула, которая будет иметь следующую форму:

I = U/R, где I является силой тока, U – напряжением, R – сопротивлением.

Данная формула является интегральной. С ее помощью хорошо видно, как при возрастании напряжения, увеличивается и сила тока. Но, если увеличить сопротивление, то сила тока, наоборот, будет понижаться.

На схеме изображен всего один элемент, обладающий сопротивлением. На практике, их может быть любое количество. Они могут соединяться последовательно, параллельно и смешанным способом.

Как найти с помощью формулы напряжение

Людей, интересующихся электричеством и физикой, всегда волнует вопрос, как найти напряжения, если известны другие характеристики. Его можно найти через многие формулы: в соответствии с законом Ома, через работу тока, путём сложения всех напряжений в электрической цепи и практическим способом – с помощью вольтметра. Как вычислить показатель с помощью последнего способа было описано выше.

Важно! В цепях с последовательным соединением общее напряжение – сумма значений каждой нагрузки. При параллельном соединении общее напряжение равно значению каждой лампочки, у которых оно также эквивалентно

Вам это будет интересно WAGO соединители

Измерение напряжения

По каким формулам вычисляется напряжение через работу и сама сила тока, рассказывают на уроках физики, так как эти величины считаются базовыми. Работа тока равна произведению напряжения и заряда: A = U*q. Также, из этой формулы выводится A = U*I*t, так как заряд – произведение силы тока и времени. Из них следует, что U = A/q или U = A/(I*t). Кроме того, одной из основных является формула напряжения, выведенная из закона Ома: U = R/I.

Важно! Определить напряжение можно и через мощность электрического тока. Мощность равна A/t, и, так как A = U*I*t, конечная формула выглядит, как P = (U*I*t)/t

Здесь t сократится, и останется P = U*I, из которой следует, что U = P/I.

Сопротивление проводника/цепи.

Термин «сопротивление» уже фактически говорит сам за себя ) Итак, сопротивление — физическая величина, характеризующая свойства проводника препятствовать (сопротивляться) прохождению электрического тока.

Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S:

Сопротивление проводника зависит от нескольких факторов:

  • удельного сопротивления проводника \rho
  • длины проводника l
  • площади поперечного сечения проводника S

Удельное сопротивление — это табличная величина. Формула, с помощью которой можно вычислить сопротивление данного проводника выглядит следующим образом:

R = \rho\medspace \frac{l}{S}

Для нашего случая \rho будет равно 0,0175 (Ом * кв. мм / м) — удельное сопротивление меди. Пусть длина проводника составляет 0.5 м, а площадь поперечного сечения равна 0.2 кв. мм. Тогда:

R =0,0175 \cdot \frac{0.5}{0.2} = 0.04375\medspace Ом

И, как вы уже поняли из примера, единицей измерения сопротивления является Ом. Рассмотрим взаимосвязь напряжения, силы тока и сопротивления цепи.

Основные понятия закона Ома

Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.


Памятник Георгу Симону Ому

Закон Ома… Связь между напряжением, током и сопротивлением

Теоретические термины и определения

Следующие определения относятся к базовой теории электричества. Важно, чтобы установщики и инспекторы обладали практическими знаниями в области теории электричества. Такие знания часто необходимы для определения надлежащего размера проводников для цепей с различными нагрузками.

Вольт — единица электрического давления — это давление, необходимое для передачи одного ампера через сопротивление в один ом; сокращенно «Е», первая буква термина электродвигатель сила .

Ампер — единица электрического тока, который будет протекать через один ом под давлением в один вольт за одну секунду; сокращенно «И», первая буква термина интенсивность тока .

Ом — единица электрического сопротивления — это сопротивление, через которое один вольт действует на один ампер; сокращенно «R», первая буква термина сопротивление .

Вт — это единица измерения энергии, протекающей в электрической цепи в любой момент времени. Это также количество работы, выполняемой в электрической цепи. Термины ватт или киловатт чаще использовались для выражения количества работы, выполненной в электрической цепи, а не термин джоуль . Ватты — это произведение вольт и ампер, иногда их называют вольт-амперами. Одна тысяча вольт-ампер обозначается как один киловольт-ампер или один кВА.

Закон Ома

Джордж Саймон Ом открыл взаимосвязь между током, напряжением и сопротивлением в электрической цепи в 1826 году. Экспериментально он обнаружил, что давление равно произведению силы тока и сопротивления; эта зависимость называется законом Ома. Этот закон является практической основой, на которой основано большинство электрических расчетов. Формула может быть выражена в различных формах и по ее использованию, как в трех примерах, показанных на рисунке 1.

Рисунок 1. Основные примеры закона Ома и его применение

Если известны любые два значения, то третье можно найти по формуле. Например, если известны сопротивление и напряжение, ток можно определить, разделив напряжение на сопротивление. Это может быть полезно при определении количества тока, который будет протекать в цепи, для правильного выбора размеров проводников, а также устройств перегрузки по току.

Лошадиная сила. Механическая мощность обычно выражается в лошадиных силах, а электрическая мощность – в ваттах. Срок лошадиных сил возникла как объем работы, которую сильная лондонская упряжная (тягловая) лошадь могла выполнить за короткий промежуток времени. Он также использовался для измерения мощности паровых двигателей. Одна лошадиная сила, сокращенно «HP», равна работе, необходимой для подъема 33 000 фунтов на один фут (33 000 футо-фунтов) за одну минуту. Это то же самое, что поднять 550 фунтов на один фут за одну секунду.

Часто необходимо преобразовать мощность из одних единиц в другие, и уравнение на рисунке 2 используется для преобразования лошадиных сил в ватты или ватт в лошадиные силы.


Рисунок 2. Базовая формула HP

Формула HP применима к лабораторным условиям, поскольку двигатели потребляют больше энергии, чем выдают. Это происходит из-за того, что мощность расходуется в виде тепла в двигателе для преодоления трения в подшипниках, сопротивления ветра и других факторов. Например, двигатель мощностью 1 л.с. (746 ватт) может потреблять около 1000 ватт, разница расходуется на преодоление уже указанных факторов. Для определения фактической мощности однофазных двигателей необходимо учитывать коэффициент КПД двигателя (см. рис. 3).


Рисунок 3. Базовые формулы коэффициента мощности

Колесо Ватт

Колесо Ватта было разработано и опубликовано во многих руководствах и в нескольких вариантах для иллюстрации ватт или мощности и их связи с элементами закона Ома. Как показано в этом тексте, он точен для цепей постоянного тока и резистивных нагрузок цепей переменного тока, где коэффициент мощности близок к 100 процентам или единице (см. рис. 4). Не пытайтесь использовать его для нагрузки двигателя, так как в формулу должны быть включены как коэффициент мощности, так и КПД двигателя (см. рис. 3).


Рисунок 4. Колесо Ватта и закон Ома

В цепях переменного тока мы используем термин импеданс вместо омов для представления сопротивления цепи Импеданс – это полное сопротивление току, протекающему в цепи переменного тока; измеряется в омах. Полное сопротивление включает сопротивление, емкостное сопротивление и индуктивное сопротивление. Последние два фактора уникальны для цепей переменного тока и обычно могут игнорироваться в таких цепях, как нагрузки освещения с лампами накаливания и цепи нагревателей, состоящие из резистивных нагрузок. Подробное объяснение емкостного реактивного сопротивления и индуктивного сопротивления выходит за рамки этого текста, но его можно найти во многих превосходных учебниках по теории электричества.

Закон Ома и основы теории электротехники

Электрический ток, протекающий через любую электрическую цепь, можно сравнить с водой под давлением, протекающей через пожарный рукав. Вода, протекающая через пожарный шланг, измеряется в галлонах в минуту (GPM), а электричество, протекающее по цепи, измеряется в амперах (А).

Вода течет по шлангу, когда на него оказывается давление и открывается клапан. Давление воды измеряется в фунтах на квадратный дюйм (psi). Электрический ток течет по электрическому проводнику, когда к нему приложено электрическое давление и предусмотрен путь для протекания тока. Подобно тому, как «фунты на квадратный дюйм» (давление) заставляют течь галлоны в минуту, так и «вольты» (давление) заставляют течь «ампер» (ток).

Чтобы протолкнуть такое же количество воды через маленький шланг, требуется большее давление, чем через большой шланг. Небольшой шланг при том же давлении, что и шланг большего размера, пропустит гораздо меньше воды за определенный период времени. Из этого следует, что маленький шланг оказывает большее сопротивление потоку воды.

В электрической цепи большее электрическое давление (вольты) будет пропускать ток определенной силы (ампер) через небольшой проводник (сопротивление), чем то, которое требуется для подачи того же количества тока (амперы) через проводник большего размера (сопротивление ). Проводник меньшего размера будет пропускать меньший ток (ампер), чем проводник большего размера, если к каждому проводнику будет приложено одинаковое электрическое давление (вольты) в течение того же периода времени. Можно предположить, что меньший проводник имеет большее сопротивление (Ом), чем больший проводник. Таким образом, мы можем определить сопротивление как «свойство тела, которое сопротивляется или ограничивает поток электричества через него». Сопротивление измеряется в Ом. — термин, аналогичный трению в шланге или трубе.

Взято из Электрические системы жилых домов на одну и две семьи, , 8 th Edition. Эту книгу можно приобрести по адресу www.iaei.org/web/shop или по адресу Amazon.com .

 

Закон Ома и начало расчета напряжения, тока и сопротивления

 

Независимо от того, являетесь ли вы любителем, техническим специалистом или планируете карьеру в области дизайна, вы должны начать с хорошего понимания того, с чем вы работаете. Для электроники это означает работу с законом Ома. Основной принцип закона Ома, который представляет собой взаимосвязь между напряжением, током и сопротивлением, является основой, на которой построена электроника. И точно так же, как под зданием требуется прочный фундамент, чтобы поддерживать его, ваша способность работать с электричеством и использовать его зависит от прочного фундамента закона Ома и вашего понимания его.

Ом — это стандартная единица электрического сопротивления, но вам может быть интересно, откуда взялся этот термин и как все это влияет на закон Ома. Все началось с немецкого физика и математика по имени Георг Ом, и термин «ом» был назван в его честь. Так откуда же взялся закон Ома и что это за закон? Давайте посмотрим поближе.

Георг Ом, создатель закона Ома

Родившийся в 1789 году, Георг Ом начал свою профессиональную жизнь в качестве учителя математики. Однако поначалу он не был доволен своей профессией, и разные школы, в которых он первоначально преподавал, тоже не были лучшими. В конце концов, он стал преподавать математику и физику в иезуитской гимназии Кёльна. Это ему больше нравилось, поскольку у школы была хорошая репутация в области естественнонаучного образования.

Георг Ом начал экспериментировать с электричеством, что привело его к публикации статей на эту тему. В 1827 г. он опубликовал свою книгу; «Гальваническая цепь, исследованная математически», где он дал свою полную теорию электричества, включая формулу того, что в конечном итоге будет названо законом Ома. К сожалению, школа, в которой он работал, не оценила его работу, в результате чего Ом в конечном итоге ушел в отставку. Позже он перешел на должности в других школах, где его работа получила более широкое признание, а его открытие взаимосвязи между напряжением, током и сопротивлением стало известно во всем мире как закон Ома.

 

Формулы, используемые для описания закона Ома

 

Что такое закон Ома?

Георг Ом открыл и определил, как электрическое напряжение, ток и сопротивление влияют друг на друга в цепи. Цепь представляет собой замкнутый контур электричества или заряда. Компоненты, которые мы используем в цепи, будут контролировать заряд, чтобы он вел себя так, как нам нужно для работы конкретной цепи. Для начала первое, что мы сделаем, это определим эти термины:

 

  • Напряжение : В цепи одна точка будет иметь больший заряд, чем другая. Эта разница заряда между двумя точками представляет собой напряжение и измеряется в вольтах.

  • Ток : Количество или объем заряда, протекающего по цепи за определенный период времени. Ток измеряется в амперах, которые обычно называют амперами.

  • Сопротивление : Некоторые материалы будут сопротивляться потоку электричества, и когда эти материалы используются в цепи, они создают сопротивление. Чем больше сопротивление в цепи, тем меньше заряда будет течь. Сопротивление измеряется в омах.

 

Для лучшего объяснения взаимосвязи между напряжением, током и сопротивлением может быть полезно использовать аналогию с резервуаром для воды с хостом, соединенным со дном.

 

  • Заряд будет представлен водой в баке, которая будет вытекать из шланга.

  • Напряжение будет представлено давлением потока воды.

  • Ток будет представлен объемом расхода воды.

  • Сопротивление будет представлено диаметром шланга.

 

Если наш резервуар для воды приподнят над землей, давление воды, вытекающей из шланга на дне, будет представлять собой напряжение, а объем протекающей воды будет представлять ток. Если бы диаметр шланга стал меньше, поток воды был бы сужен, что привело бы к уменьшению протекания воды. Если бы диаметр шланга стал больше, то через него могло бы пройти больше воды. Подводя итог, можно сказать, что цепь с более высоким сопротивлением будет ограничивать количество заряда, протекающего через нее.

Чтобы выразить закон Ома в виде формулы, в которой напряжение равно произведению силы тока на сопротивление, укажите V = напряжение в вольтах, I = ток в амперах и R = сопротивление в омах. Это позволяет легко решить для каждого из трех элементов:

 

  • В = I х R

  • И = В / Р

  • Р = В/Я

 

Следовательно, в цепи на 12 вольт, в которой есть компонент с сопротивлением 6 Ом, мы можем рассчитать, что 12 вольт, разделенные на сопротивление 6 Ом, дадут ток в 2 ампера для нашей цепи. Хотя это чрезвычайно простое объяснение, вы можете видеть, что закон Ома будет частью почти всего в электронике.

 

PSpice — это симулятор схем, который позволит вам находить параметры в вашей схеме на основе целей схемы

 

Почему важен закон Ома?

V=IR, или закон Ома, является наиболее фундаментальным законом в электричестве, и он будет влиять на каждую цепь, с которой вы будете работать. Усилия Георга Ома ознаменовали собой первую работу в области теории и анализа электричества, которая представляет собой процесс нахождения напряжений и токов через все компоненты цепи.

Хотя сначала Ом столкнулся с холодным отношением к своему открытию, он упорствовал, и в конце концов важность закона Ома была признана всеми. Он остается наиболее широко используемым из всех различных правил и законов, касающихся электрических цепей и их поведения.

По мере того, как вы применяете закон Ома и другие электронные принципы и правила в своей работе, вам потребуются инструменты анализа, которые могут моделировать ваши схемы и точно сообщать вам об их поведении. Использование надлежащих инструментов SPICE может подтвердить теоретические концепции с помощью моделирования, позволит вам создавать более сложные комбинации схем перед компоновкой, а также сэкономит огромное количество времени на ручных вычислениях.

PSpice, входящий в комплект инструментов проектирования Cadence, дает вам возможность моделировать ваши схемы в программном обеспечении, экономя ваше время на самостоятельное создание и тестирование этих схем вручную. PSpice — это предпочтительный инструмент моделирования для пользователей, независимо от того, начинаете ли вы свой бизнес или уже являетесь опытным инженером. Вы также можете полностью воссоздать схему, которая у вас есть, в инструменте создания схем OrCAD Capture, чтобы ее можно было легко смоделировать с помощью PSpice.

Если вы хотите узнать больше о том, как инструменты моделирования от Cadence станут для вас лучшим решением, поговорите с нами и нашей командой экспертов.

Решения Cadence PCB — это комплексный инструмент для проектирования от начала до конца, позволяющий быстро и эффективно создавать продукты. Cadence позволяет пользователям точно сократить циклы проектирования и передать их в производство с помощью современного отраслевого стандарта IPC-2581.

Подпишитесь на Linkedin Посетить сайт Больше контента от Cadence PCB Solutions

Напряжение (В) 0,0 1,0 2,0 3,0 2
Current (A) 0,0 1,0 2,0 3.0 4.0