Касательное нормальное и полное ускорение: Краткий курс теоретической механики

Краткий курс теоретической механики

Краткий курс теоретической механики
  

Тарг С. М. Краткий курс теоретической механики: Учеб. для втузов.— 10-е изд., перераб. и доп. — М.: Высш. шк., 1986.— 416 с.

В книге изложены основы механики материальной точки, системы материальных точек и твердого тела в объеме, соответствующем программам технических вузов. Приведено много примеров и задач, решения которых сопровождаются соответствующими методическими указаниями. В 10-м издании (9-е — 1974 г.) значительно изменены и более компактно изложены вопросы статики; в разделе «Динамика» дополнительно рассмотрены приложения общих теорем к изучению движения жидкости, малые колебания системы и некоторые другие вопросы.

Для студентов очных и заочных технических вузов.




Оглавление

ПРЕДИСЛОВИЕ К ДЕСЯТОМУ ИЗДАНИЮ
ВВЕДЕНИЕ
Раздел первый. СТАТИКА ТВЕРДОГО ТЕЛА
§ 1. АБСОЛЮТНО ТВЕРДОЕ ТЕЛО; СИЛА. ЗАДАЧИ СТАТИКИ
§ 2. ИСХОДНЫЕ ПОЛОЖЕНИЯ СТАТИКИ
§ 3. СВЯЗИ И ИХ РЕАКЦИИ
Глава II. СЛОЖЕНИЕ СИЛ. СИСТЕМА СХОДЯЩИХСЯ СИЛ
§ 4. ГЕОМЕТРИЧЕСКИЙ СПОСОБ СЛОЖЕНИЯ СИЛ. РАВНОДЕЙСТВУЮЩАЯ СХОДЯЩИХСЯ СИЛ; РАЗЛОЖЕНИЕ СИЛ
§ 5. ПРОЕКЦИЯ СИЛЫ НА ОСЬ И НА ПЛОСКОСТЬ. АНАЛИТИЧЕСКИЙ СПОСОБ ЗАДАНИЯ И СЛОЖЕНИЯ СИЛ
§ 6. РАВНОВЕСИЕ СИСТЕМЫ СХОДЯЩИХСЯ СИЛ
§ 7. РЕШЕНИЕ ЗАДАЧ СТАТИКИ
Глава III. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ЦЕНТРА. ПАРА СИЛ
§ 8. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ЦЕНТРА (ИЛИ ТОЧКИ)
§ 9. ПАРА СИЛ. МОМЕНТ ПАРЫ
§ 10. ТЕОРЕМЫ ОБ ЭКВИВАЛЕНТНОСТИ И О СЛОЖЕНИИ ПАР
Глава IV. ПРИВЕДЕНИЕ СИСТЕМЫ СИЛ К ЦЕНТРУ. УСЛОВИЯ РАВНОВЕСИЯ
§ 11. ТЕОРЕМА О ПАРАЛЛЕЛЬНОМ ПЕРЕНОСЕ СИЛЫ
§ 12. ПРИВЕДЕНИЕ СИСТЕМЫ СИЛ К ДАННОМУ ЦЕНТРУ
§ 13. УСЛОВИЯ РАВНОВЕСИЯ СИСТЕМЫ СИЛ. ТЕОРЕМА О МОМЕНТЕ РАВНОДЕЙСТВУЮЩЕЙ
Глава V. ПЛОСКАЯ СИСТЕМА СИЛ
§ 14. АЛГЕБРАИЧЕСКИЕ МОМЕНТЫ СИЛЫ И ПАРЫ
§ 15. ПРИВЕДЕНИЕ ПЛОСКОЙ СИСТЕМЫ СИЛ К ПРОСТЕЙШЕМУ ВИДУ
§ 16. РАВНОВЕСИЕ ПЛОСКОЙ СИСТЕМЫ СИЛ. СЛУЧАЙ ПАРАЛЛЕЛЬНЫХ СИЛ
§ 17. РЕШЕНИЕ ЗАДАЧ
§ 19. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ И СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ ТЕЛ (КОНСТРУКЦИИ)
§ 20. ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ УСИЛИЙ
§ 21. РАСПРЕДЕЛЕННЫЕ СИЛЫ
§ 22. РАСЧЕТ ПЛОСКИХ ФЕРМ
Глава VI. ТРЕНИЕ
§ 23. ЗАКОНЫ ТРЕНИЯ СКОЛЬЖЕНИЯ
§ 24. РЕАКЦИИ ШЕРОХОВАТЫХ СВЯЗЕЙ. УГОЛ ТРЕНИЯ
§ 25. РАВНОВЕСИЕ ПРИ НАЛИЧИИ ТРЕНИЯ
§ 26. ТРЕНИЕ НИТИ О ЦИЛИНДРИЧЕСКУЮ ПОВЕРХНОСТЬ
§ 27. ТРЕНИЕ КАЧЕНИЯ
Глава VII. ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ
§ 28. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ОСИ. ВЫЧИСЛЕНИЕ ГЛАВНОГО ВЕКТОРА И ГЛАВНОГО МОМЕНТА СИСТЕМЫ СИЛ
§ 29. ПРИВЕДЕНИЕ ПРОСТРАНСТВЕННОЙ СИСТЕМЫ СИЛ К ПРОСТЕЙШЕМУ ВИДУ
§ 30. РАВНОВЕСИЕ ПРОИЗВОЛЬНОЙ ПРОСТРАНСТВЕННОЙ СИСТЕМЫ СИЛ. СЛУЧАЙ ПАРАЛЛЕЛЬНЫХ СИЛ
Глава VIII. ЦЕНТР ТЯЖЕСТИ
§ 31. ЦЕНТР ПАРАЛЛЕЛЬНЫХ СИЛ
§ 32. СИЛОВОЕ ПОЛЕ.
ЦЕНТР ТЯЖЕСТИ ТВЕРДОГО ТЕЛА
§ 33. КООРДИНАТЫ ЦЕНТРОВ ТЯЖЕСТИ ОДНОРОДНЫХ ТЕЛ
§ 34. СПОСОБЫ ОПРЕДЕЛЕНИЯ КООРДИНАТ ЦЕНТРОВ ТЯЖЕСТИ ТЕЛ
§ 35. ЦЕНТРЫ ТЯЖЕСТИ НЕКОТОРЫХ ОДНОРОДНЫХ ТЕЛ
Раздел второй. КИНЕМАТИКА ТОЧКИ И ТВЕРДОГО ТЕЛА
§ 36. ВВЕДЕНИЕ В КИНЕМАТИКУ
§ 37. СПОСОБЫ ЗАДАНИЯ ДВИЖЕНИЯ ТОЧКИ
§ 38. ВЕКТОР СКОРОСТИ ТОЧКИ
§ 39. ВЕКТОР УСКОРЕНИЯ ТОЧКИ
§ 40. ОПРЕДЕЛЕНИЕ СКОРОСТИ И УСКОРЕНИЯ ТОЧКИ ПРИ КООРДИНАТНОМ СПОСОБЕ ЗАДАНИЯ ДВИЖЕНИЯ
§ 41. РЕШЕНИЕ ЗАДАЧ КИНЕМАТИКИ ТОЧКИ
§ 42. ОСИ ЕСТЕСТВЕННОГО ТРЕХГРАННИКА. ЧИСЛОВОЕ ЗНАЧЕНИЕ СКОРОСТИ
§ 43. КАСАТЕЛЬНОЕ и НОРМАЛЬНОЕ УСКОРЕНИЯ ТОЧКИ
§ 44. НЕКОТОРЫЕ ЧАСТНЫЕ СЛУЧАИ ДВИЖЕНИЯ ТОЧКИ
§ 45. ГРАФИКИ ДВИЖЕНИЯ, СКОРОСТИ И УСКОРЕНИЯ ТОЧКИ
§ 46. РЕШЕНИЕ ЗАДАЧ
§ 47. СКОРОСТЬ И УСКОРЕНИЕ ТОЧКИ В ПОЛЯРНЫХ КООРДИНАТАХ
Глава X. ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА
§ 48. ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ
§ 49. ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА ВОКРУГ ОСИ, УГЛОВАЯ СКОРОСТЬ И УГЛОВОЕ УСКОРЕНИЕ
§ 50. РАВНОМЕРНОЕ И РАВНОПЕРЕМЕННОЕ ВРАЩЕНИЯ
§ 51. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ВРАЩАЮЩЕГОСЯ ТЕЛА
Глава XI. ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
§ 52. УРАВНЕНИЯ ПЛОСКОПАРАЛЛЕЛЬНОГО ДВИЖЕНИЯ (ДВИЖЕНИЯ ПЛОСКОЙ ФИГУРЫ). РАЗЛОЖЕНИЕ ДВИЖЕНИЯ НА ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ
§ 53. ОПРЕДЕЛЕНИЕ ТРАЕКТОРИЙ ТОЧЕК ПЛОСКОЙ ФИГУРЫ
§ 54. ОПРЕДЕЛЕНИЕ СКОРОСТЕЙ ТОЧЕК ПЛОСКОЙ ФИГУРЫ
§ 55. ТЕОРЕМА О ПРОЕКЦИЯХ СКОРОСТЕЙ ДВУХ ТОЧЕК ТЕЛА
§ 56. ОПРЕДЕЛЕНИЕ СКОРОСТЕЙ ТОЧЕК ПЛОСКОЙ ФИГУРЫ С ПОМОЩЬЮ МГНОВЕННОГО ЦЕНТРА СКОРОСТЕЙ. ПОНЯТИЕ О ЦЕНТРОИДАХ
§ 57. РЕШЕНИЕ ЗАДАЧ
§ 58. ОПРЕДЕЛЕНИЕ УСКОРЕНИЙ ТОЧЕК ПЛОСКОЙ ФИГУРЫ
§ 59. МГНОВЕННЫЙ ЦЕНТР УСКОРЕНИЙ
ГЛАВА XII. ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ И ДВИЖЕНИЕ СВОБОДНОГО ТВЕРДОГО ТЕЛА
§ 60. ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА, ИМЕЮЩЕГО ОДНУ НЕПОДВИЖНУЮ ТОЧКУ
§ 61. КИНЕМАТИЧЕСКИЕ УРАВНЕНИЯ ЭЙЛЕРА
§ 62. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ТЕЛА
§ 63. ОБЩИЙ СЛУЧАЙ ДВИЖЕНИЯ СВОБОДНОГО ТВЕРДОГО ТЕЛА
Глава XIII. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ
§ 64. ОТНОСИТЕЛЬНОЕ, ПЕРЕНОСНОЕ И АБСОЛЮТНОЕ ДВИЖЕНИЯ
§ 65. ТЕОРЕМА О СЛОЖЕНИИ СКОРОСТЕЙ
§ 66. ТЕОРЕМА О СЛОЖЕНИИ УСКОРЕНИЙ (ТЕОРЕМА КОРИОЛИСА)
§ 67. РЕШЕНИЕ ЗАДАЧ
Глава XIV. СЛОЖНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
§ 68. СЛОЖЕНИЕ ПОСТУПАТЕЛЬНЫХ ДВИЖЕНИЙ
§ 69. СЛОЖЕНИЕ ВРАЩЕНИЙ ВОКРУГ ДВУХ ПАРАЛЛЕЛЬНЫХ ОСЕЙ
§ 70. ЦИЛИНДРИЧЕСКИЕ ЗУБЧАТЫЕ ПЕРЕДАЧИ
§ 71. СЛОЖЕНИЕ ВРАЩЕНИЙ ВОКРУГ ПЕРЕСЕКАЮЩИХСЯ ОСЕЙ
§ 72. СЛОЖЕНИЕ ПОСТУПАТЕЛЬНОГО И ВРАЩАТЕЛЬНОГО ДВИЖЕНИЙ. ВИНТОВОЕ ДВИЖЕНИЕ
Раздел третий. ДИНАМИКА ТОЧКИ
Глава XV. ВВЕДЕНИЕ В ДИНАМИКУ. ЗАКОНЫ ДИНАМИКИ
§ 74. ЗАКОНЫ ДИНАМИКИ. ЗАДАЧИ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ
§ 75. СИСТЕМЫ ЕДИНИЦ
§ 76. ОСНОВНЫЕ ВИДЫ СИЛ
Глава XVI. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ТОЧКИ, РЕШЕНИЕ ЗАДАЧ ДИНАМИКИ ТОЧКИ
§ 77. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ
§ 78. РЕШЕНИЕ ПЕРВОЙ ЗАДАЧИ ДИНАМИКИ (ОПРЕДЕЛЕНИЕ СИЛ ПО ЗАДАННОМУ ДВИЖЕНИЮ)
§ 79. РЕШЕНИЕ ОСНОВНОЙ ЗАДАЧИ ДИНАМИКИ ПРИ ПРЯМОЛИНЕЙНОМ ДВИЖЕНИИ ТОЧКИ
§ 80. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
§ 81. ПАДЕНИЕ ТЕЛА В СОПРОТИВЛЯЮЩЕЙСЯ СРЕДЕ (В ВОЗДУХЕ)
§ 82. РЕШЕНИЕ ОСНОВНОЙ ЗАДАЧИ ДИНАМИКИ ПРИ КРИВОЛИНЕЙНОМ ДВИЖЕНИИ ТОЧКИ
Глава XVII. ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ ТОЧКИ
§ 83. КОЛИЧЕСТВО ДВИЖЕНИЯ ТОЧКИ. ИМПУЛЬС СИЛЫ
§ 84. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КОЛИЧЕСТВА ДВИЖЕНИЯ ТОЧКИ
§ 85. ТЕОРЕМА ОБ ИЗМЕНЕНИИ МОМЕНТА КОЛИЧЕСТВА ДВИЖЕНИЯ ТОЧКИ (ТЕОРЕМА МОМЕНТОВ)
§ 86. ДВИЖЕНИЕ ПОД ДЕЙСТВИЕМ ЦЕНТРАЛЬНОЙ СИЛЫ. ЗАКОН ПЛОЩАДЕЙ
§ 87. РАБОТА СИЛЫ. МОЩНОСТЬ
§ 88. ПРИМЕРЫ ВЫЧИСЛЕНИЯ РАБОТЫ
§ 89. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ ТОЧКИ
Глава XVIII. НЕСВОБОДНОЕ И ОТНОСИТЕЛЬНОЕ ДВИЖЕНИЯ ТОЧКИ
§ 90. НЕСВОБОДНОЕ ДВИЖЕНИЕ ТОЧКИ
§ 91. ОТНОСИТЕЛЬНОЕ ДВИЖЕНИЕ ТОЧКИ
§ 92. ВЛИЯНИЕ ВРАЩЕНИЯ ЗЕМЛИ НА РАВНОВЕСИЕ И ДВИЖЕНИЕ ТЕЛ
§ 93. ОТКЛОНЕНИЕ ПАДАЮЩЕЙ ТОЧКИ ОТ ВЕРТИКАЛИ ВСЛЕДСТВИЕ ВРАЩЕНИЯ ЗЕМЛИ
Глава XIX. ПРЯМОЛИНЕЙНЫЕ КОЛЕБАНИЯ ТОЧКИ
§ 94. СВОБОДНЫЕ КОЛЕБАНИЯ БЕЗ УЧЕТА СИЛ СОПРОТИВЛЕНИЯ
§ 95. СВОБОДНЫЕ КОЛЕБАНИЯ ПРИ ВЯЗКОМ СОПРОТИВЛЕНИИ (ЗАТУХАЮЩИЕ КОЛЕБАНИЯ)
§ 96. ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ. РЕЗОНАНС
Глава XX. ДВИЖЕНИЕ ТЕЛА В ПОЛЕ ЗЕМНОГО ТЯГОТЕНИЯ
§ 97. ДВИЖЕНИЕ БРОШЕННОГО ТЕЛА В ПОЛЕ ТЯГОТЕНИЯ ЗЕМЛИ
§ 98. ИСКУССТВЕННЫЕ СПУТНИКИ ЗЕМЛИ. ЭЛЛИПТИЧЕСКИЕ ТРАЕКТОРИИ
§ 99. ПОНЯТИЕ О НЕВЕСОМОСТИ. МЕСТНЫЕ СИСТЕМЫ ОТСЧЕТА
Раздел четвертый. ДИНАМИКА СИСТЕМЫ И ТВЕРДОГО ТЕЛА
§ 100. МЕХАНИЧЕСКАЯ СИСТЕМА. СИЛЫ ВНЕШНИЕ И ВНУТРЕННИЕ
§ 101. МАССА СИСТЕМЫ. ЦЕНТР МАСС
§ 102. МОМЕНТ ИНЕРЦИИ ТЕЛА ОТНОСИТЕЛЬНО ОСИ. РАДИУС ИНЕРЦИИ
§ 103. МОМЕНТЫ ИНЕРЦИИ ТЕЛА ОТНОСИТЕЛЬНО ПАРАЛЛЕЛЬНЫХ ОСЕЙ. ТЕОРЕМА ГЮЙГЕНСА
§ 104. ЦЕНТРОБЕЖНЫЕ МОМЕНТЫ ИНЕРЦИИ. ПОНЯТИЯ О ГЛАВНЫХ ОСЯХ ИНЕРЦИИ ТЕЛА
§ 105. МОМЕНТ ИНЕРЦИИ ТЕЛА ОТНОСИТЕЛЬНО ПРОИЗВОЛЬНОЙ ОСИ
Глава XXII. ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС СИСТЕМЫ
§ 106. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ СИСТЕМЫ
§ 107. ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС
§ 108. ЗАКОН СОХРАНЕНИЯ ДВИЖЕНИЯ ЦЕНТРА МАСС
§ 109. РЕШЕНИЕ ЗАДАЧ
Глава XXIII. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КОЛИЧЕСТВА ДВИЖЕНИЯ СИСТЕМЫ
§ 110. КОЛИЧЕСТВО ДВИЖЕНИЯ СИСТЕМЫ
§ 111. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КОЛИЧЕСТВА ДВИЖЕНИЯ
§ 112. ЗАКОН СОХРАНЕНИЯ КОЛИЧЕСТВА ДВИЖЕНИЯ
§ 113. ПРИЛОЖЕНИЕ ТЕОРЕМЫ К ДВИЖЕНИЮ ЖИДКОСТИ (ГАЗА)
§ 114. ТЕЛО ПЕРЕМЕННОЙ МАССЫ. ДВИЖЕНИЕ РАКЕТЫ
Глава XXIV. ТЕОРЕМА ОБ ИЗМЕНЕНИИ МОМЕНТА КОЛИЧЕСТВ ДВИЖЕНИЯ СИСТЕМЫ
§ 115. ГЛАВНЫЙ МОМЕНТ КОЛИЧЕСТВ ДВИЖЕНИЯ СИСТЕМЫ
§ 116. ТЕОРЕМА ОБ ИЗМЕНЕНИИ ГЛАВНОГО МОМЕНТА КОЛИЧЕСТВ ДВИЖЕНИЯ СИСТЕМЫ (ТЕОРЕМА МОМЕНТОВ)
§ 117. ЗАКОН СОХРАНЕНИЯ ГЛАВНОГО МОМЕНТА КОЛИЧЕСТВ ДВИЖЕНИЯ
§ 118. РЕШЕНИЕ ЗАДАЧ
§ 119. ПРИЛОЖЕНИЕ ТЕОРЕМЫ МОМЕНТОВ К ДВИЖЕНИЮ ЖИДКОСТИ (ГАЗА)
§ 120. УСЛОВИЯ РАВНОВЕСИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ
Глава XXV. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ
§ 121. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ
§ 122. НЕКОТОРЫЕ СЛУЧАИ ВЫЧИСЛЕНИЯ РАБОТЫ
§ 123. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ
§ 124. РЕШЕНИЕ ЗАДАЧ
§ 125. СМЕШАННЫЕ ЗАДАЧИ
§ 126. ПОТЕНЦИАЛЬНОЕ СИЛОВОЕ ПОЛЕ И СИЛОВАЯ ФУНКЦИЯ
§ 127. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ. ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ
Глава XXVI. ПРИЛОЖЕНИЕ ОБЩИХ ТЕОРЕМ К ДИНАМИКЕ ТВЕРДОГО ТЕЛА
§ 128. ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ
§ 129. ФИЗИЧЕСКИЙ МАЯТНИК. ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ
§ 130. ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
§ 131. ЭЛЕМЕНТАРНАЯ ТЕОРИЯ ГИРОСКОПА
§ 132. ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ И ДВИЖЕНИЕ СВОБОДНОГО ТВЕРДОГО ТЕЛА
Глава XXVII. ПРИНЦИП ДАЛАМБЕРА
§ 133. ПРИНЦИП ДАЛАМБЕРА ДЛЯ ТОЧКИ И МЕХАНИЧЕСКОЙ СИСТЕМЫ
§ 134. ГЛАВНЫЙ ВЕКТОР И ГЛАВНЫЙ МОМЕНТ СИЛ ИНЕРЦИИ
§ 135. РЕШЕНИЕ ЗАДАЧ
§ 136. ДИНАМИЧЕСКИЕ РЕАКЦИИ, ДЕЙСТВУЮЩИЕ НА ОСЬ ВРАЩАЮЩЕГОСЯ ТЕЛА. УРАВНОВЕШИВАНИЕ ВРАЩАЮЩИХСЯ ТЕЛ
Глава XXVIII. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ И ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ
§ 137. КЛАССИФИКАЦИЯ СВЯЗЕЙ
§ 138. ВОЗМОЖНЫЕ ПЕРЕМЕЩЕНИЯ СИСТЕМЫ. ЧИСЛО СТЕПЕНЕЙ СВОБОДЫ
§ 139. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ
§ 140. РЕШЕНИЕ ЗАДАЧ
§ 141. ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ
Глава XXIX. УСЛОВИЯ РАВНОВЕСИЯ И УРАВНЕНИЯ ДВИЖЕНИЯ СИСТЕМЫ В ОБОБЩЕННЫХ КООРДИНАТАХ
§ 142. ОБОБЩЕННЫЕ КООРДИНАТЫ И ОБОБЩЕННЫЕ СКОРОСТИ
§ 143. ОБОБЩЕННЫЕ СИЛЫ
§ 144. УСЛОВИЯ РАВНОВЕСИЯ СИСТЕМЫ В ОБОБЩЕННЫХ КООРДИНАТАХ
§ 145. УРАВНЕНИЯ ЛАГРАНЖА
§ 146. РЕШЕНИЕ ЗАДАЧ
Глава XXX. МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ ОКОЛО ПОЛОЖЕНИЯ УСТОЙЧИВОГО РАВНОВЕСИЯ
§ 147. ПОНЯТИЕ ОБ УСТОЙЧИВОСТИ РАВНОВЕСИЯ
§ 148. МАЛЫЕ СВОБОДНЫЕ КОЛЕБАНИЯ СИСТЕМЫ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ
§ 149. МАЛЫЕ ЗАТУХАЮЩИЕ И ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ СИСТЕМЫ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ
§ 150. МАЛЫЕ СВОБОДНЫЕ КОЛЕБАНИЯ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ
Глава XXXI. ЭЛЕМЕНТАРНАЯ ТЕОРИЯ УДАРА
§ 151. ОСНОВНОЕ УРАВНЕНИЕ ТЕОРИИ УДАРА
§ 152. ОБЩИЕ ТЕОРЕМЫ ТЕОРИИ УДАРА
§ 153. КОЭФФИЦИЕНТ ВОССТАНОВЛЕНИЯ ПРИ УДАРЕ
§ 154. УДАР ТЕЛА О НЕПОДВИЖНУЮ ПРЕГРАДУ
§ 155. ПРЯМОЙ ЦЕНТРАЛЬНЫЙ УДАР ДВУХ ТЕЛ (УДАР ШАРОВ)
§ 156. ПОТЕРЯ КИНЕТИЧЕСКОЙ ЭНЕРГИИ ПРИ НЕУПРУГОМ УДАРЕ ДВУХ ТЕЛ. ТЕОРЕМА КАРНО
§ 157. УДАР ПО ВРАЩАЮЩЕМУСЯ ТЕЛУ. ЦЕНТР УДАРА

Касательное и нормальное ускорения точки

⇐ Предыдущая26272829303132333435Следующая ⇒

Касательное ускорение точки равно первой производной от модуля скорости или второй производной от расстояния по времени. Касательное ускорение обозначается – .

.

Касательное ускорение в данной точке направлено по касательной к траектории движения точки; если движение ускоренное, то направление вектора касательного ускорения совпадает с направлением вектора скорости; если движение замедленное – то направление вектора касательного ускорения противоположно направлению вектора скорости. (рис. 8.5.)

 

Рис. 8.5

 

Нормальным ускорением точки называется величина, равная квадрату скорости, деленному на радиус кривизны.

Вектор нормального ускорения направлен от данной точки к центру кривизны, (рис. 8.6.). Нормальное ускорение обозначается .

– нормаль к данной точке на траектории движения.

 

Рис. 8.6.

 

 

Полное ускорение точки определяется из векторного уравнения:

 

Рис. 8.7

Зная направление и модули и , по правилу параллелограмма определим ускорение, соответствующее данной точке траектории движения. Тогда модуль ускорения определим:

.

 

Пример 1.

Определить траекторию, скорость и ускорение середины шатуна кривошипно-шатунного механизма, если , а угол при вращении кривошипа растет пропорционально времени: (рис. 8.8.)

 

Рис. 8.8

Решение.

Определим уравнение движения точки . Для этого определим координаты точки в произвольном положении:

;

.

Получим уравнения движения точки :

или, учитывая, что : .

Представим полученные уравнения в виде:

.

Возводя эти равенства почленно в квадрат и складывая, получим:

.

Траектория точки представляет эллипс с полуосями и .

Определим проекции скорости точки на оси координат:

.

Модуль скорости точки :

.

Определим проекции ускорения точки на оси координат:

.

Модуль ускорения определится как:

,

где – длина радиуса вектора, проведенного из начала координат в точку .

Для определения направления ускорения точки найдем направляющие косинусы:

,

.

Отсюда следует, что вектор ускорения все время направлен от точки к центру эллипса. (Рис. 8.8.)

 

 

Пример 2.

Даны уравнения движения точки: ; .

Определить уравнение траектории точки для момента времени . Найти положение точки, скорость и ускорение точки, а также ее касательное ускорение и радиус кривизны траектории в этой точке.

 

Решение.

1. Определим траекторию движения точки по уравнениям:

.

Отсюда, возведя в квадрат обе части уравнений и складывая отдельно левые и правые части, получим:

Траектория движения точки представляет эллипс с полуосями 2 и 4 с центром в точке с координатами (0,6) (рис. 8.9).

 

Рис. 8.9

2. В момент времени точка находится в положении с координатами: ; , т.е. (8.2).

Определим проекции скорости точки :

При получим:

; .

Модуль скорости при будет:

Отсюда следует, что точка движется по траектории по часовой стрелке. Вектор скорости направлен по касательной к траектории.

3. Определим проекции ускорения:

,

.

При проекции ускорений будут:

,

.

Модуль ускорения:

,

.

Определим касательное ускорение точки при .

Так как ,

.

Тогда .

Вследствие того, что ,

.

Отсюда:

.

Подставляя численные значения, получим:

.

Нормальное ускорение точки в данный момент времени:

,

.

Радиус кривизны в точке при будет:

,

.

 

 

Вопросы для самоконтроля

1. Определение скорости точки при различных способах задания движения?

2. Определение ускорения точки при различных способах задания движения?

 

Задачи, рекомендуемые для самостоятельного решения: 11.1 – 11.18, 12.1 – 12.39 [2].

Литература: [1], [3], [4].

 

 

⇐ Предыдущая26272829303132333435Следующая ⇒

Поделиться с друзьями:


Дата добавления: 2014-11-26; Просмотров: 28419; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



Тангенциальные и нормальные компоненты вектора ускорения — Криста Кинг Математика

Что такое тангенциальная и нормальная составляющие вектора?

В любой заданной точке кривой мы можем найти вектор ускорения ???a??? что представляет собой ускорение в этой точке.

Если мы найдем единичный касательный вектор ???T??? и единичный вектор нормали ???N??? в той же точке, то тангенциальная составляющая ускорения ???a_T??? а нормальная составляющая ускорения ???a_N??? показаны на диаграмме ниже.

Привет! Я Криста.

Я создаю онлайн-курсы, чтобы помочь вам в учебе по математике. Читать далее.

Тангенциальная составляющая ускорения

???a_T=\frac{r'(t)\cdot{r”(t)}}{\left|r'(t)\right|}???

Нормальная составляющая ускорения

???a_N=\frac{\left|r'(t)\times{r”(t)}\right|}{\left|r'(t)\right| }???

В этих формулах для тангенциальной и нормальной составляющих

???r(t)??? вектор положения, ???r(t)=r(t)_1\bold i+r(t)_2\bold j+r(t)_3\bold k???

???р'(т)??? является его первой производной, ???r'(t)=r'(t)_1\bold i+r'(t)_2\bold j+r'(t)_3\bold k???

???r”(t)??? является его второй производной, ???r”(t)=r”(t)_1\bold i+r”(t)_2\bold j+r”(t)_3\bold k???

???r'(t)\cdot{r”(t)}??? является точечным произведением первой и второй производных, ???r'(t)\cdot{r”(t)}=r'(t)_1r”(t)_1+r'(t)_2r’ ‘(т)_2+р'(т)_3р”(т)_3???

???\влево|r'(t)\вправо|??? – величина первой производной, ???\left|r'(t)\right|=\sqrt{\left[r'(t)_1\right]^2+\left[r'(t)_2 \right]^2+\left[r'(t)_3\right]^2}???

???\влево|r'(t)\times{r”(t)}\вправо|??? является величиной перекрестного произведения первой и второй производных, где перекрестное произведение ???r'(t)\times{r”(t)}=\begin{vmatrix}\bold i & \bold j & \жирный k\\ r'(t)_1 & r'(t)_2 & r'(t)_3\\ r”(t)_1 & r”(t)_2 & r”(t) _3\конец{vmatrix}???

Начнем с нахождения каждой из частей в списке выше, а затем подставим их в формулы для тангенциальной и нормальной составляющих вектора ускорения.

Как найти тангенциальную и нормальную составляющие вектора ускорения

Пройти курс

Хотите узнать больше об исчислении 3? У меня есть пошаговый курс для этого. 🙂

Узнать больше

Нахождение тангенциальной составляющей и нормальной составляющей векторной функции

Пример

92+16}???

Если мы найдем единичный касательный вектор T и единичный вектор нормали N в одной и той же точке, то мы можем определить тангенциальную составляющую ускорения и нормальную составляющую ускорения.

Наконец, мы получим векторное произведение первой и второй производных, а затем найдем его величину.

???r'(t)\times{r”(t)}=\begin{vmatrix}\bold i & \bold j & \bold k\\ r'(t)_1 & r'(t )_2 & r'(t)_3\\ r”(t)_1 & r”(t)_2 & r”(t)_3\end{vmatrix}??? 92+16}}???

Это тангенциальная и нормальная составляющие вектора ускорения.

Получите доступ к полному курсу Calculus 3

Начать

Изучайте математикуКриста Кинг математика, учитесь онлайн, онлайн-курс, онлайн-математика, исчисление 3, исчисление 3, исчисление iii, исчисление iii, многомерное исчисление, многомерное исчисление, многомерное исчисление, многомерное исчисление, векторное исчисление, векторное исчисление , векторы ускорения, тангенциальная составляющая ускорения, нормальная составляющая ускорения, тангенциальная и нормальная составляющие, единичный касательный вектор, единичный вектор нормали, векторные произведения, исчисление, исчисление три

0 лайков

Нормальная и тангенциальная составляющие ускорения

спросил

Изменено 5 лет, 5 месяцев назад

Просмотрено 13 тысяч раз

$\begingroup$

Меня попросили решить на тесте следующую задачу: 92}{р}$.

Оставить комментарий