Кинематика все формулы по физике: Ошибка: 404 Материал не найден

Содержание

Формулы по кинематике, динамике, законам сохранения, молекулярной физике, электричеству, магнетизму, оптике. Тест

Формулы по кинематике, динамике, законам сохранения, молекулярной физике, электричеству, магнетизму, оптике. Тест – курсы по физике Skip navigation
  • Элементы математики
  • действия с векторами
  • выражение неизвестной
  • Физические величины
  • Единицы измерения
  • внесистемные единицы
  • Постоянные величины в физике
  • плотность вещества
  • предел прочности, модуль Юнга
  • скорость звука
  • удельная теплота
  • диэлектрическая проницаемость
  • удельное сопротивление
  • электрохимический эквивалент
  • Формулы
  • I. Механика
  • Кинематика
  • равномерное движение
  • относительность движения
  • неравномерное движение
  • равноускоренное движение
  • ускорение свободного падения
  • графики движения
  • движение по окружности
  • параболическое движение
  • Динамика
  • закон тяготения
  • законы Ньютона
  • силы в природе
  • равнодействующая сила
  • Законы сохранения
  • импульс тела, импульс силы
  • закон сохранения импульса
  • работа и мощность
  • кинетическая и потенциальная энергии
  • закон сохранения энергии
  • Статика
  • плечо и момент силы
  • условия равновесия
  • центр тяжести, центр масс
  • Колебания и волны
  • колебательное движение
  • гармонические колебания
  • маятники
  • превращение энергии при колебаниях
  • упругие волны
  • звуковые волны
  • II. Молекулярная физика
  • Молекулярная физика
  • основные положения мкт
  • давление
  • основное уравнение мкт, температура
  • уравнение идеального газа
  • изопроцессы
  • свойства жидкостей*
  • свойства твердых тел
  • Термодинамика
  • количество теплоты
  • работа, внутренняя энергия
  • первый закон термодинамики
  • второй закон термодинамики
  • тепловые двигатели
  • III. Основы электродинамики
  • Электричество
  • электрический заряд
  • закон Кулона
  • напряженность поля
  • потенциал и работа поля
  • диэлектрики, проводники
  • электроемкость, конденсаторы
  • энергия конденсатора
  • Электрический ток
  • электрический ток, сила и плотность
  • закон Ома для участка цепи
  • работа и мощность тока
  • закон Ома для замкнутой цепи
  • электрический ток в различных средах
  • электрические явления
  • Магнетизм
  • магнитное поле
  • сила Ампера
  • сила Лоренца
  • Электромагнетизм
  • магнитный поток
  • закон электромагнитной индукции
  • самоиндукция, энергия поля
  • электромагнитные колебания
  • электромагнитные волны
  • переменный ток
  • трансформатор*
  • IV. Оптика
  • Волновая оптика
  • свет как электромагнитные волны
  • интерференция
  • дифракция
  • Геометрическая оптика
  • законы распространения света
  • линзы, оптические приборы
  • V. Теория относительности
  • Теория относительности
  • постулаты теории относительности
  • VI. Квантовая физика
  • Световые кванты
  • фотон
  • фотоэффект
  • квантовые постулаты Бора
  • излучение и поглощение света
  • Атомное ядро
  • энергия связи ядра
  • ядерные реакции
  • закон радиоактивного распада
  • элементарные частицы и их свойства
  • Современная физика*
  • физика элементарных частиц
  • мир внутри атомного ядра
  • время расщепляем на мгновения
  • нанотехнологии и нанофизика
  • вещество в экстремальных состояниях
Закрыть

Формулы по кинематике.

Основные понятия кинематики

Что представляют собой основные понятия кинематики? Что это вообще за наука и изучением чего она занимается? Сегодня мы поговорим о том, что представляет собой кинематика, какие основные понятия кинематики имеют место в задачах и что они означают. Дополнительно поговорим о величинах, с которыми наиболее часто приходится иметь дело.

Кинематика. Основные понятия и определения

Для начала поговорим о том, что она собой представляет. Одним из наиболее изучаемых разделов физики в школьном курсе является механика. За ней в неопределенном порядке следует электричество, оптика и некоторые другие разделы, такие как, например, ядерная и атомная физика. Но давайте подробнее разберемся с механикой. Этот занимается изучением механического движения тел. В нем устанавливаются некоторые закономерности и изучаются его способы.

Кинематика как часть механики

Последняя подразделяется на три части: кинематика, динамика и три поднауки, если их так можно назвать, имеют некоторые особенности. Например, статика изучает правила равновесия механических систем. Сразу же в голову приходит ассоциация с чашами весов. Динамика изучает закономерности движения тел, но при этом обращает внимание на силы, действующие на них. А вот кинематика занимается тем же самым, только в учет силы не принимаются. Следовательно, не учитывается в задачах и масса тех самых тел.

Основные понятия кинематики. Механическое движение

Субъектом в этой науке является Под ней понимается тело, размерами которого, по сравнению с определенной механической системой, можно пренебречь. Это так называемое идеализированное тело, сродни идеальному газу, который рассматривают в разделе молекулярной физики. Вообще, понятие материальной точки, как в механике в общем, так и в кинематике в частности, играет достаточно важную роль. Наиболее часто рассматривается так называемое

Что это значит и каким оно может быть?

Обычно движения подразделяют на вращательное и поступательное. Основные понятия кинематики поступательного движения связаны в основном с применяемыми в формулах величинами. О них мы поговорим позднее, а пока что вернемся к типу движения. Понятно, что если речь идет о вращательном, то тело крутится. Соответственно, поступательным движением будет называться перемещение тела в плоскости или линейно.

Теоретическая база для решения задач

Кинематика, основные понятия и формулы которой рассматриваем сейчас, имеет огромное количество задач. Это достигается за счет обычной комбинаторики. Один из методов разнообразия здесь – изменение неизвестных условий. Одну и ту же задачу можно представить в разном свете, просто меняя цель ее решения. Требуется найти расстояние, скорость, время, ускорение. Как видите, вариантов целое море. Если же сюда подключить условия свободного падения, простор становится просто невообразимым.

Величины и формулы

Прежде всего сделаем одну оговорку. Как известно, величины могут иметь двоякую природу. С одной стороны, определенной величине может соответствовать то или иное численное значение. Но с другой, она может иметь и направление распространения. Например, волна. В оптике мы сталкиваемся с таким понятием, как длина волны. Но ведь если есть когерентный источник света (тот же самый лазер), то мы имеем дело в пучком плоскополяризованных волн. Таким образом, волне будет соответствовать не только численное значение, обозначающее ее длину, но и заданное направление распространения.

Классический пример

Подобные случаи являются аналогией в механике. Допустим, перед нами катится тележка. По характеру движения мы можем определить векторные характеристики ее скорости и ускорения. Сделать это при поступательном движении (например, по ровному полу) будет чуточку сложнее, поэтому мы рассмотрим два случая: когда тележка закатывается наверх и когда она скатывается вниз.

Итак, представим себе, что тележка едет вверх по небольшому уклону. В таком случае она будет замедляться, если на нее не действуют внешние силы. Но в обратной ситуации, а именно, когда тележка скатывается сверху вниз, она будет ускоряться. Скорость в двух случаях направлена туда, куда движется объект. Это нужно взять за правило. А вот ускорение может изменять вектор. При замедлении оно направлено в противоположную для вектора скорости сторону. Этим объясняется замедление. Аналогичную логическую цепочку можно применить и для второй ситуации.

Остальные величины

Только что мы поговорили о том, что в кинематике оперируют не только скалярными величинами, но и векторными. Теперь сделаем еще один шаг вперед. Кроме скорости и ускорения при решении задач применяются такие характеристики, как расстояние и время. Кстати, скорость подразделяется на начальную и мгновенную. Первая из них является частным случаем второй. – эта та скорость, которую можно найти в любой момент времени. А с начальной, наверное, все и так понятно.

Задача

Немалая часть теории была изучена нами ранее в предыдущих пунктах. Теперь осталось только привести основные формулы. Но мы сделаем еще лучше: не просто рассмотрим формулы, но и применим их при решении задачи, чтобы окончательно закрепить полученные знания.

2/2)), то ничего у нас не выйдет, поскольку мы будем иметь уравнение с двумя переменными. Как же поступить в таком случае? Мы можем пойти двумя путями: сначала вычислить ускорение, подставив данные в формулу V = Vo – at или же выразить оттуда ускорение и подставить его в формулу расстояния. Давайте используем первый способ.

Итак, конечная скорость равна нулю. Начальная – 4 метра в секунду. Путем переноса соответствующих величин в левые и правые части уравнения добиваемся выражения ускорения. Вот оно: a = Vo/t. Таким образом, оно будет равно 0,8 метров на секунду в квадрате и будет нести тормозящий характер.

Переходим к формуле расстояния. В нее просто подставляем данные. Получим ответ: тормозной путь равен 10 метрам.

Основные единицы измерения величин в системе СИ таковы:

  1. единица измерения длины – метр (1 м),
  2. времени – секунда (1 с),
  3. массы – килограмм (1 кг),
  4. количества вещества – моль (1 моль),
  5. температуры – кельвин (1 К),
  6. силы электрического тока – ампер (1 А),
  7. Справочно: силы света – кандела (1 кд, фактически не используется при решении школьных задач).

При выполнении расчетов в системе СИ углы измеряются в радианах.

Если в задаче по физике не указано, в каких единицах нужно дать ответ, его нужно дать в единицах системы СИ или в производных от них величинах, соответствующих той физической величине, о которой спрашивается в задаче. Например, если в задаче требуется найти скорость, и не сказано в чем ее нужно выразить, то ответ нужно дать в м/с.

Для удобства в задачах по физике часто приходится использовать дольные (уменьшающие) и кратные (увеличивающие) приставки. их можно применять к любой физической величине. Например, мм – миллиметр, кт – килотонна, нс – наносекунда, Мг – мегаграмм, ммоль – миллимоль, мкА – микроампер. Запомните, что в физике не существует двойных приставок. Например, мкг – это микрограмм, а не милликилограмм. Учтите, что при сложении и вычитании величин Вы можете оперировать только величинами одинаковой размерности. Например, килограммы можно складывать только с килограммами, из миллиметров можно вычитать только миллиметры, и так далее.

При переводе величин пользуйтесь следующей таблицей.

Путь и перемещение

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Всякое тело имеет определенные размеры. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать

материальной точкой . Так при движении автомобиля на большие расстояния можно пренебречь его длиной, так как длина автомобиля мала по сравнению с расстояниями, которое он проходит.

Интуитивно понятно, что характеристики движения (скорость, траектория и т.д.) зависят от того, откуда мы на него смотрим. Поэтому для описания движения вводится понятие системы отсчета. Система отсчета (СО) – совокупность тела отсчета (оно считается абсолютно твердым), привязанной к нему системой координат, линейки (прибора, измеряющего расстояния), часов и синхронизатора времени.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает в данной СО некоторую линию, которую называют траекторией движения тела .

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение есть векторная величина. Перемещение может в процессе движения увеличиваться, уменьшаться и становиться равным нулю.

Пройденный путь равен длине траектории, пройденной телом за некоторое время. Путь – скалярная величина. Путь не может уменьшаться. Путь только возрастает либо остается постоянным (если тело не движется). При движении тела по криволинейной траектории модуль (длина) вектора перемещения всегда меньше пройденного пути.

При равномерном (с постоянной скоростью) движении путь L может быть найден по формуле:

где: v – скорость тела, t – время в течении которого оно двигалось. При решении задач по кинематике перемещение обычно находится из геометрических соображений. Часто геометрические соображения для нахождения перемещения требуют знания теоремы Пифагора.

Средняя скорость

Скорость – векторная величина, характеризующая быстроту перемещения тела в пространстве. Скорость бывает средней и мгновенной. Мгновенная скорость описывает движение в данный конкретный момент времени в данной конкретной точке пространства, а средняя скорость характеризует все движение в целом, в общем, не описывая подробности движения на каждом конкретном участке.

Средняя скорость пути – это отношение всего пути ко всему времени движения:

где: L полн – весь путь, который прошло тело, t полн – все время движения.

Средняя скорость перемещения – это отношение всего перемещения ко всему времени движения:

Эта величина направлена так же, как и полное перемещение тела (то есть из начальной точки движения в конечную точку). При этом не забывайте, что полное перемещение не всегда равно алгебраической сумме перемещений на определённых этапах движения. Вектор полного перемещения равен векторной сумме перемещений на отдельных этапах движения.

  • При решении задач по кинематике не совершайте очень распространенную ошибку. Средняя скорость, как правило, не равна среднему арифметическому скоростей тела на каждом этапе движения. Среднее арифметическое получается только в некоторых частных случаях.
  • И уж тем более средняя скорость не равна одной из скоростей, с которыми двигалось тело в процессе движения, даже если эта скорость имела примерно промежуточное значение относительно других скоростей, с которыми двигалось тело.

Равноускоренное прямолинейное движение

Ускорение – векторная физическая величина, определяющая быстроту изменения скорости тела. Ускорением тела называют отношение изменения скорости к промежутку времени, в течение которого происходило изменение скорости:

где: v 0 – начальная скорость тела, v – конечная скорость тела (то есть спустя промежуток времени t ).

Далее, если иное не указано в условии задачи, мы считаем, что если тело движется с ускорением, то это ускорение остается постоянным. Такое движение тела называется равноускоренным (или равнопеременным). При равноускоренном движении скорость тела изменяется на одинаковую величину за любые равные промежутки времени.

Равноускоренное движение бывает собственно ускоренным, когда тело увеличивает скорость движения, и замедленным, когда скорость уменьшается. Для простоты решения задач удобно для замедленного движения брать ускорение со знаком «–».

Из предыдущей формулы, следует другая более распространённая формула, описывающая изменение скорости со временем при равноускоренном движении:

Перемещение (но не путь) при равноускоренном движении рассчитывается по формулам:

В последней формуле использована одна особенность равноускоренного движения. При равноускоренном движении среднюю скорость можно рассчитывать, как среднее арифметическое начальной и конечной скоростей (этим свойством очень удобно пользоваться при решении некоторых задач):

С расчетом пути все сложнее. Если тело не меняло направления движения, то при равноускоренном прямолинейном движении путь численно равен перемещению. А если меняло – надо отдельно считать путь до остановки (момента разворота) и путь после остановки (момента разворота). А просто подстановка времени в формулы для перемещения в этом случае приведет к типичной ошибке.

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Аналогичные формулы получаются для остальных координатных осей.

Свободное падение по вертикали

На все тела, находящиеся в поле тяготения Земли, действует сила тяжести. В отсутствие опоры или подвеса эта сила заставляет тела падать к поверхности Земли. Если пренебречь сопротивлением воздуха, то движение тел только под действием силы тяжести называется свободным падением. Сила тяжести сообщает любым телам, независимо от их формы, массы и размеров, одинаковое ускорение, называемое ускорением свободного падения. Вблизи поверхности Земли ускорение свободного падения составляет:

Это значит, что свободное падение всех тел вблизи поверхности Земли является равноускоренным (но не обязательно прямолинейным) движением. Вначале рассмотрим простейший случай свободного падения, когда тело движется строго по вертикали. Такое движение является равноускоренным прямолинейным движением, поэтому все изученные ранее закономерности и фокусы такого движения подходят и для свободного падения. Только ускорение всегда равно ускорению свободного падения.

Традиционно при свободном падении используют направленную вертикально ось OY. Ничего страшного здесь нет. Просто надо во всех формулах вместо индекса «х » писать «у ». Смысл этого индекса и правило определения знаков сохраняется. Куда направлять ось OY – Ваш выбор, зависящий от удобства решения задачи. Вариантов 2: вверх или вниз.

Приведем несколько формул, которые являются решением некоторых конкретных задач по кинематике на свободное падение по вертикали. Например, скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v 0 , время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Горизонтальный бросок

При горизонтальном броске с начальной скоростью v 0 движение тела удобно рассматривать как два движения: равномерное вдоль оси ОХ (вдоль оси ОХ нет никаких сил препятствующих или помогающих движению) и равноускоренного движения вдоль оси OY.

Скорость в любой момент времени направлена по касательной к траектории. Ее можно разложить на две составляющие: горизонтальную и вертикальную. Горизонтальная составляющая всегда остается неизменной и равна v x = v 0 . А вертикальная возрастает по законам ускоренного движения v y = gt . При этом полная скорость тела может быть найдена по формулам:

При этом важно понять, что время падения тела на землю никоим образом не зависит от того, с какой горизонтальной скоростью его бросили, а определяется только высотой, с которой было брошено тело. Время падения тела на землю находится по формуле:

Пока тело падает, оно одновременно движется вдоль горизонтальной оси. Следовательно, дальность полета тела или расстояние, которое тело сможет пролететь вдоль оси ОХ, будет равно:

Угол между горизонтом и скоростью тела легко найти из соотношения:

Также иногда в задачах могут спросить о моменте времени, при котором полная скорость тела будет наклонена под определенным углом к вертикали . Тогда этот угол будет находиться из соотношения:

Важно понять, какой именно угол фигурирует в задаче (с вертикалью или с горизонталью). Это и поможет вам выбрать правильную формулу. Если же решать эту задачу координатным методом, то общая формула для закона изменения координаты при равноускоренном движении:

Преобразуется в следующий закон движения по оси OY для тела брошенного горизонтально:

При ее помощи мы можем найти высоту на которой будет находится тело в любой момент времени. При этом в момент падения тела на землю координата тела по оси OY будет равна нулю. Очевидно, что вдоль оси OХ тело движется равномерно, поэтому в рамках координатного метода горизонтальная координата изменятся по закону:

Бросок под углом к горизонту (с земли на землю)

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Минимальная скорость тела брошенного под углом к горизонту – в наивысшей точке подъёма, и равна:

Максимальная скорость тела брошенного под углом к горизонту – в моменты броска и падения на землю, и равна начальной. Это утверждение верно только для броска с земли на землю. Если тело продолжает лететь ниже того уровня, с которого его бросали, то оно будет там приобретать все большую и большую скорость.

Сложение скоростей

Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. Таким образом, покой и движение тела относительны.

Таким образом, абсолютная скорость тела равна векторной сумме его скорости относительно подвижной системы координат и скорости самой подвижной системы отсчета. Или, другими словами, скорость тела в неподвижной системе отсчета равна векторной сумме скорости тела в подвижной системе отсчета и скорости подвижной системы отсчета относительно неподвижной.

Равномерное движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.

Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

В обеих формулах: N – количество оборотов за время t . Как видно из вышеприведенных формул, период и частота величины взаимообратные:

При равномерном вращении скорость тела будет определяется следующим образом:

где: l – длина окружности или путь, пройденный телом за время равное периоду T . При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt . Очевидно, что за время равное периоду T тело пройдет угол равный 2π , следовательно при равномерном движении по окружности выполняются формулы:

Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

Связь между модулем линейной скорости v и угловой скоростью ω :

При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением , так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

Модуль центростремительного ускорения связан с линейной v на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

    Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

    Основные формулы по физике динамика, кинематика, статика

    Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

    Формулы кинематики:

    Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

    После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

    Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


    Основные формулы молекулярной физики и термодинамики

    Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

    Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева – все эти милые сердцу формулы собраны ниже.

    Кстати! Для всех наших читателей сейчас действует скидка 10% на .


    Основные формулы по физике: электричество

    Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

    И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

    На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

    Для того чтобы понять, что изучает механика, необходимо рассмотреть, что означает движение в самом общем смысле. Значение этого слова подразумевает под собой изменение чего-либо. Например, политическое движение выступает за равноправие разных слоев населения вне зависимости от их расовой принадлежности. Раньше его не было, затем что-то изменилось и теперь каждый человек имеет равные права. Это движение цивилизации вперед. Еще пример – экологическое. В прошлом, выбравшись на природу, никто не задумывался о том, что оставляет после себя мусор. Сегодня же любой цивилизованный человек соберет его за собой и отвезет в специально отведенное место для дальнейшей утилизации.

    Что-то подобное можно наблюдать и в механике. При механическом движении изменяется положение тела в пространстве относительно других предметов с течением времени. Основная задача механики – указать, где находится объект в любой момент, учитывая даже тот, который еще не наступил. То есть, предсказать положение тела в заданное время, а не только узнать, где именно в пространстве оно находилось в прошлом.

    Кинематика – это раздел механики, который изучает движение тела, не анализируя его причины. Это значит, что она учит не объяснять, а описывать. То есть, придумать способ, с помощью которого можно было бы задать положение тела в любой момент времени. Основные понятия кинематики включают в себя скорость, ускорение, расстояние, время и перемещение.

    Сложность в описании движения

    Первая проблема, с которой сталкивается кинематика – это то, что у каждого тела есть определенный размер. Допустим, необходимо описать движение какого-нибудь предмета. Это значит научиться обозначать его положение в любой момент времени. Но каждый предмет занимает в пространстве какое-то место. То есть, что все части этого объекта в один и тот же момент времени занимают разное положение.

    Какую точку в таком случае необходимо взять для описания нахождения всего предмета? Если учитывать каждую, то расчеты окажутся слишком сложными. Поэтому решение ответа на этот вопрос можно максимально упростить. Если все точки одного тела движутся в одинаковом направлении, то для описания движения достаточно одной такой, которую содержит это тело.

    Виды движения в кинематике

    Существует три типа:

    1. Поступательным называется движение, при котором любая прямая проведенная в теле остается параллельной самой себе. Например, автомобиль, который движется по шоссе, совершает такой вид движения.
    2. Вращательным называется такое движение тела при котором все его точки движутся по окружностям с центрами, лежащими на одной прямой, называемой осью вращения. Например, вращение Земли относительно своей оси.
    3. Колебательным называется движение, при котором тело повторяет свою траекторию через определенный отрезок времени. Например, движение маятника.

    Основные понятия кинематики – материальная точка

    Любое сложное движение можно описать как комбинацию двух простейших видов – поступательного и вращательного. Например колесо автомобиля или юла, стоящая на движущейся прямо платформе, участвуют одновременно в этих двух типах перемещения.

    Но что делать, если движение тела нельзя представить в виде комбинации? Например, если автомобиль едет по ухабистой дороге, его положение будет меняться очень сложным образом. Если рассчитывать только то, что этот транспорт перемещается из одного города в другой, то в такой ситуации становится не важно какого размера тело движется из точки А в точку Б и им можно пренебречь. В данном случае важно только за какое время автомобиль прошел определенное расстояние и с какой скоростью двигался.

    Однако следует учитывать, что пренебрежение размером допускается не в каждой задаче. Например, если рассчитывать движение при парковке автомобиля, то игнорирование величины данного тела, приведет к пагубным последствием. Поэтому, только в тех ситуациях, когда в рамках конкретной задачи, размерами движущегося объекта можно пренебречь, то такое тело принято называть материальной точкой.

    Формулы кинематики

    Числа, с помощью которых задается положение точки в пространстве, называются координатами. Чтобы определить его на прямой, достаточно одного числа, когда речь идет о поверхности, то двух, о пространстве – трех. Большего количества чисел в трехмерном мире (для описывания положения материальной точки) не требуется.

    Существует три основных уравнения для понятия кинематики, как раздела о движении тел:

    1. v = u + at.
    2. S = ut + 1/2at 2 .
    3. v 2 = u 2 + 2as.

    v = конечная скорость,

    u = Начальная скорость,

    a = ускорение,

    s = расстояние, пройденное телом,

    Формулы кинематики в одномерном пространстве:

    X – X o = V o t + 1/2a t2

    V 2 = V o 1 + 2a (X – X o)

    X – X o = 1\2 (V o + V) t
    Где,

    V – конечная скорость (м / с),

    V o – начальная скорость (м / с),

    a – ускорение (м / с 2),

    t – время (с),

    X – конечное положение (м),

    Формулы кинематики в двумерном пространстве

    Поскольку следующие уравнения используются для описания материальной точки на плоскости, стоит рассматривать ось X и Y.

    Учитывая направление Х:

    a x = constant

    V fx = V i x + a x Δt

    X f = X i + V i x Δt +1/2a x Δt 2

    Δt = V fx -V ix /a x

    V fx 2 = V ix 2 + 2ax Δx

    X f = X i + 1/2 (V fx + V ix) Δ t .
    И учитывая направление y:

    a y = constant

    V fy = V iy + a y Δt

    y f = y i + V iy Δt + 1/2 a x Δt 2

    Δt = V fy – V iy /a y

    V fy 2 = V iy 2 + 2 ay Δ y

    y f = y i +1/2 (V fy + V iy) Δt.

    V f – конечная скорость (м / с),

    V i – начальная скорость (м / с),

    a – ускорение (m / с 2),

    t – время (с),

    X – конечное положение (м),

    X 0 – начальное положение (м).

    Перемещение брошенного снаряда – лучший пример для описания движения объекта в двух измерениях. Здесь тело перемещается, как в вертикальном положении У, так и в горизонтальном положении Х, поэтому можно сказать, что предмет имеет две скорости.

    Примеры задач по кинематике

    Задача 1 : Начальная скорость грузовика равна нулю. Изначально этот объект находится в состоянии покоя. На него начинает действовать равномерное ускорение в течение временного интервала 5,21 секунды. Расстояние, пройденное грузовиком, составляет 110 м. Найти ускорение.

    Решение:
    Пройденное расстояние s = 110 м,
    начальная скорость v i = 0,
    время t = 5,21 с,
    ускорение a =?
    Используя основные понятие и формулы кинематики, можно заключить, что,
    s = v i t + 1/2 a t 2 ,
    110 м = (0) × (5.21) + 1/2 × a (5.21) 2 ,
    a = 8,10 м / с 2 .

    Задача 2: Точка движется вдоль оси х (в см), после t секунд путешествия, ее можно представить, используя ​​уравнение x = 14t 2 – t + 10. Необходимо найти среднюю скорость точки, при условии, что t = 3s?

    Решение:
    Положение точки при t = 0, равно x = 10 см.
    При t = 3s, x = 133 см.
    Средняя скорость, V av = Δx/Δt = 133-10/3-0 = 41 см / с.

    Что такое тело отсчета

    О движении можно говорить только если существует что-то, относительно чего рассматривается изменение положения изучаемого объекта. Такой предмет называется телом отсчета и оно условно всегда принимается за неподвижное.

    Если в задаче не указано в какой системе отчета движется материальная точка, то телом отсчета считается земля по умолчанию. Однако, это не означает, что за неподвижный в заданный момент времени объект, относительно которого совершается движение, нельзя принять любой другой удобный для расчета. Например, за тело отсчета можно взять движущийся поезд, поворачивающий автомобиль и так далее.

    Система отсчета и ее значение в кинематике

    Для описания движения необходимы три составляющие:

    1. Система координат.
    2. Тело отсчета.
    3. Прибор для измерения времени.

    Тело отсчета, система координат, связанная с ним и прибор для измерения времени образуют систему отсчета. Бессмысленно говорить о движении, если ее не указывать. Правильно подобранная система отсчета, позволяет упростить описание перемещения и, наоборот, усложнить, если она выбрана неудачно.

    Именно по этой причине, человечество долго считало, что Солнце движется вокруг Земли и что она находится в центре вселенной. Такое сложное движение светил, связанное с тем, что земные наблюдатели находятся в системе отсчета, которая очень замысловато движется. Земля вращается вокруг свое оси и одновременно вокруг Солнца. На самом деле, если сменить систему отсчета, то все движения небесных тел легко описываются. Это в свое время было сделано Коперником. Он предложил собственное описание мироустройства, в котором Солнце неподвижно. Относительно него описать движение планет гораздо проще, чем если телом отсчета будет являться Земля.

    Основные понятия кинематики – путь и траектория

    Пусть некоторая точка первое время находилась в положении А, спустя некоторое время она оказалась в положении В. Между ними можно провести одну линию. Но для того, чтобы эта прямая несла больше информации о движении, то есть было понятно откуда и куда двигалось тело, это должен быть не просто отрезок, а направленный, обычно обозначающийся буквой S. Перемещением тела, называется вектор, проведенный из начального положения предмета в конечное.

    Если тело изначально находилось в точке А, а затем оказалось в точке В, это не означает, что оно двигалось только по прямой. Из одного положения в другое можно попасть бесконечным количеством способов. Линия, вдоль которой движется тело, является еще одним основным понятием кинематики – траекторией. А ее длина называется путь, который обычно обозначается буквами L или l.

    КИНЕМАТИКА

    Основные понятия, законы и формулы.

    Кинематика – раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих движение.

    Механическим движением называют изменение положения тела в пространстве с течением времени относительно других тел.

    Простейшим механическим движением является движение материальной точки – тела, размеры и форму которого можно не учитывать при описании его движения.

    Движение материальной точки характеризуют траекторией, длиной пути, перемещением, скоростью и ускорением.

    Траекторией называют линию в пространстве, описываемую точкой при своем движении.

    Расстояние , пройденное телом вдоль траектории движения, – путь(S).

    Перемещение – направленный отрезок, соединяющий начальное и конечное положение тела.

    Длина пути – величина скалярная, перемещение – величина векторная.

    Средняя скорость – это физическая величена, равная отношению вектора перемещения к промежутку времени, за которое произошло перемещение:

    Мгновенная скорость или скорость в данной точке траектории – это физическая величина, равная пределу, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Dt:

    Величину характеризующую изменение скорости за единицу времени, называют средним ускорением :

    .

    Аналогично понятию мгновенной скорости вводится понятие мгновенного ускорения:

    При равноускоренном движении ускорение постоянно.

    Простейший вид механического движения-прямолинейное движение точки с постоянным ускорением.

    Движение с постоянным ускорением называется равнопеременным; в этом случае:

    ; ; https://pandia.ru/text/78/108/images/image014_3.gif”>; ; https://pandia.ru/text/78/108/images/image017_1.gif”>; ;

    Связь между линейными и угловыми величинами при вращательном движении :

    ; ; https://pandia.ru/text/78/108/images/image024_1.gif”>.

    Любое сложное движение можно рассматривать как результат сложения простых движений. Результирующее перемещение равно геометрической сумме и находится по правилу сложения векторов. Скорость тела и скорость системы отсчета так же складывается векторно.

    При решении задач на те или иные разделы курса, кроме общих правил решения, приходится учитывать некоторые дополнения к ним, связанные со спецификой самих разделов.

    Задачи по кинематике , разбираемые в курсе элементарной физики, включают в себя: задачи о равнопеременном прямолинейном движении одной или нескольких точек, задачи о криволинейном движении точки на плоскости. Мы рассмотрим каждый из этих типов задач отдельно.

    Прочитав условие задачи, нужно сделать схематический чертеж, на котором следует изобразить систему отсчета, и указать траекторию движения точки.

    После того как выполнен чертеж, с помощью формул:

    ; ; https://pandia.ru/text/78/108/images/image027_0.gif”>; .

    Подстановкой в них развёрнутых выражений для Sn, S0, vn, v0 и т. д. и заканчивается первая часть решения.

    Пример 1 . Велосипедист ехал из одного города в другой. Половину пути он проехал со скоростью v1 = 12 км/ч далее половину оставшегося времени он ехал со скоростью v2 = 6 км/ч, а затем до конца пути шел пешком со скоростью v3 = 4 км/ч. Определить среднюю скорость велосипедиста на всем пути.

    а) Эта задача на равномерное прямолинейное движение одного тела. Представляем ввиде схемы. При составлении ее изображаем траекторию движения и выбираем на ней начало отсчета (точка 0). Весь путь разбиваем на три отрезка S1,S2, S3, на каждом из них указываем скорости v1, v2, v3 и отмечаем время движения t1, t2, t3.

    S = S1 + S2 + S3, t = t1 + t2 + t3.

    б) Составляем уравнения движения для каждого отрезка пути:

    S1 = v1t1; S2 = v2t2; S3 = v3t3 и записываем дополнительные условия задачи:

    S1 = S2 + S3; t2 = t3; .

    в) Читаем еще раз условие задачи, выписываем числовые значения известных величин и, определив число неизвестных в полученной системе уравнений (их 7: S1, S2, S3, t1, t2, t3, vср), решаем ее относительно искомой величины vср.

    Если при решении задачи полностью учтены все условия, но в составленных уравнениях число неизвестных получается больше числа уравнений, это означает, что при последующих вычислениях одно из неизвестных сократится, такой случай имеет место и в данной задаче.

    Решение системы относительно средней скорости дает:

    .

    г) Подставив числовые значения в расчётную формулу, получим:

    ; vср 7 км/ч.

    Напоминаем, что числовые значения удобнее подставлять в окончательную расчетную формулу, минуя все промежуточные. Это экономит время на решение задачи и предотвращает дополнительные ошибки в расчётах.

    Решая задачи на движение тел, брошенных вертикально вверх, нужно обратить особое внимание на следующее. Уравнения скорости и перемещения для тела, брошенного вертикально вверх, дают общую зависимость v и h от t для всего времени движения тела. Они справедливы (со знаком минус) не только для замедленного подъема вверх, но и для дальнейшего равноускоренного падения тела, поскольку движение тела после мгновенной остановки в верхней точке траектории происходит с прежним ускоронием. Под h при этом всегда подразумевают перемещение движущейся точки по вертикали, то есть ее координату в данный момент времени – расстояние от начала отсчета движения до точки.

    Если тело брошено вертикально вверх со скоростью V0, то время tпод и высота hmax его подъема равны:

    ; .

    Кроме того, время падения этого тела в исходную точку равно времени подъема на максимальную высоту (tпад = tпод), а скорость падения равна начальной скорости бросания (vпад = v0).

    Пример 2 . Тело брошено вертикально вверх с начальной скоростью v0 = 3,13 м/с. Когда оно достигло верхней точки полета, из того же начального пункта с такой же начальной скоростью бросили второе тело. Определите, на каком расстоянии от точки бросания встретятся тела; сопротивление воздуха не учитывать.

    Решение . Делаем чертеж. Отмечаем на нем траекторию движения первого и второго тела. Выбрав начало отсчета в точке, указываем начальную скорость тел v0, высоту h, на которой произошла встреча (координату y=h), и время t1 и t2 движения каждого тела до момента встречи.

    Уравнение перемещения тела, брошенного вверх, позволяет найти координату движущегося тела для любого момента времени независимо от того, поднимается ли тело вверх или падает после подъема вниз, поэтому для первого тела

    ,

    а для второго

    .

    Третье уравнение составляем, исходя из условия, что второе тело бросили позднее первого на время максимального подъема:

    Решая систему трех уравнений относительно h, получаем:

    ; ; https://pandia.ru/text/78/108/images/image017_1.gif”>; ,

    где и ; https://pandia.ru/text/78/108/images/image042.gif”>.gif”>

    Прямоугольную систему координат выбираем так, чтобы ее начало совпало с точкой бросания, а оси были направлены вдоль поверхности Земли и по нормали к ней в сторону начального смещения снаряда. Изображаем траекторию снаряда, его начальную скорость , угол бросания a, высоту h, горизонтальное перемещение S, скорость в момент падения (она направлена по касательной к траектории в точке падения) и угол падения j (углом падения тела называют угол между касательной к траектории, проведенной в точку падения, и нормалью к поверхности Земли).

    Движение тела, брошенного под углом к горизонту, можно представить как результат сложения двух прямолинейных движений: одного-вдоль поверхности Земли (оно будет равномерным, поскольку сопротивление воздуха не учитывается) и второго-перпендикулярно поверхности Земли (в данном случае это будет движение тела, брошенного вертикально вверх). Для замены сложного движения двумя простыми разложим (по правилу параллелограмма) скорости и https://pandia.ru/text/78/108/images/image047.gif”>и – для скорости и vx и vy – для скорости .

    а, б) Составляем уравнение скорости и перемещения для их проекций по каждому направлению. Так как в горизонтальном направлении снаряд летит равномерно, то его скорость и координаты в любой момент времени удовлетворяют уравнениям

    и . (2)

    Для вертикального направления:

    (3)

    и . (4)

    В момент времени t1, когда снаряд упадет на землю, его координаты равны:

    В последнем уравнении перемещение h взято со знаком “минус”, так как за время движения снаряд сместится относительно уровня отсчета 0 высоты в сторону противоположную направлению, принятому за положительное.

    Результирующая скорость в момент падения равна:

    В составленной системе уравнений пять неизвестных, нам нужно определить S и v.

    При отсутствии сопротивления воздуха, скрость падения тел равна начальной скорости бросания независимо от того, под каким углом было брошено тело, лишь бы точки бросания и падения находились на одном уровне. Учитывая, что горизонтальная составляющая скорости с течением времени не изменяется, легко установить, что в момент падения скорость тела образует с горизонтом такой же угол, как и в момент бросания.

    д) Решая уровнения (2), (4) и (5) относительно начального угла бросания a получим:

    . (10)

    Поскольку угол бросания не может быть мнимым, то это выражение имеет физический смысл лишь при условии, что

    ,

    то есть,

    откуда следует, что максимальное перемещение снаряда по горизонтальному направлению равно:

    .

    Подставляя выражение для S = Smax в формулу (10), получим для угла a, при котором дальность полета наибольшая:

    Свободное падение. Кинематика – 10 класс

    Свободное падение. Кинематика – 10 класс

    Подробности
    Просмотров: 681

    Кинематика – это просто!

    Свободное падение – это движение тела только лишь под действием силы тяжести.
    Свободное падение – это движение с постоянным ускорением, когда ускорение равно ускорению свободного падения (g=9,8 м/c2).

    P.S.Ускорение свободного падения g всегда направлено вертикально вниз!

    При расчетах движения для большинства падающих тел вблизи поверхности Земли силу сопротивления воздуха можно не учитывать, т.к. ускорение свободного падения практически не меняется.

    Существуют 2 варианта свободного падения:

    1. с прямолинейной траекторией,
    когда векторы скорости V и ускорения g направлены одинаково или противоположны друг другу.

    …. а) падение тела с высоты вертикально вниз

    …. б) бросок тела вертикально вверх.

    2. с криволинейной траекторией,
    когда векторы скорости V и ускорения g направлены под углом друг к другу.
    Например, когда тело брошено под углом к горизонту.

    Для расчета любого варианта свободного падения годятся уже знакомые вам формулы для движения с постоянным ускорением,
    достаточно в них заменить ускорение а на ускорение свободного падения g:

    а) в векторном виде

    б) расчетные формулы в координатной форме


    Пример решения задачи на свободное падение

    Задача

    Шишка, висевшая на ели, оторвалась и за 2 секунды достигла земли.
    На какой высоте висела шишка?
    Какую скорость она имела у самой земли?

    Помни!
    1. В данной задаче начальная скорость тела равна нулю, и формулы становятся проще!
    2. Будем грамотны! Рассчитываем проекцию вектора, но ответ должен быть в модулях! В последней записи перед ответом переходим от проекции к модулю.



    Кинематика – Класс!ная физика

    Прямолинейное равномерное движение и решение задач — Закон сложения скоростей и решение задач — Движение с постоянным ускорением и решение задач — Свободное падение — Движение тела, брошенного под углом к горизонту — Решение задач. Тело, брошенное под углом к горизонту — Криволинейное движение

    Кинематических формул в 1D – физика на основе алгебры 1

    Кинематические формулы (UAM) в одномерном измерении


    Видео:

    Эти видео могут помочь вам, если у вас проблемы или вы пропустили урок.


    Г-н П. из Flipping Physics объясняет, что такое кинематические формулы (UAM), и объясняет, что ускорение должно быть постоянным, чтобы это уравнение было истинным.

    Информационный бюллетень по новой концепции или принципу:

    Эти листы содержат краткую справку по некоторым из наиболее важных фактов о концепции.

    Кинематическая формула (UAM) … принцип или закон)

    Контрольный список для решения проблем:

    Вот как решать каждую кинетическую задачу.

    Контрольный список для решения проблем: кинематические формулы

    День 1: Концептуальные вопросы

    Это концептуальные вопросы и проблемы, на которые мы вместе ответим и решим в классе.

    Создание графиков для решения проблем (концептуальные вопросы)

    Webassign

    Выполните Webassign «Кинематические формулы (UAM), часть 1 (ABP)»

    Номер назначения Webassign 5886737

    для домашнее задание, если вы не закончите его в классе.

    Если вы застряли на какой-то проблеме, задайте себе эти вопросы, прежде чем сдаться или попросить о помощи.

    Покажите свою работу в начале нашего следующего собрания, чтобы получить зачет.

    Никаких продлений не будет.

    Сделайте Webassign на своем телефоне, если у вас дома нет Интернета.

    День 2: Концептуальные вопросы

    Это концептуальные вопросы и проблемы, на которые мы ответим и решим вместе в классе.

    Дополнительная форма кинематики (UAM) … в 1D (вопросы концепции)

    Webassign

    «Кинематические формулы (UAM), часть 2 (ABP)»

    Webassign Номер задания 5886767

    Завершите домашнее задание, если не выполните его в классе.

    Если вы застряли на какой-то проблеме, задайте себе эти вопросы, прежде чем сдаться или попросить о помощи.

    Покажите свою работу в начале нашего следующего собрания, чтобы получить зачет.

    Никаких продлений не будет.

    Сделайте Webassign на своем телефоне, если у вас дома нет Интернета.

    День 3: Рабочий лист задач в стиле «догнать»

    Устранить проблемы с кинематикой

    Вот версия рабочего листа для печати.

    Уравнения движения – Научный класс

    Три основных переменных, которые мы используем при изучении движения: смещение, (расстояние), скорость, (скорость) и ускорение, .Мы также могли бы включить четвертую переменную, , время, , поскольку эта переменная включена в большинство используемых нами уравнений.

    Эти переменные можно объединить в три основных уравнения:

    Рабочий объем

    Скорость

    Разгон

    .

    .

    С этими уравнениями можно многое сделать, однако у них есть ограничения.Сами по себе мы можем использовать эти уравнения для решения простых задач. Чтобы решить более сложные проблемы, мы должны объединить эти уравнения вместе, чтобы создать новые, более крупные уравнения. Однако, если ускорение объекта меняется, движение будет слишком сложным для этих новых, объединенных уравнений. Таким образом, эти новые уравнения будут работать только при постоянном ускорении.

    Есть четыре варианта объединения этих уравнений. Эти четыре новых уравнения часто называют уравнениями движения , или кинематическими уравнениями .Опять же, эти кинематические уравнения могут использоваться для решения любой задачи движения, когда ускорение постоянно.

    .

    Первое уравнение движения

    .

    Второе уравнение движения

    .

    Третье уравнение движения

    .

    Четвертое уравнение движения

    .

    Эти уравнения предназначены для использования в группе.Обычно вам нужно использовать только одно из этих уравнений для решения проблемы. Однако иногда для решения проблемы потребуется использовать два из них. Ключом к решению кинематической задачи является использование уравнения, в котором у вас есть три известные переменные и только одна неизвестная переменная.

    .

    Как использовать уравнения кинематики для решения

    проблема физики?

    .

    .

    Просто чтобы вы знали, есть и другие способы их записи.Например,

    Смещение можно переписать как,

    И если мы подставим это выражение во второе уравнение движения , то получим

    Мы можем изменить это уравнение еще больше, чтобы решить только конечное положение объекта (x f ). Решив для окончательного положения, мы можем переместить x i на другую сторону от знака равенства, добавив x i к обеим сторонам уравнения.

    И, наконец, мы получаем выражение, которое может найти окончательное положение объекта,

    Какие кинематические формулы? – Получить образование

    Учитывая, что полноэкранный редактор не поддерживает индексы и надстрочные индексы, мы указываем мои обозначения для их представления: (1) Все кинематические переменные обозначаются заглавными буквами.Например, скорость обозначается буквой V, а ускорение буквой A. (2) обозначаются строчными буквами. Например, начальная скорость «V naught» равна Vo. (3) Полномочия обозначаются **. Например, «квадрат времени» – T ** 2.

    Первоначальной темой, которую большинство авторов рассматривают в своих вводных книгах по физике, является кинематика. Они делают этот выбор, потому что ученики должны твердо владеть позицией, скоростью и скоростью, прежде чем изучать различные предметы у ньютоновских техников. К сожалению, кинематика, похоже, побуждает обучаемых к поиску формул, а также к подключению.Когда ученики учатся решать кинематические проблемы, в их головах обычно крутится слишком много уравнений. Их услуги по выпуску включают уравнения, такие как V = Vo + AT, X = VT, формула разнообразия, формула максимальной высоты и т. Д. Но физика – это не изучение уравнений – это исследование фундаментальных принципов, большинство из которых имеют место. быть раскрытым в виде уравнений.

    Читайте также: Что такое принцип Премака? Пример

    Даже при обучении кинематике мы говорим ученикам, что они никогда не узнают физику, если они подойдут к ней как к большому количеству формул, которые нужно запомнить.мы подчеркиваем, что им нужно открывать, чтобы мыслить принципами. К сожалению, это сообщение сложно донести, когда ученики видят в своих книгах уравнение за формулой. Это явно сложно, поскольку в старших классах средней школы большинство учеников открыли для себя античный аналитический прием «идентифицировать известные, а затем вставлять их в идеальные формулы для открытия неизвестных».

    Что такое кинематика?

    Кинематика – это исследование деятельности без ссылки на силы, которые ее создают.Другими словами, кинематика фокусируется на положении, скорости, скорости и не управляет давлением. В кинематике есть пять важнейших величин: смещение (готовность к изменению), начальная скорость, конечная скорость, ускорение и время.

    Предварительная скорость – это именно то, насколько быстро объект движется при t = 0. Конечная скорость – это насколько быстро объект перемещается, когда время (t) больше, чем. Смещение – это то, насколько настройка изменилась за это время (t). Скорость – это цена, по которой изменяется скорость в то время как (t).Так же как время – это просто … ну, это момент – момент, который вы хотите, время, в течение которого объект двигался, ускорялся или что-то еще.

    Слишком много учеников рассматривают каждую физику как не что иное, как тренировку в поисках лучшей формулы. Мы успешно справились с этой прискорбной проблемой, создав набор стандартных уравнений кинематики постоянного ускорения, как будто они были фундаментальными принципами. Мы признаем, что это не фундаментальные концепции; тем не менее, мы просим обучаемых обращаться с этими формулами так, как если бы они были абсолютными.Мы показываем студентам, что все кинематические задачи (как одномерные, так и двумерные) запускаются с помощью одних и тех же основных уравнений.

    Логический ум, который они используют для решения проблем в кинематике, подобен тому, который они будут использовать позже, когда они познают основные принципы. Во всех книгах есть интегральные уравнения движения с постоянным ускорением. Все проблемы можно решить с помощью всего трех из них. При рассмотрении возможных проблем мы никогда не отклоняемся от этих трех уравнений.

    С Xo, а также Vo размещение и рейтинг при T = 0, три формулы очевидны:

    Положение по времени X = Xo + VoT + (AT ** 2) / 2.

    Скорость относительно времени V = Vo + AT.

    Скорость настройки V ** 2 = Vo ** 2 + 2A (X – Xo).

    Третье из этих уравнений может быть получено из двух других. Но это уравнение настолько ценно, что мы предпочитаем ставить его наравне с двумя другими. Обратите внимание на утверждения перед уравнениями.Мы призываем обучаемых принимать их вместо своих сопутствующих уравнений. Решение соответствия задаче достаточно ясно показывает, как мы обучаем кинематике.

    Проблема: как показано на рисунке, ребенок также бросает сферу прямо вверх, а она возвращается к нему за 4,0 с. а) Какая первая скорость снаряда? (b) Какой максимальной высоты H достигает снаряд?

    Сервис Мы используем систему координат (x, y) с началом в точке выпуска патрона, а ось y направлена ​​вверх.Тогда Yo = 0, а также A = – g = -9,8 м / с ** 2. Начальная скорость шара – неизвестная Vo. (a) Мы знаем, что изменение положения является абсолютным нет с интервалом в два раза в 4,0 с, поэтому мы связываем размещение со временем. (b) Нам нужно размещение (оптимальная высота H), когда скорость абсолютная нет, поэтому мы связываем скорость с размещением.

    (a) Размещение во времени

    X = Xo + VoT + (AT ** 2) / 2.

    0 = 0 + Vo (4,0 с) + ((- 9,8 м / с ** 2) (4,0 с) ** 2) / 2 0.

    , поэтому Vo = 19.6 м / с.

    (б) Оценить настройку.

    В ** 2 = Vo ** 2 + 2A (X – Xo).

    V ** 2 = Vo ** 2 + 2 (- 9,8 м / с ** 2) H.

    Заменяя здесь Vo из (a), мы получаем H = 19,6 м.

    Заключительные слова

    Изображение (не показано) сопровождает эту проблему. Обратите внимание на то, как студента поощряют подходить к решению проблемы, веря основным принципам кинематики постоянного ускорения – в данном случае, положение во времени и скорость во времени.Ко всем вариантам проблем для непрерывного ускорения подходят одинаково. Обстоятельства определяют отношения, это партнерство упоминается, а затем уравнение, представляющее эту связь, используется для решения проблемы. Когда ученики начинают свое физическое обучение с этой стратегией, многие избегают ловли формулы, которая также обычна в начальной физике. В будущем, когда они исследуют жизненно важные принципы автомеханики, некоторые из них исправят проблемы, систематически используя базовые концепции.Они начинают проблемы со второй регуляцией Ньютона, сохранением механической энергии и так далее.

    Наше сообщение относительно простое. Начальная физика начинается с темы, основанной на уравнениях, кинематики. Поэтому многие ученики начинают свое физическое образование с поиска формул. Мы рекомендуем противодействовать этой склонности, предлагая кинематику как предмет, контролируемый парой основных концепций. Затем многочисленные стажеры быстро приобретают отличные аналитические навыки, которые направляют их на оставшуюся часть их научных исследований и инженерных работ.

    Physics Kinematics Formula Sheet

    Разместите ваши комментарии?

    Kinematics California State University, Northridge

    3 часа назад SAT Subject Physics Formula Reference Kinematics (продолжение) v2 f = v 2 i + 2a∆xvf = конечная скорость vi = начальная скорость a = ускорение ∆x = смещение Используйте это формула , когда у вас нет ∆t. Динамика F = ma F = сила m = масса a = ускорение Второй закон Ньютона.Здесь F – результирующая сила, действующая на массу m. W = мг W = вес m = масса г

    Веб-сайт: Csun.edu