Когда возникла вселенная: Как возникла Вселенная и что с ней будет дальше?

Содержание

Как возникла Вселенная и что с ней будет дальше?

Как возникла Вселенная и что с ней будет дальше? | Colta.ru  

6 августа 2015Colta SpecialsЛекторий Политеха

142048

Была ли крокоутка?Чем занимаются генетики?Кто на Луне главный?Как возникает лжеистория?Что делают медики на войне?Как рассказать о блокаде Ленинграда?Что придумал Толкин?Как возникла Вселенная и что с ней будет дальше?Как «Радио Свобода» сохранило запрещенную литературуКак спорт превратился в шоу-бизнес?Почему мы такие умные?Роботы и музыка

Смотреть все материалы

Астрофизик Борис Штерн о том, что было до Большого взрыва, и о том, за что в самом ближайшем будущем дадут Нобелевскую премию

 
Борис Штерн

В Лектории Политехнического музея астрофизик и один из основателей и главный редактор газеты «Троицкий вариант» Борис Штерн прочитал лекцию о происхождении Вселенной.

Моя лекция будет немножко нестандартной. Обычно лектор сначала что-то рассказывает, а люди потом задают вопросы. Но сперва я задам вам три или четыре вопроса, чтобы размяться и заодно протестировать аудиторию. Как на ЕГЭ — вопрос и несколько вариантов ответа. А вы поднятием рук будете голосовать. Заодно повеселимся немножко.

Первый вопрос: возраст Вселенной. И три варианта: Вселенная существует вечно, ее возраст 20 млрд лет или 14 млрд лет (правильный ответ — 14 млрд лет. — Ред.). Следующий вопрос: размер Вселенной. И варианты: 14 млрд световых лет, Вселенная бесконечна, размер Вселенной неизвестен, но он точно больше 14 млрд световых лет (правильный ответ — размер неизвестен. —

Ред.). Третий вопрос: температура Вселенной. Ноль градусов, три градуса Кельвина, у Вселенной нет температуры (правильный ответ — три градуса Кельвина, а точнее, два и семь. — Ред.). С температурой разобрались, теперь вопрос: сколько измерений у Вселенной? Три, четыре или одиннадцать? На самом деле это дело вкуса — либо четыре, либо одиннадцать. И то, и другое правильно.

Что такое космология? Это наука о Вселенной как целом. «Земля на трех китах» — это космология. И «хрустальная сфера» тоже. Но первая космологическая теория, которую вообще как-то можно обсуждать в рамках науки, — это бесконечная вечная Вселенная, идущая от Джордано Бруно и Галилея. Правда, уже в XIX веке было понятно, что что-то не так с этой бесконечностью. Первый парадокс — так называемый парадокс Ольберса — почему ночью небо темное. Из простой геометрии бесконечной Вселенной: любой луч в любом направлении упрется в звезду, и все небо должно сиять, как поверхность Солнца, и все в такой Вселенной сгорит. Другой парадокс — гравитационная неустойчивость Вселенной. Она должна сжиматься комками все больше и больше. Третий парадокс — температуры везде во Вселенной должны выровняться. Люди думали: да, парадоксы, конечно, серьезные, но как-нибудь это все рассосется, найдет наука выход из этого тупика. Но — не рассосалось. То, что я рассказываю, — первая революция в космологии — 1916 год.

А все началось с публикации общей теории относительности Эйнштейна. Вот они, герои первой космологической революции, которая опровергла парадигму бесконечной вечной Вселенной.

Альберт Эйнштейн и его теория гравитации (он сам не сразу понял, что это приговор бесконечной Вселенной). Александр Фридман, который первым сказал, что Вселенная не стационарна и что это следует напрямую из теории Эйнштейна: Вселенная либо расширяется, либо сжимается. Жорж Леметр — последователь Фридмана, который независимо от своего предшественника все это повторил. И Эдвин Хаббл, открывший, что Вселенная расширяется. Хаббл ошибся в семь раз, рассчитывая скорость расширения Вселенной, — ну там просто сработало несколько ошибок в одну сторону, и по Хабблу получалось, что возраст Вселенной — всего лишь два миллиарда лет. А уже тогда было ясно, что она старше. Противоречие это несколько затормозило процесс, и до 1960-х годов очень много людей — ученых в том числе — отвергали теорию расширяющейся Вселенной. А теологам, что характерно, она, наоборот, сразу понравилась, потому что это фактически вариант творения Вселенной.

С переменным успехом теория, которая в 1940-х получила название «теория Большого взрыва», просуществовала до конца 60-х годов. До этого Вселенная была вместилищем всего сущего, но после вмешательства Фридмана, Эйнштейна, Леметра и Хаббла она свой статус потеряла и превратилась в физический объект с разными характеристиками: размер, плотность, температура, свет. А как представить себе этот физический объект? И вот здесь многие ломаются. Потому что как это — представить замкнутую Вселенную? Я сейчас это объясню, и дальше слушать будет легче. Легко себе представить бесконечную Вселенную, правда? А как себе представить конечную Вселенную? Проще всего, наверное, представить себе шарик, на поверхности которого нарисованы галактики, звезды. Шарик можно надувать — тогда он будет расширяться, и нарисованные галактики будут друг от друга удаляться. Очень важно понимать, что у такого расширения нет центра. Почти всегда, представляя себе Большой взрыв, люди думают, что где-то что-то в какой-то точке взорвалось и расширяется в пустоту.
Ничего подобного, нет никакой пустоты. Это именно замкнутое пространство, которое легче нам представить на поверхности шарика, которое все расширяется само по себе. В нем нет пустоты, оно однородно, и в нем нет центра.

Против теории Большого взрыва всегда протестовал Фред Хойл, талантливейший астрофизик, — ему не нравилась сама эта идея. Хотя термин «Большой взрыв» придумал именно он. Вообще говоря, «Большой взрыв» — это плохой перевод. Реально по-английски это звучит как «Big Bang», «большой бэмс», хлопок. Хойлу, как я уже сказал, хлопок этот не нравился. Он считал, что Вселенная бесконечна и вечна. Ну да, еще и расширяется, но расширение это компенсируется тем, что каждый год в одном кубическом километре из ничего рождается один протон и один электрон. Таким образом, плотность поддерживается постоянная. И эти новые частицы потом сгущаются в галактики… Но в действительности они не сгущаются, и это одна из проблем теории Фреда Хойла, которая на самом деле очень красивая: мы живем в вечной Вселенной, там решаются парадокс Ольберса и проблема тепловой смерти, жить в такой Вселенной прекрасно, но — она невозможна.

И тому есть множество аргументов и одно прямое опровержение. Его предложил Георгий Гамов, наш соотечественник. Он говорил, что Вселенная изначально была горячей и от этого должно было остаться так называемое реликтовое излучение. Это была довольно интересная история: излучение начали искать сознательно, а нашли несознательно. Нашли его Арно Пензиас и Роберт Вилсон, которые работали в компании
Веll Laboratories
, занимавшейся космической связью.

Они отлаживали антенну и никак не могли избавиться от какого-то постороннего шума. В конце концов канадский астроном Джим Пиблс, который в то время преподавал в Принстоне и сознательно искал реликтовое излучение, сказал им: «Ребята, вы — верите вы в это или нет — сделали великое открытие». Вскоре после этого Пензиас и Вилсон получили Нобелевскую премию. И вот тогда уже стало очень сложно противостоять концепции Большого взрыва. Но Фред Хойл продолжал сопротивляться. В конце жизни он заработал себе репутацию настоящего фрика, из-за чего во многом и не получил Нобелевскую премию, которую, безусловно, заслуживал.

До конца своих лет — а прожил он до 2002 года — он не признавал Большого взрыва. И все равно — великий ученый. Великие заблуждения иногда так же полезны для науки, как и великие открытия.

Теория Большого взрыва устоялась — в нее поверили практически все вменяемые люди, кроме Фреда Хойла и еще нескольких человек. Когда я говорю «вменяемые люди», я имею в виду ученых — простой человек совершенно не обязан верить ни во что. Но остались вопросы. Например: почему Вселенная так велика и сбалансирована? Чуть-чуть что-то изменим в начальных условиях — все либо разлетелось мгновенно на космологические расстояния, либо схлопнулось. Очень точно надо было подстроить вот этот самый начальный толчок, чтобы Вселенная получилось такой большой с одной стороны и такой медленно разлетающейся с другой. Или вот еще вопрос: а почему Вселенная всюду примерно одинакова? Когда началось расширение — в начале Большого взрыва — разные области Вселенной ничего друг о друге не знали. Они просто не успели обменяться сигналами, потому что есть ограничение — скорость.

А как они узнали, что надо начать расширяться одновременно? Как синхронизовались их плотность и температура? Во Вселенной ведь очень много всего — одних только частиц десять в 90-й степени! И наконец: что послужило начальным толчком?

Давайте сначала разберемся с тем, какие были начальные условия. Мы не знаем. Теологи говорили: «Это как раз по нашей части: начальный толчок, да еще хорошо устроенный, — понятно, что это Творец». И так продолжалось до 1980-х годов, пока не началась Вторая космологическая революция. И вот ее герои.

Именно в такой последовательности — справа налево. Алексей Старобинский — живет в Москве, работает в Институте теоретической физики им. Ландау. Алан Гут — преподает в Принстоне. Вячеслав Муханов — окончил Физтех, писал диплом и защищался в ФИАНе, сейчас работает в Германии. Андрей Линде из ФИАНа — сейчас в Стэнфорде. Все четверо — будущие нобелевские лауреаты. Правда, к сожалению, их четверо, а надо троих… Но выделить кого-то одного тяжело — они все мудрецы. Что же такого они сделали? Так получилось, что они почти одновременно разработали теорию космологической инфляции, или инфляционную модель Вселенной. Я уже говорил: Вселенная — это поверхность шарика, только не двумерная, а трехмерная (точнее, даже четырехмерная, так как у нее есть время плюс три пространственные координаты). Когда-то Вселенная была очень маленькой. Какие силы на нее действовали? Или — можно на другой язык перевести — какие силы есть в вакууме? Почти никаких. А на поверхности шарика какие силы могут действовать? Сила поверхностного натяжения? А что будет, если мы подставим силу поверхностного натяжения в теорию гравитации Эйнштейна? На самом деле это очень просто показать, но надо писать простейшее дифференциальное уравнение, а я не буду это делать. Ответ такой: сила поверхностного натяжения будет не сжимать, а со страшной силой расталкивать шарик. Если она сильная, шарик будет раздуваться. «Раздувание» по-английски «inflation», оттуда и термин. Одна из загадок природы — энергия вакуума равна нулю. Если когда-то, в самое первое мгновение Вселенной, эта энергия была положительной (а вакуум с положительной плотностью энергии — это отрицательное давление) и если мы такой вакуум подставим в уравнение Эйнштейна, то увидим, что он растягивает пространство со страшной силой в геометрической прогрессии. За каждый определенный промежуток времени Вселенная удваивается в своем размере, но при этом остается самоподобной, то есть вакуум не меняется. Вселенная в два раза расширилась, а все в ней осталось тем же. В следующий момент она еще в два раза расширится, но локально она везде одинакова. И что же дальше? Вселенная со страшной скоростью расширяется. А если она расширяется уже сто времен с удвоением? Значит, она расширилась с какого-то изначального показателя на шестьдесят порядков? А что случилось с этим расширением? Тяжелый вакуум, вообще говоря, не самая стабильная вещь — он может просто выгореть. Но когда у системы есть какое-то состояние плотное, то понятно, что она хочет избавиться от этой энергии, перейти в более низкое энергетическое состояние. И что при этом происходит? Вакуум горит, передает свою энергию частицам и перестает быть вакуумом. И вот когда он передал свою энергию, родилась горячая Вселенная, произошел Большой взрыв. Вот такой сценарий написали эти люди. И это единственно правильный ответ. Что было до Большого взрыва? Инфляция Вселенной.

Если Вселенная — это физический объект, то значит ли это, что она одна?

Но что было до инфляции? И это более сложный вопрос. Правильно будет сказать: до инфляции не было классического времени. Это так называемая Планковская эпоха, или Планковское состояние. У него есть определенная плотность энергии, и там вообще не работает теория Эйнштейна, там нет ни пространства, ни времени в нашем понимании. Там есть некие кванто-механические величины, которые мы пока не умеем описывать, потому что это чудовищно сложная теория; это то, что называется квантовой гравитацией, и это пока что больше заклинание, чем теория. Такой теории попросту еще нет — она не сформулирована. Поэтому на вопрос, что было до инфляции, мы ответа не имеем. У нас есть только соображения, мало чем подкрепленные.

Я назвал имена четырех будущих нобелевских лауреатов. А кто из них что сделал? Первый — Старобинский — написал очень хорошую модель. Он придумал, откуда берется тяжелый вакуум и что с ним дальше происходит. Он получил его естественным образом. Но он не понял, похоже, всех следствий своей модели — насколько она решает все космологические проблемы. Это понял Алан Гут (правда, не для модели Старобинского, а для своей собственной). Его модель, откровенно говоря, была плохой, неправильной, в ней были прямые ошибки. Но он написал настолько хорошую и хорошо аргументированную работу — объяснил, откуда что берется, как тяжелый вакуум решает все проблемы,— что его считают отцом теории инфляции. Даже когда стало понятно, что он ошибся, все равно осталось ощущение, что он самый главный. Андрей Линде выправил сценарий Гута и показал, как на самом деле все работает. А Слава Муханов сделал еще одну очень важную вещь, но о ней чуть позже.

Все ответы были даны. Все поверили, что инфляция и есть тот самый начальный толчок, который сделал все правильно, сбалансированно. Теперь понятно, почему Вселенная всюду одинаковая, однородная. Есть еще одна приятная вещь — здесь нет никакого нарушения сохранения энергии. Энергия рождается из чего-то очень-очень маленького, но это не страшно, потому что суммарная энергия Вселенной — с точки зрения стороннего наблюдателя, если бы такой существовал, — равна нулю. Вселенная дается даром. Теперь следующий вопрос. Хорошо, сработала инфляция, дала нам однородную Вселенную, но мы-то видим, что она неоднородная. Мы-то видим, что есть звезды, есть галактики, а в больших масштабах она похожа на какую-то сетку, где волокна, какие-то пустые места.

Мегапарсеки — сотни миллионов световых лет. Каждая точка здесь — это не галактики даже, а скопления галактик. Если мы видим структуры, если знаем, что они были во Вселенной изначально, значит, мы их должны видеть и в реликтовом излучении. Пензиас и Вилсон его зарегистрировали, и если мы будем очень хорошо его мерить, то должны будем заметить пятнистость излучения. А ее долго не видели. И даже начали изобретать всякие теории, чтобы как-то обойтись без этой пятнистости. В какой-то момент людям стало очень дискомфортно, потому что они не видели пятнистости на уровне десять в минус пятой, глядя в крупнейший в мире радиоантенный телескоп российского происхождения «РАТАН-600». И действительно, я помню это время, эти конференции, и тот же самый Линде говори: «Ребята, мы в тупике». Но в 1992-м все-таки увидели эту пятнистость. Американский спутник COBE и наш «Реликт» что-то увидели, но качество снимков было ужасное. Буквально было непонятно, на что смотрим, — реликт это или артефакты какие-то? Но разглядели! И теория выжила, и все вздохнули с облегчением. А откуда взялось это «десять в минус пятой»? Как раз Слава Муханов это и вычислил.

Все знают, что есть такая наука, как квантовая механика, которая не позволяет ничему находиться в покое. В том числе она не позволяет быть пространству строго однородным. Сейчас флуктуации кривизны пространства ничтожны, потому что кривизна очень маленькая и силы, в ней действующие, тоже маленькие. На стадии инфляции Вселенной все эти квантовые флуктуации давали неоднородности, одни из них растягивались, другие как бы рождались заново. Это был конвейер! Когда Вселенная перешла в горячую стадию, когда вакуум выгорел, эти флуктуации остались и продолжали жить, продолжали расширяться вместе с Вселенной и в конце концов начали расти. И вот они выросли в эту структуру. Все наши галактики, все эти гигантские скопления галактик получились в результате кванто-механических эффектов. Мы привыкли к тому, что квантовая физика — это что-то маленькое, почти микроскопическое. Так вот, эта микроскопическая теория дала гигантские неоднородности размером в сотни мегапарсеков. Да и нас самих бы не было без них. Люди какое-то время не могли в это поверить, но сейчас это уже общее место.

На новом витке Второй космологический революции — в 2002 и в 2009 годах — в космос запустили два очень хороших аппарата. Американский WMAP и европейский «Планк». Оба — микроволновые телескопы, которые очень хорошо измеряют реликтовое излучение. Вот картинка, полученная WMAP, и та же картинка того же участка неба от «Планка». Качество сильно отличается, хотя, забегая вперед, скажу, что все сливки снял WMAP («Планк» добавил мало нового).

Вот карта реликтового излучения: где желтая — там ярче, где синее — там холоднее. Контраст не очень: самое яркое от самого темного отличается всего на одну десятитысячную. Здесь также вычтены все фоны, вычтена так называемая дипольная компонента, которая связана с нашим движением в пространстве. То есть это вычищенная карта, а что мы на ней можем увидеть? Правильный ответ: ничего. Много людей пыталось здесь что-то разглядеть. Например, аномально холодное пятно. Или какие-то пальцы, похожие на листья. Роджер Пенроуз, замечательный ученый, который в старости начал заниматься экзотическими космологическими теориями, видел на картинке концентрические круги. Какие-то люди даже нашли здесь антисмайлик и лик Христа на Туринской плащанице. На самом деле здесь не видно ничего. Некоторые здесь видят что-то, но это так же, как мы и в облаках находим барашков всяких, крокодилов. Человеческий глаз может быстро выхватить что-то узнаваемое из совершенно хаотичной картинки. Более того, есть специальная теорема, подтвержденная измерениями, что на этой картинке в принципе ничего нельзя увидеть, потому что она гауссова. Такой математический термин, который на житейском языке означает, что перед нами нагромождение пятен разного размера, никак не коррелированных друг с другом.

Но что же тогда из этой картинки реально можно узнать? Оказывается, многое. И первым, кто нашел эффект, по которому это стало возможно, был Андрей Дмитриевич Сахаров.

Старинная его работа 1963 года — еще до открытия реликтового излучения — так называемые сахаровские акустические осцилляции. Возьмем график. С ним можно проделать операцию, называемую «разложение Фурье»: надеюсь, многим это словосочетание знакомо, в школе, по-моему, это еще не учат, но на первых курсах института точно проходят. «Разложение Фурье» записи звучащей струны будет выглядеть как бесконечно узкий пик. Если струна плохая — получится бугор. «Разложение Фурье» ноты, взятой певцом, — это более широкий бугор с широкими крыльями. Наша речь — это «разложение Фурье» в виде появляющихся и исчезающих бугров. Оно на этой картинке говорит об очень простой вещи. Мы видим колеблющуюся картинку. И все благодаря Андрею Дмитриевичу, который показал, что в горячей Вселенной начинают ходить звуковые волны (условно звуковые: понятно, что это не человеческий звук — другие частоты, другие длины, другие скорости). Потом звуковые волны вдруг потеряли скорость и вообще замерзли. И вот в тот момент, когда звуковые волны замерзли, — а это 380 тысяч лет от начала Вселенной, ее детство — Вселенная изменила состояние. Была горячей плазмой, а стала нейтральной. У нее резко упало давление, звуковые волны замерзли — только одни волны замерзли в максимуме своей амплитуды, другие в минимуме, и в зависимости от длины волны мы будем знать ее амплитуду. Вернемся к рисунку. Зеленым начерчена теоретическая кривая. В ней есть некоторые произвольные параметры, которые подогнаны под то, чтобы кривая совпадала с красными точками. И этих параметров шесть штук. Это на самом деле необыкновенно мало для такой кривой. Я не являюсь профессиональным космологом и всю жизнь занимался астрофизикой, но когда я впервые глянул на эту картинку, то испытал шок. Как можно все так хорошо описать? Конечно, для космологов, которые этим занимаются давно, ничего шокового тут нет — они к этому подходили постепенно, многие годы. Над теорией горячей Вселенной работали десятки человек, если не сотни. И если им это удается до сих пор, значит, теория и вправду хорошая. Значит, хорошо люди понимают, как расширялась Вселенная, что в ней происходило и как это потом транслировалось в реликтовое излучение, которое мы измеряем.

Есть довольно важные вещи в этой кривой еще. Например: насколько наша Вселенная плоская, евклидова? Насколько велик этот наш пузырь? Видим ли мы его кривизну? Не видим. Что это значит? Что Вселенная, по крайней мере, в сто раз больше, чем участок, который мы видим. Инфляция очень быстро раздувает Вселенную до гигантских размеров. И мы сидим на микроскопическом кусочке — одной миллиардной, может быть, от всего размера Вселенной.

Теперь пару слов вообще об истории и о будущем Вселенной. На слайде вы видите всю историю Вселенной после начала Большого взрыва, то есть инфляцию я оставил за началом координат. Далее Вселенная расширялась по степенному закону. Потом ничего не происходило во Вселенной — и это называется «великая энергетическая пустыня». Очень вероятно, что что-то там все-таки происходило, но мы ничего про это не знаем, и пока что все эксперименты на ускорителях не дали нам никаких оснований думать об обратном. Дальше во Вселенной произошел фазовый переход, появилось знаменитое поле Хиггса, и физика Вселенной стала гораздо более сложной и разнообразной. Дальше произошел так называемый confinement — до этого летали кварки и глюоны сами по себе, а здесь они объединились в капельки, которые мы теперь называем протонами и нейтронами. Дальше образовались ядра дейтерия, гелия (первичный нуклеосинтез), далее началась эпоха рекомбинации, и это именно тот промежуток времени, который мы видим в телескоп. Время существования Вселенной, в которой возможна жизнь, то есть последние миллиарды лет, — это узенькая линия. Вот так она развивалась, и нигде, кроме нынешнего времени, во Вселенной не было возможности, чтобы образовались какие-то сложные структуры, — просто не хватало времени. Какую физику ни придумывай, все было безвидно, как говорится в Библии.

А что со Вселенной будет дальше? Сейчас во Вселенной опять идет инфляция — только другая инфляция, гораздо более медленная: пространство раздувается по экспоненте (точнее говоря, примерно по экспоненте — мы не знаем точно). И вся ее дальнейшая история зависит от того, что ее раздувает. Если это тяжелый вакуум, то Вселенная так и будет расширяться — в два раза за каждые десять миллиардов лет примерно. Что это значит для нас? Не для нас даже, а для жизни, которая продолжит нашу жизнь. Останутся в целости и сохранности Галактика и все скопления галактик. Но погаснут звезды типа Солнца. Еще 100 миллиардов лет будут светить красные карлики — и где-то возле них будет возможна жизнь, но потом вероятны всякие столкновения, после чего произойдет ренессанс, появятся новые выводки звезд, вокруг которых, в принципе, возможна жизнь. И люди той поры будут видеть хотя и порядком потускневшую Галактику, но все же массу звезд над головой и через сотни миллиардов лет.

Есть и более катастрофический сценарий. Если темная энергия, расширяющая Вселенную, окажется так называемой фантомной материей, у которой очень большое отрицательное давление, то Вселенную просто разорвет. Причем произойдет это очень быстро — за конечное время. Если темная энергия — физическое поле, которое заполняет все пространство, оно будет потихоньку уменьшаться, а Вселенная будет потихоньку расширяться. А потом — раз! — и это поле выгорит. И тогда во Вселенной образуется совсем новая физика с абсолютно новыми масштабами. Та Вселенная будет очень холодной, очень большой, и в ней будет все очень медленно двигаться и жить. Если там образуется — а почему нет? — какая-то новая жизнь, то она будет воспринимать этот фазовый переход как свой собственный Большой взрыв. А наши небесные тела будут ей казаться какими-то ужасными реликтами эпохи ранней Вселенной, от которых лучше держаться подальше.

Если темная энергия, расширяющая Вселенную, окажется так называемой фантомной материей, у которой очень большое отрицательное давление, то Вселенную просто разорвет.

Собственно, основная часть моего доклада подошла к концу. Остался лишь один вопрос: если Вселенная — это физический объект, то значит ли это, что она одна? Да нет, конечно. Сама постановка вопроса говорит, что замкнутых трехмерных шариков, из которых нельзя выпрыгнуть, может быть очень много. Есть одно наводящее соображение, говорящее в пользу этой теории: наша Вселенная удивительно хорошо подогнана под существование человека. Это так называемый антропный принцип — косвенное свидетельство того, что вселенных, скорее всего, много и они разные. Возвращаясь к теории инфляции: возникает вопрос — а откуда взялось множество вселенных? Оказывается, инфляция не может закончиться образованием одной Вселенной. Квантово-механический эффект. Поле не может сразу все уменьшиться и выгореть — где-то обязательно останутся кусочки. Зрительно это можно себе представить как бесконечно, безудержно пузырящуюся пену, где каждый пузырь — новая Вселенная. Вселенные могут быть связаны друг с другом так называемыми кротовыми норами, перемычками, которые могут испаряться, а могут и оставаться. Некоторые черные дыры могут быть кротовыми норами, ведущими в другую Вселенную, но в пределах нашего горизонта нет, скорее всего, ни одной. А почему вселенные разные? А вот здесь твердого ответа нет. Зато есть теория струн, на которую люди возлагают очень много надежд. Она сама по себе очень интересная, но вдаваться в нее я не буду, потому что в этом случае и вы переутомитесь, и я перегреюсь. Скажу одно: теория струн в принципе позволяет перестраивать вакуум. Вот я задавал вначале вопрос: Вселенная четырехмерная или одиннадцатимерная? И многие ответили, что одиннадцатимерная. Теория струн требует именно этого параметра от Вселенной. Все измерения скрутились в тоненькие трубочки, они могли это сделать огромным количеством способов, и каждый такой способ дает разную физику и разные Вселенные, в одну из которых мы с вами попали. В чем проблема теории струн? Она не может делать значимых предсказаний — невозможно указать, в каком из вакуумов мы сидим. Был огромный энтузиазм в 1980-х годах, что вот-вот мы определим массу электрона, массу кварка и все остальное. А оказалось, что все эти состояния зависят от вакуумов. И теория струн пока что зависла в состоянии, когда ее невозможно ни подтвердить, ни опровергнуть. Останется ли она абстракцией или объяснит мир — этого никто не знает.

Я рассказывал о том, что мы знаем. Картина вообще полная и логически связная, но на ней все равно остаются дыры. Мы не знаем сущности, которая ввела инфляцию, не знаем, почему вакуум тяжелый. Кто-то скажет, что в таком случае я мог бы и не умничать тут так. Но поверьте: если я буду попроще рассказывать, получится попса, и у людей возникнет ложная иллюзия понимания. Допустим, показывает Discovery фильм: вот был во Вселенной звук, а теперь смотрите, какая красивая картинка, — люди посмотрели, и никто ничего не понял. Как я объясняю, тоже, наверное, не всем понятно, но кто-то в этом зале что-то все-таки понял. Я объясню, почему не могу рассказывать проще: вся красота, вся эта удивительность просто пролетели бы мимо.

В принципе, я закончил. Теперь небольшое отступление. Я написал книжку, где излагается все, что я только что наговорил. Но не только это. Есть в ней история про фантастических существ, которые якобы живут под толстым слоем льда примерно на спутнике Юпитера Европе и вообще ничего не видят дальше ста метров. В книжке рассказывается, как постепенно до них доходит, что над ними слой твердой материи, как они совершают кругосветное путешествие и думают, что заблудились, как изобретают гироскоп и определяют, что их мир вращается вокруг тяжелого гравитационного центра. В конце для оптимизма они у меня там высверливают дырку во льду и видят все собственными глазами. В действительности аналогия очень глубокая. Мы сейчас на стадии, когда уперлись взглядом в экран — а именно в область реликтового излучения — и дальше просветить пространство не умеем. Мы на стадии, на которой находились придуманные мной существа, двигаясь под многометровым наростом льда. Но пробурили же они лед. Будет ли у нас когда-нибудь такой прорыв? А почему нет. Только дырка, которую нам когда-нибудь предстоит пробурить, скорее всего, будет не вовне, а куда-то вглубь, во внутреннее пространство. То есть прозрение будет, скорее, теоретическое, чем практическое. И на этой оптимистической ноте я бы хотел откланяться.

Записала Наталья Кострова

Понравился материал? Помоги сайту!

Тест

Разбираетесь в искусстве XX века?

Давайте проверим вас на птицах и арт-шарадах художника Егора Кошелева

новости

11 марта 2022

14:52COLTA.RU заблокирована в России

3 марта 2022

17:48«Дождь» временно прекращает вещание

17:18Союз журналистов Карелии пожаловался на Роскомнадзор в Генпрокуратуру

16:32Сергей Абашин вышел из Ассоциации этнологов и антропологов России

15:36Генпрокуратура назвала экстремизмом участие в антивоенных митингах

Все новости

Новое в разделе «Colta Specials»Самое читаемое


От редакции COLTA. RU

89527


Культура во время «военных операций»

80918


Полифонические свидетели конца и начала. Эссе Ганны Комар

41685


Отделения

9637


Приход отца Александра Меня и позднесоветская интеллигенция

24040


Письмо папе

8110


Оливия Плендер. «История Королевства зверей»

13661


Что можно увидеть на выставке «Теле-трамплин»?

10749


Как эпоха застоя стала «золотым веком» детского телевидения в СССР

7840


Как Чебурашка за море ходил, или Кое-что о шведской детской культуре 70-х

16269


Лермонтов. Урановый след

12153


Теле-трамплин: от детского телевидения к современному искусству и литературе

7760

Сегодня на сайте

Colta Specials
От редакции COLTA.RU 

Обращение к читателям

5 марта 202289527

Colta Specials
Культура во время «военных операций» 

Нужны ли сейчас стихи, выставки и концерты? Блиц-опрос COLTA.RU

3 марта 202280918

Общество
Почему вина обездвиживает, и что должно прийти ей на смену? 

Философ Мария Бикбулатова о том, что делать с чувствами, охватившими многих на фоне военных событий, — и как перейти от эмоций к рациональному действию

1 марта 202269447

Общество
Родина как утрата 

Глеб Напреенко о том, на какой внутренней территории он может обнаружить себя в эти дни — по отношению к чувству Родины

1 марта 202249751

Литература
Often you write das Leid but read das Lied 

Англо-немецкий и русско-украинский поэтический диалог Евгения Осташевского и Евгении Белорусец

1 марта 202247259

Общество
Письмо из России 

Надя Плунгян пишет из России в Россию

1 марта 202260094

Colta Specials
Полифонические свидетели конца и начала. Эссе Ганны Комар 

В эти дни Кольта продолжает проект, посвященный будущему Беларуси

1 марта 202241685

Театр
Случайность и неотвратимость 

Зара Абдуллаева о «Русской смерти» Дмитрия Волкострелова в ЦИМе

22 февраля 202235116

Литература
«Меня интересуют второстепенные женские персонажи в прозе, написанной мужчиной» 

Милена Славицка: большое интервью

22 февраля 202235041

Общество
Архитектурная история американской полиции 

Глава из новой книги Виктора Вахштайна «Воображая город. Введение в теорию концептуализации»

22 февраля 202234465

Общество
Виктор Вахштайн: «Кто не хотел быть клоуном у урбанистов, становился урбанистом при клоунах» 

Разговор Дениса Куренова о новой книге «Воображая город», о блеске и нищете урбанистики, о том, что смогла (или не смогла) изменить в идеях о городе пандемия, — и о том, почему Юго-Запад Москвы выигрывает по очкам у Юго-Востока

22 февраля 202244260

Искусство
Два мела на голубой бумаге 

Что и как смотреть на выставке французского рисунка в фонде In Artibus

21 февраля 202238332

Как возникла Вселенная и что было дальше?

Ученые-физики путешествуют во времени, возвращаясь на 14 млрд лет назад.

Вселенная, которую мы наблюдаем, — это односторонняя машина времени. Чем дальше находится то, что мы видим, тем сильнее оно погружено в прошлое. Но ближе к началу времен есть предел, заглянуть за который почти невозможно. Что скрывается там, за невидимым горизонтом Вселенной?

Рассказывает гость программы «Вопрос науки» — академик РАН, главный научный сотрудник Института ядерных исследований РАН и заведующий кафедрой космологии и физики частиц Физического факультета МГУ Валерий Анатольевич Рубаков.

14 млрд лет расширения Вселенной  

Мы хорошо знаем, как расширялась Вселенная с самой первой секунды. Это экспериментальный факт. Сегодня ей почти 14 млрд лет. Когда ее возраст исчислялся одной секундой, температура в ней составляла миллиарды градусов Кельвина (°К). Она была горячая, плотная и быстро-быстро расширялась! В течение секунды все расстояния увеличились вдвое. Это мы знаем из измерений одного сорта. А из измерений другого сорта мы знаем уже во всех деталях, как она была устроена, когда ее возраст составлял примерно 380 000 лет. Температура у этой довольно юной Вселенной была уже поменьше — 3000 °К.

За этим фактом стоит вся история исследований. Почему мы об этом знаем? Потому что до этого момента — 380 000 лет — Вселенная была в плазменном состоянии, состояла в основном из протонов и электронов, была непрозрачной. А когда она остыла до 3000 °К, эта плазма превратилась в газ, в основном водород. Газ был очень прозрачный для электромагнитного излучения, и оно пошло свободно гулять по Вселенной и пришло к нам. И вот, глядя на это электромагнитное излучение, мы знаем, как она была устроена.

Мы имеем фотографию того, как была устроена Вселенная в то время. Совершенно не так, как у нас сейчас. Она была очень однородная, были слабенькие неоднородности — на уровне 0,0001. По мере расширения реликтовое излучение остыло, сейчас его температура — 2,7 °К.

Фотография говорит нам о том, что Вселенная была очень однородная, но были небольшие неоднородности, которые по мере эволюции, расширения Вселенной, превращались в галактики, скопления галактик, сгущались и давали жизнь всем структурам и нам с вами в конце концов.

Конечно, первые звезды появились раньше, чем мы. Они появились примерно через 400–300 млн лет после описанного события. Но все равно потребовались многие сотни миллионов лет, чтобы образовались звезды и самые первые галактики. Этот процесс продолжался долго — все 14 млрд лет.

Мы понимаем, что Вселенная была горячей плотной средой. Мы знаем, как она расширялась и с каким темпом она расширялась. До первой секунды дойти тоже просто, ведь секунда у нас — температура миллиард градусов, это не бог весть какая температура, и физику эту мы прекрасно знаем. Мы знаем общую теорию относительности, а значит, мы знаем темп расширения Вселенной, и нет никаких больших проблем продолжить этот процесс — экстраполировать назад во времени.

В то время работала ядерная физика. Как на Солнце термоядерная реакция происходит, так и во Вселенной были термоядерные реакции, по результатам которых мы, собственно, и знаем, что происходило. Чтобы понять, что было раньше, приходится экстраполировать дальше — на основе тех знаний, которые мы сегодня имеем о физике элементарных частиц, о гравитации. Вот тут уже начинаются гипотезы.

Альтернативные гипотезы о зарождении Вселенной

Если вы пойдете дальше во времени назад на основании тех знаний, которые у нас есть сегодня, — на доли секунды после Большого взрыва, вы придете к ситуации, когда у вас есть начало: Большой взрыв. Это момент времени, когда во Вселенной была гигантская температура, гигантский темп расширения. Невозможно себе представить какой, но настолько гигантский, что мы уже перестаем иметь возможность описывать это в рамках наших представлений. Надо сказать, что Большой взрыв — это не взрыв из точки, а это сразу во всей Вселенной произошел такой поджог, если хотите.

Такая картинка не вяжется с тем, что мы знаем из этой фотографии… Если бы все было устроено так, как мы сейчас с вами обговорили, то у нас есть начало всех времен — ноликом обозначенное время. И есть распространение сигнала. С того момента, когда образовалась наша Вселенная, можно себе представить, что были испущены какие-то сигналы. Неважно какие, но они движутся со скоростью света, не быстрее. Тогда у вас есть световой конус, то есть размер, сколько пробежал этот сигнал… Области вне этого размера друг с другом не «разговаривали» к этому моменту, не могли получить никаких сведений друг о друге и обменяться никакой информацией. Мы находимся далеко впереди во времени и видим много-много таких областей, которые друг с другом никак не связаны и ничего друг о друге не знают.

А теперь посмотрите: Вселенная абсолютно одинаковая везде. Как так получилось? Одна область с другой «разговаривать» не могла, а температура в них в точности одинаковая — с гигантской, фантастической точностью. Как же получилось так, что в большущей области Вселенной температура и плотность оказались чуть-чуть поменьше, а в другом месте — чуть-чуть побольше? (На фото более холодные области обозначены темно-синим и голубым цветом, а более теплые — желтым. — Прим. ред.) Как были созданы все эти неоднородности, которые мы видим? Чтобы это понять, нужно от этой картинки уйти назад во времени гораздо дальше: отправиться далеко-далеко в прошлое, в начало Вселенной.

Существует гипотеза о том, что горячая стадия началась гораздо позже, чем изначально предполагалось. Было что-то совершенно особенное еще раньше. Наиболее красивая и правдоподобная гипотеза об этом — инфляция. Она описывает ситуацию, когда Вселенная расширяется очень быстро, чрезвычайно, невероятно быстро, и за очень короткое время становится огромной. За мельчайшие доли секунды маленький кусочек Вселенной становится огромного размера — такое может быть. И вот тогда такая картинка начинает работать. Но для этого нужно, конечно, специальную теорию создать. Потому что горячая фаза такова, что в ней Вселенная так быстро не расширяется, нужно иметь какую-то другую материю…

Энергия этой изначальной субстанции должна была перейти в тепло, и тогда началась горячая стадия. И это еще одна задачка для ученых. Первая задача — понять, почему эта Вселенная так гигантски расширилась, а другая задача — понять, как это получилось, что энергия некой субстанции (ее еще называют «инфлатон» — гипотетическая элементарная частица. — Прим. ред.) перешла в энергию частиц, в тепло. Теоретически мы умеем отвечать на все эти вопросы, а экспериментально — нет. Поэтому все это остается популярной гипотезой.

А вообще, в теории можно представить себе другие сценарии и другие модели. Например, Вселенная в самом начале могла быть примерно такой же, как сегодня. Только сегодня Вселенная расширяется, а когда-то давным-давно она могла сжиматься: медленно-медленно, потихонечку. Потом должно было произойти чудо — сжатие должно было смениться расширением… Эта теория сегодня в работе. Не я один, а мы вместе с коллегами и многие другие группы пытаются придумать теоретически самосогласованные теории, модели, где такое бы происходило. Обсуждается и другая возможность: есть недавнее предположение о том, что Вселенная вообще может начинаться с пустого плоского пространства. Пустого в том смысле, что энергии никакой в нем нет, плоское, так как в нем ничего не эволюционирует. Потом потихонечку энергия нарастает, плотность энергии и темп расширения растут, и со временем Вселенная выходит ускоренно в гигантский темп расширения. И тут опять нужно, чтобы энергия, которая обеспечивает расширение, перешла в тепло. Рассматривается такая динамика и такие уравнения. Мои итальянские коллеги назвали эту модель «Генезис» — это английское название первой книги Библии.

Что мы знаем о структуре Вселенной?  

Это отдельный вопрос, как и вопрос об асимметрии между материей и антиматерией и вопрос о том, как образовалась темная материя во Вселенной. Думается, что генерация образования этих свойств произошла, скорее всего, на горячей стадии.

На языке физики элементарных частиц это называется «поля». Нужны очень необычные сущности и поля, которые обладают совершенно особенными свойствами. Во всех сценариях, которые я перечислил, требуются совершенно новые поля. Эти сущности потом никуда не делись, и, по идее, они должны быть. Но они вполне могут быть очень слабо взаимодействующими с обычной материей, с обычным веществом, из-за этого их очень трудно обнаружить в лаборатории.

А когда-то они доминировали. И нужно организовать теорию так, чтобы они тогда доминировали, а сегодня были бы безопасны с точки зрения эксперимента. Ну и можно попытаться их искать. Это тоже, как говорится, отдельный разговор — попытаться найти эти сущности.

Инфляция — очень красивая в этом отношении теория, она автоматически дает образование этих первичных неоднородностей, которые мы видим на фотографии. И более того, она дает их правильные свойства. Глядя на эту фотографию, мы можем многие свойства этих неоднородностей определить. Если правильно посмотреть на эту фотографию, мы сможем определить, какие были неоднородности, какие амплитуды были при большом размере, при меньшем размере и пр.

В свое время инфляционная теория сделала предсказание относительно того, как должна выглядеть эта фотография, когда этой фотографии еще не было. Она сделала предсказание, и предсказание оказалось прекрасно работающим. За исключением реликтовых гравитационных волн, которых пока не видно. Интересно будет узнать, кто поедет получать Нобелевскую премию, претендентов много.

Это все физика, очень сложная физика — есть теория, есть эксперимент, наблюдения. Мы перемещаемся на мельчайшие доли секунды с момента образования Вселенной или с момента ее перехода со сжатия на расширение. Сам факт, что мы туда способны заглянуть, — это уже фантастика! А мы способны заглянуть, разглядывая большие основные ее свойства на огромных расстояниях. Мы делаем предсказания. Это долгая история, конечно, много теоретических карандашей надо сломать, но мы делаем предсказания и начинаем их проверять на наблюдениях. Как только какие-то предсказания не будут согласовываться с наблюдениями, нам надо будет наши теоретические представления о физике менять.

Если и правда была инфляционная стадия, то инфляция, наверное, произошла от флуктуации, которую мы даже не умеем описывать. Это, наверное, такая стадия или состояние пространства, времени, материи, которую в современных терминах невозможно описать. Что такое сингулярность? Сингулярность — это явно какая-то квантовая, сильно взаимодействующая система, в которой все представления о пространстве, времени, энергии должны быть другими… Она страшно далеко по энергетическим масштабам. Несмотря на все попытки даже теоретически представить себе, как все это происходило, мы до сих пор этого не умеем. Но я оптимист и надеюсь, что еще при моей жизни это открытие произойдет.

Полную версию интервью с ученым смотрите на нашем канале в программе Алексея Семихатова «Вопрос науки».

«Кастрюлька», открывающая тайны Вселенной: что такое реактор ПИК

Прогноз: как наука изменит мир в ближайшие годы

«Человек может и должен летать!»

На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc. , запрещённая на территории Российской Федерации

  • Физика всего

  • Остальные теги

Расскажите друзьям

    • Внеземное
    • Физика всего

    Астрономы раскрыли новые особенности загадочных быстрых радиовсплесков в космосе

    • Устройство человека

    Исследование: сперматозоиды лучше плывут к яйцеклетке, когда они в группе

  • Ученые рассказали, когда закроется озоновая дыра над Антарктидой

    • Раскопки
    • Что было раньше

    Обнаружен прямой бивень слона, бродившего по Евразии 500 000 лет назад

    • Что было раньше

    Археологи нашли древние анальгетики в кувшинах раннего бронзового века

  • Shutterstock

    Современное потепление — самое сильное за последние 7000 лет

  • Федеральный портал «Российское образование»

    Московский школьник создал перчатку, которая может распознавать жестовый язык

  • Shutterstock

    Ученые рассказали, какое поведение родителей лучше всего влияет на развитие мозга ребенка

  • Современный карликовый крокодил

    Shutterstock

    Обнаружены еще два вида вымерших крокодилов, которые охотились на предков человека

  • Вранье: как его распознать — и надо ли? 

Хотите быть в курсе последних событий в науке?

Оставьте ваш email и подпишитесь на нашу рассылку

Ваш e-mail

Нажимая на кнопку «Подписаться», вы соглашаетесь на обработку персональных данных

как возникла Вселенная и какое будущее нас ожидает — T&P

В 1926 году ученые поняли, что наша Галактика — не единственная во Вселенной, а спустя еще несколько лет Вселенная вдруг перестала быть статичной и вечной: оказалось, что она расширяется.

Но какое будущее в таком случае ее ожидает? Возможно ли, что Вселенная возникла просто так из ничего? О том, к каким выводам пришла современная наука, рассказал известный американский ученый, физик и специалист в области космологии Лоуренс Краусс. T&P сделали конспект его лекции.
Лоуренс Краусс
Американский физик, специалист в области астрофизики и космологии

Какой формы Вселенная?

Сегодня с помощью телескопа «Хаббл» мы можем увидеть более 100 миллиардов галактик, и в каждой из них, возможно, сотни миллиардов звезд. Но как все это возникло? Почему есть нечто, а не ничто? Это основной вопрос для многих религий. Кажется, что такую огромную Вселенную кто-то должен был создать, что нельзя все это получить из ничего. Я хочу рассказать, почему это не так, почему все эти галактики и звезды могут возникнуть просто благодаря законам физики.

В 1926 году Эдвин Хаббл узнал, что наша Галактика — не единственная во Вселенной. А спустя еще три года он понял, что другие галактики отдаляются от нас. После этого поразительного открытия сразу стало казаться, что мы в центре Вселенной. Однако наблюдения Хаббла говорят о другом: Вселенная расширяется — неважно, из какой галактики вы за этим наблюдаете.

До 1929 года наука считала, что Вселенная статична и вечна. Но коль скоро теперь мы поняли, что она движется, то мы можем узнать, что было с ней в прошлом. У всех галактик единое начало: около 13,8 миллиарда лет назад все они были в одной точке, которую мы называем Большим взрывом. Но что станет с галактиками в будущем? Бесконечно ли расширение? Это вопрос, из-за которого я начал заниматься космологией и вообще пошел в физику.

Есть три варианта геометрии нашей Вселенной: она может быть закрытой, открытой или плоской. Имеется в виду не форма самой Вселенной, а то, как в ней выглядит плоскость, сравнимая с размером самой Вселенной. Например, если нарисовать сколь угодно большой треугольник в плоской Вселенной, то сумма его углов будет равна 180 градусам. В открытой Вселенной линии, по которым движется свет, изгибаются, поэтому сумма углов треугольника будет меньше 180 градусов. А в закрытой Вселенной сумма его углов, наоборот, будет больше 180 градусов.

Согласно теории относительности, закрытая Вселенная будет расширяться, а затем сжиматься обратно и в конце концов схлопнется, открытая Вселенная будет расширяться бесконечно, а плоская сначала будет расширяться, а затем очень постепенно замедлится и остановится. Если мы сможем определить, в какой Вселенной живем, то узнаем и наше будущее. Но как это сделать?

Темная материя

Геометрия Вселенной связана с плотностью ее вещества: если она больше определенного значения (5,5 атома водорода на кубический метр. — Прим. T&P), Вселенная закрытая, если меньше — открытая, а если равна — плоская. Соответственно, если Ω — отношение плотности Вселенной и критической плотности — больше единицы, то Вселенная закрытая, если меньше — открытая, а если равна — плоская.

В 1936 году Альберт Эйнштейн опубликовал в журнале Science статью («Линзоподобное действие звезды при отклонении света в гравитационном поле».  — Прим. T&P), в которой писал, что раз пространство искривляется из-за гравитации и есть такие тяжелые объекты, как звезды, то свет, находящийся за звездой, обходит мешающие ему объекты, а пространство может выступать в роли линзы. Он пришел к этим выводам еще в 1914 году, но забыл о них, потому что считал, что это не так важно. На самом деле феномен гравитационной линзы, конечно, крайне важен.

Вследствие явления, описанного Эйнштейном, мы можем видеть на изображении выше не только отдельные галактики и их скопления, но и множественные изображения одной и той же галактики. Свет от этой галактики прошел через другую галактику, попал в гравитационную линзу и был искажен.

Мы также можем подсчитать массу галактики, которая так сильно исказила свет. Эту сложную задачу, математическую инверсию, ученые решили в конце 1990-х годов. Они получили диаграмму распределения масс, на которой галактики обозначены пиками, — но присутствуют также пики там, где галактик вроде бы не видно. Это невидимая материя, которой в 40 раз больше, чем видимой, а раз она невидима и не сияет, то ее назвали темной. Оказалось, что в галактиках гораздо больше темной материи, чем материи самих галактик.

Темная материя состоит не из обычных протонов и нейтронов, а из других элементарных частиц. Она везде, а раз так, мы можем провести эксперимент здесь, на Земле, чтобы ее найти. Можно попробовать зафиксировать взаимодействие какой-нибудь массивной темной частицы с обычной частицей. Этому мешает естественный радиационный фон, поэтому такие эксперименты проводятся глубоко под землей. В качестве мишеней используются кристаллы кремния или германия, охлажденные до 0,001°C. Такие детекторы расположены в разных частях земного шара, но пока что они не зафиксировали ничего, что можно было бы однозначно трактовать как темную материю. Можно еще попробовать создать темную материю в лабораторных условиях — для этого у нас есть Большой адронный коллайдер. Но сейчас для нас важнее не из чего состоит темная материя, а сколько она весит — коль скоро она составляет бóльшую часть массы Вселенной.

Глядя на диаграмму выше, мы можем подсчитать общую массу, массу видимых галактик и массу темной материи. Однако все обнаруженные учеными массы составляют только 30% массы, необходимой, чтобы Вселенная была плоской. Можно было бы сделать вывод, что наша Вселенная открытая и будет расширяться бесконечно. Но здесь есть подвох: все эти подсчеты касаются только галактик и их скоплений. А то, что находится между ними, мы взвесить не можем. Так что нам нужен какой-нибудь другой объект для измерения.

Геометрия Вселенной

Когда мы глядим на Вселенную, то чем дальше смотрим, тем в более глубокое прошлое заглядываем. Можно было бы предположить, что где-то там виден и Большой взрыв, — но между нами и Большим взрывом стена. В самом начале Вселенная была настолько жаркой и плотной, что свет не мог покинуть ее. Потом Вселенная постепенно охлаждалась и, когда ей было 379 тысяч лет, стала электрически нейтральной (замедлившиеся электроны начали соединяться с протонами и альфа-частицами, образуя атомы водорода и гелия.  — Прим. T&P) и прозрачной. Этот момент — самая ранняя точка, которую мы видим, оглядываясь назад во времени. Вот так она выглядела (это проекция Мольвейде, которая также часто используется в картографии):

Реликтовое излучение, которое фиксируют детекторы, находящиеся на Земле, исходит от условной поверхности последнего рассеяния, которое видится нам как окружающая нас на очень далеком расстоянии сфера. На этой поверхности видны более горячие участки — там, где 379 тысяч лет назад были сгустки материи. Мы знаем их максимально возможный размер (он зависит от скорости гравитации, а ее значение равно скорости света) — 100 млн световых лет. Сравнивая эти цифры с тем, что мы наблюдаем, можно сделать вывод о том, в какой Вселенной мы живем: в закрытой Вселенной сгустки из-за искривления пространства казались бы нам меньше, чем на самом деле; в открытой — больше, а в плоской Вселенной никаких искривлений нет и сгустки выглядели бы на свои 100 млн световых лет.

Данные, полученные в ходе эксперимента BOOMERanG (Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics — «Аэростат для наблюдения миллиметрового внегалактического излучения и геофизических исследований». С помощью аэростатов радиотелескоп поднимался на высоту 42 тысячи метров, где мог фиксировать реликтовое излучение без потерь, в то время как в атмосфере оно поглощается микроволнами. — Прим. T&P), соответствуют расчетам и не выявляют никакого искривления пространства. С вероятностью 99% мы живем в плоской Вселенной.

Но возникает противоречие: для плоской Вселенной, как я уже говорил, мы видим слишком мало вещества — всего 30% от необходимой массы. Где же могут быть оставшиеся 70%?

Энергия пустого пространства

В пустом пространстве, в ничто. Звучит, конечно, глупо, но пустое пространство не такое уж и пустое. Вот так выглядит то, что происходит внутри протона: постоянно что-то бурлит, появляются и исчезают различные частицы:

Мы не «видим» их, потому что они возникают на очень непродолжительное время, но при этом они составляют основную часть массы протона. А раз так, то, возможно, они появляются в открытом пространстве и дают какую-то энергию. Может быть, вакуум тоже что-то весит?

Еще когда я учился в университете, было предположение, что энергия вакуума — это единица со 120 нулями, но этого просто не может быть: будь это так, Вселенная была бы другой и нас бы просто не существовало. Мы ждали какого-то математического чуда, которое бы позволило нам сократить это число; предполагали даже, что энергия пустого пространства равна нулю. А затем решили не полагаться на теоретиков: если у пустого пространства есть энергия, ее можно измерить. Но как?

Гравитация в большинстве случаев притягивает объекты друг к другу, но вакуум создает антитяготение. Чтобы рассчитать его, необходимо понять, расширяется ли наша Вселенная с ускорением или с замедлением. Первые попытки определить это сделал Эдвин Хаббл в 1929 году, но сейчас мы знаем, что его расчеты были неверны из-за того, что, в частности, не учитывали эволюцию галактик и связанные с ней изменения светимости. Так что нам нужны были какие-то другие объекты с известной яркостью.

Это изображение галактики, расположенной в 7 млн световых лет от нас. В левом нижнем углу виден яркий объект — можно предположить, что в кадр случайно попала звезда из нашей Галактики, но нет: это сверхновая, которая светится как сто миллиардов звезд. Потом она тускнеет, но в первый месяц она светится с яркостью, которая нам известна. Сверхновые появляются в Галактике примерно раз в сто лет. Можно выдать каждому студенту по галактике, и пусть постоянно смотрит на нее — за сто лет как раз напишет диссертацию. Но на самом деле галактик очень много: если соединить пальцы в кружок размером с пятирублевую монету и посмотреть через него на небо, в этом кружочке будут сотни галактик. А значит, в небе постоянно взрываются сверхновые, так что мы легко можем использовать их, чтобы рассчитывать расстояния до отдаленных галактик и скорости, с которыми эти расстояния увеличиваются. Эти расчеты были проведены в 1998 году, и результатом стал вот такой график:

Если бы темпы расширения Вселенной были одинаковыми, то в его нижней части была бы просто прямая линия. Астрономы ожидали, что все сверхновые будут либо на этой линии, либо ниже. Но большая часть таких звезд оказалась выше линии — это могло быть только в том случае, если бы темпы расширения Вселенной увеличивались.

А чтобы Вселенная расширялась, нужно как раз столько энергии, сколько нам не хватало, — те самые 70%. Тогда все сходится. В 2011 году Нобелевскую премию по физике получили ученые, обнаружившие, что

Вселенная расширяется с ускорением, а большая часть массы находится в пустом пространстве. И мы понятия не имеем, как это возможно.

Вероятно, это как-то связано с самой природой пространства и времени и причинами возникновения Вселенной. Но теперь понятно, что ее будущее будет определяться не материей и даже не геометрией, а энергией пустого пространства.

Много шума из ничего

Что будет, если подбросить монетку? Скорее всего, она упадет, но если забросить ее достаточно далеко, она улетит и не вернется. Энергия подброшенной монетки складывается из двух величин: «положительной» кинетической энергии T = mv²/2 (где m — масса монетки, а v — скорость ее движения. — Прим. T&P) и «отрицательной» силы гравитационного притяжения U = –GMm/R (где G — гравитационная постоянная, M — масса Земли, а R — расстояние между центрами масс Земли и монетки.  — Прим. T&P). В итоге все сводится к своего рода бухгалтерскому учету: если вторая величина больше первой, монетка упадет на землю, если наоборот — улетит. И если мы можем сделать подобные расчеты для монетки, значит, можем сделать их и для всей Вселенной.

На этом изображении — происхождение Вселенной:

Со всеми галактиками происходит примерно одно и то же, так что, чтобы определить их будущее, достаточно определить будущее одной из галактик — например, той, которая обозначена вопросительным знаком. Как и в случае с монеткой, энергия, с которой она движется, определяется кинетической энергией и гравитационным притяжением. Если первая больше второго, Вселенная будет расширяться бесконечно; если второе больше первой, Вселенная в конце концов схлопнется.

Оказывается, соотношение этих двух величин и есть та самая Ω, про которую мы говорили в начале (отношение плотности Вселенной к критической плотности). Мы уже знаем, что живем в плоской Вселенной, значит, Ω = 1. Следовательно, энергия, с которой Галактика удаляется от центра Вселенной, равна энергии, которая тянет ее обратно, — и это касается всех галактик во Вселенной. Получается, что их суммарная энергия равна нулю — вот что случается, если вы создаете Вселенную из ничего.

Возникнуть и не пропасть

Мы уже выяснили, что пустое пространство, которое мы сейчас наблюдаем во Вселенной, не такое уж пустое: в нем постоянно что-то бурлит, возникают и исчезают виртуальные частицы. Но откуда взялось то ничто, из которого появляются эти частицы, откуда взялось само пространство? Оказывается, при совместном действии квантовой механики и гравитации могут появляться не только частицы в пространстве, но и само пространство.

Вселенная может просто взять и появиться.

Ранее мы выяснили, что спонтанно появиться из ничего может только Вселенная, у которой общая энергия равна нулю, а это закрытая Вселенная. А еще раньше — что наша Вселенная плоская. Возникает противоречие.

Представьте себе воздушный шарик: если надуть его очень сильно, его поверхность будет казаться плоской, как кажется плоской круглая Земля (особенно если наблюдать ее где-нибудь в тундре). Если Вселенная с первых мгновений своего существования будет очень быстро расширяться, с ней произойдет то же самое — она возникнет как закрытая, а через 14 миллиардов лет станет плоской. Это резкое расширение — инфляция — описывается инфляционной моделью, которая была предложена в 1981 году физиком Аланом Гутом. Вот она на графике:

Но как доказать, что инфляция действительно имела место?

Еще в 1916 году Эйнштейн пришел к выводу, что, перемещаясь в пространстве, мы создаем гравитационные волны, так называемую рябь пространства-времени. Каждый раз, когда я двигаю рукой, появляются гравитационные волны, распространяющиеся со скоростью света. Но рябь настолько незначительна, что мы ее не замечаем. В обсерваториях в Вашингтоне и Луизиане (лазерно-интерферометрических гравитационно-волновых обсерваториях LIGO.  — Прим. T&P) есть специальные детекторы, позволяющие улавливать гравитационные волны. Впервые это удалось сделать в сентябре 2015 года, когда произошло слияние двух черных дыр. За это открытие в 2017 году ученые получили Нобелевскую премию по физике.

Но это значит, что такое событие, как инфляция, также должно было породить гравитационные волны, и, если мы их обнаружим, мы подтвердим и правильность инфляционной модели (их поиском занимаются ученые в рамках серии экспериментов BICEP2. — Прим. T&P). А это будет значить, что наша Вселенная действительно могла быть произведена из ничего.

Если мы действительно находимся во Вселенной, расширяющейся с ускорением, то объекты, которые мы сейчас видим, вскоре будут находиться от нас на огромном расстоянии.

Сотни миллиардов галактик, которые мы сейчас видим, будут отдаляться от нас со скоростью больше скорости света, и мы окажемся в этом темном пустом пространстве одни. В начале было ничто, и в конце тоже будет ничто.

Мы еще не доказали, что это так, но это очень вероятно. И мне нравится эта вероятность: каждый раз, когда можно избавиться от божественного вмешательства и объяснить все с точки зрения физики, мы делаем шаг вперед. Помимо нашей Вселенной, могут существовать или прямо сейчас создаваться и другие, где действуют другие законы. Мы, люди, крайне неважная часть Вселенной, мы шум, загрязнение на ее фоне. Если вам это не нравится, возможно, вас утешит высказывание Эйнштейна:

«Самая прекрасная эмоция, которую нам дано испытать, — ощущение тайны. Это основополагающая эмоция, стоящая у истоков всякого истинного искусства и науки».

Вселенная была создана не для нас, она была просто создана. Вселенной на нас наплевать. Мы сами наполняем нашу жизнь значением и смыслом.

Вопросы и ответы

— У меня вопрос об инфляции. Вы сказали, что ее предсказали физики, которые занимаются физикой частиц. А какое отношение инфляция пространства имеет к физике частиц?

— Физика частиц говорит о том, что ранняя Вселенная претерпела переход из одного фазового состояния в другое. Когда происходит этот фазовый переход, выделяется огромное количество энергии, что и привело к инфляции.

— Предположим, что темная материя окажется все-таки частицей и мы сможем ее найти. Не окажется ли тот фундамент, на котором построена вся современная физика, ложным?

— Физика элементарных частиц предсказывает наличие большого количества различных частиц. И открытие каждой новой частицы выводит стандартную модель за прежние границы. Если мы сможем найти темную материю — да, многие наши идеи окажутся неверными, и нам придется продумать и разработать новые законы. Но ученые готовы ошибаться. Многие из нас ходят на работу для того, чтобы доказать, что другие ученые ошибаются, — именно так и приходит известность.

— Понятно, какими могут быть границы у закрытой Вселенной. Но мне не совсем понятно, какие границы у плоской Вселенной, в которой мы находимся.

— У закрытой Вселенной нет границ. Возьмите воздушный шарик, нарисуйте на нем несколько точек и надувайте. Вселенная похожа на поверхность этого шарика: она не имеет границ, при этом расширяется так, что расстояние между точками постепенно увеличивается.

— У меня вопрос, который возник при чтении книг Ричарда Докинза. Наш мозг эволюционно запрограммирован не для того, чтобы понимать Вселенную, а для того, чтобы решать бытовые вопросы. Не боитесь ли вы того, что в какой-то момент наука столкнется с границами возможностей мозга?

— Может быть. Но я не боюсь. Так же, как я не боюсь жить в этой Вселенной, у которой нет никакого назначения. Да, могут быть какие-то ограничения у человеческого мозга, но мы не узнаем наверняка до тех пор, пока не попробуем. Именно поэтому нужно постоянно пытаться. И, как я понимаю, у нас пока не получилось уткнуться в какую-то стену. Может быть, у вас будут какие-то сложности, но ваши дети и внуки смогут преодолеть их. Мы постоянно идем дальше, мы постоянно преодолеваем эти границы. Наука именно тем и занимается, что выходит за границы.

Может быть, не очень по теме, но одна из причин, по которой я занимаюсь квантовыми компьютерами и искусственным интеллектом, в том, что, может быть, они смогут объяснить нам то, что сами мы понять не можем. Многих пугает искусственный интеллект, но я думаю, что он сможет стать лучшим физиком, чем мы.

— В какой роли вы видите искусственный интеллект в вашей области?

— Понятия не имею. Я не прогнозирую ближе чем на 2 трлн лет. Каким будет будущее с искусственным интеллектом, зависит от нас. Мы должны думать о возможностях и быть готовыми к ним. Один из вариантов — что мы останемся без работы. Но зато мы сможем бесконечно ходить на научные конференции и слушать музыку. Я в данном случае пессимистически настроен, поскольку, честно говоря, не очень верю в человечество. Но посмотрим, что будет. Мы еще можем подготовиться.

— Возможно ли доказать, что мы живем в компьютерной симуляции?

— Очень многие задают этот вопрос. Ответ: скорее всего, нет.

Во-первых, компьютерная симуляция никогда не является идеальной. Есть битые пиксели, в которых не работают законы природы. Но мы такого не видим. Может быть, в голове у президента Трампа есть такие пиксели, но в большинстве остальных случаев таких пикселей не наблюдается. Все работает согласно законам природы.

Во-вторых, говоря о том, что мы внутри симуляции, мы должны задать вопрос: что нас создало? А наших создателей? Идея, что наше существование — это компьютерная симуляция, — просто еще одна версия вопроса о том, кто создал Вселенную.

Но мне как физику вообще неважно, в симуляции я или нет, — мне интересно, по каким законам она создана.

Если вы хотите доказать, что наш мир — симуляция, ищите баги в программе. Может быть, в будущем мы их найдем, пока — нет.

— Вселенная расширяется. Бесчисленное количество космических объектов отдаляются от нас все быстрее и быстрее. Значит ли это, что наши шансы найти в этой Вселенной другие цивилизации все уменьшаются и уменьшаются?

— Во-первых, до того, как другие галактики окончательно пропадут из виду, у нас еще 2 трлн лет — за это время можно найти внеземную цивилизацию. Во-вторых, даже через 2 трлн лет у нас будет наша Галактика — потому что сами галактики не расширяются.

— Если все появилось из ничего, каким образом 13 млрд лет назад это ничто решило сделать Большой взрыв? И почему Большой взрыв не происходит сейчас?

— Ответ на первый вопрос — я не знаю. Именно поэтому я занимаюсь наукой.

Что касается второго вопроса. Большие взрывы могут происходить прямо сейчас, в других пространствах. Прямо перед вами может появиться пространство, но оно очень быстро будет отделено от нашей Вселенной. В мультивселенной постоянно могут происходить большие взрывы, появляться и схлопываться вселенные.

— Не конфликтует ли то, о чем вы нам рассказали, с законом сохранения энергии?

— Честно говоря, не конфликтует. Если посмотреть на сотни миллионов звезд и галактик, то в них очень много энергии. Но нужно просто добавить в это уравнение гравитационное притяжение, и общая результирующая энергия всей нашей Вселенной, всего вещества, будет равна нулю. Таким образом, энергия сохраняется. Поразительно, да?

— Можно ли создать модель такой вселенной, законы физики в которой были бы невозможны в нашей Вселенной?

— Я именно этим чаще всего и занимаюсь. Я физик-теоретик, я постоянно создаю модели, которые описывают разные вселенные. Нужно понимать, что в большинстве случаев я ошибаюсь. У меня были потрясающе красивые, очень хорошие теории, которые оказались неверными. Но, может быть, раз в жизни я случайно окажусь прав (как это было с идеей, что Вселенная расширяется с ускорением).

Поиск важнее, чем сама реальность. Наша жизнь похожа на миф о Сизифе, у нас нет выбора. Мы можем впасть в депрессию — а можем наслаждаться поиском.

— Если в разных вселенных образуются разные законы физики, существует ли какой-то высший закон физики над ними всеми, по которому образуются эти разные законы?

— То есть метазаконы? Может быть. Кто знает… Это возможно. В каких-то теориях, например теории струн. Но сейчас нет доказательств. Может быть, там действуют законы математики. Я не знаю, чего ожидать. Но это не доказывает, конечно же, существование какого-либо бога.

— Вы живете в стране, где политику нежелательно признаваться в том, что он атеист, для того чтобы не потерять рейтинг. А мы живем в стране, где около 70–80% людей считают себя людьми религиозными, ничего не знают и знать не хотят про теорию Большого взрыва. Как вы считаете, что должно произойти, для того чтобы расстановка сил в мире поменялась?

— Честно говоря, мне без разницы, религиозны люди или нет. Когда я вижу людей, которые считают, что миру 5 или 6 тысяч лет, я не считаю, что они глупы. Мне кажется, им просто не хватает знаний. Людям старшего поколения уже поздно меняться, но я надеюсь на молодых людей. Я хочу, чтобы молодые люди думали, а не только чувствовали. И дело даже не в фактах, потому что факты вы в большом количестве найдете в своем смартфоне — но они могут быть неверными. Самое важное — научить людей задавать вопросы и отличать истинное от ложного. Я думаю, преподавание наук в школе побуждает молодых людей к этому.

— Учитель физики в школе говорил мне, что спрашивать, чтó было до Большого взрыва — это как бы моветон, потому что в точке сингулярности не действуют законы физики. Он говорил, что все будут смеяться, если я кого-то спрошу об этом. Но при этом всю лекцию вы только об этом и говорили. Поэтому у меня вопрос: ограниченны ли вообще возможности человеческого познания?

— Вопрос хороший, но ответ вам не понравится. Нет никакого «до», потому что само время возникло во время Большого взрыва. Это очень сложно представить. Но вопрос «Что было до Большого взрыва?» может просто не иметь значения. И нашему сознанию, может быть, не хватает возможностей для того, чтобы понять этот вопрос и ответить на него.

Но я бы хотел, чтобы вы продолжали задавать вопросы и поражаться Вселенной такой, какая она есть. Неважно, если вы понимаете не все. Цените ее за то, что она больше, чем вы можете понять. Нужно постоянно смотреть вперед, потому что Вселенная нас может очень многому научить.

Литература

  • Краусс Л. Все из ничего. М.: Альпина нон-фикшн, 2019.

  • Краусс Л. Страх физики. Сферический конь в вакууме. СПб.: Питер, 2016.

  • Краусс Л. Почему мы существуем? Величайшая из когда-либо рассказанных историй. М.: Альпина нон-фикшн, 2018.

  • Краусс Л. Вселенная из ничего. Почему не нужен Бог, чтобы из пустоты создать Вселенную. М.: АСТ, 2016.

  • Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field. Albert Einstein Science, New Series, Vol. 84, No. 2188. (Dec. 4, 1936), pp. 506–507.

Благодарим Марию Ломаеву за помощь в подготовке конспекта.

Мы публикуем сокращенные записи лекций, вебинаров, подкастов — то есть устных выступлений. Мнение спикера может не совпадать с мнением редакции. Мы запрашиваем ссылки на первоисточники, но их предоставление остается на усмотрение спикера.

«Всё из ничего: как возникла Вселенная»

Откуда взялась Вселенная? Что было до нее? Чего ждать в будущем? Физик Лоуренс Краусс предпринимает попытку доступно ответить на эти вопросы. Его новая книга «Всё из ничего: Как возникла Вселенная» выходит в издательстве «Альпина Нон-фикшн». По этому поводу N + 1 предлагает своим читателям ознакомиться с отрывком из нее, в котором Краусс объясняет, почему в далеком будущем нашу галактику окружит пустое и неизменное пространство, а ученые не найдут никаких следов расширения Вселенной.


Наше печальное будущее

В каком-то смысле обнаружить, что живешь во Вселенной, где всем правит ничто, интересно и восхитительно. Структуры, которые мы видим, вроде звезд и галактик, возникли из ничего в результате квантовых флуктуаций. В среднем полная ньютоновская гравитационная энергия каждого объекта во Вселенной равна — ничему. Наслаждайтесь этой мыслью, пока есть возможность, поскольку, если все это правда, мы живем чуть ли не в самой худшей из вселенных, по крайней мере с точки зрения будущего всех живых организмов.

Вспомним, что всего 100 лет назад Эйнштейн разработал ОТО. Тогда все считали, что наша Вселенная неизменна и вечна. Более того, Эйнштейн не просто высмеял Леметра за предположение о Большом взрыве, но даже выдумал космологическую постоянную, лишь бы сохранить стационарную модель Вселенной.

Сейчас, по прошествии века, мы, ученые, можем гордиться, что открыли столько фундаментального — и расширение Вселенной, и реликтовое излучение, и темное вещество, и темную энергию.

Но что таит в себе будущее?

А будущее наше очень поэтично. Если можно так выразиться.

Вспомним: вывод о том, что в расширении нашей Вселенной доминирует энергия пустого на первый взгляд пространства, делается на основании того факта, что расширение происходит с ускорением. И, как и ранее обстояло с инфляцией и как описано в предыдущей главе, наша наблюдаемая Вселенная стоит на пороге расширения со скоростью больше скорости света. А со временем из-за расширения с ускорением все станет только хуже.

Это означает, что чем дольше мы будем ждать, тем меньше сможем видеть. Галактики, которые мы видим сейчас, в один прекрасный день начнут удалятся от нас со сверхсветовой скоростью, а это значит, что они станут для нас невидимыми: свет, который они испускают, не сможет преодолеть расширяющееся пространство и никогда до нас не долетит. Эти галактики исчезнут с нашего горизонта.

Произойдет это не совсем так, как вы, возможно, себе представляете. Галактики не то чтобы вдруг погаснут и вмиг исчезнут с ночного неба. Просто по мере приближения скорости их удаления к скорости света будет увеличиваться красное смещение. В конце концов весь видимый свет от них сдвинется в инфракрасное, микроволновое, затем радиоизлучение и так далее до тех пор, пока длина волны света, который они испускают, не станет больше размера видимой Вселенной, и в этот момент их можно будет официально признать невидимыми.

Можно посчитать, сколько времени это займет. Поскольку галактики в нашем скоплении связаны взаимным гравитационным притяжением, они не удаляются от нас в связи с фоновым расширением Вселенной, которое открыл Хаббл. Галактики за пределами нашей группы находятся примерно на 1/5000 расстояния до той точки, где скорость удаления объектов приближается к световой. Чтобы туда добраться, у них уйдет около 150 млрд лет, примерно в 10 раз больше нынешнего возраста Вселенной, и тогда весь свет от звезд в этих галактиках сдвинется в красную сторону примерно в 5000 раз. Примерно через 2 трлн лет их свет сдвинется в красную сторону настолько, что длина его волны станет равна размеру видимой Вселенной — и вся остальная часть Вселенной буквально исчезнет.

Казалось бы, 2 трлн лет — большой срок. Так и есть. Однако с космической точки зрения это отнюдь не вечность. Самые долгоживущие звезды главной последовательности (у которых такая же эволюционная история, как и у нашего Солнца) проживут гораздо дольше Солнца и через 2 трлн лет будут еще вовсю светить (в то время как наше Солнце погибнет всего через 5 млрд лет). Так что в отдаленном будущем на планетах вокруг этих звезд вполне могут быть цивилизации, черпающие энергию от своих светил, с водой и органическими соединениями. И астрономы с телескопами тоже вполне могут быть. Посмотрят они в космос — а там все, что мы видим сейчас, все 400 млрд галактик, составляющих на сегодня нашу видимую Вселенную, возьмут и исчезнут!

Я пытался донести этот довод до Конгресса, чтобы убедить его увеличить финансирование космологических исследований прямо сейчас, пока у нас еще есть время наблюдать все это. Однако для конгрессмена даже два года — долгий срок, а уж на 2 трлн лет вперед он заглянуть просто не в состоянии.

Так или иначе астрономов далекого будущего ждал бы большой сюрприз, если бы только они знали, что теряют. Но этого они знать не будут. Как несколько лет назад выяснили мы с коллегой Робертом Шеррером из Университета Вандербильта, исчезнет не только вся остальная Вселенная — по существу, исчезнут и все свидетельства, которые говорят нам сегодня, что мы живем в расширяющейся Вселенной, начавшейся с Большого взрыва, вместе со всеми свидетельствами существования в пустом пространстве темной энергии, которую можно было бы обвинить в этой пропаже.

А ведь не прошло и 100 лет с тех пор, когда все считали, что Вселенная неизменна и вечна, то есть звезды и планеты появляются и исчезают, но на больших масштабах Вселенная остается как была. Получается, что в далеком будущем, когда от нашей планеты и цивилизации, скорее всего, не останется даже праха на свалке истории, иллюзия, которую наша цивилизация разделяла до 1930-х гг. , вернется и отомстит за себя сторицей.

К эмпирическому доказательству Большого взрыва привели три основные вехи — три наблюдения, благодаря которым, даже если бы на свете не было ни Эйнштейна, ни Леметра, нам все равно волей-неволей пришлось бы признать, что Вселенная в самом начале была плотной и горячей. Это наблюдения расширения Вселенной, которые проделал Хаббл; это наблюдения космического микроволнового фона; это соответствие наблюдаемой распространенности во Вселенной легких элементов — водорода, гелия и лития  — тем количествам, которые должны были возникнуть в первые несколько минут истории Вселенной.

Начнем с хаббловского расширения Вселенной. Откуда мы знаем, что Вселенная расширяется? Мы измерили скорость удаления далеких объектов в зависимости от расстояния до них. Но, когда все видимые объекты вне нашего галактического скопления (в котором все мы связаны узами гравитации) исчезнут за горизонтом, не останется никаких следов расширения, которые наблюдатели могли бы зарегистрировать, — ни звезд, ни галактик, ни квазаров, ни даже огромных газовых облаков. Расширение достигнет таких масштабов, что вынесет из нашего поля зрения все объекты, которые от нас удаляются.

Более того, на масштабе менее 1 трлн лет все галактики в нашей местной группе слипнутся в своего рода огромную сверхгалактику. Наблюдатели в далеком будущем увидят примерно то же самое, что мы могли увидеть в 1915 г.: одну-единственную галактику, в которой находится их звезда и их планета, окруженную обширным пустым и неизменным пространством.

Напомню также, что все свидетельства того, что пустое пространство обладает энергией, мы получаем из наблюдений темпа, с которым ускоряется расширение нашей Вселенной. А без признаков расширения понять, что оно еще и ускоряется, будет невозможно. Вообще-то по странному совпадению мы живем в ту единственную эпоху истории Вселенной, когда наличие темной энергии, наполняющей пустое пространство, в принципе довольно легко зарегистрировать. Конечно, эта эпоха длится несколько сотен миллиардов лет, но в вечно расширяющейся Вселенной это всего лишь мгновение космического ока.

Если мы предположим, что энергия пустого пространства относительно постоянна, как было бы в случае космологической постоянной, то в гораздо более ранние времена плотность энергии вещества и излучения значительно превосходила бы плотность энергии пустого пространства — просто потому, что при расширении Вселенной плотность вещества и излучения снижается, поскольку растет расстояние между частицами, поэтому в заданном объеме остается меньше объектов. В более ранние времена, скажем 5–10 млрд лет назад, плотность вещества и излучения была гораздо больше, чем сегодня. Поэтому во Вселенной тогда и раньше преобладали вещество и излучение со своим гравитационным притяжением. Расширение Вселенной в те ранние времена замедлялось, а гравитационное воздействие энергии пустого пространства невозможно было бы зарегистрировать.

По тем же соображением в далеком будущем, когда Вселенной исполнится несколько сотен миллиардов лет, плотность вещества и излучения станет еще меньше, и можно подсчитать, что средняя плотность темной энергии будет превосходить плотность всего оставшегося во Вселенной вещества и излучения намного более, чем в тысячу миллиардов раз. К этому времени она будет полностью управлять гравитационной динамикой Вселенной на больших масштабах. Однако в эту позднюю эпоху ускоренное расширение Вселенной станет невозможно пронаблюдать. В этом смысле энергия пустого пространства по самой своей природе обеспечивает определенный, конечный отрезок времени, в который его можно наблюдать, и мы, что примечательно, живем именно в этот космологический момент.

Подробнее читайте:
Краусс, Лоуренс. Всё из ничего: Как возникла Вселенная / Лоуренс Краусс ; Пер. с англ. [Анастасия Бродоцкая и Наталья Лисова, под научной редакцией Игоря Лисова] — М.: Альпина нон-фикшн, 2019. — 283 с.

Как появилась Вселенная?

Как появилась Вселенная?

Одним из основных вопросов, которые не выходят из сознания человека, всегда был и является вопрос: «как появилась Вселенная?». Конечно же, однозначного ответа на данный вопрос нет, и вряд ли будет получен в скором времени, однако наука работает в этом направлении и формирует некую теоретическую модель зарождения нашей Вселенной. Прежде всего следует рассмотреть основные свойства Вселенной, которые должна описываться в рамках космологической модели:

  • Модель должна учитывать наблюдаемые расстояния между объектами, а также скорость и направление их движения. Подобные расчеты основываются на законе Хаббла: cz = H0D, где z – красное смещение объекта, D – расстояния до этого объекта, c – скорость света.
  • Возраст Вселенной в модели должен превышать возраст самых старых в мире объектов.
  • Модель должна учитывать первоначальное обилие элементов.
  • Модель должна учитывать наблюдаемую крупномасштабную структуру Вселенной.
  • Модель должна учитывать наблюдаемый реликтовый фон.

Крупномасштабная структура Вселенной

Далее рассмотрим подробнее наиболее популярные в научном сообществе концепции зарождения мира.

Содержание:

  • 1 Краткая история Вселенной
  • 2 Материалы по теме
  • 3 Откуда появилась Вселенная?
    • 3. 1 Циклические модели
    • 3.2 Другие модели возникновения Вселенной
  • 4 Итоги

Краткая история Вселенной

Рассмотрим кратко общепризнанную теорию возникновения и ранней эволюции Вселенной, которая поддерживается большинством ученых. Сегодня под теорией Большого взрыва подразумевают комбинацию модели горячей Вселенной с Большим взрывом. И хотя данные концепции сперва существовали независимо друг от друга, в результате их объединение удалось объяснить первоначальный химический состав Вселенной, а также наличие реликтового излучения.

Согласно данной теории, Вселенная возникла около 13,77 млрд лет назад из некоторого плотного разогретого объекта — сингулярное состояние, плохо поддающееся описанию в рамках современной физики. Проблема космологической сингулярности, помимо всего прочего, в том, что при ее описании большинство физических величин, вроде плотности и температуры, стремятся к бесконечности. При этом, известно, что при бесконечной плотности энтропия (мера хаоса) должна устремляться к нулю, что никак не совмещается с бесконечной температурой.

Сингулярность в представлении художника

    • Первые 10-43 секунды после Большого Взрыва называют этапом квантового хаоса. Природа мироздания на этом этапе существования не поддается описанию в рамках известной нам физики. Происходит распад непрерывного единого пространства-времени на кванты.

Материалы по теме

  • Планковский момент – момент окончания квантового хаоса, который выпадает на 10-43 секунду. В этот момент параметры Вселенной равнялись планковским величинам, вроде планковской температуры (около 1032 К). В момент планковской эпохи все четыре фундаментальные взаимодействия (слабое, сильное, электромагнитное и гравитационное) являлись объединенными в некое одно взаимодействие. Рассматривать планковский момент как некоторый продолжительный период – не представляется возможным, так как с параметрами меньше планковских современная физика не работает.
  • Стадия инфляции. Следующей стадией истории Вселенной стала инфляционная стадия. В первый момент инфляции от единого суперсимметричного поля (ранее включающего поля фундаментальных взаимодействий) отделилось гравитационное взаимодействие. В этот период вещество обладает отрицательным давлением, что вызывает экспоненциальный рост кинетической энергии Вселенной. Проще говоря, в данный период Вселенная стала очень быстро раздуваться, а ближе концу энергия физических полей переходит в энергию обычных частиц. В конце данной стадии значительно повышается температура вещества и излучения. Вместе с окончанием стадии инфляции выделяется и сильное взаимодействие. Также в этот момент возникает барионная асимметрия Вселенной.
  • Стадия радиационного доминирования. Следующая стадия развития Вселенной, которая включает несколько этапов. На этой стадии температура Вселенной начинает понижаться, образуются кварки, затем адроны и лептоны. В эпоху нуклеосинтеза происходит образование начальных химических элементов, синтезируется гелий. Однако, излучение все еще преобладает над веществом.
  • Эпоха доминирования вещества. Спустя 10 000 лет энергия вещества постепенно превосходит энергию излучения и происходит их разделения. Вещество начинает доминировать над излучением, возникает реликтовый фон. Также разделение вещества с излучением значительно усилило изначальные неоднородности в распределении вещества, в результате чего начали образовываться галактики и сверхгалактики. Законны Вселенной пришли к тому виду, в котором мы наблюдаем их сегодня.

Вышеописанная картина сложена из нескольких основополагающих теорий и дает общие представление о формировании Вселенной на ранних этапах ее существования.

Эволюция Вселенной

Откуда появилась Вселенная?

Если Вселенная возникла из космологической сингулярности, то откуда взялась сама сингулярность? На данный вопрос дать точный ответ, пока, невозможно. Рассмотрим некоторые космологические модели, затрагивающие «рождение Вселенной».

Циклические модели

Данные модели строятся на утверждении, что Вселенная существовала всегда и со временем лишь меняется ее состояние, переходя от расширения к сжатию – и обратно.

  • Модель Стейнхардта-Турока. Данная модель строится на теории струн (М-теории), так как использует такой объект как «брана». Согласно этой модели видимая Вселенная располагается внутри 3-бране, которая периодически, раз в несколько триллионов лет, сталкивается с другой 3-браной, что вызывает подобие Большого Взрыва. Далее наша 3-брана начинает отдаляться от другой и расширяться. В какой-то момент доля темной энергии получает первенство и скорость расширения 3-браны растет. Колоссальное расширение рассеивает вещество и излучение настолько, что мир становится почти однородным и пустым. В конце концов происходит повторное столкновение 3-бран, в результате чего наша возвращается к начальной фазе своего цикла, вновь зарождая нашу «Вселенную».

Моделирование бран

  • Теория Лориса Баума и Пола Фрэмптона также гласит о цикличности Вселенной. Согласно их теории последняя после Большого Взрыва будет расширяться за счет темной энергии до тех пор, пока не приблизится к моменту «распада» самого пространства-времени – Большой Разрыв. Как известно, в «замкнутой системе энтропия не убывает» (второе начало термодинамики). Из этого утверждения следует, что Вселенная не может вернуться к исходному состоянию, так как во время такого процесса энтропия должна убывать. Однако эта проблема решается рамках данной теории. Согласно теории Баума и Фрэмптона за миг до Большого Разрыва Вселенная распадается на множество «лоскутов», каждый из которых обладает довольно малым значением энтропии. Испытывая ряд фазовых переходов, данные «лоскуты» бывшей Вселенной порождают материю и развиваются аналогично первоначальной Вселенной. Эти новые миры не взаимодействуют друг с другом, так как разлетаются со скоростью больше скорости света. Таким образом, ученые избежали и космологической сингулярности, с которой начинается рождение Вселенной согласно большинству космологических теорий. То есть в момент конца своего цикла Вселенная распадается на множество других невзаимодействующих миров, которые станут новыми вселенными.
  • Конформная циклическая космология – циклическая модель Роджера Пенроуза и Ваагна Гурзадяна. Согласно данной модели Вселенная способна перейти в новый цикл, не нарушая второе начало термодинамики. Данная теория опирается на предположение, что черные дыры уничтожают поглощенную информацию, что неким образом «законно» понижает энтропию Вселенной. Тогда каждый такой цикл существования Вселенной начинается с подобия Большого Взрыва и заканчивается сингулярностью.

Инфографика конформной циклической космологии

Другие модели возникновения Вселенной

Среди других гипотез, объясняющих появление видимой Вселенной наиболее популярны две следующие:

  • Хаотическая теория инфляции — теория Андрея Линде. Согласно данной теории существует некоторое скалярное поле, которое неоднородно во всем своем объеме. То есть в различных областях вселенной скалярное поле имеет разное значение. Тогда в областях, где поле слабое – ничего не происходит, в то время как области с сильных полем начинают расширяться (инфляция) за счет его энергии, образуя при этом новые вселенные. Такой сценарий подразумевает существование множества миров, возникших неодновременно и имеющих свой набор элементарных частиц, а, следовательно, и законов природы.
  • Теория Ли Смолина – предполагает, что Большой Взрыв не является началом существования Вселенной, а – лишь фазовым переходом между двумя ее состояниями. Так как до Большого Взрыва Вселенная существовала в форме космологической сингулярности, близкой по своей природе к сингулярности черной дыры, Смолин предполагает, что Вселенная могла возникнуть из черной дыры.

Рождение Вселенной из черной дыры

Итоги

Несмотря на то, что циклические и другие модели отвечают на ряд вопросов, ответы на которые не может дать теория Большого Взрыва, в том числе проблема космологической сингулярности. Все же в комплекте с инфляционной теорией Большой Взрыв более цельно объясняет возникновение Вселенной, а также сходится с множеством наблюдений.

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 46170

Запись опубликована: 02. 06.2017
Автор: Владимир Соловьев

Теория большого взрыва

Одна из версий возникновения нашей Вселенной — теория Большого взрыва. В ее основе лежит простая мысль — у Вселенной было начало. Т&Р вместе с автором подкаста «Теория Большой Бороды» Антоном Поздняковым простыми словами объясняют теорию и рассказывают, как происходил «взрыв».

В чем суть теории Большого Взрыва

Теория Большого Взрыва — это космологическая модель, которая описывает ранние стадии развития Вселенной. В ее основе лежит мысль, которая до недавнего времени была совсем не очевидной — у нашей Вселенной было начало.

В начале 20 века астрономы обнаружили, что удаленные от нас галактики разлетаются в разные стороны. Из этого следует, что наша Вселенная не статична, а расширяется. И если с течением времени происходит расширение, то когда-то в прошлом оно должно было начаться. Именно момент, с которого началось расширение Вселенной, сейчас и называют «Большим взрывом». По современным подсчетам, произошло это 13. 8 миллиардов лет назад.

Говорить о том, что было до Большого Взрыва, не совсем корректно. По современным физическим представлениям, сама концепция времени, в нашем понимании, тогда не существовала. Не было ни «до», ни «после», ни «во время». Теория Большого Взрыва же описывает ранние стадии расширения Вселенной, то есть события, происходившие непосредственно после Большого Взрыва.

Как происходил Большой Взрыв

Все процессы после Большого Взрыва были обусловлены тем, что Вселенная постепенно остывала и становилась все менее плотной. Как мы знаем, температура — это мера движения частиц. Температура падает — частицы замедляются. Чем медленнее двигаются частицы, тем проще им друг с другом соединяться. По мере остывания Вселенной сначала отдельно летающие кварки смогли объединиться в протоны, нейтроны и другие адроны и лептоны. Затем уже полученные частицы, продолжая замедляться, начали формировать первые ядра привычных нам атомов.

Период формирования первых атомов во Вселенной называется первичным нуклеосинтезом. Продолжался он примерно 20 минут после Большого Взрыва. В этот период вся Вселенная была разогрета до состояния, которое мы сегодня наблюдаем внутри звезд. В этот период в основном формировались ядра водорода и гелия в соотношении 3 к 1. Такие доли водорода и гелия, двух самых распространенных элементов во Вселенной, мы наблюдаем до сих пор.

Один из самых часто задаваемых вопросов — где именно произошел Большой Взрыв? Ведь если был взрыв, должен быть и эпицентр. Но на самом деле это заблуждение, которое происходит из не совсем корректного термина «взрыв». Дело в том, что у нашей Вселенной нет центра (примерно как нельзя обозначить центр на поверхности сферы). Правильнее представлять, что Большой Взрыв произошел сразу везде, во всех точках Вселенной одновременно.

После того, как закончился первичный нуклеосинтез, и новые ядра атомов уже почти не формировались, Вселенная все еще оставалась горячей настолько, что вещество в ней находилось в состоянии плазмы. В ней электроны летали отдельно от ядер. И благодаря свободно летающим электронам в этот период Вселенная была непрозрачной для света. Фотоны постоянно сталкивались с электронами и не могли лететь прямо, как будто их закрыли в зеркальном лабиринте. Поэтому же, кстати, вы не можете их видеть сквозь лампу дневного света или сквозь наше Солнце. Они тоже состоят из плазмы, и поэтому непрозрачны.

Вселенная продолжала остывать, и спустя примерно 300 000 лет после Большого Взрыва температура опустилась достаточно, чтобы электроны могли присоединиться к ядрам атомов, и, как следствие, Вселенная стала прозрачной. Этот момент называется рекомбинацией. Фотоны, которыми было наполнено все вокруг, больше не видели препятствий в виде электронов и смогли лететь прямо. При чем сразу отовсюду и во все стороны.

Собственно, именно те фотоны, которые были «освобождены» в момент рекомбинации, мы видим и сегодня. Спустя более чем 13 миллиардов лет они долетают до нас в виде реликтового излучения — микроволнового космического фона, который мы регистрируем с помощью современных телескопов.

Обнаружение реликтового излучения — одно из главных подтверждений Теории Большого Взрыва. Важной его особенностью является однородность. Оно одинаковое независимо от того, в какую сторону мы посмотрим. Это также косвенно подтверждает, что у Вселенной нет некого выделенного направления. Куда бы мы не посмотрели, на больших масштабах Вселенная одинакова во всех направлениях.

Сегодня существует множество подтверждений Теории Большого Взрыва. Мы наблюдаем расширение Вселенной и видим, как формировались галактики и межгалактические структуры на разных этапах эволюции Вселенной, наблюдаем предсказанное соотношение гелия и водорода в последней. Все они сходятся с текущими представлениями о ранних этапах формирования Вселенной, которые и описывает ТБВ.

В самой теории есть неточности, которые нужно будет устранять дальнейшими более точными и подробными астрономическими наблюдениями и разработкой более совершенных физических моделей. Но то количество независимых перекрестных данных, которые уже есть на руках у современной космологии, позволяют нам с уверенностью говорить о том, что Большой Взрыв, ставший отправной точкой расширения Вселенной, действительно произошел, и все вокруг нас — это его прямые последствия.

Подробнее о теории Большого взрыва можно узнать в выпуске подкаста «Теория Большой Бороды». Его ведущий простыми словами рассказывает о науке и космосе, общается с гостями из научного мира, разбирает концепты из мира scifi.

Антон Поздняков

Теги

#частицы

#теория Большого взрыва

#мир

#Вселенная

Большой взрыв: что на самом деле произошло при рождении нашей Вселенной?

(Изображение предоставлено: MARK GARLICK / SCIENCE PHOTO LIBRARY через Getty Images)

Потребовалось чуть больше семи дней, чтобы создать вселенную такой, какой мы ее знаем сегодня. SPACE.com рассматривает тайны небес в нашей серии из восьми частей: История и будущее космоса . Это 5 часть из этой серии.

Наша Вселенная родилась около 13,7 миллиардов лет назад в результате массивного расширения, которое взорвало пространство, как гигантский воздушный шар.

Вкратце это и есть теория Большого Взрыва, которую поддерживают практически все космологи и физики-теоретики. Доказательства, подтверждающие эту идею, обширны и убедительны. Мы знаем, например, что Вселенная продолжает расширяться даже сейчас с постоянно ускоряющейся скоростью.

Ученые также обнаружили предсказанный тепловой отпечаток Большого взрыва, пронизывающее вселенную космическое микроволновое фоновое излучение. И мы не видим никаких объектов явно старше 13,7 миллиардов лет, что позволяет предположить, что наша Вселенная возникла примерно в это время.

«Все эти вещи ставят теорию Большого взрыва на чрезвычайно прочную основу», — сказал астрофизик Алекс Филиппенко из Калифорнийского университета в Беркли. «Большой взрыв — чрезвычайно успешная теория».

Чему учит нас эта теория? Что на самом деле произошло при рождении нашей Вселенной и как она приняла форму, которую мы наблюдаем сегодня?

Связанный:  История Вселенной: от Большого взрыва до наших дней за 10 простых шагов

Начало

Традиционная теория Большого взрыва утверждает, что наша Вселенная началась с сингулярности — точки бесконечной плотности и температуры, природа которой сложна для нашего разума, чтобы понять. Однако это может не совсем точно отражать реальность, говорят исследователи, потому что идея сингулярности основана на общей теории относительности Эйнштейна.

«Проблема в том, что нет никаких оснований верить в общую теорию относительности в этом режиме», — сказал Шон Кэрролл, физик-теоретик из Калифорнийского технологического института. «Это будет неправильно, потому что не принимает во внимание квантовую механику. А квантовая механика, безусловно, будет важна, как только вы доберетесь до этого места в истории Вселенной».

Итак, самое начало вселенной остается довольно туманным. Ученые считают, что они могут воспроизвести историю примерно через 10 с минус 36 секунд — одну триллионную от триллионной триллионной доли секунды — после Большого взрыва.

В этот момент, по их мнению, Вселенная претерпела чрезвычайно короткий и драматический период расширения, расширяясь быстрее скорости света. Он удвоился в размере, возможно, в 100 или более раз, и все это в течение нескольких крошечных долей секунды.

(Может показаться, что инфляция нарушает специальную теорию относительности, но это не так, говорят ученые. Специальная теория относительности утверждает, что никакая информация или материя не могут переноситься между двумя точками в пространстве со скоростью, превышающей скорость света. Но инфляция была расширение самого пространства.)

«Инфляция была «взрывом» Большого Взрыва, — сказал Филиппенко SPACE.com. — До инфляции было немного вещества, которое, вполне возможно, немного расширилось. Нам нужно было что-то вроде инфляции, чтобы сделать Вселенная большая».

Эта быстро расширяющаяся вселенная практически не содержала материи, но, согласно теории, содержала огромное количество темной энергии. Темная энергия — это таинственная сила, которая, по мнению ученых, является движущей силой нынешнего ускоряющегося расширения Вселенной.

Во время инфляции темная энергия заставила Вселенную сгладиться и ускориться. Но это не задержалось надолго.

«Это была просто временная темная энергия», — сказал Кэрролл SPACE. com. «Он превратился в обычную материю и излучение посредством процесса, называемого повторным нагревом. Вселенная превратилась из холодной во время инфляции в снова горячую, когда вся темная энергия исчезла».

Ученые не знают, что могло вызвать инфляцию. По словам Филиппенко, это остается одним из ключевых вопросов космологии Большого взрыва.

На этом рисунке показана временная шкала Вселенной, основанная на теории Большого взрыва и моделях инфляции. (Изображение предоставлено NASA/WMAP)

Большой отскок

Большинство космологов считают инфляцию ведущей теорией для объяснения характеристик Вселенной — в частности, того, почему она относительно плоская и однородная, с примерно одинаковым количеством вещества, равномерно распределенным во всех направлениях.

Различные доказательства указывают на то, что инфляция является реальностью, сказал физик-теоретик Энди Альбрехт из Калифорнийского университета в Дэвисе.

«Все они прекрасно сочетаются с инфляционной картиной», — сказал Альбрехт, один из создателей теории инфляции. «Инфляция сделала невероятно хорошо».

Однако инфляция — не единственная идея, пытающаяся объяснить структуру Вселенной. Теоретики придумали другую, названную циклической моделью, которая основана на более ранней концепции, называемой экпиротической вселенной.

Эта идея утверждает, что наша Вселенная не возникла из одной точки или чего-то подобного. Скорее, она отскочила в сторону расширения — гораздо более спокойными темпами, чем предсказывает теория инфляции — из ранее существовавшей Вселенной, которая сжималась. Если эта теория верна, наша Вселенная, вероятно, претерпела бесконечную череду взрывов и схлопываний.

«Начало нашей вселенной было бы прекрасным и конечным», — сказал Берт Оврут из Пенсильванского университета, один из создателей экпиротической теории.

Циклическая модель утверждает, что наша Вселенная состоит из 11 измерений, только четыре из которых мы можем наблюдать (три пространственных и одно временное). Наша четырехмерная часть Вселенной называется браной (сокращение от мембраны).

Согласно идее, в 11-мерном пространстве могут скрываться и другие браны. Столкновение двух бран могло привести к тому, что Вселенная перешла от сжатия к расширению, спровоцировав Большой взрыв, свидетельство которого мы наблюдаем сегодня.

На этом изображении всего неба космического микроволнового фона, созданном спутником “Планк” Европейского космического агентства, видны отголоски Большого взрыва, оставшиеся со времен зарождения Вселенной. (Изображение предоставлено ESA/LFI & HFI Consortia)

Известная нам Вселенная обретает форму

Но, во-первых, как наша Вселенная возникла из ничего? Космологи подозревают, что четыре силы, управляющие Вселенной — гравитация, электромагнетизм, слабое и сильное ядерное взаимодействие — были объединены в единую силу при рождении Вселенной, сжатые вместе из-за связанных с этим экстремальных температур и плотностей.

Но все изменилось, когда Вселенная расширилась и остыла. Примерно во время инфляции сильное взаимодействие, вероятно, отделилось. И примерно через 10 триллионных долей секунды после Большого взрыва электромагнитное и слабое взаимодействия также стали различаться.

Сразу после инфляции Вселенная, вероятно, была заполнена горячей плотной плазмой. Но примерно за 1 микросекунду (от 10 до минус 6 секунд) или около того он достаточно остыл, чтобы позволить сформироваться первым протонам и нейтронам, считают исследователи.

В первые три минуты после Большого взрыва эти протоны и нейтроны начали сливаться вместе, образуя дейтерий (также известный как тяжелый водород). Затем атомы дейтерия соединились друг с другом, образовав гелий-4.

Рекомбинация: Вселенная становится прозрачной

Все вновь созданные атомы были положительно заряжены, поскольку Вселенная была еще слишком горячей, чтобы способствовать захвату электронов.

Но все изменилось примерно через 380 000 лет после Большого Взрыва. В эпоху, известную как рекомбинация, ионы водорода и гелия начали захватывать электроны, образуя электрически нейтральные атомы. Свет значительно рассеивается на свободных электронах и протонах, но гораздо меньше на нейтральных атомах. Так что теперь фотоны могли свободно путешествовать по Вселенной.

Рекомбинация кардинально изменила облик Вселенной; это был непрозрачный туман, а теперь он стал прозрачным. Космическое микроволновое фоновое излучение, которое мы наблюдаем сегодня, относится к этой эпохе.

Тем не менее, Вселенная долгое время была довольно темной после рекомбинации, по-настоящему осветившись только тогда, когда первые звезды начали сиять примерно через 300 миллионов лет после Большого взрыва. Они помогли отменить многое из того, что было достигнуто рекомбинацией. Эти ранние звезды — и, возможно, некоторые другие загадочные источники — испускали достаточно радиации, чтобы расщепить большую часть водорода во Вселенной обратно на составляющие его протоны и электроны.

Этот процесс, известный как реионизация, похоже, завершился примерно через 1 миллиард лет после Большого взрыва. Вселенная сегодня не непрозрачна, как это было до рекомбинации, потому что она так сильно расширилась. По словам ученых, вещество во Вселенной очень разбавлено, поэтому взаимодействия, связанные с рассеянием фотонов, относительно редки.

Со временем звезды притягивались друг к другу, образуя галактики, что приводило к образованию все более крупномасштабных структур во Вселенной. Планеты объединились вокруг некоторых недавно образовавшихся звезд, включая наше собственное Солнце. А 3,8 миллиарда лет назад на Земле зародилась жизнь.

До Большого Взрыва?

Хотя многое о первых мгновениях Вселенной остается спекулятивным, вопрос о том, что предшествовало Большому Взрыву, еще более загадочен и труден для решения.

Во-первых, сам вопрос может быть бессмысленным. Если Вселенная возникла из ничего, как считают некоторые теоретики, то Большой взрыв отмечает момент, когда началось само время. В этом случае не было бы такого понятия, как «раньше», сказал Кэрролл.

Но некоторые концепции рождения вселенной могут предложить возможные ответы. Циклическая модель, например, предполагает, что нашей расширяющейся Вселенной предшествовала сжимающаяся Вселенная. Кэрролл тоже может вообразить, что что-то существовало до Большого взрыва.

«Это может быть просто пустое пространство, которое существовало до того, как произошел наш Большой Взрыв, а затем какая-то квантовая флуктуация породила вселенную, подобную нашей», — сказал он. «Вы можете представить себе небольшой пузырь пространства, оторвавшийся в результате флуктуации и наполнившийся крошечной каплей энергии, которая затем может вырасти во вселенную, которую мы видим благодаря инфляции».

Филиппенко тоже подозревает, что что-то в этом роде может быть правдой.

«Я думаю, что время в нашей вселенной началось с Большого взрыва, но я думаю, что мы были отклонением от предшественника, материнской вселенной», — сказал Филиппенко.

Узнаем ли мы когда-нибудь?

Миссия Европейского космического агентства “Планк”, которая вращалась вокруг Земли с 2009 по 2013 год, помогла космологам уточнить свои представления о природе нашей Вселенной и ее происхождении. Подробная карта космического микроволнового фона, созданная космическим кораблем, показала, что наша Вселенная, даже если она возникла от предшественницы, вряд ли снова сожмется в будущем, сказал Space.com астрофизик Дэйв Клементс из Имперского колледжа Лондона.

«Планк не может полностью исключить концепцию прыгающей Вселенной, но, учитывая текущие значения космологических параметров, наша Вселенная не собирается повторно коллапсировать», — сказал Клементс. «Компонент темной энергии, который в данный момент ускоряет расширение Вселенной, должен измениться, чтобы обратить это расширение вспять и привести к большому сжатию».

Используя данные Планка, ученые смогли уточнить свои оценки возраста Вселенной, а также количества видимой материи, темной материи и темной энергии в ней. По словам Клементса, миссия не преподнесла никаких сюрпризов и в основном подтвердила существующие теории.

«Это показывает, что это максимально скучная вселенная», — сказал Клементс.

Тем не менее, по его результатам возникло несколько новых вопросов. Например, постоянная Хаббла, описывающая скорость расширения Вселенной, незначительно отличается, измеренная Планком в далекой Вселенной, по сравнению с ее значением, полученным космическим телескопом Хаббла на основе измерений в ближней Вселенной, сказал Клементс.

Вся эта крупица информации помогает космологам лучше моделировать эволюцию Вселенной и приближаться к ответам на важные вопросы о происхождении всего сущего. Ожидается, что предстоящая миссия Европейского космического агентства под названием «Евклид» , запуск которой запланирован на 2023 год, сделает дальнейшие шаги в этом направлении.

Что дальше

Миссия Евклид будет изучать, как скопления и галактики разбросаны по Вселенной в больших масштабах, чтобы помочь астрономам лучше понять эффекты темной энергии. Он также будет изучать то, что астрономы называют слабым гравитационным линзированием, искривление света, вызванное гравитационным притяжением очень массивных объектов. Поскольку более 80% материи во Вселенной невидимы, сила линзирования может дать астрономам подсказки о распределении темной материи.

«Евклид сможет измерить это в гораздо большем масштабе, возможно, почти на половине внегалактического неба или даже больше», — сказал Клементс.

Дальнейшие части этой космической головоломки могут появиться в результате изучения гравитационных волн, ряби в пространстве-времени, возникающей при столкновениях сверхмассивных объектов, таких как черные дыры и нейтронные звезды.

Гравитационные волны, сказал Клементс, должны были возникнуть во время инфляции, периода быстрого расширения в первые моменты существования Вселенной. Таким образом, обнаружение этих ранних гравитационных волн и расшифровка их свойств могут дать беспрецедентные знания о рождении Вселенной.

«Это расскажет нам кое-что о физике, которая привела к раннему очень быстрому расширению Вселенной», — сказал Клементс. «Мы действительно возвращаемся к самым, самым ранним моментам, и если мы лучше поймем инфляцию, мы, надеюсь, сможем лучше понять, был ли Большой взрыв единичным событием или эта прыгающая идея может быть правильной».

Вы можете следить за старшим писателем SPACE.com Майком Уоллом в Твиттере: @michaeldwall. Подписывайтесь на SPACE.com, чтобы быть в курсе последних новостей космической науки и исследований, в Twitter @Spacedotcom и на Facebook.

Дополнительные ресурсы

Чтобы узнать больше о миссии «Планк» и ее стремлении понять происхождение Вселенной, посетите веб-сайт Европейского космического агентства. Для получения информации о предстоящей миссии EUCLID перейдите сюда.

Для получения дополнительной информации об изучении первичных гравитационных волн и о том, как они могут помочь раскрыть тайны рождения Вселенной, прочитайте эту статью Массачусетского технологического института.

Библиография

Муиа, Ф., Большой взрыв: как мы пытаемся его «прислушаться» и какую новую физику он может открыть, The Conversation, 15 июля 2021 г.                                 
https://theconversation.com/big-bang-how-we-are-trying-to-listen-to-it-and-the-new-physics-it-could-unveil-164502

Кастельвекки, Д. , Как гравитационные волны могут разгадать некоторые из глубочайших загадок Вселенной, Природа, 11 апреля 2018 г.
https://sci.esa.int/web/planck

ESA, Евклид                                                                           
https://sci.esa.int/web/euclid

Эта справочная статья, первоначально опубликованная 21 октября 2011 г., была обновлена ​​4 февраля 2022 г.

Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].

Майкл Уолл — старший космический писатель Space.com (открывается в новой вкладке) , присоединился к команде в 2010 году. В основном он освещает экзопланеты, космические полеты и военный космос, но, как известно, увлекается космическим искусством. Его книга о поисках инопланетной жизни «Out There» была опубликована 13 ноября 2018 года. Прежде чем стать научным писателем, Майкл работал герпетологом и биологом дикой природы. У него есть докторская степень. по эволюционной биологии Сиднейского университета, Австралия, степень бакалавра Аризонского университета и диплом о высшем образовании в области научного письма Калифорнийского университета в Санта-Круз. Чтобы узнать, какой у него последний проект, вы можете подписаться на Майкла в Твиттере.

Большой взрыв: что на самом деле произошло при рождении нашей Вселенной?

(Изображение предоставлено: MARK GARLICK / SCIENCE PHOTO LIBRARY через Getty Images)

Потребовалось чуть больше семи дней, чтобы создать вселенную такой, какой мы ее знаем сегодня. SPACE.com рассматривает тайны небес в нашей серии из восьми частей: История и будущее космоса . Это 5 часть из этой серии.

Наша Вселенная родилась около 13,7 миллиардов лет назад в результате массивного расширения, которое взорвало пространство, как гигантский воздушный шар.

Вкратце это и есть теория Большого Взрыва, которую поддерживают практически все космологи и физики-теоретики. Доказательства, подтверждающие эту идею, обширны и убедительны. Мы знаем, например, что Вселенная продолжает расширяться даже сейчас с постоянно ускоряющейся скоростью.

Ученые также обнаружили предсказанный тепловой отпечаток Большого взрыва, пронизывающее вселенную космическое микроволновое фоновое излучение. И мы не видим никаких объектов явно старше 13,7 миллиардов лет, что позволяет предположить, что наша Вселенная возникла примерно в это время.

«Все эти вещи ставят теорию Большого взрыва на чрезвычайно прочную основу», — сказал астрофизик Алекс Филиппенко из Калифорнийского университета в Беркли. «Большой взрыв — чрезвычайно успешная теория».

Чему учит нас эта теория? Что на самом деле произошло при рождении нашей Вселенной и как она приняла форму, которую мы наблюдаем сегодня?

Связанный:  История Вселенной: от Большого взрыва до наших дней за 10 простых шагов

Начало

Традиционная теория Большого взрыва утверждает, что наша Вселенная началась с сингулярности — точки бесконечной плотности и температуры, природа которой сложна для нашего разума, чтобы понять. Однако это может не совсем точно отражать реальность, говорят исследователи, потому что идея сингулярности основана на общей теории относительности Эйнштейна.

«Проблема в том, что нет никаких оснований верить в общую теорию относительности в этом режиме», — сказал Шон Кэрролл, физик-теоретик из Калифорнийского технологического института. «Это будет неправильно, потому что не принимает во внимание квантовую механику. А квантовая механика, безусловно, будет важна, как только вы доберетесь до этого места в истории Вселенной».

Итак, самое начало вселенной остается довольно туманным. Ученые считают, что они могут воспроизвести историю примерно через 10 с минус 36 секунд — одну триллионную от триллионной триллионной доли секунды — после Большого взрыва.

В этот момент, по их мнению, Вселенная претерпела чрезвычайно короткий и драматический период расширения, расширяясь быстрее скорости света. Он удвоился в размере, возможно, в 100 или более раз, и все это в течение нескольких крошечных долей секунды.

(Может показаться, что инфляция нарушает специальную теорию относительности, но это не так, говорят ученые. Специальная теория относительности утверждает, что никакая информация или материя не могут переноситься между двумя точками в пространстве со скоростью, превышающей скорость света. Но инфляция была расширение самого пространства.)

«Инфляция была «взрывом» Большого Взрыва, — сказал Филиппенко SPACE.com. — До инфляции было немного вещества, которое, вполне возможно, немного расширилось. Нам нужно было что-то вроде инфляции, чтобы сделать Вселенная большая».

Эта быстро расширяющаяся вселенная практически не содержала материи, но, согласно теории, содержала огромное количество темной энергии. Темная энергия — это таинственная сила, которая, по мнению ученых, является движущей силой нынешнего ускоряющегося расширения Вселенной.

Во время инфляции темная энергия заставила Вселенную сгладиться и ускориться. Но это не задержалось надолго.

«Это была просто временная темная энергия», — сказал Кэрролл SPACE. com. «Он превратился в обычную материю и излучение посредством процесса, называемого повторным нагревом. Вселенная превратилась из холодной во время инфляции в снова горячую, когда вся темная энергия исчезла».

Ученые не знают, что могло вызвать инфляцию. По словам Филиппенко, это остается одним из ключевых вопросов космологии Большого взрыва.

На этом рисунке показана временная шкала Вселенной, основанная на теории Большого взрыва и моделях инфляции. (Изображение предоставлено NASA/WMAP)

Большой отскок

Большинство космологов считают инфляцию ведущей теорией для объяснения характеристик Вселенной — в частности, того, почему она относительно плоская и однородная, с примерно одинаковым количеством вещества, равномерно распределенным во всех направлениях.

Различные доказательства указывают на то, что инфляция является реальностью, сказал физик-теоретик Энди Альбрехт из Калифорнийского университета в Дэвисе.

«Все они прекрасно сочетаются с инфляционной картиной», — сказал Альбрехт, один из создателей теории инфляции. «Инфляция сделала невероятно хорошо».

Однако инфляция — не единственная идея, пытающаяся объяснить структуру Вселенной. Теоретики придумали другую, названную циклической моделью, которая основана на более ранней концепции, называемой экпиротической вселенной.

Эта идея утверждает, что наша Вселенная не возникла из одной точки или чего-то подобного. Скорее, она отскочила в сторону расширения — гораздо более спокойными темпами, чем предсказывает теория инфляции — из ранее существовавшей Вселенной, которая сжималась. Если эта теория верна, наша Вселенная, вероятно, претерпела бесконечную череду взрывов и схлопываний.

«Начало нашей вселенной было бы прекрасным и конечным», — сказал Берт Оврут из Пенсильванского университета, один из создателей экпиротической теории.

Циклическая модель утверждает, что наша Вселенная состоит из 11 измерений, только четыре из которых мы можем наблюдать (три пространственных и одно временное). Наша четырехмерная часть Вселенной называется браной (сокращение от мембраны).

Согласно идее, в 11-мерном пространстве могут скрываться и другие браны. Столкновение двух бран могло привести к тому, что Вселенная перешла от сжатия к расширению, спровоцировав Большой взрыв, свидетельство которого мы наблюдаем сегодня.

На этом изображении всего неба космического микроволнового фона, созданном спутником “Планк” Европейского космического агентства, видны отголоски Большого взрыва, оставшиеся со времен зарождения Вселенной. (Изображение предоставлено ESA/LFI & HFI Consortia)

Известная нам Вселенная обретает форму

Но, во-первых, как наша Вселенная возникла из ничего? Космологи подозревают, что четыре силы, управляющие Вселенной — гравитация, электромагнетизм, слабое и сильное ядерное взаимодействие — были объединены в единую силу при рождении Вселенной, сжатые вместе из-за связанных с этим экстремальных температур и плотностей.

Но все изменилось, когда Вселенная расширилась и остыла. Примерно во время инфляции сильное взаимодействие, вероятно, отделилось. И примерно через 10 триллионных долей секунды после Большого взрыва электромагнитное и слабое взаимодействия также стали различаться.

Сразу после инфляции Вселенная, вероятно, была заполнена горячей плотной плазмой. Но примерно за 1 микросекунду (от 10 до минус 6 секунд) или около того он достаточно остыл, чтобы позволить сформироваться первым протонам и нейтронам, считают исследователи.

В первые три минуты после Большого взрыва эти протоны и нейтроны начали сливаться вместе, образуя дейтерий (также известный как тяжелый водород). Затем атомы дейтерия соединились друг с другом, образовав гелий-4.

Рекомбинация: Вселенная становится прозрачной

Все вновь созданные атомы были положительно заряжены, поскольку Вселенная была еще слишком горячей, чтобы способствовать захвату электронов.

Но все изменилось примерно через 380 000 лет после Большого Взрыва. В эпоху, известную как рекомбинация, ионы водорода и гелия начали захватывать электроны, образуя электрически нейтральные атомы. Свет значительно рассеивается на свободных электронах и протонах, но гораздо меньше на нейтральных атомах. Так что теперь фотоны могли свободно путешествовать по Вселенной.

Рекомбинация кардинально изменила облик Вселенной; это был непрозрачный туман, а теперь он стал прозрачным. Космическое микроволновое фоновое излучение, которое мы наблюдаем сегодня, относится к этой эпохе.

Тем не менее, Вселенная долгое время была довольно темной после рекомбинации, по-настоящему осветившись только тогда, когда первые звезды начали сиять примерно через 300 миллионов лет после Большого взрыва. Они помогли отменить многое из того, что было достигнуто рекомбинацией. Эти ранние звезды — и, возможно, некоторые другие загадочные источники — испускали достаточно радиации, чтобы расщепить большую часть водорода во Вселенной обратно на составляющие его протоны и электроны.

Этот процесс, известный как реионизация, похоже, завершился примерно через 1 миллиард лет после Большого взрыва. Вселенная сегодня не непрозрачна, как это было до рекомбинации, потому что она так сильно расширилась. По словам ученых, вещество во Вселенной очень разбавлено, поэтому взаимодействия, связанные с рассеянием фотонов, относительно редки.

Со временем звезды притягивались друг к другу, образуя галактики, что приводило к образованию все более крупномасштабных структур во Вселенной. Планеты объединились вокруг некоторых недавно образовавшихся звезд, включая наше собственное Солнце. А 3,8 миллиарда лет назад на Земле зародилась жизнь.

До Большого Взрыва?

Хотя многое о первых мгновениях Вселенной остается спекулятивным, вопрос о том, что предшествовало Большому Взрыву, еще более загадочен и труден для решения.

Во-первых, сам вопрос может быть бессмысленным. Если Вселенная возникла из ничего, как считают некоторые теоретики, то Большой взрыв отмечает момент, когда началось само время. В этом случае не было бы такого понятия, как «раньше», сказал Кэрролл.

Но некоторые концепции рождения вселенной могут предложить возможные ответы. Циклическая модель, например, предполагает, что нашей расширяющейся Вселенной предшествовала сжимающаяся Вселенная. Кэрролл тоже может вообразить, что что-то существовало до Большого взрыва.

«Это может быть просто пустое пространство, которое существовало до того, как произошел наш Большой Взрыв, а затем какая-то квантовая флуктуация породила вселенную, подобную нашей», — сказал он. «Вы можете представить себе небольшой пузырь пространства, оторвавшийся в результате флуктуации и наполнившийся крошечной каплей энергии, которая затем может вырасти во вселенную, которую мы видим благодаря инфляции».

Филиппенко тоже подозревает, что что-то в этом роде может быть правдой.

«Я думаю, что время в нашей вселенной началось с Большого взрыва, но я думаю, что мы были отклонением от предшественника, материнской вселенной», — сказал Филиппенко.

Узнаем ли мы когда-нибудь?

Миссия Европейского космического агентства “Планк”, которая вращалась вокруг Земли с 2009 по 2013 год, помогла космологам уточнить свои представления о природе нашей Вселенной и ее происхождении. Подробная карта космического микроволнового фона, созданная космическим кораблем, показала, что наша Вселенная, даже если она возникла от предшественницы, вряд ли снова сожмется в будущем, сказал Space.com астрофизик Дэйв Клементс из Имперского колледжа Лондона.

«Планк не может полностью исключить концепцию прыгающей Вселенной, но, учитывая текущие значения космологических параметров, наша Вселенная не собирается повторно коллапсировать», — сказал Клементс. «Компонент темной энергии, который в данный момент ускоряет расширение Вселенной, должен измениться, чтобы обратить это расширение вспять и привести к большому сжатию».

Используя данные Планка, ученые смогли уточнить свои оценки возраста Вселенной, а также количества видимой материи, темной материи и темной энергии в ней. По словам Клементса, миссия не преподнесла никаких сюрпризов и в основном подтвердила существующие теории.

«Это показывает, что это максимально скучная вселенная», — сказал Клементс.

Тем не менее, по его результатам возникло несколько новых вопросов. Например, постоянная Хаббла, описывающая скорость расширения Вселенной, незначительно отличается, измеренная Планком в далекой Вселенной, по сравнению с ее значением, полученным космическим телескопом Хаббла на основе измерений в ближней Вселенной, сказал Клементс.

Вся эта крупица информации помогает космологам лучше моделировать эволюцию Вселенной и приближаться к ответам на важные вопросы о происхождении всего сущего. Ожидается, что предстоящая миссия Европейского космического агентства под названием «Евклид» , запуск которой запланирован на 2023 год, сделает дальнейшие шаги в этом направлении.

Что дальше

Миссия Евклид будет изучать, как скопления и галактики разбросаны по Вселенной в больших масштабах, чтобы помочь астрономам лучше понять эффекты темной энергии. Он также будет изучать то, что астрономы называют слабым гравитационным линзированием, искривление света, вызванное гравитационным притяжением очень массивных объектов. Поскольку более 80% материи во Вселенной невидимы, сила линзирования может дать астрономам подсказки о распределении темной материи.

«Евклид сможет измерить это в гораздо большем масштабе, возможно, почти на половине внегалактического неба или даже больше», — сказал Клементс.

Дальнейшие части этой космической головоломки могут появиться в результате изучения гравитационных волн, ряби в пространстве-времени, возникающей при столкновениях сверхмассивных объектов, таких как черные дыры и нейтронные звезды.

Гравитационные волны, сказал Клементс, должны были возникнуть во время инфляции, периода быстрого расширения в первые моменты существования Вселенной. Таким образом, обнаружение этих ранних гравитационных волн и расшифровка их свойств могут дать беспрецедентные знания о рождении Вселенной.

«Это расскажет нам кое-что о физике, которая привела к раннему очень быстрому расширению Вселенной», — сказал Клементс. «Мы действительно возвращаемся к самым, самым ранним моментам, и если мы лучше поймем инфляцию, мы, надеюсь, сможем лучше понять, был ли Большой взрыв единичным событием или эта прыгающая идея может быть правильной».

Вы можете следить за старшим писателем SPACE.com Майком Уоллом в Твиттере: @michaeldwall. Подписывайтесь на SPACE.com, чтобы быть в курсе последних новостей космической науки и исследований, в Twitter @Spacedotcom и на Facebook.

Дополнительные ресурсы

Чтобы узнать больше о миссии «Планк» и ее стремлении понять происхождение Вселенной, посетите веб-сайт Европейского космического агентства. Для получения информации о предстоящей миссии EUCLID перейдите сюда.

Для получения дополнительной информации об изучении первичных гравитационных волн и о том, как они могут помочь раскрыть тайны рождения Вселенной, прочитайте эту статью Массачусетского технологического института.

Библиография

Муиа, Ф., Большой взрыв: как мы пытаемся его «прислушаться» и какую новую физику он может открыть, The Conversation, 15 июля 2021 г.                                 
https://theconversation.com/big-bang-how-we-are-trying-to-listen-to-it-and-the-new-physics-it-could-unveil-164502

Кастельвекки, Д. , Как гравитационные волны могут разгадать некоторые из глубочайших загадок Вселенной, Природа, 11 апреля 2018 г.
https://sci.esa.int/web/planck

ESA, Евклид                                                                           
https://sci.esa.int/web/euclid

Эта справочная статья, первоначально опубликованная 21 октября 2011 г., была обновлена ​​4 февраля 2022 г.

Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].

Майкл Уолл — старший космический писатель Space.com (открывается в новой вкладке) , присоединился к команде в 2010 году. В основном он освещает экзопланеты, космические полеты и военный космос, но, как известно, увлекается космическим искусством. Его книга о поисках инопланетной жизни «Out There» была опубликована 13 ноября 2018 года. Прежде чем стать научным писателем, Майкл работал герпетологом и биологом дикой природы. У него есть докторская степень. по эволюционной биологии Сиднейского университета, Австралия, степень бакалавра Аризонского университета и диплом о высшем образовании в области научного письма Калифорнийского университета в Санта-Круз. Чтобы узнать, какой у него последний проект, вы можете подписаться на Майкла в Твиттере.

Большой взрыв: что на самом деле произошло при рождении нашей Вселенной?

(Изображение предоставлено: MARK GARLICK / SCIENCE PHOTO LIBRARY через Getty Images)

Потребовалось чуть больше семи дней, чтобы создать вселенную такой, какой мы ее знаем сегодня. SPACE.com рассматривает тайны небес в нашей серии из восьми частей: История и будущее космоса . Это 5 часть из этой серии.

Наша Вселенная родилась около 13,7 миллиардов лет назад в результате массивного расширения, которое взорвало пространство, как гигантский воздушный шар.

Вкратце это и есть теория Большого Взрыва, которую поддерживают практически все космологи и физики-теоретики. Доказательства, подтверждающие эту идею, обширны и убедительны. Мы знаем, например, что Вселенная продолжает расширяться даже сейчас с постоянно ускоряющейся скоростью.

Ученые также обнаружили предсказанный тепловой отпечаток Большого взрыва, пронизывающее вселенную космическое микроволновое фоновое излучение. И мы не видим никаких объектов явно старше 13,7 миллиардов лет, что позволяет предположить, что наша Вселенная возникла примерно в это время.

«Все эти вещи ставят теорию Большого взрыва на чрезвычайно прочную основу», — сказал астрофизик Алекс Филиппенко из Калифорнийского университета в Беркли. «Большой взрыв — чрезвычайно успешная теория».

Чему учит нас эта теория? Что на самом деле произошло при рождении нашей Вселенной и как она приняла форму, которую мы наблюдаем сегодня?

Связанный:  История Вселенной: от Большого взрыва до наших дней за 10 простых шагов

Начало

Традиционная теория Большого взрыва утверждает, что наша Вселенная началась с сингулярности — точки бесконечной плотности и температуры, природа которой сложна для нашего разума, чтобы понять. Однако это может не совсем точно отражать реальность, говорят исследователи, потому что идея сингулярности основана на общей теории относительности Эйнштейна.

«Проблема в том, что нет никаких оснований верить в общую теорию относительности в этом режиме», — сказал Шон Кэрролл, физик-теоретик из Калифорнийского технологического института. «Это будет неправильно, потому что не принимает во внимание квантовую механику. А квантовая механика, безусловно, будет важна, как только вы доберетесь до этого места в истории Вселенной».

Итак, самое начало вселенной остается довольно туманным. Ученые считают, что они могут воспроизвести историю примерно через 10 с минус 36 секунд — одну триллионную от триллионной триллионной доли секунды — после Большого взрыва.

В этот момент, по их мнению, Вселенная претерпела чрезвычайно короткий и драматический период расширения, расширяясь быстрее скорости света. Он удвоился в размере, возможно, в 100 или более раз, и все это в течение нескольких крошечных долей секунды.

(Может показаться, что инфляция нарушает специальную теорию относительности, но это не так, говорят ученые. Специальная теория относительности утверждает, что никакая информация или материя не могут переноситься между двумя точками в пространстве со скоростью, превышающей скорость света. Но инфляция была расширение самого пространства.)

«Инфляция была «взрывом» Большого Взрыва, — сказал Филиппенко SPACE.com. — До инфляции было немного вещества, которое, вполне возможно, немного расширилось. Нам нужно было что-то вроде инфляции, чтобы сделать Вселенная большая».

Эта быстро расширяющаяся вселенная практически не содержала материи, но, согласно теории, содержала огромное количество темной энергии. Темная энергия — это таинственная сила, которая, по мнению ученых, является движущей силой нынешнего ускоряющегося расширения Вселенной.

Во время инфляции темная энергия заставила Вселенную сгладиться и ускориться. Но это не задержалось надолго.

«Это была просто временная темная энергия», — сказал Кэрролл SPACE. com. «Он превратился в обычную материю и излучение посредством процесса, называемого повторным нагревом. Вселенная превратилась из холодной во время инфляции в снова горячую, когда вся темная энергия исчезла».

Ученые не знают, что могло вызвать инфляцию. По словам Филиппенко, это остается одним из ключевых вопросов космологии Большого взрыва.

На этом рисунке показана временная шкала Вселенной, основанная на теории Большого взрыва и моделях инфляции. (Изображение предоставлено NASA/WMAP)

Большой отскок

Большинство космологов считают инфляцию ведущей теорией для объяснения характеристик Вселенной — в частности, того, почему она относительно плоская и однородная, с примерно одинаковым количеством вещества, равномерно распределенным во всех направлениях.

Различные доказательства указывают на то, что инфляция является реальностью, сказал физик-теоретик Энди Альбрехт из Калифорнийского университета в Дэвисе.

«Все они прекрасно сочетаются с инфляционной картиной», — сказал Альбрехт, один из создателей теории инфляции. «Инфляция сделала невероятно хорошо».

Однако инфляция — не единственная идея, пытающаяся объяснить структуру Вселенной. Теоретики придумали другую, названную циклической моделью, которая основана на более ранней концепции, называемой экпиротической вселенной.

Эта идея утверждает, что наша Вселенная не возникла из одной точки или чего-то подобного. Скорее, она отскочила в сторону расширения — гораздо более спокойными темпами, чем предсказывает теория инфляции — из ранее существовавшей Вселенной, которая сжималась. Если эта теория верна, наша Вселенная, вероятно, претерпела бесконечную череду взрывов и схлопываний.

«Начало нашей вселенной было бы прекрасным и конечным», — сказал Берт Оврут из Пенсильванского университета, один из создателей экпиротической теории.

Циклическая модель утверждает, что наша Вселенная состоит из 11 измерений, только четыре из которых мы можем наблюдать (три пространственных и одно временное). Наша четырехмерная часть Вселенной называется браной (сокращение от мембраны).

Согласно идее, в 11-мерном пространстве могут скрываться и другие браны. Столкновение двух бран могло привести к тому, что Вселенная перешла от сжатия к расширению, спровоцировав Большой взрыв, свидетельство которого мы наблюдаем сегодня.

На этом изображении всего неба космического микроволнового фона, созданном спутником “Планк” Европейского космического агентства, видны отголоски Большого взрыва, оставшиеся со времен зарождения Вселенной. (Изображение предоставлено ESA/LFI & HFI Consortia)

Известная нам Вселенная обретает форму

Но, во-первых, как наша Вселенная возникла из ничего? Космологи подозревают, что четыре силы, управляющие Вселенной — гравитация, электромагнетизм, слабое и сильное ядерное взаимодействие — были объединены в единую силу при рождении Вселенной, сжатые вместе из-за связанных с этим экстремальных температур и плотностей.

Но все изменилось, когда Вселенная расширилась и остыла. Примерно во время инфляции сильное взаимодействие, вероятно, отделилось. И примерно через 10 триллионных долей секунды после Большого взрыва электромагнитное и слабое взаимодействия также стали различаться.

Сразу после инфляции Вселенная, вероятно, была заполнена горячей плотной плазмой. Но примерно за 1 микросекунду (от 10 до минус 6 секунд) или около того он достаточно остыл, чтобы позволить сформироваться первым протонам и нейтронам, считают исследователи.

В первые три минуты после Большого взрыва эти протоны и нейтроны начали сливаться вместе, образуя дейтерий (также известный как тяжелый водород). Затем атомы дейтерия соединились друг с другом, образовав гелий-4.

Рекомбинация: Вселенная становится прозрачной

Все вновь созданные атомы были положительно заряжены, поскольку Вселенная была еще слишком горячей, чтобы способствовать захвату электронов.

Но все изменилось примерно через 380 000 лет после Большого Взрыва. В эпоху, известную как рекомбинация, ионы водорода и гелия начали захватывать электроны, образуя электрически нейтральные атомы. Свет значительно рассеивается на свободных электронах и протонах, но гораздо меньше на нейтральных атомах. Так что теперь фотоны могли свободно путешествовать по Вселенной.

Рекомбинация кардинально изменила облик Вселенной; это был непрозрачный туман, а теперь он стал прозрачным. Космическое микроволновое фоновое излучение, которое мы наблюдаем сегодня, относится к этой эпохе.

Тем не менее, Вселенная долгое время была довольно темной после рекомбинации, по-настоящему осветившись только тогда, когда первые звезды начали сиять примерно через 300 миллионов лет после Большого взрыва. Они помогли отменить многое из того, что было достигнуто рекомбинацией. Эти ранние звезды — и, возможно, некоторые другие загадочные источники — испускали достаточно радиации, чтобы расщепить большую часть водорода во Вселенной обратно на составляющие его протоны и электроны.

Этот процесс, известный как реионизация, похоже, завершился примерно через 1 миллиард лет после Большого взрыва. Вселенная сегодня не непрозрачна, как это было до рекомбинации, потому что она так сильно расширилась. По словам ученых, вещество во Вселенной очень разбавлено, поэтому взаимодействия, связанные с рассеянием фотонов, относительно редки.

Со временем звезды притягивались друг к другу, образуя галактики, что приводило к образованию все более крупномасштабных структур во Вселенной. Планеты объединились вокруг некоторых недавно образовавшихся звезд, включая наше собственное Солнце. А 3,8 миллиарда лет назад на Земле зародилась жизнь.

До Большого Взрыва?

Хотя многое о первых мгновениях Вселенной остается спекулятивным, вопрос о том, что предшествовало Большому Взрыву, еще более загадочен и труден для решения.

Во-первых, сам вопрос может быть бессмысленным. Если Вселенная возникла из ничего, как считают некоторые теоретики, то Большой взрыв отмечает момент, когда началось само время. В этом случае не было бы такого понятия, как «раньше», сказал Кэрролл.

Но некоторые концепции рождения вселенной могут предложить возможные ответы. Циклическая модель, например, предполагает, что нашей расширяющейся Вселенной предшествовала сжимающаяся Вселенная. Кэрролл тоже может вообразить, что что-то существовало до Большого взрыва.

«Это может быть просто пустое пространство, которое существовало до того, как произошел наш Большой Взрыв, а затем какая-то квантовая флуктуация породила вселенную, подобную нашей», — сказал он. «Вы можете представить себе небольшой пузырь пространства, оторвавшийся в результате флуктуации и наполнившийся крошечной каплей энергии, которая затем может вырасти во вселенную, которую мы видим благодаря инфляции».

Филиппенко тоже подозревает, что что-то в этом роде может быть правдой.

«Я думаю, что время в нашей вселенной началось с Большого взрыва, но я думаю, что мы были отклонением от предшественника, материнской вселенной», — сказал Филиппенко.

Узнаем ли мы когда-нибудь?

Миссия Европейского космического агентства “Планк”, которая вращалась вокруг Земли с 2009 по 2013 год, помогла космологам уточнить свои представления о природе нашей Вселенной и ее происхождении. Подробная карта космического микроволнового фона, созданная космическим кораблем, показала, что наша Вселенная, даже если она возникла от предшественницы, вряд ли снова сожмется в будущем, сказал Space.com астрофизик Дэйв Клементс из Имперского колледжа Лондона.

«Планк не может полностью исключить концепцию прыгающей Вселенной, но, учитывая текущие значения космологических параметров, наша Вселенная не собирается повторно коллапсировать», — сказал Клементс. «Компонент темной энергии, который в данный момент ускоряет расширение Вселенной, должен измениться, чтобы обратить это расширение вспять и привести к большому сжатию».

Используя данные Планка, ученые смогли уточнить свои оценки возраста Вселенной, а также количества видимой материи, темной материи и темной энергии в ней. По словам Клементса, миссия не преподнесла никаких сюрпризов и в основном подтвердила существующие теории.

«Это показывает, что это максимально скучная вселенная», — сказал Клементс.

Тем не менее, по его результатам возникло несколько новых вопросов. Например, постоянная Хаббла, описывающая скорость расширения Вселенной, незначительно отличается, измеренная Планком в далекой Вселенной, по сравнению с ее значением, полученным космическим телескопом Хаббла на основе измерений в ближней Вселенной, сказал Клементс.

Вся эта крупица информации помогает космологам лучше моделировать эволюцию Вселенной и приближаться к ответам на важные вопросы о происхождении всего сущего. Ожидается, что предстоящая миссия Европейского космического агентства под названием «Евклид» , запуск которой запланирован на 2023 год, сделает дальнейшие шаги в этом направлении.

Что дальше

Миссия Евклид будет изучать, как скопления и галактики разбросаны по Вселенной в больших масштабах, чтобы помочь астрономам лучше понять эффекты темной энергии. Он также будет изучать то, что астрономы называют слабым гравитационным линзированием, искривление света, вызванное гравитационным притяжением очень массивных объектов. Поскольку более 80% материи во Вселенной невидимы, сила линзирования может дать астрономам подсказки о распределении темной материи.

«Евклид сможет измерить это в гораздо большем масштабе, возможно, почти на половине внегалактического неба или даже больше», — сказал Клементс.

Дальнейшие части этой космической головоломки могут появиться в результате изучения гравитационных волн, ряби в пространстве-времени, возникающей при столкновениях сверхмассивных объектов, таких как черные дыры и нейтронные звезды.

Гравитационные волны, сказал Клементс, должны были возникнуть во время инфляции, периода быстрого расширения в первые моменты существования Вселенной. Таким образом, обнаружение этих ранних гравитационных волн и расшифровка их свойств могут дать беспрецедентные знания о рождении Вселенной.

«Это расскажет нам кое-что о физике, которая привела к раннему очень быстрому расширению Вселенной», — сказал Клементс. «Мы действительно возвращаемся к самым, самым ранним моментам, и если мы лучше поймем инфляцию, мы, надеюсь, сможем лучше понять, был ли Большой взрыв единичным событием или эта прыгающая идея может быть правильной».

Вы можете следить за старшим писателем SPACE.com Майком Уоллом в Твиттере: @michaeldwall. Подписывайтесь на SPACE.com, чтобы быть в курсе последних новостей космической науки и исследований, в Twitter @Spacedotcom и на Facebook.

Дополнительные ресурсы

Чтобы узнать больше о миссии «Планк» и ее стремлении понять происхождение Вселенной, посетите веб-сайт Европейского космического агентства. Для получения информации о предстоящей миссии EUCLID перейдите сюда.

Для получения дополнительной информации об изучении первичных гравитационных волн и о том, как они могут помочь раскрыть тайны рождения Вселенной, прочитайте эту статью Массачусетского технологического института.

Библиография

Муиа, Ф., Большой взрыв: как мы пытаемся его «прислушаться» и какую новую физику он может открыть, The Conversation, 15 июля 2021 г.                                 
https://theconversation.com/big-bang-how-we-are-trying-to-listen-to-it-and-the-new-physics-it-could-unveil-164502

Кастельвекки, Д. , Как гравитационные волны могут разгадать некоторые из глубочайших загадок Вселенной, Природа, 11 апреля 2018 г.
https://sci.esa.int/web/planck

ESA, Евклид                                                                           
https://sci.esa.int/web/euclid

Эта справочная статья, первоначально опубликованная 21 октября 2011 г., была обновлена ​​4 февраля 2022 г.

Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].

Майкл Уолл — старший космический писатель Space.com (открывается в новой вкладке) , присоединился к команде в 2010 году. В основном он освещает экзопланеты, космические полеты и военный космос, но, как известно, увлекается космическим искусством. Его книга о поисках инопланетной жизни «Out There» была опубликована 13 ноября 2018 года. Прежде чем стать научным писателем, Майкл работал герпетологом и биологом дикой природы. У него есть докторская степень. по эволюционной биологии Сиднейского университета, Австралия, степень бакалавра Аризонского университета и диплом о высшем образовании в области научного письма Калифорнийского университета в Санта-Круз. Чтобы узнать, какой у него последний проект, вы можете подписаться на Майкла в Твиттере.

История Вселенной: от Большого взрыва до наших дней за 10 шагов

Впечатление этого художника показывает галактики менее чем через миллиард лет после Большого Взрыва, когда Вселенная была еще частично заполнена водородным туманом, поглощавшим ультрафиолетовый свет. (Изображение предоставлено ESO/M.Kornmesser)

История Вселенной и то, как она развивалась, широко принята в качестве модели Большого Взрыва, в которой говорится, что Вселенная возникла как невероятно горячая и плотная точка примерно 13,7 миллиарда лет назад. Итак, как Вселенная превратилась из размеров в доли дюйма (несколько миллиметров) в то, чем она является сегодня?

Вот разбивка Большого Взрыва на настоящее в 10 простых для понимания шагах.

Шаг 1: Как все началось

Иллюстрация временной шкалы Вселенной после Большого взрыва. (Изображение предоставлено NASA/WMAP Science Team)

Большой взрыв не был взрывом в космосе, как можно предположить из названия теории. Вместо этого, по словам исследователей, это было появление пространства повсюду во Вселенной. Согласно теории Большого взрыва, Вселенная родилась как очень горячая и очень плотная точка в пространстве.

Космологи не знают, что произошло до этого момента, но с помощью сложных космических миссий, наземных телескопов и сложных расчетов ученые работают над тем, чтобы нарисовать более четкую картину ранней Вселенной и ее формирования.

Ключевая часть этого получена из наблюдений космического микроволнового фона, который содержит послесвечение света и излучения, оставшиеся после Большого взрыва. Этот реликт Большого взрыва пронизывает Вселенную и виден микроволновым детекторам, что позволяет ученым собрать воедино ключи к разгадке ранней Вселенной.

В 2001 году НАСА запустило миссию Wilkinson Microwave Anisotropy Probe (WMAP) для изучения условий, существовавших в ранней Вселенной, путем измерения излучения космического микроволнового фона. Среди других открытий WMAP удалось определить возраст Вселенной — около 13,7 миллиардов лет.

Шаг 2: Первый всплеск роста Вселенной

Когда Вселенная была очень молода — что-то вроде сотой миллиардной триллионной триллионной доли секунды (фу!) — она испытала невероятный всплеск роста. Во время этого всплеска расширения, известного как инфляция, Вселенная росла в геометрической прогрессии и удвоилась в размерах, по крайней мере, на 90 раз.

«Вселенная расширялась, и по мере расширения она становилась все холоднее и менее плотной», — сказал SPACE.com Дэвид Спергель, астрофизик-теоретик из Принстонского университета в Принстоне, штат Нью-Джерси. После инфляции Вселенная продолжала расти, но более медленными темпами.

По мере расширения пространства Вселенная охлаждалась и формировалась материя.

Шаг 3: Слишком жарко, чтобы светить

Легкие химические элементы были созданы в течение первых трех минут образования Вселенной. По мере расширения Вселенной температура снижалась, а протоны и нейтроны сталкивались, образуя дейтерий, изотоп водорода. Большая часть этого дейтерия объединилась в гелий.

WMAP создал новую, более подробную картину зарождающейся вселенной. Цвета обозначают «более теплые» (красные) и «более холодные» (синие) пятна. (Изображение предоставлено NASA/WMAP Science Team)

Однако в течение первых 380 000 лет после Большого взрыва сильное тепло от сотворения Вселенной делало ее слишком горячей для того, чтобы излучать свет. Атомы столкнулись друг с другом с достаточной силой, чтобы разбиться на плотную непрозрачную плазму протонов, нейтронов и электронов, которая рассеивала свет, как туман.

Шаг 4: Да будет свет

Примерно через 380 000 лет после Большого взрыва материя достаточно остыла для того, чтобы электроны соединились с ядрами и образовали нейтральные атомы. Эта фаза известна как «рекомбинация», и поглощение свободных электронов сделало Вселенную прозрачной. Свет, высвобожденный в то время, можно обнаружить сегодня в виде излучения космического микроволнового фона.

Тем не менее, за эрой рекомбинации последовал период тьмы, прежде чем образовались звезды и другие яркие объекты.

Шаг 5: Выход из темных веков

Примерно через 400 миллионов лет после Большого взрыва Вселенная начала выходить из своих темных веков. Этот период эволюции Вселенной называется эпохой реионизации.

Считалось, что эта динамическая фаза длилась более полумиллиарда лет, но, основываясь на новых наблюдениях, ученые полагают, что реионизация могла происходить быстрее, чем считалось ранее.

За это время сгустков газа разрушилось достаточно, чтобы образовались самые первые звезды и галактики. Испускаемый ультрафиолетовый свет этих энергетических событий очистил и уничтожил большую часть окружающего нейтрального газообразного водорода. Процесс повторной ионизации, а также очистка туманного газообразного водорода привели к тому, что Вселенная впервые стала прозрачной для ультрафиолетового света.

Шаг 6: Больше звезд и больше галактик

Изображение, полученное космическим телескопом НАСА Хаббл, показывает скопление галактик, находящихся на расстоянии 10 миллиардов световых лет. (Изображение предоставлено НАСА/ЕКА/Университет Флориды, Гейнсвилл/Университет Миссури-Канзас-Сити/Калифорнийский университет в Дэвисе)

Астрономы прочесывают Вселенную в поисках самых отдаленных и древнейших галактик, чтобы помочь им понять свойства ранней Вселенной. Точно так же, изучая космический микроволновый фон, астрономы могут работать в обратном направлении, чтобы собрать воедино события, которые произошли раньше.

Данные более старых миссий, таких как WMAP и Cosmic Background Explorer (COBE), которые были запущены в 1989 году, а также все еще действующих миссий, таких как космический телескоп Хаббла, запущенный в 1990 году, — все они помогают ученым разгадывать самые непреходящие загадки и ответить на самые спорные вопросы космологии.

Шаг 7: Рождение нашей Солнечной системы

По оценкам, наша Солнечная система родилась спустя 9 миллиардов лет после Большого Взрыва, то есть ей около 4,6 миллиардов лет. Согласно текущим оценкам, Солнце является одной из более чем 100 миллиардов звезд только в нашей галактике Млечный Путь и вращается примерно в 25 000 световых лет от галактического ядра.

Инфракрасный снимок развивающейся звезды, сделанный космическим телескопом NASA Spitzer. Он иллюстрирует, как могла выглядеть наша Солнечная система миллиарды лет назад. (Изображение предоставлено NASA/JPL-Caltech/AURA)


Многие ученые считают, что Солнце и остальная часть нашей Солнечной системы образовались из гигантского вращающегося облака газа и пыли, известного как солнечная туманность. Когда гравитация заставила туманность схлопываться, она вращалась быстрее и сплющивалась в диск. На этом этапе большая часть материала была стянута к центру, чтобы сформировать солнце.

Шаг 8: Невидимое вещество во Вселенной

В 1960-х и 1970-х годах астрономы начали думать, что во Вселенной может быть больше массы, чем видимая. Вера Рубин, астроном из Института Карнеги в Вашингтоне, наблюдала за скоростью звезд в различных местах галактик.

Основы ньютоновской физики подразумевают, что звезды на окраинах галактики вращаются медленнее, чем звезды в центре, но Рубин не обнаружил разницы в скоростях звезд, расположенных дальше. На самом деле она обнаружила, что все звезды в галактике вращаются вокруг центра с более или менее одинаковой скоростью.

Эта загадочная и невидимая масса стала известна как темная материя. Вывод о темной материи основан на гравитационном притяжении, которое она оказывает на обычную материю. Одна из гипотез гласит, что таинственный материал может быть образован экзотическими частицами, которые не взаимодействуют со светом или обычным веществом, поэтому его так трудно обнаружить.

Изображение Земли, окруженной нитями темной материи, называемыми «волосами». (Изображение предоставлено NASA/JPL-Caltech)

Шаг 9: расширяющаяся и ускоряющаяся Вселенная

В 1920-х годах астроном Эдвин Хаббл сделал революционное открытие о Вселенной. С помощью недавно построенного телескопа в обсерватории Маунт-Вилсон в Лос-Анджелесе Хаббл заметил, что Вселенная не статична, а расширяется.

Десятилетия спустя, в 1998 году, космический телескоп Хаббла, названный в честь знаменитого астронома, изучал очень далекие сверхновые звезды и обнаружил, что давным-давно Вселенная расширялась медленнее, чем сегодня. Это открытие было неожиданным, потому что долгое время считалось, что гравитация материи во Вселенной замедляет ее расширение или даже заставляет ее сжиматься.

Ссылки по теме

Темная энергия считается странной силой, которая разрывает космос на части со все возрастающей скоростью, но она остается незамеченной и окутана тайной. Существование этой неуловимой энергии, которая, как считается, составляет 80% Вселенной, является одной из самых горячо обсуждаемых тем в космологии.

Шаг 10: Нам все еще нужно знать больше

Несмотря на то, что многое известно о сотворении и эволюции Вселенной, остаются вопросы, которые остаются без ответа. Темная материя и темная энергия остаются двумя самыми большими загадками, но космологи продолжают исследовать Вселенную в надежде лучше понять, как все началось.

Космический телескоп Джеймса Уэбба (JWST), запущенный в 2021 году, продолжит охоту за неуловимой темной материей, а также заглянет в начало времен и эволюцию Вселенной с помощью инфракрасных инструментов.

Впечатление художника от космического телескопа NASA/ESA/CSA James Webb. (Изображение предоставлено ЕКА, НАСА, С. Беквитом (STScI) и командой HUDF, Northrop Grumman Aerospace Systems / STScI / ATG medialab) Вселенная (открывается в новой вкладке)» Дэвида Х. Лита или «Краткая история времени (открывается в новой вкладке)» Стивена Хокинга. Вы также можете быть в курсе открытий JWST, посетив специальную веб-страницу НАСА или специальную веб-страницу Европейского космического агентства.

Библиография

Scientific American, “Эволюция Вселенной (открывается в новой вкладке)”, октябрь 1994 г. 

Уолтер Перри, “Происхождение и эволюция Вселенной (открывается в новой вкладке)”, Journal of Modern Physics, Том 12, ноябрь 2021 г.

Бхарат Ратра и Майкл С. Фогели, «Начало и эволюция Вселенной», Публикации Тихоокеанского астрономического общества, том 120, март 2008 г.,

НАСА, «Краткая история Вселенная”, декабрь 2006 г. 

Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].

Скотт является штатным автором журнала How It Works и ранее писал для других научных и информационных изданий, включая журнал BBC Wildlife, журнал World of Animals, Space.com и журнал All About History. Скотт имеет степень магистра в области научной и экологической журналистики, а также степень бакалавра в области природоохранной биологии Университета Линкольна в Великобритании. За свою академическую и профессиональную карьеру Скотт участвовал в нескольких проектах по сохранению животных, включая исследования птиц в Англии, наблюдение за волками в Германии. и отслеживание леопарда в Южной Африке.

Как возникла вселенная? Исследование показывает, почему теория «подпрыгивания» неверна

Новое исследование доказывает, что все еще должно быть начало «подпрыгивания» вселенных, которые проходят через циклы расширения и сжатия, с бесконечными Большими взрывами или Большими сжатиями.

Космические скалы

НАСА 

Между космологическими теориями все еще существуют разногласия относительно того, как возникла Вселенная. В более общепринятой гипотезе Вселенная началась с сингулярности, точки бесконечной плотности и гравитации, быстро раздулась в результате Большого взрыва и продолжала расширяться, пока не достигла формы, в которой мы находимся сегодня, около 13,8 миллиардов лет. потом. С другой точки зрения, Большой взрыв — это всего лишь один из бесконечных циклов расширения и сжатия, заканчивающийся «Большим сжатием» и возобновляющийся Большим взрывом. Новое исследование предлагает предостережение, которое бросает вызов теории циклической вселенной, предполагая, что даже у так называемых «прыгающих» вселенных должно быть начало.

Самые популярные

Еще новости

Наука
Прорыв в долголетии: ученые открывают способ обратить старение в скелетных мышцах

Стивен Вичинанца| 20.09.2022

инновации
Phantom Space: новый ракетный стартап заявляет, что может запускать ракеты вдвое дешевле, чем SpaceX

Крис Янг| 20.09.2022

культура
Украина захватила самый передовой боевой танк России в «почти идеальном» состоянии

Амейя Палеха| 9/20/2022

инновации
Безвоздушные шины, изготовленные с использованием технологий НАСА, могут положить конец проколам и резиновым отходам

Крис Янг| 15.09.2022

Исследование, проведенное физиками из Университета Буффало (УБ) Уиллом Кинни и Ниной Стейн, посвящено самой последней модели «прыгающей» космологии, изложенной в исследовании 2019 года «Новый вид циклической Вселенной». . Ученые UB считают, что модель, которая сглаживает некоторые из предыдущих опасений, все же должна включать отправную точку.

«Люди предлагали перемещать вселенные, чтобы сделать вселенную бесконечной в прошлом, но мы показываем, что один из новейших типов этих моделей не работает», — объяснил профессор Кинни в пресс-релизе. «В этом новом типе модели, которая решает проблемы с энтропией, даже если у Вселенной есть циклы, у нее все равно должно быть начало», — утверждал он9.0009

Большой отскок

Теории циклической вселенной, также называемые моделями Большого отскока, хотя и маргинализированы за счет теории космической инфляции, имеют одно заметное преимущество. Модели Большого отскока основаны на предпосылке, что Вселенной не нужно было бы начало, если бы она действительно была вовлечена в непрерывный цикл периодов расширения и сжатия. Оно будет бесконечно простираться в прошлое и точно так же в будущее в бесконечной последовательности вселенных.

Новая вселенная пройдет через период инфляции, а затем сожмется или схлопнется. Но коллапсирующая Вселенная, по сути, отскочит еще до того, как достигнет сингулярности, таким образом избежав Большого Взрыва, как его представляли инфляционисты, и вместо этого испытает нечто похожее на Большой Отскок. В этот момент Вселенная перестанет уменьшаться и снова начнет расширяться. И так далее, и так далее, через эоны.

Не имея космического начала, теории Большого отскока обходят некоторые проблемы, возникающие из теории космической инфляции, которая не касается того, что происходит до сингулярности и Большого взрыва.

Проблема с Большим Отскоком

Новое исследование, опубликованное в Журнале Космологии и Физики Астрочастиц, ставит уместные вопросы о жизнеспособности нынешней циклической модели Вселенной.

По словам Кинни, модель уже почти 100 лет пытается обойти одну серьезную проблему — у моделей прыгающей вселенной есть проблема с беспорядком или энтропией. Поскольку энтропия накапливается во Вселенной в течение определенного периода времени, каждый цикл будет отличаться от любого другого.

«Это не совсем циклично», — утверждает Кинни, согласно пресс-релизу. «Недавняя циклическая модель решает эту проблему накопления энтропии, предполагая, что Вселенная расширяется с каждым циклом, разбавляя энтропию». Как добавил Кинни, расширение Вселенной расширит ее до такой степени, что она избавится от космических структур, таких как черные дыры, что вернет Вселенную в ее «первоначальное однородное состояние, прежде чем начнется новый скачок».

Исследование Кинни и Штейна показывает, что в том, как недавняя модель решила проблему энтропии, во Вселенной все еще должно быть добавлено начало, нарушая предполагаемую циклическую природу модели. Циклическая вселенная не может бесконечно простираться в прошлое.

Что до сингулярности?

Если у Вселенной было начало, даже в прыгающих моделях Вселенной, как показала их работа, ученые хотят выяснить, что произошло до этого, до сингулярности. «Мысль о том, что был момент времени, до которого не было ничего, не было времени, беспокоит нас, и мы хотим знать, что было до этого — включая ученых», — уточнил Штейн, соавтор исследования и доктор философии. . студент физ.

Далее, описывая значение их исследований, Стайн выразила свой энтузиазм по поводу этой области исследований: «Есть много причин интересоваться ранней Вселенной, но я думаю, что моя самая любимая — это естественная человеческая склонность хотеть знать, что пришла раньше», — заявила она в пресс-релизе. Стейн также указал, что истории сотворения обычно встречаются в разных культурах и историях людей. Люди хотят иметь представление о том, что было в начале. «Мы всегда хотим знать, откуда мы пришли», — добавила она.

Исключение Роджера Пенроуза

Ученые, стоящие за новым исследованием, отметили, что, хотя они поддерживают свою критику вселенных Большого отскока, их работа не применима к модели циклической вселенной, предложенной физиком сэром Роджером Пенроузом. Пенроуз, лауреат Нобелевской премии, отстаивающий модель циклической Вселенной, которую он назвал конформной циклической космологией. В его концепции прыгающей Вселенной каждый цикл, который он назвал «эоном», расширяется до бесконечности без периодов сжатия. Вместо этого теория предполагает, что Вселенная расширяется до тех пор, пока вся материя не распадется, поглощенная черными дырами, которые также в конечном итоге исчезнут из-за излучения Хокинга. По мере восстановления единообразия прежняя вселенная становится физически идентичной Большому взрыву следующего эона, и рождается новая вселенная.

«Мы работаем над этим», — сказал Кинни, имея в виду их работу по применению своей теории к циклической модели Пенроуза.

Ознакомьтесь с их статьей под названием «Циклическая космология и геодезическая полнота».

Abstract:

Мы рассматриваем недавно предложенные прыгающие космологические модели, для которых параметр Хаббла является периодическим во времени, но масштабный фактор растет от одного цикла к другому как механизм сброса энтропии. Поскольку масштабный коэффициент для плоской вселенной эквивалентен общему конформному фактору, утверждалось, что этот рост соответствует физически нерелевантному изменению масштаба, и такие прыгающие вселенные можно сделать идеально циклическими, бесконечно простирающимися в прошлое и будущее. Мы показываем, что любая прыгающая Вселенная, которая использует рост масштабного фактора для рассеивания энтропии, обязательно должна быть геодезически незавершенной в прошлом и, следовательно, не может быть действительно циклической во времени.

БОЛЬШОЙ ВЗРЫВ

БОЛЬШОЙ ВЗРЫВ
 

Крис ЛаРокко и Блэр Ротштейн присутствует: 

Самый глубокий взгляд на Вселенную, сделанный телескопом Хаббл, учит нас начало

ВВЕДЕНИЕ

Мы точно знаем, что наша Вселенная существует, однако это знание сама по себе не удовлетворила стремление человечества к дальнейшему пониманию. Наш любопытство привело нас к вопросу о нашем месте в этой вселенной и, более того, место самой вселенной. На протяжении всего времени мы спрашивали себя эти вопросы: Как началась наша Вселенная? Сколько лет нашей Вселенной? Как возникла ли материя? Очевидно, что это не простые вопросы и за всю нашу короткую историю на этой планете было потрачено много времени и усилий. провел в поисках подсказки. Тем не менее, после того, как вся эта энергия была израсходована, многое из того, что мы знаем, все еще остается лишь предположением.

Однако мы далеко ушли от мистических истоков изучение космологии и происхождения Вселенной. Через понимание современной науки, мы смогли предоставить твердые теории для некоторых из ответы, которые мы когда-то называли гипотезами. Верный природе науки, большинство этих ответов привели только к более интригующим и сложным вопросы. Кажется, что наш поиск знаний задает вопросы. всегда будет продолжать существовать.

Хотя в этой короткой главе невозможно охватить все вопросы, касающиеся создания всего, что мы знаем как реальность, будет предпринята попытка обратиться к некоторым фундаментальным вопросам нашей существование. Важно помнить, что вся эта информация постоянно подвергается сомнению и переоценке, чтобы понять Вселенная более четко. Для наших целей, путем изучения того, что известно о самом Большом Взрыве, возрасте Вселенной и синтезе первых атомов, мы считаем, что мы можем начать отвечать на некоторые из этих ключевые вопросы.

БОЛЬШОЙ ВЗРЫВ

Одним из наиболее часто задаваемых вопросов был: как возникла Вселенная? созданный? Многие когда-то верили, что у Вселенной нет ни начала, ни конца. был поистине бесконечен. Однако с появлением теории Большого взрыва не дольше можно было считать вселенную бесконечной. Вселенная была вынуждена принять свойства конечного явления, имеющего историю и начало.

Около 15 миллиардов лет назад мощный взрыв начал расширение Вселенной. Этот взрыв известен как Большой Взрыв. В точку этого события вся материя и энергия пространства содержались в одном точка. Что существовало до этого события, совершенно неизвестно. вопрос чистой спекуляции. Это происшествие не было обычным взрывом а скорее событие, заполняющее все пространство всеми частицами зародышевые вселенные устремляются друг от друга. Большой взрыв на самом деле состоял из взрыва пространства внутри себя в отличие от взрыва бомба, осколки которой выброшены наружу. Не все галактики были сгруппированы вместе, а Большой взрыв заложил основы Вселенной.

Происхождение теории Большого Взрыва можно приписать Эдвину Хабблу. Хаббл сделал наблюдение, что Вселенная непрерывно расширяется. Он открыл что скорость галактики пропорциональна ее расстоянию. Галактики, которые в два раза дальше от нас двигаться в два раза быстрее. Другим следствием является то, что Вселенная расширяется во всех направлениях. Это наблюдение означает, что Каждой галактике потребовалось одинаковое количество времени, чтобы перейти от общего начальное положение в текущее положение. Так же, как Большой взрыв обеспечил для основания Вселенной наблюдения Хаббла обеспечили основа теории Большого Взрыва.

С момента Большого взрыва Вселенная постоянно расширялась и, таким образом, расстояние между скоплениями галактик становилось все больше и больше. Это явление, когда галактики удаляются друг от друга, известно как красное смещение. Когда свет от далеких галактик приближается к Земле, увеличение пространства между Землей и галактикой, что приводит к увеличению длины волны растягивается.

В дополнение к пониманию скорости галактик, исходящих с одной стороны, есть еще одно свидетельство Большого Взрыва. В 1964, два астронома, Арно Пензиас и Роберт Уилсон, в попытке обнаружить микроволны из космоса, ненароком обнаружил внеземной шум источник. Шум, казалось, исходил не из одного места, а из оно пришло со всех сторон одновременно. Стало очевидно, что услышанное было излучение из самых дальних уголков Вселенной, которое было осталось от Большого Взрыва. Это открытие радиоактивных последствий первоначальный взрыв придал большое значение теории Большого взрыва.

Четный Совсем недавно спутник НАСА COBE смог обнаружить космические микроволны. исходящие из дальних уголков Вселенной. Эти микроволновки были удивительно однородный, что иллюстрирует однородность ранних стадий Вселенной. Однако спутник также обнаружил, что вселенная начал остывать и все еще расширялся, начали существовать небольшие флуктуации из-за разницы температур. Эти колебания подтвердили предыдущие расчеты. о возможном охлаждении и развитии Вселенной лишь доли секунды после его создания. Эти колебания во Вселенной обеспечили более подробное описание первых мгновений после Большого Взрыва. Они также помогли рассказать историю образования галактик, которые будут обсуждаются в следующей главе.

Теория Большого взрыва предлагает жизнеспособное решение одной из самых насущных вопросы на все времена. Однако важно понимать, что сама теория постоянно пересматривается. По мере того, как делается больше наблюдений и проведено больше исследований, теория Большого взрыва становится более полной и наши знания о происхождении Вселенной более существенны.

ПЕРВЫЕ АТОМЫ

Теперь, когда была предпринята попытка разобраться с теорией Большой взрыв, следующий логичный вопрос, который следует задать: что произошло потом? В мизерные доли первой секунды после создания то, что было когда-то полный вакуум начал превращаться в то, что мы теперь знаем как вселенную. В самом начале кроме плазменного супа ничего не было. какая известно об этих кратких моментах времени, в начале нашего изучения космологии, носит во многом предположительный характер. Однако наука разработала некоторый набросок того, что вероятно, произошло, основываясь на том, что известно о Вселенной сегодня. 9-43 секунд после создания существовало почти равное, но асимметричное количества вещества и антивещества. Поскольку эти два материала созданы вместе, они сталкиваются и уничтожают друг друга, создавая чистую энергию. К счастью для нас была асимметрия в пользу материи. Как прямой результат превышение примерно одной части на миллиард, Вселенная смогла созреть способом, благоприятным для сохранения материи. Когда Вселенная впервые начала расширяться, это несоответствие увеличивалось. Частицы, которые стали доминировать были из материи. Они были созданы и распались без сопровождения равного рождения или распада античастицы.

По мере дальнейшего расширения Вселенной и, следовательно, охлаждения, обычные частицы начали формироваться. Эти частицы называются барионами и включают в себя фотоны, нейтрино, электроны и кварки станут строительными блоками материи и жизнь, какой мы ее знаем. В период барионогенеза не было распознаваемые тяжелые частицы, такие как протоны или нейтроны, из-за еще сильная жара. В этот момент был только творожный суп. Как Вселенная начала остывать и расширяться еще больше, мы начинаем понимать больше ясно, что именно произошло.

После того, как Вселенная остыла примерно до 3000 миллиардов градусов Кельвина, начался радикальный переход, уподобляемый фазовому переходу воды, превращающейся в лед. Составные частицы, такие как протоны и нейтроны, называемые адроны, стали обычным состоянием материи после этого перехода. Тем не менее, при этих температурах не могло образоваться более сложное вещество. Несмотря на то что более легкие частицы, называемые лептонами, тоже существовали, им было запрещено реагируя с адронами, образуя более сложные состояния материи. Эти лептоны, в том числе электроны, нейтрино и фотоны, вскоре смогли присоединиться к своим адронным родственникам в союзе, который определил бы сегодняшний общее дело.

По прошествии одной-трех минут с момента создания Вселенной, протоны и нейтроны начали реагировать друг с другом, образуя дейтерий, изотоп водорода. Дейтерий, или тяжелый водород, вскоре собрал еще один нейтрона с образованием трития. Вскоре за этой реакцией последовало добавление другого протона, создавшего ядро ​​гелия. Ученые считают, что было одно ядро ​​гелия на каждые десять протонов в пределах первых трех минуты Вселенной. После дальнейшего охлаждения эти избыточные протоны быть в состоянии захватить электрон для создания общего водорода. Следовательно, современная Вселенная содержит один атом гелия на каждые десять или одиннадцать атомов водорода.

Хотя это правда, что большая часть этой информации является спекулятивной, поскольку с возрастом Вселенной мы можем становиться все более уверенными в своих знаниях своей истории. Изучая то, как вселенная существует сегодня можно многое узнать о его прошлом. Много усилий ушло в понимании образования и количества барионов, присутствующих сегодня. Через находя ответы на эти современные вопросы, можно проследить их роль во Вселенной восходит к Большому Взрыву. В дальнейшем, изучая образования простых атомов в лаборатории мы можем сделать некоторые обоснованные предположения как они образовались первоначально. Только путем дальнейших исследований и открытий можно ли будет полностью понять сотворение вселенной и его первые атомные структуры, однако, может быть, мы никогда не узнаем Конечно.

ЭРА ВСЕЛЕННОЙ

Теперь у нас есть что-то вроде решения двух самых важных проблем. относительно вселенной; однако остается один важный вопрос. Если вселенная действительно конечен, как долго он существует? Опять же, наука смог расширить то, что он знает о Вселенной сегодня, и экстраполировать теория относительно его возраста. Применяя обычное физическое уравнение расстояния над скоростью, равной времени, что снова использует наблюдения Хаббла, довольно можно сделать точное приближение.

Необходимы два основных измерения: расстояние до движущейся галактики. от нас, и это красное смещение галактик. Неудачная первая попытка было сделано, чтобы найти эти расстояния с помощью тригонометрии. Ученые были в состоянии вычислить диаметр орбиты Земли вокруг Солнца, который был дополнен расчетом движения Солнца с помощью наших собственных галактика. К сожалению, этот расчет не может быть использован отдельно для определения огромное расстояние между нашей галактикой и теми, которые позволили бы нам оценить возраст Вселенной из-за значительных ошибок.

Следующим шагом было понимание пульсации звезд. У него было было замечено, что звезды одинаковой светимости мигают с одинаковой скоростью, примерно как маяк мог бы работать там, где все маяки мощностью 150 000 ватт лампочки будут вращаться каждые тридцать секунд, а лампы мощностью 250 000 ватт лампочки будут вращаться каждую минуту. Обладая этими знаниями, ученые предположил, что звезды в нашей галактике, которые мигают с той же частотой, что и звезды в далеких галактиках должны иметь одинаковую интенсивность. С помощью тригонометрии они смогли рассчитать расстояние до звезды в нашей галактике. Следовательно, расстояние до далекой звезды можно было вычислить, изучив разницу по своей интенсивности очень похоже на определение расстояния между двумя автомобилями в ночь. Если предположить, что фары двух автомобилей имеют одинаковую интенсивность, то можно сделать вывод, что автомобиль, чьи фары выглядели тусклее, был дальше от наблюдателя, чем другая машина, чьи фары казаться ярче. Опять же, эта теория не может быть использована сама по себе для расчета расстояние до самых далеких галактик. Через определенное расстояние становится невозможно отличить отдельные звезды от галактик, в которых они существует. Из-за больших красных смещений в этих галактиках метод должен был быть разработан для определения расстояния, используя целые скопления галактик, а не звезды один.

Изучая размеры скопления галактик, находящихся рядом с нами, ученые может получить представление о размерах других кластеров. Следовательно, можно сделать предсказание об их удалении от Млечного Пути намного таким же образом было изучено расстояние до звезд. Хотя расчет с участием предполагаемое расстояние до далекого скопления и его красное смещение, окончательное можно оценить, как долго галактика удалялась от нас. В свою очередь, это число можно использовать в обратном порядке, чтобы повернуть время вспять. момент, когда две галактики оказались в одном и том же месте в одно и то же время, или момент Большого Взрыва. Уравнение, обычно используемое для отображения Здесь показан возраст Вселенной:  917 секунд, получается примерно пятнадцать миллиардов лет. Этот расчет почти полностью аналогичен каждая галактика, которую можно изучить. Однако из-за неопределенностей измерений, произведенных этими уравнениями, только грубая оценка истинного возраста Вселенной можно вылепить. При поиске возраста Вселенной сложный процесс, достижение этого знания представляет собой важный шаг в нашем понимании.

ЧТО ТЕПЕРЬ?

Таким образом, мы предприняли первую попытку объяснить ответы, которые наука открыла о нашей Вселенной. Наше понимание Большого Взрыва, первых атомов и возраст Вселенной, очевидно, неполный. В качестве время идет, делается больше открытий, что приводит к бесконечным вопросам которые требуют еще ответов. Неудовлетворен нашей базой знаний исследования проводятся во всем мире в этот самый момент для дальнейшего наше минимальное понимание невообразимо сложной вселенной.

С момента своего зарождения теория Большого Взрыва постоянно бросил вызов. Эти вызовы привели тех, кто верит в теорию, к искать более конкретные доказательства, подтверждающие их правоту. Из на том месте, где заканчивается эта глава, многие пытались пойти дальше было сделано несколько открытий, которые рисуют более полную картину о сотворении вселенной.

Недавно НАСА сделало несколько поразительных открытий, которые к доказательству теории Большого Взрыва. Самое главное, астрономы, использующие обсерватории Астро-2 смогли подтвердить одно из требований к основание Вселенной в результате Большого Взрыва. В июне 1995, ученые смогли обнаружить первичный гелий, такой как дейтерий, в дальних пределах Вселенной. Эти выводы согласуются с важным аспектом теории Большого Взрыва, что смесь водорода и гелия была создана в начале вселенной.

Кроме того, телескоп Хаббл, названный в честь отца Большого Взрыва Теория дала определенные подсказки относительно того, какие элементы присутствовали после творчество. Астрономы с помощью Хаббла нашли элемент бор в чрезвычайно древние звезды. Они постулируют, что его присутствие могло быть либо остатком энергетических событий при рождении галактик или может указывать на то, что бор еще старше, он восходит к самому Большому Взрыву. Если последний верно, ученые будут вынуждены в очередной раз модифицировать свою теорию для рождение вселенной и события сразу после этого, потому что, согласно согласно современной теории такой тяжелый и сложный атом не мог существовать.

Таким образом, мы можем видеть, что исследование никогда не будет по-настоящему завершенным. Наша жажда знаний никогда не будет утолена. Итак, чтобы ответить на вопрос, что теперь, это невозможно. Путь, который мы выберем отсюда, будет только определяется нашими собственными открытиями и вопросами. Мы заняты бесконечным цикл вопросов и ответов, где одно неизбежно ведет к другому.

COBE продолжает поиск во внешних пределах Вселенной
ГЛУБОКИЕ МЫСЛИ

Чрезвычайно сложно отделить этот предмет науки от повседневного экзистенциальные размышления. Каждый хоть раз сталкивался с вопрос зачем мы здесь? Некоторые нашли убежище в чистой философской характер этого вопроса, в то время как другие придерживаются более научного подхода. Эти странники подняли вопрос на более высокий уровень, сосредоточившись на не только о человеческом существовании, но и о существовании всего, что мы знаем как настоящий.

Если вы сядете и попытаетесь представить всю вселенную целиком, это будет быть ошеломляющим. Однако теперь наука сказала нам, что Вселенная фактически конечное, имеющее начало, середину и будущее. Это легко увязнуть в масштабах вопроса в обсуждении лет миллиарды, но это время все еще проходит. Когда мы путешествуем по собственной жизни здесь, на Земле, мы также путешествуем по жизни нашей вселенной.

В этой главе мы попытались объяснить это путешествие. Странно, что мы никогда не узнаем, как это началось. Мы можем только предполагать и дать наше лучшее предположение. Благодаря нашим собственным устройствам мы смогли произвести свидетельствуют о том, что эти догадки близки к истине. Но века от теперь человеческая раса сравнит нас с теми, кто когда-то думал о Земле как центр вселенной? 9-33 секунды после Большого Взрыва

Дейтерий — тяжелый изотоп водорода, содержащий протон и один нейтрон

Адроны — составные частицы, такие как протоны и нейтроны, образующие после снижения температуры до 300 МэВ

Лептоны — легких частиц, существующих с адро, включая электроны, нейтрино и фотоны

Красное смещение — сдвиг в сторону красного в спектрах света, достигающего нас со звезд в далеких галактиках

Тритий — переходный элемент между дейтерием и формацией ядра гелия


ССЫЛКИ
Литература

Кауфманн, Уильям Дж.

Оставить комментарий